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Table 1.  Ages and elevations of major shorelines of Lake Bonneville in Dugway Proving Ground and adjacent areas. 

Age Lake Cycle and Phase Shoreline 
(map symbol) radiocarbon years B.P. calendar years B.P.1 

Elevation 
feet (meters) 

Lake Bonneville 
Stansbury (S) 22,000-20,0002 24,400-23,200 4450-4480 (1357-1366) Transgressive Phase 
Bonneville (B) 15,500-14,5003 18,000-16,800 5220-5262 (1591-1604) 
Provo (P) 14,500-12,0004 16,800-13,5005 4860-4880 (1482-1488) Regressive Phase 
Gilbert 11,000-10,0006 12,800-11,600 Not exposed 

1Calendar-calibrated ages of most shorelines have not been published.  Calendar-calibrated ages shown here, except for the age of the end of the Provo shoreline, 
are from D.R. Currey, University of Utah (written communication to Utah Geological Survey, 1996; cal yr B.P. = 1.16 14C yr B.P.). 

2Oviatt and others (1990); Currey (written communication to Utah Geological Survey, 1996, assumed a maximum age for the Stansbury shoreline of 21,000 14C yr 
B.P., which is used in the conversion to calendar years). 

3Oviatt and others (1992), Oviatt (1997). 
4Godsey and others (2005) revised the timing of the occupation of the Provo shoreline and subsequent regression; Oviatt and others (1992) and Oviatt (1997) 

proposed a range from 14,500 to 14,000 14C yr B.P.  Oviatt and Thompson (2002) summarized many recent changes in the interpretation of the Lake Bonneville 
radiocarbon chronology. 

5Calendar-calibrated age of the end of the Provo shoreline estimated by interpolation from data in Godsey and others (2005), table 1, who used Stuiver and 
Reimer (1993) for calibration. 

6Murchison (1989), figure 20. 

 

flood 

Table 2.  Major- and trace-element whole-rock analyses for Dugway Proving Ground and adjacent areas.

Map 
Number Sample # Map Unit Rock Name 7.5' Quadrangle Latitude (N) Longitude (W) SiO2 CaO MgO

Trd2 GP081605-1a Trd Rhyolite dike Granite Peak 40°07'23" 113°17'14" 72.31 14.75 1.77 1.6 0.4 3.64 4.38

Trd3 GP081605-10a Trd Rhyolite dike Granite Peak  40°10'03" 113°17'06" 69.01 13.19 3.52 0.75 0.55 0.9 8.8

Trd1 GP081605-6b Trd Rhyolite dike Granite Peak 40°07'44" 113°17'04" 75.23 12.07 1.14 0.64 0.1 0.56 8.75

Trs1 GP071405-11 Trs Rhyolite flow Granite Peak SE 40°03'55.4" 113°16'18.5" 69.95 13.18 3.46 1.14 0.11 1.34 8.51

Trs2 GP102605-4 Trs Rhyolite flow Granite Peak SE 40°03'40.9" 113°16'14.6" 72.48 10.53 2.74 1.53 0.64 0.76 7.48

Trs3 GP102605-5 Trs Rhyolite flow Granite Peak SE 40°03'41.3" 113°15'32.2" 73.05 11.42 2.59 0.84 0.23 1.06 7.56

*Trr1 D-47 Trr Rhyolite Tabbys Peak 40°26'18.0" 112°56'57.2" 68.97 14.05 1.31 2.04 0.37 2.74 3.98

*Trr2 D-48 Trr Rhyolite Tabbys Peak 40°25'10.8" 112°58'38.3" 67.55 14.38 2.96 2.61 0.89 3.18 4.45

*Trr3 D-49 Trr Rhyolite Tabbys Peak 40°22'38.1" 112°57'38.9" 68.18 14.87 2.12 2.2 1.02 3.18 3.78

*Trr4 D-51 Trr Rhyolite Tabbys Peak 40°23'11.7" 112°57'13.1" 75.73 14.96 0.61 0.71 0.16 0.06 0.05

Tdd1 GP080905-3 Tdd Latite dike Granite Peak SE 40°07'09" 113°15'20" 56.56 16.94 8.61 3.54 3.08 3.48 3.23

Tdd2 GP081005-12 Tdd Dacite dike Granite Peak 40°09'01" 113°20'15' 62.41 15.13 5.39 4.8 3.54 3.22 3.04

Tdd3 GP081005-9 Tdd Dacite dike Granite Peak 40°09'17" 113°20'06" 61.93 14.85 5.51 4.96 3.94 3.11 3.02

Tac1 D-7 Tac Andesite Wig Mountain 40°21'37.8" 113°00'04.0' 60.25 15.15 6.58 5.22 3.45 2.93 3.12

Tac6 D-9 Tac Dacite Wig Mountain 40°22'03.5' 113°00'11.9" 60.99 16.4 4.86 4.71 2.79 3 2.13

Tac7 D-10 Tac Andesite Tabbys Peak SW 40°21'33.4" 112°59'42.4" 59.97 16.24 6.19 4.83 1.78 2.95 3.62

Tac8 D-12 Tac Andesite Tabbys Peak SW 40°20'12.9" 112°58'21.1" 59 16.41 7.34 6.22 3.86 2.66 2.24

Tac2 D-15 Tac Dacite Tabbys Peak SW 40°20'33.7" 112°58'07.7" 62.68 15.82 5.65 4.27 1.68 2.81 3.87

Tac3 D-17 Tac Andesite Tabbys Peak SW 40°18'39.6" 112°56'36.3" 60.15 15.85 6.89 5.05 2.96 2.73 3.62

Tac9 D-19 Tac Dacite Tabbys Peak SW 40°19'01.9" 112°56'32.6" 63.54 15.71 5.77 4 1.88 2.85 3.69

Tac10 D-20 Tac Andesite Tabbys Peak SW 40°19'05.1" 112°56'26.7" 61.8 16.34 5.8 4.44 2.09 2.82 3.8

Tac11 D-21 Tac Dacite Tabbys Peak SW 40°19'06.1" 112°56'23.8" 61.21 16.03 5.69 4.26 1.71 3 3.64

Tac4 D-25 Tac Andesite Tabbys Peak SW 40°16'13.7" 112°56'23.9" 61.01 15.33 6.25 4.56 2.79 2.78 3.72

Tac12 D-31 Tac Andesite Tabbys Peak SW 40°16'11.5" 112°52'39.7" 60.04 14.74 6.5 4.89 3.44 2.55 3.47

Tac13 D-32 Tac Andesite Tabbys Peak SW 40°16'06.8" 112°53'04.2" 58.71 15.13 7.55 5.36 4.21 2.24 3.43

Tac14 D-37 Tac Dacite Camels Back Ridge NE 40°13'40.9" 112°48'36.5" 63.03 14.6 6.32 4.11 3.1 2.83 3.46

Tac15 D-38 Tac Andesite Tabbys Peak SE 40°15'04.8" 112°46'02.3" 60.56 14.88 7.2 4.63 3.31 2.52 3.59

*Tac5 D-42 Tac Andesite Wig Mountain NE 40°26'55.3" 113°01'57.8" 59.59 16.58 6.96 6.01 3.3 2.84 2.12

*Tac16 D-44 Tac Dacite Wig Mountain NE 40°27'21.0" 113°00'49.0" 63.88 15.69 4.31 5.12 1.12 3.34 2.64

*Tac17 D-46 Tac Andesite Tabbys Peak 40°27'58.0" 112°54'25.1" 61.24 16.09 5.63 4.67 2.64 3.32 2.75

Tai1 D-6 Tai Andesite Wig Mountain 40°20'03.3" 113°01'42.2" 61.19 16.71 6.26 5.36 2.72 3.07 2.41

*Tai2 D-40 Tai Andesite Tabbys Peak 40°27'47.7" 112°59'13.8" 59.96 16.84 6.8 5.89 3.25 2.84 2.34

*Tai3 D-59 Tai Andesite Wig Mountain NE 40°23'21.6" 113°01'11.5" 60.34 17.24 6.15 5.51 2.12 3.03 2.34

Tdi1 FM083105-1 Tdi Dacite Camels Back Ridge NE 40°12'08" 112°50'16" 67.9 15.29 3.62 2.69 1.44 3.55 3.6

Tdi2 D-4 Tdi Dacite Tabbys Peak SW 40°19'17.9" 112°54'01.1" 63.46 14.65 3.7 3.51 1.95 3.34 3.73

Tti1 D-2 Tti Trachyte Dugway Proving Ground SW 40°00'31.8" 113°12'41.9" 58.07 15.6 4.52 2.66 1.26 0.49 11.39

Tti2 D-3 Tti Tephriphonolite Dugway Proving Ground SW 40°00'35.9" 113°12'47.9" 46.22 12.17 6.85 10.29 2.38 0.21 8.62

Jgd2 GP102605-2 Jgd Monzodiorite Granite Peak SE 40°04'37.1" 113°15'51.5" 53.32 13.83 7.31 8.11 5.79 1.99 5.05

Jgd1 GP102605-3 Jgd Monzonite Granite Peak SE 40°05'16.2" 113°16'45.9" 61.76 15.98 5.34 3.72 2.05 3.55 3.79

Jgd3 GP080405-7a Jgd Granodiorite Granite Peak 40°07'54" 113°15'06" 63.21 16.48 5.08 3.52 2.22 3.84 2.72

Jgd4 GP080905-1a Jgd Monzonite Granite Peak SE 40°07'17" 113°15'13" 61.24 16.32 5.26 4.18 2.32 3.62 3.57

Jgd5 GP080905-4 Jgd Quartz Monzonite Granite Peak SE 40°06'56" 113°15'16" 64.53 16.13 4.45 3.34 1.68 3.92 3.17

Jgd6 GP081005-10 Jgd Granodiorite Granite Peak 40°08'00" 113°18'53" 61.04 15.44 4.72 3.86 2.95 2.34 4.19

Jgd7 GP081105-10 Jgd Monzonite Granite Peak SE 40°04'53" 113°15'39' 59.68 15.11 5.41 5.68 4.34 3.4 3.68

Jgd8 GP081105-2 Jgd Diorite Granite Peak SE 40°04'37" 113°15'48" 56.35 15.09 7.39 6.96 4.59 2.92 2.2

Jgd9 GP081105-7 Jgd Monzodiorite Granite Peak SE 40°04'49" 113°15'55" 53.85 13.64 6.88 8.81 6.55 2.52 3.76

Jgd10 GP081505-2a Jgd Granodiorite  Granite Peak SE 40°06'04" 113°16'00" 67.95 15.08 3.62 2.03 1.3 3.32 3.96

Jgd11 GP081605-5a Jgd Monzonite Granite Peak 40°07'44" 113°17'04" 58.42 16.59 5.52 4.19 2.55 3.78 4.78

Jgd12 GP081805-2 Jgd Quartz Monzonite Granite Peak 40°07'48" 113°18'01" 61.97 16.02 4.78 3.75 2.12 4.33 3.33

Jgd13 GP081505-1b Jgd
Granodiorite 
porphyry Granite Peak SE 40°06'22" 113°15'50" 67.29 15.22 3.4 2.87 1.13 3.44 4.33

Jg3 GP080405-2a Jg Granite Granite Peak 40°08'04" 113°15'12" 73.53 14.58 1.26 0.86 0.23 2.66 5.02

Jg4 GP080405-8 Jg Granite Granite Peak 40°08'13" 113°15'00" 73.12 15.09 1.24 1.18 0.17 3.47 4.67

Jg2 GP081005-13a Jg Granite Granite Peak 40°09'58.2" 113°15'56.2" 74.13 14.78 0.88 0.38 0.14 2.59 4.98

Jg5 GP081005-1b Jg Granite Granite Peak 40°08'34" 113°18'17" 72.15 14.89 1.56 1.05 0.28 3.16 5.14

Jg6 GP081005-4 Jg Granite Granite Peak 40°08'38" 113°18'34" 73.77 14.71 1.02 0.93 0.15 3.28 4.45

Jg7 GP081005-5b Jg Granite Granite Peak 40°08'47" 113°18'45" 75.05 14.32 0.94 0.86 0.1 3.81 3.75

Jg8 GP081705-2b Jg Granite Granite Peak 40°09'30" 113°16'56" 73.16 14.33 1.1 1.08 0.13 3.45 4.91

Jg9 GP080405-6b Jg Granite porphyry Granite Peak 40°07'55" 113°15'07" 68.44 15.61 3.46 1.91 0.66 3.48 4.09

Jg10 GP081005-8a Jg Granite porphyry Granite Peak 40°08'57" 113°19'54" 67.62 15.46 3.23 2.32 0.95 3.35 4.76

Jg1 GP081605-9 Jg Granite porphyry Granite Peak 40°07'40" 113°18'23" 71.57 14.31 2.81 2 0.74 3.61 3.34
Jgu1 GP081805-1 Jgu Granite dike in Jgd Granite Peak 40°07'46" 113°17'59" 72.65 15.34 1.12 1.06 0.14 3.57 4.23

Jgdx1 GP081005-7 Jgd xenolith in Jgd Granite Peak 40°08'35" 113°19'42" 57.73 15.84 6.64 4.87 3.45 2.53 3.5

Jgx1 GP081005-6 Jg quartz dike in Jg Granite Peak 40°08'47" 113°18'45" 95.23 0.98 0.99 0.41 0.01 0.15 0.46

Jgx2 GP081005-3b Jg aplite dike in Jg Granite Peak 40°08'34" 113°18'17" 70.63 15.28 4.02 0.66 0.06 4.76 1.89

Jgx3 GP080405-6a Jg
schistose lenses in 

Jg Granite Peak 40°07'55" 113°15'07" 60.15 16.33 7.07 2.75 2.42 3.59 2.47

Jgx4 GP081005-8b Jg xenolith in Jg Granite Peak 40°08'57" 113°19'54" 51 18.68 9.78 3.96 3.7 3.33 4.76

Zm1 GP081805-3 Zm schist Granite Peak SE 40°04'31" 113°16'03" 51.61 15.08 7.88 8.03 7.23 3.26 2.35

Zm2 GP081105-4b Zm schist  Granite Peak SE 40°04'38" 113°15'42" 54.58 21.05 9.2 0.56 2.9 1.12 3.77

Notes:
Major oxides reported in weight percent by x-ray fluorescence (XRF); minor and trace elements reported in ppm by inductively coupled plasma-mass spectrometry (ICP-MS).
All analyses performed by ALS Chemex Labs, Inc., Sparks, NV
Rock names using total alkali-silica diagram of LeBas and others (1986).
LOI is loss on ignition.
Location data based on NAD27.
* Not on year 1 map

Cr2O3 SrO BaO LOI Total Ag Ba Ce Co Cr Cs Cu Dy Er Eu

0.01 0.21 0.05 0.06 0.03 0.15 0.68 100.05 <1 1335 27.3 2.7 90 2.2 25 3.4 2.2 0.8

<0.01 0.63 0.05 0.12 0.02 0.19 1.64 99.38 <1 1925 193 3.2 50 0.7 <5 7.9 4.9 1.8

<0.01 0.17 0.02 0.02 0.01 0.06 1.32 100.1 <1 662 70 1.4 50 2.4 5 6.7 5 0.5

<0.01 0.71 0.04 0.17 0.02 0.2 1.06 99.88 <1 2110 214 3.8 60 3.4 6 7.8 4.6 1.9

<0.01 0.58 0.07 0.11 0.02 0.21 1.9 99.04 <1 1855 150.5 3.3 50 2.5 <5 6 3.5 1.7

<0.01 0.59 0.08 0.15 0.01 0.14 0.9 98.62 <1 1230 177 4.3 100 3.4 <5 6.6 3.8 1.7

<0.01 0.1 0.03 0.03 0.04 0.16 4.57 98.38 <1 1490 72.2 0.6 <10 3 <5 2.47 1.63 1.06

<0.01 0.36 0.03 0.14 0.05 0.16 1.84 98.6 <1 1305 45.7 6.5 40 4.42 16 2.43 1.49 0.95

<0.01 0.43 0.01 0.17 0.06 0.18 2.25 98.46 <1 1625 88.9 4.7 30 3.17 10 2.04 1.12 1.23

<0.01 0.45 <0.01 0.14 0.01 0.08 6.43 99.37 <1 678 89.6 2.1 30 1.29 12 1.88 1.01 1.08

<0.01 1.26 0.11 0.52 0.09 0.22 2.24 99.87 <1 2410 166.5 18.8 30 10.8 <5 7.1 3.6 2.6

0.02 0.64 0.1 0.17 0.05 0.1 1.37 99.97 <1 1325 82.8 18.2 200 5.3 15 3.9 2.2 1.3

0.02 0.66 0.09 0.16 0.05 0.11 1.45 99.87 <1 1240 79.9 18.4 200 4.3 20 3.9 2.2 1.1

0.03 0.76 0.08 0.19 0.05 0.14 1.4 99.35 <1 1225 78.9 19.7 220 3.42 28 4.54 2.46 1.48

<0.01 0.52 0.07 0.1 0.05 0.1 4.15 99.88 <1 940 51.5 12.9 80 1.62 10 4.78 2.62 1.32

<0.01 0.84 0.08 0.25 0.06 0.15 2.06 99.01 <1 1245 79.9 12.9 20 1.59 10 4.61 2.54 1.71

0.01 0.81 0.11 0.19 0.03 0.1 1.02 100 <1 863 81.4 20.3 130 3.08 18 5.34 3.15 1.65

<0.01 0.76 0.07 0.25 0.05 0.15 1.54 99.6 <1 1325 86.7 14.7 50 4.49 12 3.79 2.68 1.44

0.01 0.94 0.1 0.29 0.05 0.16 1.18 99.98 <1 1395 92.2 23.3 140 4.9 20 4.54 2.98 1.67

0.01 0.66 0.06 0.22 0.05 0.15 1.49 100.1 <1 1350 88.4 14.2 70 4.7 18 3.85 2.71 1.48

0.01 0.71 0.08 0.24 0.05 0.16 1.49 99.83 <1 1350 86.9 13.2 70 5.51 8 3.64 2.56 1.41

<0.01 0.67 0.06 0.23 0.06 0.16 1.92 98.64 <1 1420 85.8 13.3 60 4.11 17 3.54 2.46 1.46

0.01 0.75 0.09 0.24 0.05 0.15 1.69 99.42 <1 1255 87.9 16.4 130 3.9 22 3.91 2.79 1.48

0.01 0.76 0.09 0.25 0.05 0.16 2.38 99.33 <1 1245 85.5 20.7 170 4.7 32 3.72 2.73 1.39

0.02 0.99 0.11 0.29 0.05 0.13 1.2 99.42 <1 1100 88.3 27.1 220 3.82 32 4.35 3.03 1.58

0.01 0.64 0.08 0.21 0.05 0.18 1.25 99.87 <1 1375 78.1 20 140 4.17 30 2.56 2.06 1.25

0.02 0.85 0.08 0.26 0.05 0.15 1.34 99.43 <1 1140 82.1 18.5 160 4.85 25 3.81 2.66 1.45

0.01 0.77 0.1 0.17 0.03 0.11 1.1 99.69 <1 870 85.2 20.6 100 1.99 16 5.18 3.77 1.5

<0.01 0.44 0.07 0.12 0.04 0.12 2.83 99.72 <1 978 50.7 10.5 20 0.78 5 2.95 2.36 1.01

0.01 0.88 0.07 0.24 0.05 0.15 2.26 100 <1 1215 120 18.8 100 2.29 27 2.86 1.98 1.49

<0.01 0.69 0.1 0.15 0.03 0.1 1.15 99.94 <1 852 76.9 15.4 40 3.61 13 5.32 2.94 1.54

<0.01 0.77 0.1 0.18 0.04 0.09 0.96 100.05 <1 740 75.1 19.6 40 2.3 16 3.87 2.89 1.34

<0.01 0.74 0.1 0.2 0.04 0.1 1.71 99.61 <1 828 91.7 11.8 10 2.92 11 5.15 3.11 1.43

<0.01 0.5 0.05 0.18 0.06 0.19 0.91 99.99 <1 1775 108.5 8.7 70 2.5 8 3 1.7 1.5

0.01 0.53 0.05 0.18 0.07 0.17 3.15 98.5 <1 1505 115 10.6 110 6.3 15 3.43 1.9 1.49

0.04 1.11 0.13 0.34 0.01 0.25 4.04 99.91 <1 2070 124.5 15.8 300 2.15 42 5.63 3.05 2.2

0.08 0.73 0.47 0.18 0.02 0.23 10.3 98.76 <1 2000 95.3 28 540 1.48 7 4.54 2.29 1.65

0.01 0.94 0.15 0.73 0.07 0.25 1.34 98.91 <1 2600 256 28 200 7.9 6 8.4 4 3.6

<0.01 0.8 0.08 0.61 0.08 0.17 1.18 99.13 <1 1605 250 13.8 80 8.4 9 5.4 2.7 2.9

<0.01 0.77 0.09 0.51 0.09 0.14 1.38 100.05 <1 1590 207 13.4 70 7.3 <5 4.6 2.3 2.1

0.08 0.96 0.09 0.63 0.1 0.18 1.11 99.66 <1 1935 281 14.4 50 7.4 7 6.4 3.1 2.9

<0.01 0.71 0.1 0.5 0.08 0.15 1.18 99.95 <1 1650 264 9.9 50 11.2 <5 5 2.5 2.4

0.01 0.67 0.11 0.42 0.05 0.15 3.79 99.73 <1 1680 215 14.4 100 25.5 13 5.1 2.4 2.3

0.02 0.79 0.09 0.49 0.08 0.13 1.12 100 <1 1310 169.5 18.8 190 5.1 17 5 2.6 2.4

<0.01 1.2 0.09 0.72 0.1 0.13 2.15 99.91 <1 1210 192.5 24.1 70 10 32 6.9 3.3 3.3

0.01 1.08 0.1 0.92 0.15 0.19 1.13 99.6 <1 2110 265 31 180 4 64 7.1 3.3 4

<0.01 0.57 0.1 0.34 0.04 0.1 1.45 99.85 <1 973 165 8.5 50 15.4 <5 3.7 2 1.7

<0.01 0.87 0.11 0.61 0.1 0.22 2.02 99.75 <1 2140 256 14 60 11.4 5 9.3 4.7 4.3

<0.01 0.83 0.1 0.58 0.08 0.14 1.89 99.93 <1 1295 226 12.1 50 9.8 13 4.8 2.6 2.6

<0.01 0.56 0.06 0.35 0.07 0.14 0.97 99.82 <1 1385 179.5 6.2 50 4.5 <5 4.1 2.3 2

<0.01 0.23 0.02 0.16 0.03 0.06 1.04 99.67 <1 503 63.2 1.4 60 3.7 <5 2.4 0.9 1.6

0.01 0.14 0.01 0.1 0.02 0.04 0.73 100 <1 380 99.7 1.4 70 3 <5 4.3 2.1 1.5

<0.01 0.21 0.01 0.09 0.01 0.02 1.1 99.31 <1 266 59.2 0.7 50 3.5 <5 3.4 1.8 0.8

<0.01 0.22 0.02 0.19 0.02 0.05 0.81 99.54 <1 702 66.7 1.4 60 4.9 <5 3 1.5 1

<0.01 0.15 0.03 0.2 0.02 0.02 1.08 99.82 <1 192.5 15.6 0.8 60 5.3 <5 2.4 1.2 0.7

<0.01 0.06 0.03 0.19 0.01 0.01 0.99 100.15 <1 169.5 13.9 0.6 60 7.7 <5 1.8 1 0.6

<0.01 0.2 0.02 0.13 0.01 0.04 1.06 99.62 <1 292 54.7 0.9 50 4.6 <5 2.7 1.3 0.7

<0.01 0.45 0.05 0.37 0.05 0.09 0.89 99.56 <1 960 191 3.8 60 5.6 <5 5.6 3 1.7

<0.01 0.6 0.07 0.32 0.06 0.11 1.08 99.92 <1 1325 187.5 5.7 60 9.5 <5 3.1 1.5 1.6
<0.01 0.49 0.06 0.26 0.06 0.07 0.58 99.89 <1 766 172.5 4 60 7.1 <5 3.8 2 1.7

<0.01 0.15 0.03 0.16 0.02 0.02 1.06 99.53 <1 99.8 11.4 0.8 70 3.9 15 2.2 1.2 0.6

0.01 0.8 0.09 0.17 0.03 0.09 4.34 100.1 <1 1005 86.8 18.8 90 31.2 14 4.8 2.9 1.3
0.03 <0.01 <0.01 0.01 <0.01 0.01 0.45 98.74 5 29.9 1.5 0.9 210 0.6 19 0.1 0.1 0.1

0.02 0.07 1.44 0.14 0.01 0.01 0.71 99.69 <1 25.3 8 0.9 180 3.6 <5 6.1 3.6 0.1

0.01 1.45 0.12 0.82 0.04 0.06 2.52 99.8 <1 645 358 9.8 80 5 <5 7.5 3.6 2.9

<0.01 1.65 0.22 1.65 0.04 0.05 1.28 100.1 <1 517 506 22.6 20 56.1 90 13 6.1 4.1

0.05 1.25 0.14 0.72 0.09 0.12 1.7 99.49 <1 1325 218 31.9 410 2 17 5.9 2.9 3.3

0.02 1.17 0.17 0.08 0.03 0.12 5.12 99.89 <1 1125 123.5 33.1 180 8.1 40 10.2 7.1 1.9

Ga Gd Hf Ho La Lu Mo Nb Nd Ni Pb Pr Rb Sm Sn Sr Ta Tb

21 3 3 0.7 15 0.3 <2 25 12.2 7 45 3.3 176.5 2.8 6 234 1.9 0.5

17 10.7 8 1.6 100.5 0.7 3 32 69.7 <5 9 20.9 301 10.8 <1 130.5 1.8 1.4

18 5.8 6 1.5 34.6 0.9 2 44 27.9 <5 31 8.4 472 5.7 8 87.7 3.4 1

19 10.3 10 1.5 110.5 0.7 4 35 79.3 7 48 22.8 402 12.8 3 174.5 1.6 1.4

15 8.1 8 1.2 78.6 0.5 3 25 55 <5 28 16.2 362 8.8 3 178 1.4 1.1

16 9.3 8 1.3 92.8 0.6 3 28 64 <5 30 19.2 325 10.3 3 130.5 1.6 1.2

17.6 3.76 4.2 0.49 41.6 0.26 <2 14 23.9 <5 28 7.26 130 3.83 1 304 1 0.48

16.2 3.26 4.3 0.48 25.9 0.21 <2 11.4 18.9 7 25 5.18 135.5 3.52 1 409 0.8 0.46

21.2 4.18 5.7 0.35 50.4 0.14 <2 18.1 30.9 9 32 9.12 161.5 4.63 2 568 1.5 0.48

20.7 4.09 5.5 0.33 51 0.13 <2 17.4 30.9 5 12 9.26 3.9 4.61 2 26.2 1.4 0.44

25 9.9 9 1.3 86.3 0.5 <2 23 70.4 8 20 18.8 147.5 12.4 6 838 1 1.4

22 4.8 5 0.7 45.4 0.3 <2 22 31.3 38 27 8.7 130.5 5.7 5 458 1.7 0.7

22 4.6 6 0.7 43.3 0.4 <2 22 31.3 36 21 8.5 134 5.6 8 440 1.7 0.7

17.9 5.58 5.1 0.85 44.3 0.35 <2 16.4 32.7 50 21 9.17 103 5.74 2 417 1.4 0.79

19.4 4.83 4.3 0.86 32.1 0.36 <2 9.7 26.2 11 22 7 65.1 4.86 1 441 0.7 0.73

21.1 5.96 5.8 0.87 45 0.37 <2 13.5 34.4 <5 19 9.55 120 6.18 1 515 0.9 0.84

20.3 6.26 6.3 1.06 43.2 0.45 3 17.2 34.1 14 17 9.55 80.2 6.19 2 300 1.2 0.91

22.6 5.73 6.7 0.88 48.8 0.36 2 20.8 36.5 11 26 10.15 152 6.53 3 473 1.7 0.83

24.2 6.66 7.3 0.97 49.2 0.39 4 20.2 40.5 18 26 10.9 143.5 7.18 3 545 1.5 0.93

23 5.84 6.7 0.89 50.2 0.38 2 19.7 36.5 15 29 10.15 145 6.55 3 464 1.7 0.85

21.7 5.6 6.2 0.85 47.7 0.36 3 17.1 35.4 7 27 9.84 135.5 6.21 3 490 1.6 0.82

21.5 5.63 6.3 0.82 48.9 0.34 2 17.1 35.1 15 28 9.81 122.5 6.25 2 524 1.3 0.78

19.8 5.84 6.6 0.91 47.6 0.38 2 19.2 37 19 25 10.05 136 6.39 3 440 1.4 0.84

20.6 6.03 6.6 0.9 47.8 0.37 2 19.1 36.5 35 24 10.05 135 6.37 3 479 1.4 0.87

20.7 6.48 6.8 1.01 46.8 0.41 3 18.6 38.2 38 21 10.35 121 6.93 2 466 1.2 0.93

20 4.9 5.5 0.69 44.4 0.25 3 14.1 32.1 32 25 8.79 133 5.49 2 438 1 0.68

19.6 5.78 6.1 0.91 44.3 0.32 2 17.3 36 22 24 9.59 138 6.44 2 460 1.2 0.83

21.1 6.42 7 1.24 45.7 0.53 2 19.4 35.4 10 19 9.98 75.8 6.83 2 318 1.2 1.03

19.4 3.95 4.4 0.75 28.5 0.32 <2 11.4 22.3 5 20 5.98 74.8 3.96 1 384 0.8 0.62

20.9 6.19 6.9 0.64 66.6 0.21 3 23.7 45.7 44 25 13.25 105 6.99 2 482 1.6 0.78

18.7 5.72 5.7 0.95 41.6 0.41 2 19.9 31.1 7 21 9.01 93.9 5.74 3 295 1.6 0.85

20.2 5.35 5.7 0.95 41 0.39 2 20.1 30.9 11 19 8.51 84.9 5.45 3 347 1.3 0.81

20.5 6.37 6.4 1 49.4 0.47 2 22.5 36.8 <5 20 10.4 85.7 6.48 2 349 1.5 0.89

20 4.9 6 0.6 61.6 0.2 <2 15 37.3 14 49 11.2 127.5 5.7 2 634 1.1 0.6

18.7 5.58 5.8 0.6 64.9 0.24 2 18 42 31 33 12.6 144 6.36 2 574 1.8 0.68

15.7 7.78 7.4 1.01 66.6 0.4 <2 17.7 49.8 76 101 14.3 503 8.4 2 141.5 1 1.06

14.8 6.32 5.6 0.81 53.3 0.28 <2 13.7 39.8 181 13 11.45 368 6.68 1 245 0.8 0.83

18 15.6 8 1.5 128 0.5 2 51 110 68 29 30.5 224 18.8 6 764 2.4 1.8

21 10.4 7 1 142 0.3 3 85 87.1 11 25 26.2 178 12.6 5 848 4.9 1.2

23 8.6 6 0.8 113.5 0.3 2 76 74.3 18 18 21.7 196.5 11.2 7 824 3.4 1

22 11.8 7 1.1 152.5 0.4 6 106 102 14 37 29.6 189.5 15.2 7 1005 4.5 1.4

23 9.7 7 0.9 150.5 0.4 2 120 86.1 8 22 26.2 234 12 9 767 5.8 1.1

23 9.4 6 0.8 117.5 0.3 2 63 78.5 34 20 22.6 455 11.9 11 549 3.1 1.1

18 9.7 6 0.9 96.7 0.3 <2 44 69.7 66 24 19.8 141.5 10.9 4 717 2.2 1.1

19 13 4 1.2 100 0.4 2 46 90.6 26 91 24.1 142.5 15.2 7 872 2.2 1.5

18 16 4 1.2 134.5 0.3 2 33 123 86 21 33.4 147.5 19.2 2 1315 1.7 1.7

20 7.4 5 0.7 103.5 0.3 <2 81 56.2 9 16 17.7 293 8 10 363 4.3 0.8

21 16.2 6 1.7 137.5 0.5 2 98 114.5 16 24 31.7 219 19 9 864 5.2 2

20 10.2 6 0.9 135 0.3 5 86 82.6 13 19 25.1 186.5 11.4 15 667 5.2 1.1

20 7.9 5 0.7 111 0.3 2 99 63.1 5 30 20 181 8.8 6 572 6.3 0.9

21 3.6 3 0.4 34.3 0.1 <2 40 21.6 5 63 6.6 265 4.1 9 257 3.3 0.5

19 5.3 5 0.8 56.3 0.3 3 36 31.8 12 53 9.9 236 6 5 192.5 1.3 0.8

35 3.7 3 0.6 32.6 0.3 <2 112 19.8 <5 33 6.1 331 4.1 22 81.7 4.6 0.6

25 3.5 4 0.5 35.7 0.2 <2 70 22.3 <5 46 6.9 312 4.2 3 222 3 0.5

19 1.7 2 0.4 8.3 0.2 <2 31 5.6 <5 60 1.7 294 1.5 9 140.5 4.3 0.4

18 1.2 1 0.3 8.1 0.2 3 29 5 <5 89 1.5 276 1.2 9 109.5 2.8 0.3

22 3.7 2 0.4 32.7 0.1 <2 62 19.6 <5 35 6.1 306 3.9 9 93 4.6 0.5

25 7.6 7 1 108.5 0.4 <2 79 59.1 6 30 18.8 266 8.6 22 420 3 1

24 6.7 7 0.5 106 0.2 2 63 59.3 5 33 18.6 263 8.1 7 561 1.1 0.7
21 7.6 5 0.6 102.5 0.2 2 76 58.3 <5 26 18.6 179.5 8.4 10 454 3.5 0.8

17 1.2 1 0.4 6.7 0.1 2 27 4.3 <5 62 1.2 236 1 9 104.5 3.2 0.3

21 5.4 6 1 45.8 0.5 <2 20 35.2 13 23 9.5 282 6.7 6 339 1.1 0.8

0.1 <1 <0.1 1.3 <0.1 2 0.6 5 128 0.2 31.2 7 10.5 <0.5 <0.12 2 2 0.1 7

26 1.3 5 1.2 4.9 0.7 4 83 2.4 5 19 0.8 203 0.8 17 27 17 0.6

27 14.4 11 1.2 188.5 0.5 <2 174 129 17 32 38.2 197 18.4 17 416 6.4 1.6

37 21.7 12 2.3 278 0.7 3 196 173.5 6 36 51.8 860 25 23 429 3.6 2.7

21 12.2 7 1 124 0.3 2 59 91.6 120 31 26 90.1 14.2 6 813 2.8 1.3

26 10.1 5 2.2 67.4 1 3 20 56.8 114 13 15.4 170 10.2 4 212 1.2 1.6

Th Tl Tm U V W Y Yb Zn Zr

6 <0.5 0.3 4.9 21 3 20.8 2.2 55 94.4

27 <0.5 0.7 6.5 30 3 43.3 4.6 61 336

51 0.6 0.9 15 9 6 41.9 6.2 29 167.5

24 1.1 0.6 4.6 42 8 46.7 4.4 54 376

21 <0.5 0.5 5 33 2 34.4 3.4 41 268

24 0.8 0.5 4.6 35 3 36.4 3.7 94 285

17.2 <0.5 0.23 3.72 8 5 14.7 1.73 39 130

12.7 0.5 0.2 3.1 45 1 13.9 1.48 41 142

22.8 0.6 0.14 6.04 57 3 9.7 1.03 40 192

23.5 <0.5 0.12 9.82 42 6 9.2 0.95 18 184

15 0.6 0.5 2.4 161 4 40.1 3 138 369

14 0.5 0.3 5.1 124 3 23.5 2 71 171.5

13 0.6 0.3 4.3 126 4 24 2.2 74 207

15.95 <0.5 0.33 4.58 115 3 21 2.2 71 174

7.25 <0.5 0.36 1.62 96 1 21.8 2.35 68 144

13.95 <0.5 0.37 2.95 135 2 23.8 2.44 82 214

11.6 <0.5 0.46 2.89 154 2 27.5 2.85 85 232

19.4 0.5 0.39 5.74 133 5 27.6 2.53 73 259

17.2 0.5 0.45 4.61 188 4 30.3 2.77 96 271

19.95 0.6 0.4 5.77 113 5 27.5 2.49 74 261

18 0.5 0.38 4.83 122 29 25.5 2.45 74 240

18.05 <0.5 0.37 4.74 104 5 25.7 2.46 75 236

17.75 <0.5 0.43 4.52 127 4 27.9 2.65 70 257

18 <0.5 0.41 4.77 144 3 28.7 2.61 78 257

16.6 <0.5 0.44 3.73 183 3 31.8 2.91 84 265

19.4 0.5 0.29 4.72 117 4 21.4 2.01 68 222

16.35 0.5 0.37 4.18 165 3 27.4 2.54 72 246

14.7 <0.5 0.55 3.05 153 3 37.3 3.48 90 274

9.08 <0.5 0.35 2.33 51 5 24.5 2.36 49 168

28.1 <0.5 0.26 5.04 100 3 19.8 1.6 82 266

12.95 <0.5 0.41 4.71 128 2 25 2.76 80 201

14.35 <0.5 0.41 3.65 152 3 28.2 2.69 74 219

14.25 <0.5 0.43 3.88 110 3 27.4 3.09 89 250

21 <0.5 0.2 3.4 67 1 16.7 1.5 59 198

26.6 <0.5 0.24 9.13 67 2 15.7 1.62 63 193

19.9 <0.5 0.41 4.21 107 7 27.5 2.68 332 272

14.2 1.3 0.32 2.19 107 6 20.3 1.97 93 203

19 <0.5 0.5 6.7 198 1 41.9 3.3 85 316

39 <0.5 0.3 9.5 112 1 28 2.4 60 278

25 0.5 0.3 8.5 98 4 25.3 1.9 80 276

34 0.5 0.4 8.6 111 2 33.9 2.5 73 325

35 0.6 0.3 4.7 79 2 28.4 2.2 75 317

34 1.3 0.3 8.5 109 8 27.5 2.2 76 229

21 <0.5 0.3 4.5 118 2 24.2 2.2 67 281

18 <0.5 0.4 4.1 218 3 31.7 2.7 84 172.5

26 <0.5 0.4 4.9 215 3 31.9 2.4 72 150

42 0.5 0.3 7.9 68 4 19.1 1.7 78 205

28 <0.5 0.6 7.2 118 4 44.8 3.7 83 297

31 <0.5 0.3 10.2 101 5 24.7 2.1 80 284

46 <0.5 0.3 8.1 50 3 21.3 2.1 47 232

15 0.7 0.1 3.7 8 4 12.4 0.8 49 105

21 0.7 0.3 5.1 5 3 25.8 1.7 51 182

17 0.7 0.3 3.7 11 8 22.6 1.8 21 91.2

19 0.8 0.2 9.6 13 4 17.9 1.5 73 148

3 0.6 0.2 1.5 8 3 16.2 1.1 64 55.7

3 0.8 0.2 1.4 6 3 12.5 1.1 104 39.9

18 <0.5 0.2 3.3 5 5 14.1 1.1 55 78.2

39 0.8 0.4 7.6 28 3 34.8 2.6 85 315

40 0.6 0.2 10.4 46 42 18 1.2 57 274
36 <0.5 0.2 4.4 33 3 18.8 1.6 54 253

3 <0.5 0.2 1.9 5 3 14.2 1.1 56 35.2

12 0.8 0.4 3 158 4 29.3 2.8 85 240
<1 <0.5 <0.1 2.4 <5 3 1.5 0.1 84 13.6

6 <0.5 0.7 6.9 6 4 54.4 4.8 75 99.8

34 0.6 0.5 5.3 90 10 39.8 3 128 537

56 2.6 0.8 6.6 147 4 73.2 4.3 219 561

19 <0.5 0.3 2.5 176 2 26.9 2.1 204 346

25 <0.5 1 2.7 189 4 61.5 7 128 186

Al2O3 Fe2O3 Na2O K2O TiO2 P2O5MnO

Table 3.  Summary of U-Pb zircon age analyses from Granite Mountain.

Map 
Number

Sample 
Number Map Unit Rock Name 7.5' Quadrangle Latitude (N) Longitude (W)

Weighted Average 
238U/206Pb Age Mean (Ma)

Jgd1 GP102605-3 Jgd Granodiorite Granite Peak 40o05'16.2" 113o16'45.9" 149.8+1.3
Jg1 GP081605-9 Jg Granite porphyry Granite Peak 40o07'40" 113o18'23" 148.8+1.3
Zm1 GP081805-3 Zm Schist Granite Peak 40o04'31" 113o16'03" 149.9+3.9*

Notes:
Location data in NAD27.
Analyses performed by Eric H. Christiansen (Brigham Young University) and Jeffrey D. Vervoort (Washington State University).
Analyses by laser ablation-inductively coupled mass spectrometry.
*Age based on limited zircon data.

Table 4.  Summary of 40Ar/ 39Ar age analyses from Dugway Proving Ground and adjacent areas.

Map 
Number

Sample 
Number Map Unit Rock Name 7.5' Quadrangle Latitude (N) Longitude (W) Age+2sd (Ma) Material Dated Comments

Trd1 GP081605-6c Trd Rhyolite Granite Peak 40o07'44" 113o17'04" 7.78 + 0.05 sanidine single-crystal laser fusion
Trs1 SM071405-11 Trs Rhyolite Granite Peak SE 40o03'55.4" 113o16'18.5" 8.20 + 0.05 sanidine single-crystal laser fusion
Tdi1 FM083105-1 Tdi Dacite Camels Back Ridge NE 40o12'08" 112o50'16" pending
Jgd1 GP102605-3 Jgd Monzonite Granite Peak SE 40o05'16.2" 113o16'45.9" pending
Jg2 GP102605-1 Jg Granite Granite Peak 40o09'58.2" 113o15'56.2" pending

*Trr1 D-47 Trr Rhyolite Tabbys Peak 40o26'18" 112o56'57.2" pending
Tdi2 D-4 Tdi Dacite Tabbys Peak SW 40o19'17.9" 112o54'01.1" pending
Tac1 D-7 Tac Andesite Wig Mountain 40o21'37.8" 113o00'04.0" pending
Tac2 D-15 Tac Dacite Tabbys Peak SW 40o20'33.7" 112o58'07.7" pending
Tac3 D-17 Tac Andesite Tabbys Peak SW 40o18'39.6" 112o56'36.3" pending
Tac4 D-25 Tac Andesite Tabbys Peak SW 40o16'13.7" 112o56'23.9" pending
*Tac5 D-42 Tac Andesite Wig Mountain NE 40o26'55.3" 113o01'57.8" pending
Tai1 D-6 Tai Andesite Wig Mountain 40o20'03.3" 113o01'42.2" pending
*Tai2 D-40 Tai Andesite Tabbys Peak 40o27'47.7" 112o59'13.8" pending
Tti1 D-2 Tti Trachyte Dugway Proving Ground SW 40o00'31.8" 113o12'41.9" pending

Notes:
Location data in NAD27.
All analyses performed at the New Mexico Geochronology Research Laboratory, Socorro, New Mexico.
Complete presentation of data in Clark (in preparation).
* Not on year 1 map
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CORRELATION OF GEOLOGIC UNITS
Dugway Proving Ground and adjacent areas
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  GEOLOGIC SYMBOLS

Contact − Dashed where inferred

Normal fault, concealed - Inferred principally from 
gravity data; bar and ball on down-thrown side

Steeply-dipping fault − Dashed where inferred, dotted 
where concealed; bar and ball and/or arrows indicate 
relative displacement if known

Thrust fault − Dashed where inferred, dotted where 
concealed; teeth on upper plate

Low-angle normal fault - Dotted where concealed

Lineament - From air photo interpretation

Igneous dike

Igneous dike

Axial trace of anticline − Approximately located, dotted 
where concealed; arrow shows plunge

Axial trace of syncline − Approximately located, dotted 
where concealed; arrow shows plunge

Major shorelines of the Bonneville lake cycle-

Bonneville shoreline

Provo shoreline

Regressional shoreline (shoreline scarps on Old River 
Bed delta and low bench ridges on lacustrine 
fine-grained deposits)

Stansbury shoreline

Channel systems of the Old River Bed delta-

Exposed (eroded) - Center line, map unit Qas

Buried (uneroded) - Center line, map unit Qas

Gravel - Channel extend, map unit Qag

Delta ridge crest associated with Old River Bed

Strike and dip of bedding (refer to index map for prior 
mapping sources) -

   Inclined from current mapping

   Inclined from prior mapping

   Inclined approximate from current mapping

Strike and dip of mineral foliation

Strike of steeply dipping joint from air photo 
interpretation

Sand and gravel pit

Adit

Rock sample location and number for age and 
geochemical analyses (see tables 2,3,4)

Rock sample location and number for geochemical 
analysis (see table 2)

Indicates thin cover of the first unit overlying the second 
unit
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GEOLOGIC UNIT DESCRIPTIONS

Alluvial deposits

Alluvial deposits (Holocene) – Primarily clay, silt, and sand with some gravel 
lenses, deposited by streams in channels and filling drainages; locally includes 
alluvial-fan, colluvial, and eolian deposits; thickness generally less than about 20 
feet (6 m).

Alluvial-fan deposits, undifferentiated (Holocene to upper Pleistocene?) – Poorly 
sorted gravel with sand, silt, and clay deposited by streams, debris flows, and 
flash floods on alluvial fans and in canyon and mountain valleys above the 
Bonneville shoreline; includes alluvium and colluvium in canyon and mountain 
valleys; may include small areas of eolian deposits and lacustrine fine-grained 
deposits below the Bonneville shoreline; thickness variable, to 100 feet (30 m) or 
more.

Older alluvial-fan deposits (upper Pleistocene? to Pliocene?) – Deposits of 
higher-level, poorly sorted gravel with sand, silt, and clay that have been incised 
by younger alluvial deposits; present along the margin and interior valleys of the 
eastern Cedar Mountains; may locally include small areas of lacustrine or eolian 
deposits; thickness variable, to 100 feet (30 m) or more.

The Old River Bed is an abandoned river valley present on the southern part of 
Dugway Proving Ground and southward to the Sevier River southwest of Delta.  
The Old River Bed formed during the most recent episode of overflow from the 
Sevier basin (Lake Gunnison) to the Great Salt Lake basin (Lake Bonneville) 
(Oviatt, 1987; Oviatt and others, 1994).  Where the river entered Lake Bonneville, a 
delta formed with various distributary channels.  Two types of channel systems were 
mapped:  younger sand channels and older gravel channels described below.

Alluvial sand deposits (upper Pleistocene) – Sand and silt, locally with gravel, 
present in “exposed channels” (exposed due to deflation of mudflat surfaces) on 
mudflats north and west of Granite Mountain, and in “buried channels” (buried 
by eolian sand and silt) extending between the Old River Bed and the mudflats of 
the southern Great Salt Lake Desert; associated with alluvial gravel deposits 
(Qag); probably related to continued Sevier-basin overflow and to groundwater 
discharge; ages of 8800 to 11,400 14C years B.P. (10,000 to 13,500 calendar 
years B.P.); thickness to about 3 feet (1 m) (see Oviatt and others, 2003).

Alluvial gravel deposits (upper Pleistocene) – Coarse sand and gravel, dominated 
by volcanic clasts, present in topographically inverted “gravel channels” on 
mudflats north of Granite Mountain; these “gravel channels” have a distinct 
morphology–straight to curved, digitate, and with abrupt bulbous ends; associ-
ated with alluvial sand deposits (Qas); formed by a river delta that originated as 
overflow from the Sevier Basin along the Old River Bed during the late regres-
sive phases of Lake Bonneville, prior to 11,000 and after 12,500 14C yr B.P.; 
thickness to about 12 feet (4 m) (see Oviatt and others, 2003).

Spring and marsh deposits

Spring and marsh deposits (Holocene) – Clay, silt, and sand that is locally 
organic-rich, calcareous, or saline; present in saturated areas near flowing and 
seeping springs; thickness undetermined. [not shown on year 1 map]

Eolian deposits

Eolian silt (Holocene) – Windblown silt included below solely as stacked unit 
Qei/Qlf.

Eolian sheet sand deposits (Holocene) – Windblown sand and silt deposited as 
sheets rather than well-developed dunes; generally thin with no distinct bedding; 
mostly silty, well-sorted, fine-grained quartz sand; generally greater than 3 feet (1 
m) thick. [not shown on year 1 map]

Eolian dune sand deposits (Holocene) – Poorly to well sorted sand in well-
developed dunes and dune fields; mostly fine-grained quartz sand but also aggre-
gates of clay, silt, and sand; present as parabolic, linear, dome, lunette, and 
shrub-coppice dunes (see Dean, 1978); to 50 feet (15 m) thick.

Eolian gypsum deposits (Holocene) – Windblown gypsum grains in sheets and 
dunes (see Dean, 1978); thickness undetermined. [not shown on year 1 map]

Lacustrine and Deltaic deposits

Playa mud (Holocene to upper Pleistocene) – Laminated clay and silt, with minor 
sand, typically calcareous or saline; present east of Granite Mountain at areas of 
local groundwater discharge; probably less than 20 feet (6 m) thick.

Table 1 presents ages and elevations of Lake Bonneville shorelines in the map area.  
Crittenden (1963) and Currey (1982) provided regional data on shoreline 
elevations.

Deltaic gravel (upper Pleistocene) – Sand and gravel deposited near the mouth of 
the Sevier River in the Old River Bed area during the Bonneville lake cycle; 
well-sorted pebbly sand containing volcanic and sedimentary pebbles; cross-
bedded to very thick bedded; regressive deposits were locally reworked by waves 
into a thin sheet; to 50 feet (15 m) thick.

Lacustrine gravel (upper Pleistocene) – Sandy gravel to boulders composed of 
locally derived rock fragments deposited in shore zones of Lake Bonneville; 
locally tufa-cemented and draped on bedrock; thickness variable, to 100 feet (30 
m) or more.

Lacustrine sand (upper Pleistocene) – Sand and silt deposited by regressional 
phase of Lake Bonneville; thickness to 100 feet (30 m) or more.

Lacustrine fine-grained deposits (upper Pleistocene) – Sand, silt, marl, and calcar-
eous clay of Lake Bonneville; thinly to very thick bedded; locally includes the 
white marl of Gilbert (1890) and other fine-grained lacustrine deposits; thickness 
to 100 feet (30 m) or more.

Lacustrine lagoonal deposits (upper Pleistocene) – Silt and clay deposited behind 
beaches of highest transgressional phase of Lake Bonneville at south margin of 
Cedar Mountains; thickness to 40 feet (12 m).

Colluvial deposits

Colluvial deposits (Holocene to upper Pleistocene) – Fine- to coarse-grained 
detritus derived from local bedrock; commonly includes talus in upper parts of 
deposits; may locally include lacustrine, alluvial, or eolian deposits; more 
common on Granite Mountain and northern Dugway Range than elsewhere; to 20 
feet (6 m) or more thick.

Mixed-environment deposits

Lacustrine and alluvial deposits, undifferentiated (Holocene to upper Pleisto-
cene) – Mixed and reworked, gravelly lacustrine and alluvial deposits on 
piedmont slopes; includes pre-Bonneville alluvial fans etched by waves in Lake 
Bonneville, and thin alluvial-fan deposits overlying fine to coarse-grained lake 
sediments; grades from pebbly sand and silt to sandy pebble gravel; thickness 
locally exceeds 30 feet (10 m).

Alluvial and colluvial deposits, undifferentiated (Holocene to upper Pleistocene) 
– Primarily gravel, with sand, silt, and clay; form aprons of small alluvial-fan and 
colluvial surfaces that spill out onto and grade into alluvial-fan deposits, and also 
present within upland valleys; thickness generally less than 20 feet (6 m).

Lacustrine and colluvial deposits, undifferentiated (Holocene to upper Pleisto-
cene) – Primarily gravel and sand, but may include lacustrine fine-grained depos-
its; commonly includes talus in upper parts of deposits; mantles bedrock and fills 
washes, locally remobilized by slope-wash and rock-fall processes; locally 
marked by prominent secondary shorelines; mapped on northwest side of Granite 
Mountain; thickness to 10 feet (3 m), or locally more.

Human-made deposits

Human-made deposits (Historical) – Deposits from human development on 
Dugway Proving Ground that cover more extensive areas, consisting of wastewa-
ter treatment lagoons, sanitary landfill, and Michael Army Airfield; thickness 
less than about 20 feet (6 m).

Stacked-unit deposits

Eolian and alluvial deposits over lacustrine fine-grained deposits 
(Holocene/upper Pleistocene) – Windblown silt in sheet form adjacent to and 
locally covering alluvial sand and gravel in unmapped channels that collectively 
overlie lacustrine marl and fine-grained deposits; locally saline or gypsiferous; 
form extensive mudflats of southern Great Salt Lake Desert; may locally include 
small areas of thicker eolian deposits; cover unit thickness probably less than 15 
feet (5 m) thick.

Eolian silt over lacustrine fine-grained deposits (Holocene/upper Pleistocene) – 
Windblown silt overlying lacustrine silt, clay, marl, and some sand over a large 
area east of Granite Mountain; surface commonly contains distinctive vegetation 
stripes (characteristic landforms of sheetflow plains in arid to semiarid regions) 
(Oviatt and others, 2003); may locally include areas of thicker eolian deposits; 
cover unit thickness probably less than 3 feet (1 m).

Eolian sheet sand deposits over lacustrine fine-grained deposits 
(Holocene/upper Pleistocene) – Windblown sand and some silt in sheets overly-
ing lacustrine silt, clay, marl, and some sand northeast of Little Granite Moun-
tain; may locally include areas of thicker eolian deposits; cover unit thickness 
probably less than 6 feet (2 m).

Eolian dune sand deposits over lacustrine fine-grained deposits 
(Holocene/upper Pleistocene) – Windblown dune sand and some silt overlying 
lacustrine sand, silt, marl, and clay; cover unit thickness probably less than 20 
feet (6 m).

Eolian sheet sand deposits over lacustrine and alluvial deposits 
(Holocene/Holocene to upper Pleistocene) – Windblown dune sand and silt 
overlying gravelly to fine-grained lacustrine and alluvial deposits; present at and 
northwest of Dugway; cover unit thickness probably less than 10 feet (3 m).

Eolian dune sand deposits over lacustrine and alluvial deposits 
(Holocene/Holocene to upper Pleistocene) – Windblown sand and some silt that 
forms well-developed dunes overlying gravelly to fine-grained lacustrine and 
alluvial deposits; locally well exposed in large gravel pit on southern margin of 
Cedar Mountains and north of Michael Army Airfield (Prime Road pit); cover 
unit thickness probably less than 20 feet (6 m).

Alluvial deposits over lacustrine fine-grained deposits (Holocene/upper Pleisto-
cene) – Sand, silt, clay, and some gravel in alluvial channels and sheets overlying 
lacustrine silt, clay, marl, and some sand; present between Granite Mountain and 
Old River Bed; cover unit thickness probably less than 6 feet (2 m).

Alluvial-fan deposits over lacustrine fine-grained deposits (Holocene to upper 
Pleistocene?/upper Pleistocene) – Gravel, sand, and fine-grained alluvial-fan 
deposits overlying lacustrine sand, silt, marl, and clay; present along periphery of 
Granite Mountain and in some upland valleys of eastern Cedar Mountains; cover 
unit thickness probably less than 10 feet (3 m).

Alluvial-fan deposits over lacustrine and alluvial deposits (Holocene to upper 
Pleistocene?/Holocene to upper Pleistocene) – Gravel, sand, and fine-grained 
alluvial-fan deposits overlying gravelly to fine-grained lacustrine and alluvial 
deposits; locally present along western margin of Skull Valley; cover unit 
thickness probably less than 10 feet (3 m).

Eolian dune sand deposits over andesitic and dacitic extrusive rocks of south-
ern Cedar Mountains (Holocene/Oligocene? to Eocene?) – Windblown dune 
sand and silt overlying bedrock unit; locally includes small bedrock exposures; 
cover unit thickness probably less than 10 feet (3 m).

Lacustrine gravel over undifferentiated bedrock (upper Pleistocene/Miocene? to 
Cambrian?) – Sandy and pebbly gravel overlying various bedrock units along 
western and southern margin of Cedar Mountains and southwest of Dugway; 
locally includes small bedrock exposures of map units Ts, Tac, Pp, and P Plo; cover 
unit thickness probably less than 10 feet (3 m).

Geochemical and age data for Tertiary and Jurassic rocks presented in tables 2 
through 4 and figures 2 through 4, and also by Clark (in preparation a, b).  Rock 
names from total alkali-silica classification diagram of LeBas and others (1986).

Rhyolite dikes of Granite Mountain (Miocene) – Grayish-orange, weathering to 
dark-yellowish-brown porphyritic rhyolite; phenocrysts of feldspar and biotite; 
cross-cuts granite (Jg), granodiorite (Jgd) and pegmatite dikes; prior K-Ar age of 
about 13 Ma (Moore and McKee, 1983), new 40Ar/39Ar age of 7.78 ± 0.05 Ma; 
dikes probably related to rhyolite of Sapphire Mountain; width to 30 feet (10 m).

Rhyolite of Sapphire Mountain (Miocene) – Pale-red, weathering to dark-
yellowish-brown and moderate-red, porphyritic rhyolite lava flow; phenocrysts 
(~10%) of quartz, sanidine, and minor biotite in an aphanitic groundmass; also 
some local flow breccia; forms cliffy exposures on Sapphire Mountain; 40Ar/39Ar 
age of 8.20 ± 0.05 Ma; exposed thickness is 450 feet (140 m).

Rhyolite of Rydalch Canyon area (Miocene?) – Light-gray and very pale orange 
rhyolite ash-flow tuff exposed south and east of Rydalch Canyon in southern 
Cedar Mountains; phenocrysts (~25%) of feldspar, quartz, hornblende, and 
biotite; 40Ar/39Ar age pending; exposed thickness to 650 feet (200 m).

Dacite dikes of Granite Mountain (Oligocene? - Eocene?) – Medium-gray to 
medium-dark-gray porphyritic dacite dikes on northwest side of mountain; only 
one such dike is mapped, and uncommon, unmapped latite dikes are also present; 
cross-cuts granite (Jg), granodiorite (Jgd) and pegmatite dikes; width to 30 feet 
(10 m).

Dacitic intrusions of Little Granite Mountain and White Rock (Oligocene? - 
Eocene?) – Light-gray weathering to white and yellowish gray porphyritic dacite; 
phenocrysts (~25%) of plagioclase, quartz, biotite, and amphibole (0.5-2 mm 
long average), and groundmass is intergrowth of plagioclase, potassium feldspar, 
and quartz (Maurer, 1970; Moore and Sorensen, 1977); 40Ar/39Ar ages for Little 
Granite Mountain and White Rock are pending; exposures to 9500 feet (2900 m) 
across.

Tertiary strata (Oligocene? - Eocene?) – One area southwest of Dugway of grayish 
orange, very pale orange, and moderate orange pink lacustrine limestone that is 
locally oncolitic, moderately crystalline, indistinctly to thin bedded; underlain by 
small exposure of moderate reddish orange tuffaceous sandstone; exposed 
thickness is 12 feet (4 m).

Andesitic and dacitic extrusive rocks of southern Cedar Mountains (Oligocene? 
- Eocene?) – Dark- to light-gray and pale-red lava flows interlayered with lahars 
and less common tuffs; lava flows are porphyritic to aphanitic, and phenocrysts 
include feldspar, quartz, and biotite; lahars contain clasts of intermediate volcanic 
rocks to 4 feet (1 m) across; variously welded ash-flow tuffs contain phenocrysts 
of feldspar, hornblende, biotite; calc-alkaline affinities are similar to those of 
Oligocene-Eocene rocks in the region; local vents as map unit Tai below; 
40Ar/39Ar ages pending; exposed thickness to 1200 feet (370 m).

Andesitic intrusions of southern Cedar Mountains (Devils Postpile, Six Horse 
Pass, Tabbys Peak) (Oligocene? - Eocene?) – Dark-gray porphyritic to aphanitic 
andesitic intrusions associated with local vents for extrusive suite of calc-alkaline 
volcanic rocks (Tac); phenocrysts of feldspar, hornblende, and lesser biotite; 
columnar jointing of exposures common; Devils Postpile previously called 
Moronis Postpile (Maurer, 1970); 40Ar/39Ar ages pending; exposures to 1600 feet 
(490 m) across.

Trachytic intrusions of northern Dugway Range (late Eocene?) – Gray to 
reddish-brown aphanitic to porphyritic trachyte and tephriphonolite (previously 
called rhyodacite); locally with phenocrysts of quartz, plagioclase, biotite, and 
amphibole; locally vesicular, highly oxidized and devitrified; occurs as plugs 
along Buckhorn fault; also includes small areas of flow breccia and associated 
tuffs (see Staatz and Carr, 1964; Staatz, 1972; Kelley and others, 1987; Kelley 
and Yambrick, 1988); age estimate of 36? Ma (Lindsey, 1979; Hintze, 1988), 
40Ar/39Ar age pending; exposures to 1400 feet (430 m) across.

Breccia (Tertiary?) – One northern Dugway Range exposure of heterogeneous 
jumbled bedrock blocks and fragments in a reddish, clayey, calcareous matrix 
(possible breccia pipe); blocks are chiefly limestone and siltstone of the Wood-
man Formation, but in places include fragments of limestone from the Ochre 
Mountain Limestone and Joana Limestone (Staatz, 1972); age unknown, 
assumed Tertiary; Staatz (1972) mapped as intrusive breccia; circular exposure 
is about 500 feet (150 m) in diameter.

Foliated granodiorite and granite of Granite Mountain, undivided (Late 
Jurassic) – Foliated granodiorite (Jgd) with sills and dikes of granite (Jg) 
exposed in the central and western part of mountain; exposed thickness is 400 
feet (120 m).

Foliated granodiorite of Granite Mountain (Late Jurassic) − Medium-light-gray 
to medium-gray granodiorite with variable chemical composition (decreasing 
silica) to quartz monzonite, monzonite, diorite, and monzodiorite; primary 
minerals include  plagioclase > quartz > alkali-feldspar >biotite > amphibole > 
muscovite (Fowkes, 1964; B. Jensen and E.H. Christiansen, Brigham Young 
University, unpublished data, 2007); rock is weakly to strongly foliated, contains 
uncommon dark xenoliths and local large feldspar crystals; cut by numerous, 
unmapped, white, beryl-bearing pegmatite dikes in various forms (Fowkes, 
1964) (pegmatites to 100 feet [30 m] thick); also cut by minor aplite and quartz 
dikes and younger dikes (Trd, Tdd); granodiorite is believed to be altered upper 
part of granite intrusion (Jg) (Clark and Christiansen, 2006); some fault and 
fracture zones in granodiorite and associated granite (Jg) are mineralized with 
hematite and lesser amounts of base metal-bearing minerals; isotopic data on 
granodiorite is pending (Christiansen and Hart, in preparation); U-Pb zircon age 
determination of 150 Ma (Clark and Christiansen, 2006; Christiansen and 
Vervoort, in preparation), 40Ar/39Ar age pending; exposed thickness is about 2000 
feet (600 m).

Granite of Granite Mountain (Late Jurassic) − White (leucocratic) granite weath-
ers to pale-orange and moderate-yellowish-brown; primary minerals include 
quartz > plagioclase > alkali-feldspar > muscovite > biotite (Fowkes, 1964; B. 
Jensen and E.H. Christiansen, Brigham Young University, unpublished data, 
2007); locally includes dark schistose inclusions and large potassium feldspar 
crystals; generally weakly foliated, except in northeastern exposures where 
strong flow foliation in upper part near contact with foliated granodiorite; cut by 
a few pegmatite, aplite, and quartz dikes, and younger dikes (Trd, Tdd); isotopic 
data on granite is pending (Christiansen and Hart, in preparation); U-Pb zircon 
age determination of 150 Ma (Clark and Christiansen, 2006; Christiansen and 
Vervoort, in preparation),  40Ar/39Ar age pending; exposed thickness is 1400 feet 
(425 m).

fault

Metasedimentary rocks of Granite Mountain (Upper Proterozoic?) − Metasedi-
mentary rocks composed of schist with minor quartzite, and marble with lesser 
schist intruded by granodiorite (Jgd) and leucogranite (Jg) sills and dikes at the 
south end of the mountain; approximately 60% metasedimentary rocks and 40% 
intrusions; metasedimentary rocks may correspond to part of the Proterozoic 
McCoy Creek Group or Trout Creek Sequence (see Rodgers, 1989); locally cut 
by pegmatite, quartz, and aplite dikes; in fault contact with granodiorite (Jgd) 
unit; exposed thickness is 2300 feet (700 m).

MISSISSIPPIAN TO CAMBRIAN STRATA OF NORTHERN DUGWAY 
RANGE

Mississippian and Devonian stratigraphy for the northern Dugway Range modified 
from Staatz (1972) after Hintze (1988; unpublished notes on Staatz and Carr, 1964).  
Exposures near Buckhorn fault are bleached, dolomitized, or silicified (Staatz and 
Carr, 1964; Staatz, 1972; Kelley and others, 1987; Kelley and Yambrick, 1988).

Ochre Mountain Limestone (Upper Mississippian) – Medium-gray limestone and 
a few interbeds of dark-gray dolomite; locally cherty; horn corals locally 
common; forms ledgey exposures; top eroded; 700+ feet (200+ m) thick.

Woodman Formation (Upper to Lower Mississippian) – Upper part thin-bedded, 
light-gray silty limestone with a 20-foot-thick (6 m), brown-weathering quartzite 
near base, and lower part of thin-bedded, reddish-brown, calcareous siltstone; 
forms slopes with some ledges; 785 feet (240 m) thick.

Joana Limestone (Lower Mississippian) – Fine-grained, medium-gray limestone 
with some chert in upper part; forms ledges; Staatz (1972) mapped as Madison 
Limestone equivalent; 315 feet (95 m) thick.

unconformity

Guilmette Formation (Upper to Middle Devonian) – Light- to dark-gray, 
commonly sandy-textured dolomite; upper part contains interbedded light-gray 
limestone and brown-weathering gray to white dolomitic quartzite, middle part 
contains some medium-bedded gray limestone, and lower part contains interbed-
ded brown-weathering dolomitic quartzite; Amphipora (stromatoporoid) 
common in some dolomite beds of middle part; forms ledgey outcrops; Staatz 
(1972) mapped as Hanauer Formation, Gilson Dolomite, and Goshoot Forma-
tion; 2180+ feet (660+ m) thick.

Simonson Dolomite (Middle to Lower? Devonian) – Very thick bedded, sandy-
textured, gray to black dolomite; less resistant ledges than overlying Guilmette; 
Staatz (1972) mapped as Englemann Formation; only upper part exposed, 1080+ 
feet (330+ m) thick.

Buckhorn fault

Prospect Mountain Quartzite (Lower Cambrian) – White to tan, resistant, thick-
bedded quartzite with local thin beds of olive-green micaceous shale and lenses 
of quartz-pebble conglomerate (Staatz, 1972); ledge to cliff forming unit; partly 
exposed, 450+ feet (140+ m) thick.

MISSISSIPPIAN TO CAMBRIAN STRATA OF WIG MOUNTAIN, CAMELS 
BACK RIDGE, SIMPSON BUTTES, AND LITTLE DAVIS MOUNTAIN

Mississippian to Cambrian stratigraphy modified from Moore and Sorensen (1977, 
1979), without the benefit of age control.

Wig Mountain thrust fault

Manning Canyon Shale (Lower Pennsylvanian to Upper Mississippian) – Gray to 
black, fissile, slope-forming shale with lesser light-brown and multicolored 
quartzite and uncommon brownish-gray, carbonaceous limestone; exposed north 
and south of Little Davis Mountain; interval of regional decollement; exposed 
thickness to 200 feet (60 m).

Ochre Mountain Limestone (Upper Mississippian) – Wig Mountain:  medium- to 
dark-gray limestone and fossiliferous limestone with uncommon black nodular 
chert; medium- to thick-bedded rock unit forms rugged ledges and cliffs; isolated 
exposure north of Wig Mountain contains brachiopods and numerous large 
crinoid columnals; top not exposed, exposed thickness is 600+ feet (180+ m).
Little Davis Mountain:  medium- to dark-gray limestone and fossiliferous 
limestone, black chert locally common as nodules and beds; thin- to thick-
bedded; southwestern exposures silicified; base and top? not exposed; exposed 
thickness is 1200 feet (370 m).

Woodman Formation (Upper to Lower Mississippian) – Very pale orange calcare-
ous sandstone and siltstone, medium-gray cherty limestone, fossiliferous 
limestone, and sandy limestone; black chert in nodules and beds; very thin to 
thin-bedded; 1000 feet (300 m) thick.

Joana Limestone (Lower Mississippian) – Moderate-gray, thin-bedded, fossilifer-
ous limestone with uncommon black chert nodules; limited exposures between 
north and south parts of Wig Mountain; 300 feet (90 m) thick.

Unconformity

Devonian strata apparently depositionally thinned near Stansbury uplift (Rigby, 
1959)

Devonian-Cambrian dolomite (Upper Devonian? to Upper Cambrian?) – One 
small exposure on mud flat between the Old River Bed and northern Dugway 
Range of moderate-gray to moderate-brown dolomite that weathers to light 
brown, dark brown and pale red; common near-vertical fractures; exposed 
thickness is 25 feet (8 m).

Guilmette Formation (Upper to Middle Devonian) – Moderate-gray to moderate-
brown, thick- to very thick bedded dolomite; local laminated surface appearance; 
~40-foot-thick (12 m), dark-reddish-brown quartzite at top of formation; 
thickness is 400 to 800 feet (120-250 m).

Simonson and Sevy Dolomites (Middle to Lower Devonian) – Moderate gray, 
thin- to medium-bedded dolomite; weathers to very light and light gray with 
laminated surface appearance; lighter colored, more distinctly bedded, and less 
resistant than adjacent formations; thickness is 100 feet (30 m).

Laketown Dolomite (Silurian) – Light- to dark-gray, weathers to light- and 
moderate-brown, very thick bedded dolomite; dolomite with small open vugs, 
local black chert, laminated appearance, and case hardening; thinner bedded 
interval (roughly 50 feet [15 m]) with dark-brown and light-gray dolomite is 
about 500 feet (150 m) above base; formation generally cliffy and indistinctly 
bedded; thickness is 1800 feet (550 m).

Ely Springs Dolomite (Ordovician) – Moderate-gray dolomite, weathers to moder-
ate brown and light gray, thin- to medium-bedded; forms more distinct and less 
resistant beds between enclosing formations; thickness is 300 feet (90 m).

Unconformity

Tooele arch (Hintze, 1959) - Eureka Quartzite, Crystal Peak Dolomite, Watson 
Ranch Quartzite, and Pognip Group not present

Notch Peak Formation (Upper Cambrian) – Southern side of Wig Mountain 
exposures are moderate-gray dolomite that weathers to light- and moderate-
brown and gray-brown, locally with a mottled appearance; locally sandy, with 
dark brown laminae, and twiggy bodies; thin- to very thick bedded; base not 
exposed; exposed thickness 1000+ feet (300+ m).

Upper Cambrian strata, undivided (Upper Cambrian?) – Carbonate rocks of 
Camels Back Ridge and Simpson Buttes; medium-bedded, medium-gray to 
dark-gray dolomite, with subordinate thin-bedded, light-gray, silty limestone and 
laminated, light-pink-weathering dolomite; commonly pisolitic, rust-colored 
cherty lenses prominent near top (Moore and Sorensen, 1977); exposures appear 
to be dolomitized precluding further subdivision; may correspond to Notch Peak 
Formation, Orr Formation, and Lamb Dolomite; base and top not exposed, 
2300+ feet (700+ m) thick.

PERMIAN TO MISSISSIPPIAN STRATA OF SOUTHERN CEDAR MOUN-
TAINS

Refer to figure 5 for a Lower Permian to Upper Mississippian stratigraphic 
comparison between this map and Maurer (1970).

Pequop Formation (Lower Permian? [Leonardian?-Wolfcampian?]) – Moderate-
gray cherty limestone that weathers to light gray, interbedded with light-brown 
to pale-red sandstone that weathers to dark brown, some calcareous sandstone in 
lower part; bedding is thin to thick to indistinct, forming ledgey and cliffy 
outcrops; sandstone is slightly calcareous with fine to medium sand and tabular 
cross-bedding; limestone is finely crystalline and locally bioclastic, with black 
chert in nodules and thin beds; fossil age determination pending; Maurer (1970) 
mapped as Permian unnamed formation; exposed thickness to 1000 feet (300 m), 
Maurer (1970) reported measurement of 3953 feet (1205 m) north of map area 
where this unit underlies Grandeur Member of Park City Formation.

Oquirrh Group strata, undivided (Lower Permian to Lower Pennsylvanian) – 
Combined unit where formation separation is difficult, particularly in Permian 
and upper Pennsylvanian part of section; total Oquirrh Group strata thickness 
roughly 6805 feet (2075 m).

Oquirrh Group, Freeman Peak and Curry Peak Formations, undivided 
(Lower Permian [Wolfcampian]) – Medium- to dark-gray, weathering to 
yellowish-gray, calcareous, fine-grained sandstone with uncommon very pale-
orange, medium-gray and pale-red orthoquartzite and sandy limestone; 
laminated to thick-bedded unit breaks into chips and plates forming rounded hills 
and slopes with occasional ledges; “worm trail” markings common bedding 
plane feature, also contains Schwagerina (fusulinid); corresponds to most of 
Maurer’s Unit 4 and Unit 5; lower contact with Bingham Mine Formation 
difficult to locate due to similar lithologies; roughly 2690 feet (1820 m) thick 
near Cochran Spring (2.5 miles [4 km] north of Cane Springs).

Oquirrh Group, Bingham Mine Formation (Upper to Middle Pennsylvanian 
[Virgilian-Missourian]) – Medium-gray sandy limestone and very pale-orange to 
pale-red calcareous sandstone; thin- to medium-bedded, forms ledges and 
slopes; fossils include brachiopods, bryozoans, fusulinids (Triticites); 
corresponds to upper part of Maurer’s Unit 3 and lower part of Unit 4; roughly 
1020 feet (310 m) thick near Cochran Spring.

Oquirrh Group, Butterfield Peaks Formation (Middle to Lower Pennsylvanian 
[Desmoinesian-Morrowan]) – Medium- to dark-gray, sandy limestone, cherty 
limestone, fossiliferous limestone, and minor quartzite; thin- to very thick 
bedded, forms ledges, cliffs, and slopes of a cyclic character, lower part forms 
ledgey escarpment; limestone is finely crystalline to bioclastic; gray, yellow-
brown, and black chert occurs as spherical nodules and semi-bedded masses; 
contains sandy laminae and horizontally-flattened concretionary structures; 
fossils include Chaetetes and Syringopora (colonial corals), rugose corals, 
fusulinids (Fusulina), brachiopods, bryozoans; corresponds to Maurer’s Unit 2 
and most of Unit 3; roughly 2660 feet (810 m) thick near Cochran Spring.

Oquirrh Group, West Canyon Limestone (Lower Pennsylvanian [Morrowan]) – 
Medium- to dark-blue-gray and brown-gray limestone and fossiliferous 
limestone with sparse chert; weathers to gray and yellow-brown; thin- to 
medium-bedded unit forms ledges and slopes; corresponds to Maurer’s Unit 1; 
435 feet (133 m) thick.

Manning Canyon Shale (Lower Pennsylvanian to Upper Mississippian) – Gray to 
black, fissile, slope-forming shale with lesser light-brown and multicolored 
quartzite and uncommon brownish-gray, carbonaceous limestone; interval of 
regional decollement; 1500 to 2000 feet (450-600 m) thick.

faults

Great Blue Limestone (Upper Mississippian) – Medium- to dark-gray, medium- 
and thick-bedded, finely crystalline or bioclastic limestone that forms rugged 
ledges; gray and black chert locally common in upper part; no obvious shaley 
intervals; fossils include colonial and horn corals, crinoids, and bryozoan 
fragments; top not exposed; 2440+ feet (744+ m) thick.

Humbug Formation (Upper Mississippian) – Yellow-brown and gray sandstone 
and quartzite, and medium- to dark-gray limestone mostly in middle part; forms 
slopes and ledges; sandstone weathers to brown and maroon, is fine to medium 
grained, thin to medium bedded; limestone is thin to medium bedded with 
numerous thin horizontal black chert stringers, and locally common corals and 
brachiopods; base not exposed; 1014+ feet (309+ m) thick.

Note:

Granite Mountain is here used as an informal name for the mountain containing Granite Peak 
on Dugway Proving Ground; it was previously called Granite Peak Mountain by Fowkes 
(1964).  Granite Mountain is the formal name for a mountain located near the northern end of 
the Confusion Range (see USGS Geographic Names Information System) that is comprised 
largely of carbonate rock.
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Figure 1.  Location map showing primary geographic features associated with Dugway Proving Ground and adjacent areas.
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Figure 2.  Total alkali-silica classification diagram of LeBas and others (1986) for intrusive rocks from
                Granite Mountain and extrusive rocks from Sapphire Mountain.
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Figure 3.  Total alkali-silica classification diagram of LeBas and others (1986) for plutonic rocks from Granite Mountain.
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Figure 4.  Total alkali-silica classification diagram of LeBas and others (1986) for extrusive and intrusive rocks from
                southern Cedar Mountains and northern Dugway Range.
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Figure 5.  Comparison of Lower Permian to Upper Mississippian stratigraphy of the southern Cedar Mountains.  
                 The stratigraphy used in this map for the Oquirrh Group largely follows that of the Bingham mining
                 district/Oquirrh Mountains developed by Welsh and James (1961), Tooker and Roberts (1970),
                 and Swenson (1975).
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