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GEOLOGIC UNIT DESCRIPTIONS

Alluvial deposits

Alluvial deposits (Holocene) – Primarily clay, silt, and sand with some gravel 
lenses, deposited by streams in channels and filling drainages; locally includes 
alluvial-fan, colluvial, and eolian deposits; thickness generally less than about 20 
feet (6 m).

Alluvial-fan deposits, undifferentiated (Holocene to upper Pleistocene?) – Poorly 
sorted gravel with sand, silt, and clay deposited by streams, debris flows, and 
flash floods on alluvial fans and in canyon and mountain valleys above the 
Bonneville shoreline; includes alluvium and colluvium in canyon and mountain 
valleys; may include small areas of eolian deposits and lacustrine fine-grained 
deposits below the Bonneville shoreline; thickness variable, to 100 feet (30 m) or 
more.

Older alluvial-fan deposits (upper Pleistocene? to Pliocene?) – Deposits of 
higher-level, poorly sorted gravel with sand, silt, and clay that have been incised 
by younger alluvial deposits; present along the margin and interior valleys of the 
eastern Cedar Mountains; may locally include small areas of lacustrine or eolian 
deposits; thickness variable, to 100 feet (30 m) or more.

The Old River Bed is an abandoned river valley present on the southern part of 
Dugway Proving Ground (DPG) and southward to the Sevier River southwest of 
Delta.  The Old River Bed formed during the most recent episode of overflow from 
the Sevier basin (Lake Gunnison) to the Great Salt Lake basin (Lake Bonneville) 
(Oviatt, 1987; Oviatt and others, 1994).  Where the river entered Lake Bonneville, a 
delta formed with numerous distributary channels.  Two types of channel systems 
were mapped-  younger sand channels (Qas)  and older gravel channels described 
below.  We mapped only the main channels that were directly related to the Old 
River Bed delta.  This channel mapping was simplified and modified somewhat 
from unpublished archeological survey reports prepared by the Desert Research 
Institute for the Directorate of Environmental Programs, U.S. Army DPG, and by 
Page (in preparation).  

Alluvial sand deposits (upper Pleistocene) – Sand and silt, locally with gravel, 
present in “exposed channels” (exposed due to deflation of mudflat surfaces) on 
mudflats north and west of Granite Peak, and in “buried channels” (buried by 
eolian sand and silt) extending between the Old River Bed and the mudflats of the 
southern Great Salt Lake Desert; associated with alluvial gravel deposits (Qag); 
probably related to continued Sevier-basin overflow and to groundwater 
discharge; ages of 8800 to 11,400 14C years B.P. (about 10,000 to 13,000 calendar 
years B.P.); thickness to about 3 feet (1 m) (Oviatt and others, 2003).

Alluvial gravel deposits (upper Pleistocene) – Coarse sand and gravel, dominated 
by volcanic clasts, present in topographically inverted “gravel channels” on 
mudflats north of Granite Peak; these “gravel channels” have a distinct 
morphology–straight to curved, digitate, and with abrupt bulbous ends; associ-
ated with alluvial sand deposits (Qas); formed by a river delta that originated as 
overflow from the Sevier basin along the Old River Bed during the late regressive 
phases of Lake Bonneville, prior to 11,000 and after 12,500 14C yr B.P. (about 
13,000 to 14,600 calendar years); thickness to about 12 feet (4 m) (Oviatt and 
others, 2003).

Spring deposits

Spring and marsh deposits (Holocene) – Clay, silt, and sand that is locally 
organic-rich, calcareous, or saline; present in saturated (marshy) areas near 
springs along margins of mudflats; thickness undetermined.

Spring tufa (Holocene) – Tufa present in mounds around hot springs northwest of 
Fish Springs at south border of map; area referred to as Wilson Health Springs on 
Fish Springs NW 7.5' quadrangle map; thickness undetermined. 

Eolian deposits

Eolian deposits (Holocene) – Windblown sand and silt in sheet and dune forms; 
mapped along northern Snake Valley and east of Wildcat Mountain; not differen-
tiated as Qes and Qed due to convergence of landforms and map scale; 0 to 10 
feet (0-3 m) thick.

Eolian sheet-sand deposits (Holocene) – Windblown sand and silt deposited as 
sheets rather than well-developed dunes; generally thin with no distinct bedding; 
mostly silty, well-sorted, fine-grained quartz sand; generally greater than 3 feet (1 
m) and less than 10 feet (3 m) thick.

Eolian dune-sand deposits (Holocene) – Windblown sand and silt  in well-
developed dunes and dune fields; mostly fine-grained quartz sand but also aggre-
gates of clay, silt, and sand; present as parabolic, linear, dome, lunette, and 
shrub-coppice dunes (see Dean, 1978); larger dune fields may include a fringe of  
unmapped sheet sand; to 70 feet (20 m) thick.    

Eolian silt (Holocene) – Windblown silt mapped as stacked unit Qei/Qlf.

Eolian gypsum deposits (Holocene) – Windblown gypsum grains in dunes and 
local sheets on mudflats along western border of map area, not field checked; to 
10 feet (3 m) thick.

Lacustrine and Deltaic deposits

Playa mud (Holocene to upper Pleistocene) – Laminated clay and silt, with minor 
sand, typically calcareous or saline; locally present east of Granite Peak and on 
mudflats at areas of local groundwater discharge; probably less than 20 feet (6 m) 
thick.

Table 1 presents ages and elevations of Lake Bonneville shorelines in the map area.  
Crittenden (1963) and Currey (1982) provided regional data on shoreline 
elevations.

Deltaic gravel (upper Pleistocene) – Sand and gravel deposited near the mouth of 
the Sevier River in the Old River Bed area during the Bonneville lake cycle; 
well-sorted pebbly sand containing volcanic and sedimentary pebbles; cross-
bedded to very thick bedded; regressive deposits were locally reworked by waves 
into a thin sheet with delta ridge crests; to 50 feet (15 m) thick.

Lacustrine gravel (upper Pleistocene) – Sandy gravel to boulders composed of 
locally derived rock fragments deposited in shore zones of Lake Bonneville; 
locally tufa-cemented and draped on bedrock; thickness variable, to 100 feet (30 
m) or more.

Lacustrine sand (upper Pleistocene) – Sand and silt deposited by regressional 
phase of Lake Bonneville; thickness to 100 feet (30 m) or more.

Lacustrine fine-grained deposits (upper Pleistocene) – Sand, silt, marl, and calcar-
eous clay of Lake Bonneville; thinly to very thick bedded; locally includes the 
white marl of Gilbert (1890) and other fine-grained lacustrine deposits; thickness 
to 100 feet (30 m) or more.

Lacustrine lagoonal deposits (upper Pleistocene) – Silt and clay deposited behind 
beaches of highest transgressional phase of Lake Bonneville at south and west 
margin of Cedar Mountains and on Wildcat Mountain; thickness to 40 feet (12 
m).

Lacustrine tufa (upper Pleistocene) – Two areas of carbonate rock deposited on 
bedrock outliers west of Cedar Mountains; some unmapped Qlt present on 
Wildcat Mountain; thickness to 40 feet (12 m).  

Colluvial deposits

Colluvial deposits (Holocene to upper Pleistocene) – Fine- to coarse-grained 
detritus derived from local bedrock; commonly includes talus in upper parts of 
deposits; may locally include lacustrine, alluvial, or eolian deposits; more 
common on Granite Peak and northern Dugway Range than elsewhere; to 20 feet 
(6 m) or more thick.

Mass-movement deposits

Talus and colluvial deposits (Holocene to upper Pleistocene) – Mixed talus and 
colluvium locally present on Tabbys Peak, on west side of Cedar Mountains, and 
on Camels Back Ridge; to 15 feet (5 m) or more thick.

Mixed-environment deposits

Lacustrine and alluvial deposits, undifferentiated (Holocene to upper Pleisto-
cene) – Mixed and reworked, gravelly lacustrine and alluvial deposits on 
piedmont slopes; includes pre-Bonneville alluvial fans etched by waves in Lake 
Bonneville, and thin alluvial-fan deposits overlying fine to coarse-grained lake 
sediments; grades from pebbly sand and silt to sandy pebble gravel; locally 
includes areas of thicker alluvial-fan deposits in western Skull Valley and west of 
Simpson Mountains; thickness locally exceeds 30 feet (10 m).

Alluvial and colluvial deposits, undifferentiated (Holocene to upper Pleistocene) 
– Primarily gravel, with sand, silt, and clay; form aprons of small alluvial-fan and 
colluvial surfaces that spill out onto and grade into alluvial-fan deposits, and also 
present within upland valleys; thickness generally less than 20 feet (6 m).

Lacustrine and colluvial deposits, undifferentiated (Holocene to upper Pleisto-
cene) – Primarily gravel and sand, but may include lacustrine fine-grained depos-
its; commonly includes talus in upper parts of deposits; mantles bedrock and fills 
washes, locally remobilized by slope-wash and rock-fall processes; locally 
marked by prominent secondary shorelines; mapped on northwest side of Granite 
Peak; thickness to 10 feet (3 m), or locally more.

Eolian and alluvial deposits (Holocene) –  Mixed eolian and alluvial deposits 
mapped as stacked units Qea/Qlf and Qed-Qea/Qlf.

Human-derived deposits

Human disturbance (Historical) – Deposits from human development on Dugway 
Proving Ground that cover more extensive areas, consisting of wastewater 
treatment lagoons, sanitary landfill, and Michael Army Airfield; thickness less 
than about 20 feet (6 m).

Stacked-unit deposits

Eolian and alluvial deposits over lacustrine fine-grained deposits 
(Holocene/upper Pleistocene) – Windblown silt in sheet form adjacent to and 
locally covering alluvial sand and gravel in unmapped channels that collectively 
overlie lacustrine marl and fine-grained deposits; locally saline or gypsiferous; 
form extensive mudflats of southern Great Salt Lake Desert; may locally include 
small areas of thicker eolian deposits; cover unit thickness probably less than 15 
feet (5 m) thick.

Eolian dune sand with eolian and alluvial deposits over lacustrine fine-grained 
deposits (Holocene/upper Pleistocene) – Intermittent exposures of windblown 
dune sand and some silt interspersed with windblown silt in sheet form adjacent 
to and locally covering alluvial sand and gravel in unmapped channels that 
collectively overlie lacustrine marl and fine-grained deposits; locally saline or 
gypsiferous; mapped in three areas on mudflats where small dunes are difficult to 
map individually at this scale; cover unit thickness probably less than 18 feet (6 
m) thick.   

Eolian silt over lacustrine fine-grained deposits (Holocene/upper Pleistocene) – 
Windblown silt overlying lacustrine silt, clay, marl, and some sand over a large 
area east of Granite Peak; surface commonly contains distinctive vegetation 
stripes (characteristic landforms of sheetflow plains in arid to semiarid regions) 
(Oviatt and others, 2003); may locally include areas of thicker eolian deposits; 
cover unit thickness typically less than 3 feet (1 m).

Eolian sheet-sand deposits over lacustrine fine-grained deposits 
(Holocene/upper Pleistocene) – Windblown sand and some silt in sheets overly-
ing lacustrine silt, clay, marl, and some sand northeast of Little Granite Moun-
tain; may locally include areas of thicker eolian deposits; cover unit thickness 
probably less than 6 feet (2 m).

Eolian dune-sand deposits over lacustrine fine-grained deposits 
(Holocene/upper Pleistocene) – Windblown dune sand and some silt overlying 
lacustrine sand, silt, marl, and clay; cover unit thickness probably less than 20 
feet (6 m).

Eolian sheet-sand deposits over lacustrine and alluvial deposits 
(Holocene/Holocene to upper Pleistocene) – Windblown dune sand and silt 
overlying gravelly to fine-grained lacustrine and alluvial deposits; present at and 
northwest of Dugway and upland valley of White Rock-Post Hollow area; cover 
unit thickness probably less than 10 feet (3 m).

Eolian sheet-sand deposits over alluvial-fan deposits (Holocene/Holocene to 
upper Pleistocene?) – Windblown sheet sand and silt overlying younger gravelly 
to fine-grained alluvial-fan deposits near Wildcat Mountain; cover unit thickness 
probably less than 10 feet (3 m). 

Eolian dune sand deposits over lacustrine and alluvial deposits 
(Holocene/Holocene to upper Pleistocene) – Windblown sand and some silt that 
forms well-developed dunes overlying gravelly to fine-grained lacustrine and 
alluvial deposits; locally well exposed in large gravel pit on southern margin of 
Cedar Mountains and north of Michael Army Airfield (Prime Road gravel pit); 
cover unit thickness probably less than 20 feet (6 m).

Alluvial deposits over lacustrine fine-grained deposits (Holocene/upper Pleisto-
cene) – Sand, silt, clay, and some gravel in alluvial channels and sheets overlying 
lacustrine silt, clay, marl, and some sand; present between Granite Peak and Old 
River Bed; cover unit thickness probably less than 6 feet (2 m).

Alluvial-fan deposits over lacustrine fine-grained deposits (Holocene to upper 
Pleistocene?/upper Pleistocene) – Gravel, sand, and fine-grained alluvial-fan 
deposits overlying lacustrine sand, silt, marl, and clay; present along periphery of 
Granite Peak and in some upland valleys of eastern Cedar Mountains; cover unit 
thickness probably less than 10 feet (3 m).

Eolian dune-sand deposits over andesitic and dacitic  rocks of southern Cedar 
Mountains (Holocene/Oligocene? to Eocene?) – Windblown dune sand and silt 
overlying bedrock unit; locally includes small bedrock exposures; cover unit 
thickness probably less than 10 feet (3 m).

Alluvial and colluvial deposits over andesitic and dacitic rocks of southern 
Cedar Mountains (Holocent/Oligocene? to Eocene?) – One area near Cochran 
Spring of fine-grained surficial deposits overlying bedrock unit; cover unit 
thickness probably less than 10 feet (3 m).

Eolian sheet-sand deposits over latitic rocks of Wildcat Mountain? 
(Holocene/Oligovene? to Eocene?) – Two areas of western Wildcat Mountain of 
eolian deposits overlying bedrock unit; cover unit thickness probably less than 10 
feet (3 m).

Lacustrine gravel over latitic rocks of Wildcat Mountain (upper 
Pleistocene/Oligocene? to Eocene?) – Sandy and pebbly gravel overlying 
bedrock unit along western side of Wildcat Mountain; cover unit thickness 
probably less than 20 feet (6 m).

Lacustrine gravel over Oquirrh Group, Butterfield Peaks Formation and West 
Canyon Limestone, undivided (upper Pleistocene/Middle to Lower Pennsylva-
nian) – Sandy and pebbly gravel overlying combined bedrock unit on Wildcat 
Mountain; gravel cover on east side of mountain is thinner to nonexistent 
compared to west side; cover unit thickness probably less than 20 feet (3 m).   

Lacustrine gravel over undifferentiated bedrock (upper Pleistocene/Miocene? to 
Cambrian) – Sandy and pebbly gravel overlying various bedrock units along 
western and southern margin of Cedar Mountains, southwest of Dugway, and on 
Camels Back Ridge; locally includes small bedrock exposures of map units Ts, 
Tac, Pp, Oquirrh Group formations, and Cambrian units; cover unit thickness 
probably less than 10 feet (3 m).

Geochemical and age data for Tertiary and Jurassic rocks presented in tables 2 and 
3, figures 2 through 4, Clark (2008), Christiansen and Vervoort (in preparation), and 
UGS & NMGRL (2007, 2008, in preparation).  Rock names from total alkali-silica 
classification diagram of LeBas and others (1986).

Rhyolite dikes of Granite Peak (Miocene) – Grayish-orange, weathering to dark-
yellowish-brown porphyritic rhyolite with phenocrysts of feldspar and biotite; 
cross-cuts granite (Jg), granodiorite (Jgd) and pegmatite dikes; prior K-Ar age of 
about 13 Ma (Moore and McKee, 1983), new 40Ar/39Ar age of 7.78 ± 0.05 Ma on 
sanidine (UGS & NMGRL, 2007); dikes probably related to rhyolite of Sapphire 
Mountain; width to 30 feet (10 m).

Rhyolite of Sapphire Mountain (Miocene) – Pale-red, weathering to dark-
yellowish-brown and moderate-red, porphyritic rhyolite lava flow; containing 
about 10% phenocrysts of quartz, sanidine, and minor biotite in an aphanitic 
groundmass; locally includes flow breccia; forms cliffy exposures on Sapphire 
Mountain; 40Ar/39Ar age of 8.20 ± 0.05 Ma on sanidine (UGS & NMGRL, 2007); 
exposed thickness is 450 feet (140 m).

Rhyolite of Rydalch Canyon area (Miocene?) – Light-gray and very pale orange 
rhyolite ash-flow tuff exposed south and east of Rydalch Canyon in southern 
Cedar Mountains; contains about 25 % phenocrysts of feldspar, quartz, 
hornblende, and biotite; unreliable age obtained (see table 4); exposed thickness 
to 650 feet (200 m).

Tertiary strata (Oligocene? to Eocene?) – One area southwest of Dugway (English 
Village) of grayish-orange, very pale orange, and moderate-orange-pink 
lacustrine limestone that is locally oncolitic, moderately crystalline, and 
indistinctly to thin bedded; underlain by small exposure of moderate-reddish-
orange tuffaceous sandstone; exposed thickness is 12 feet (4 m). 

Dacite dikes of Granite Peak (Oligocene? - Eocene?) – Medium-gray to medium-
dark-gray porphyritic dacite dikes on northwest side of mountain; only one such 
dike is mapped, and uncommon, unmapped latite dikes are also present; cross-
cuts granite (Jg), granodiorite (Jgd) and pegmatite dikes; not dated; width to 30 
feet (10 m).

Dacitic intrusions of Little Granite Mountain and White Rock (Eocene) – 
Light-gray weathering to white and yellowish-gray porphyritic dacite; contains 
about 25% phenocrysts of plagioclase, quartz, biotite, and amphibole (0.5-2 mm 
long average), and groundmass is intergrowth of plagioclase, potassium feldspar, 
and quartz (Maurer, 1970; Moore and Sorensen, 1977); 40Ar/39Ar ages of 39.56 
± 0.10 Ma (biotite) and 40.95 ± 0.32 Ma (hornblende) for Little Granite Moun-
tain and 38.69 ± .010 Ma (sanidine) for White Rock (UGS & NMGRL, in prepa-
ration); exposures to 9500 feet (2900 m) across.

Andesitic and dacitic rocks of southern Cedar Mountains (Eocene) – Dark- to 
light-gray and pale-red lava flows interlayered with lahars and less common 
tuffs; lava flows are porphyritic to aphanitic, and phenocrysts include feldspar, 
quartz, and biotite; lahars contain clasts of intermediate volcanic rocks to 4 feet 
(1 m) across; variously welded ash-flow tuffs contain phenocrysts of feldspar, 
hornblende, and biotite; calc-alkaline affinities are similar to those of 
Oligocene-Eocene rocks in the region; local vents mapped as unit Taci, described 
below; 40Ar/39Ar ages of 38.17 ± 0.47 and 40.66 ± 0.45 (groundmass) and 41.73 
± 0.24 Ma (hornblende) (UGS & NMGRL, in preparation); exposed thickness to 
1200 feet (370 m).

Andesitic intrusions of southern Cedar Mountains (Devils Postpile, Six Horse 
Pass, Tabbys Peak) (Eocene) – Dark-gray porphyritic to aphanitic andesitic 
intrusions associated with local vents for extrusive suite of calc-alkaline volcanic 
rocks (Tac); where porphyritic, contains phenocrysts of feldspar, hornblende, 
and lesser biotite; columnar jointing of exposures common; Devils Postpile 
previously called Moronis  Postpile (Maurer, 1970);  40Ar/39Ar ages  of  39.55 
± 0.22 Ma (groundmass) from Devils Postpile and 40.61 ± 0.78 Ma 
(groundmass) from Tabbys Peak (UGS & NMGRL, in preparation); exposures to 
1600 feet (490 m) across.

Latitic rocks of Wildcat Mountain (Oligocene? to Eocene?) – Dark- to 
moderate-gray and pale-red latite lava flows and dark-gray trachydacite 
intrusions associated with local vents; exposed on west side of Wildcat Moun-
tain; rocks are porphyritic to aphanitic and locally vesicular; not dated; 
previously mapped as Tertiary basalt and basaltic andesite (?) (Moore and 
Sorensen, 1979); mostly mapped as stacked units Qlg/Tlw and Qlg/Tlw?, and 
also as Tlw?; exposed thickness to 120 feet (40 m).

Trachytic intrusions of northern Dugway Range (Eocene?) – Gray to reddish-
brown aphanitic to porphyritic trachyte and tephriphonolite (previously called 
rhyodacite by Staatz, 1972); locally with phenocrysts of quartz, plagioclase, 
biotite, and amphibole; locally vesicular, highly oxidized and devitrified; occurs 
as plugs along Buckhorn fault; also includes small areas of flow breccia and 
associated tuffs (see Staatz and Carr, 1964; Staatz, 1972; Kelley and others, 
1987; Kelley and Yambrick, 1988); age estimate of 36? Ma (Lindsey, 1979; 
Hintze, 1988), unreliable age obtained (see table 4); exposures to 1400 feet (430 
m) across.

Breccia (Tertiary?) – One northern Dugway Range exposure of heterogeneous 
jumbled bedrock blocks and fragments in a reddish, clayey, calcareous matrix 
(possible breccia pipe); blocks are chiefly limestone and siltstone of the Wood-
man Formation, but in places include fragments of limestone from the Ochre 
Mountain Limestone and Joana Limestone (Staatz, 1972); age unknown, 
assumed Tertiary; Staatz (1972) mapped as intrusive breccia; circular exposure 
is about 500 feet (150 m) in diameter.

Foliated granodiorite and granite of Granite Peak, undivided (Late Jurassic) – 
Foliated granodiorite (Jgd) with sills and dikes of granite (Jg) exposed in the 
central and western part of mountain; exposed thickness is 400 feet (120 m).

Foliated granodiorite of Granite Peak (Late Jurassic) − Medium-light-gray to 
medium-gray granodiorite with variable chemical composition (decreasing 
silica) to quartz monzonite, monzonite, diorite, and monzodiorite; primary 
minerals include  plagioclase > quartz > alkali-feldspar >biotite > amphibole > 
muscovite (Fowkes, 1964; Christiansen and others, 2007; Jensen and others, 
2007); rock is weakly to strongly foliated, contains uncommon dark xenoliths 
and local large feldspar crystals; cut by numerous unmapped, white, beryl-
bearing pegmatite dikes in various forms (Fowkes, 1964; Clark and others, in 
press) as much as 100 feet (30 m) thick; also cut by minor aplite dikes, quartz 
veins, and younger dikes (Trd, Tdd); granodiorite is believed to be altered upper 
part of granite intrusion (Jg) (Clark and Christiansen, 2006; Christiansen and 
others, 2007; Jensen and others, 2007); some fault and fracture zones in grano-
diorite and associated granite (Jg) are mineralized with hematite and lesser 
amounts of base metal-bearing minerals; Jensen and others (2007) and Clark and 
others (in press) provide isotopic data on granodiorite; U-Pb zircon age determi-
nation of 149.8 ± 1.3 Ma (intrusion age) (Clark and Christiansen, 2006; 
Christiansen and others, 2007; Jensen and others, 2007; Christiansen and 
Vervoort, in preparation); 40Ar/39Ar ages of 15.97 ± 0.04 Ma on biotite and 27.13 
± 0.05 Ma on K-feldspar (cooling and possibly unroofing ages) (UGS & 
NMGRL, 2008; Clark and others, in press); exposed thickness is about 2000 feet 
(600 m).

Granite of Granite Peak (Late Jurassic) − White (leucocratic) granite weathers to 
pale-orange and moderate-yellowish-brown; primary minerals include quartz > 
plagioclase > alkali-feldspar > muscovite > biotite (Fowkes, 1964; Christiansen 
and others, 2007; Jensen and others, 2007); locally includes dark schistose 
inclusions and large potassium feldspar crystals; generally weakly foliated, 
except in northeastern exposures where strong flow foliation exists in upper part 
near contact with foliated granodiorite; cut by a few pegmatite and aplite dikes, 
quartz veins, and younger dikes (Trd, Tdd); Jensen and others (2007) and Clark 
and others (in press) provide isotopic data on granite; U-Pb zircon age determi-
nation of 148.8 ± 1.3 Ma (intrusion age) (Clark and Christiansen, 2006; 
Christiansen and others, 2007; Jensen and others, 2007; Christiansen and 
Vervoort, in preparation);  40Ar/39Ar ages of 13.69 ± 0.12 Ma on muscovite and 
19.14 ± 0.08 Ma on K-feldspar (cooling and possibly unroofing ages) (UGS & 
NMGRL, 2008; Clark and others, in press); exposed thickness is 1400 feet (425 
m).

fault

Metasedimentary rocks of Granite Peak (Paleozoic? or Upper Proterozoic?) − 
Metasedimentary rocks composed of schist with minor quartzite, and marble 
with lesser schist intruded by granodiorite (Jgd) and leucogranite (Jg) sills and 
dikes at the south end of the mountain; approximately 60% metasedimentary 
rocks and 40% intrusions; metasedimentary rocks may correspond to part of the 
Proterozoic McCoy Creek Group or Trout Creek Sequence of the southern Deep 
Creek Range (see Rodgers, 1989) or, less likely, to Neoproterozoic units of the 
Sheeprock Mountain (Christie-Blick, 1982); locally cut by pegmatite and aplite 
dikes and quartz veins; in fault contact with granodiorite (Jgd) unit; exposed 
thickness is 2300 feet (700 m).

MISSISSIPPIAN TO CAMBRIAN STRATA OF NORTHERN DUGWAY 
RANGE

Mississippian and Devonian stratigraphy for the northern Dugway Range modified 
from Staatz (1972) after Hintze (1988; unpublished notes on Staatz and Carr, 1964).  
Exposures near Buckhorn fault are bleached, dolomitized, or silicified (Staatz and 
Carr, 1964; Staatz, 1972; Kelley and others, 1987; Kelley and Yambrick, 1988).

Ochre Mountain Limestone (Upper Mississippian) – Medium-gray limestone and 
a few interbeds of dark-gray dolomite; thin to thick bedded and locally cherty; 
horn corals locally common; forms ledgey exposures; top eroded; 700+ feet 
(200+ m) thick.

Woodman Formation (Upper to Lower Mississippian) – Upper part thin-bedded, 
light-gray silty limestone with a 20-foot-thick (6 m), brown-weathering quartzite 
near base, and lower part of thin-bedded, reddish-brown, calcareous siltstone; 
forms slopes with some ledges; 785 feet (240 m) thick.

Joana Limestone (Lower Mississippian) – Fine-grained, medium-gray limestone 
with some chert in upper part; thin to very thick bedded and forms ledges; Staatz 
(1972) mapped as Madison Limestone equivalent; 315 feet (95 m) thick.

unconformity

Guilmette Formation (Upper to Middle Devonian) – Light- to dark-gray, 
commonly sandy-textured dolomite; upper part contains interbedded light-gray 
limestone and brown-weathering gray to white dolomitic quartzite, middle part 
is thick to very thick bedded and contains some medium-bedded gray limestone, 
and lower part contains interbedded brown-weathering dolomitic and calcareous 
quartzite; Amphipora (stromatoporoid) common in some dolomite beds of 
middle part; forms cliffy and ledgey outcrops; Staatz (1972) mapped as Hanauer 
Formation, Gilson Dolomite, and Goshoot Formation; 2180+ feet (660+ m) 
thick.

Simonson Dolomite (Middle Devonian) – Very thick bedded, crystalline, sandy-
textured, gray to black dolomite; forms less resistant ledges than overlying 
Guilmette; Staatz (1972) mapped as Englemann Formation; only upper part 
exposed, 1080+ feet (330+ m) thick.

Buckhorn fault

Prospect Mountain Quartzite (Lower Cambrian) – White to tan, resistant, thick-
bedded quartzite with local thin beds of olive-green, micaceous shale and lenses 
of quartz-pebble conglomerate (Staatz, 1972); ledge- to cliff-forming unit; partly 
exposed, 450+ feet (140+ m) thick.

MISSISSIPPIAN TO CAMBRIAN STRATA OF WIG MOUNTAIN

Mississippian to Cambrian stratigraphy modified from Moore and Sorensen (1977, 
1979), using regional stratigraphic names of Hintze (1980, 1988), rather than local 
names of Dugway Range (Staatz and Carr, 1964; Staatz, 1972).

Wig Mountain thrust fault

Ochre Mountain Limestone (Upper Mississippian) – Medium- to dark-gray 
limestone and fossiliferous limestone with uncommon black nodular chert; 
medium- to thick-bedded, forming rugged ledges and cliffs; isolated exposure 
north of Wig Mountain contains brachiopods and numerous large crinoid colum-
nals; top not exposed, exposed thickness is 600+ feet (180+ m).

Woodman Formation (Upper to Lower Mississippian) – Very pale orange calcare-
ous sandstone and siltstone, medium-gray cherty limestone, fossiliferous 
limestone, and sandy limestone; black chert in nodules and beds; very thin to 
thin-bedded; 1000 feet (300 m) thick.

Joana Limestone (Lower Mississippian) – Moderate-gray, thin-bedded, fossilifer-
ous limestone with uncommon black chert nodules; limited exposures between 
north and south parts of Wig Mountain; 300 feet (90 m) thick.

Unconformity

Devonian strata apparently depositionally thinned near Stansbury uplift (Rigby, 
1959)

Guilmette Formation (Upper to Middle Devonian) – Moderate-gray to moderate-
brown, thick- to very thick bedded dolomite; local laminated surface appearance; 
includes ~40-foot-thick (~12 m), dark-reddish-brown quartzite at top of forma-
tion; thickness is 400 to 800 feet (120-250 m).

Simonson and Sevy Dolomites (Middle to Lower Devonian) – Moderate gray, 
thin- to medium-bedded dolomite; weathers to very light and light gray with 
laminated surface appearance; lighter colored, more distinctly bedded, and less 
resistant than adjacent formations; thickness is 100 feet (30 m).

Laketown Dolomite (Silurian) – Light- to dark-gray, weathers to light- and 
moderate-brown, very thick bedded dolomite commonly with small open vugs, 
local black chert, laminated appearance, and case hardening; thinner bedded 
interval (roughly 50 feet [15 m] thick) with dark-brown and light-gray dolomite 
is about 500 feet (150 m) above base; formation generally cliffy and indistinctly 
bedded; thickness is 1800 feet (550 m).

Ely Springs Dolomite (Upper Ordovician) – Moderate-gray, thin- to medium- 
bedded dolomite that weathers to moderate brown and light gray; forms more 
distinct and less resistant beds between enclosing formations; thickness is 300 
feet (90 m).

Unconformity

Tooele arch (Hintze, 1959) - Eureka Quartzite and Pognip Group not present

Notch Peak Formation (Lower Ordovician to Upper Cambrian) – Present on south 
side of Wig Mountain; exposures are moderate-gray dolomite that weathers to 
light and moderate brown and gray brown, locally with a mottled appearance; 
locally sandy, with dark brown laminae, and twiggy bodies; thin to very thick 
bedded; base not exposed; exposed thickness 1000 feet (300 m).

DEVONIAN TO CAMBRIAN STRATA OF CAMELS BACK RIDGE, SIMPSON 
BUTTES, AND TWO OUTLIERS
Regional stratigraphic names of Hintze (1980, 1988) applied to Devonian through 
Cambrian strata of Camels Back Ridge rather than local names of Dugway Range 
(Staatz and Carr, 1964; Staatz, 1972).

Devonian-Cambrian dolomite (Upper Devonian? to Upper or Middle Cambrian?) 
– Includes small exposure on mud flat between the Old River Bed and northern 
Dugway Range of moderate-gray to moderate-brown dolomite that weathers to 
light brown, dark brown and pale red with common near-vertical fractures; 
exposed thickness 25 feet (8 m); also mapped as single outcrop on Goodyear 
Road near western DPG border (Baker Strong Point or Black Point area) that was 
not field checked; about 50 feet (15 m) thick.

Guilmette Formation? (Upper and Middle Devonian) – Moderate- to dark-gray, 
finely to moderately crystalline dolomite that locally weathers brownish gray; 
thin to thick bedded, forming ledges; exposed thickness about 500 feet (150 m).

Fault 

Simonson Dolomite (Middle Devonian) – Light- to dark-gray, finely to moderately 
crystalline dolomite that locally weathers brownish gray; local zones of chert; thin 
to very thick bedded, forming cliffs and ledges; exposed thickness about 500 feet 
(150 m).

Sevy Dolomite (Lower Devonian) – Moderate-gray, finely crystalline dolomite 
weathers light gray with laminated surface appearance; thin to medium bedded; 
thickness is about 250 feet (75 m).

Fault

Laketown Dolomite, undivided (Silurian) – Moderate- to dark-gray, finely to 
moderately crystalline dolomite that locally weathers to light and moderate brown 
and light gray, with some intervals of light gray dolomite; with gray and red chert 
in beds, masses and nodules, and rust-colored case hardening; mostly very thick 
bedded, forming cliffs and ledges; to south separated into several members 
(Hintze, 1980) corresponding to formations of Staatz and Carr (1964); exposed 
thickness is about 500 feet (150 m).

Ely Springs Dolomite (Upper Ordovician) – Includes upper part (Floride Member) 
and lower part (lower member) not mapped separately; upper part is very light 
gray, finely crystalline dolomite with indistinct to medium bedding; lower part 
with cherty, resistant, moderate-gray dolomite at top underlain by brown-
weathering, less resistant, thin-bedded dolomite; thin to thick bedded, forming 
ledges, cliffs and slopes; thickness is 250 feet (75 m).

Unconformity

Tooele Arch (Hintze, 1959) - Eureka Quartzite and uppermost part of Pogonip Group 
likely missing

Pogonip Group, undivided (Middle to Lower Ordovician) – Exposed in low hills 
west of Camels Back Ridge; may include part of Kanosh Shale and underlying 
formations; upper part of dark-gray and moderate-gray, finely to moderately 
crystalline dolomite, underlying moderate-gray intraformational conglomerate 
with siltstone and limestone; thin to medium bedded, forming ledges and slopes; 
Hintze  (1980) described the various formations; exposed thickness to 150 feet 
(45 m).

Fault – separating Camels Back Ridge from low hills to west

Notch Peak Formation (Lower Ordovician and Upper Cambrian) – Moderate-and 
light-gray finely to moderately crystalline dolomite and limey dolomite, with 
intervals several feet thick that weather to tan and light pink; cliff- and ledge-
forming unit, medium- to very thick bedded; locally with pisolites, twiggy bodies, 
and Girvanella (algae); present on crest and west flank of Camels Back Ridge; 
Dugway Ridge Formation of Staatz and Carr (1964); exposed thickness about 500 
feet (150 m).

Orr Formation, upper part (Upper Cambrian) – Very light gray to light-gray, 
finely to moderately crystalline dolomite and limestone, and green and light-
brown shale; commonly medium to thick bedded; forms less resistant and 
lighter-colored interval between Notch Peak Formation and Big Horse Limestone; 
present on east flank and crest of Camels Back Ridge; likely includes (descending 
order) Sneakover Limestone Member, Corset Spring Shale Member, Johns Wash 
Limestone Member, and Candland Shale Member; Fera Limestone of Staatz and 
Carr (1964); 200 feet (60 m) thick.

Orr Formation, Big Horse Limestone Member (Upper Cambrian) – Moderate-to 
dark-gray, tan-gray, and pink, finely to moderately crystalline limestone with 
some intervals weathering to light-tan to pink, and mottled; locally dolomitized; 
resistant interval forming cliffs and ledges that is medium- to very thick bedded; 
on east flank and north part of Camels Back Ridge; Straight Canyon Formation of 
Staatz and Carr (1964); 425 feet (130 m) thick.

Lamb Dolomite (Upper Cambrian) –Upper part less resistant and commonly rusty 
and pink weathering, ledges of moderate-gray oolitic and silty limestone and flat-
pebble conglomerate, downward to moderate-gray dolomite and limestone with 
rusty-colored blebs and layers, mostly very thin to thin bedded; lower, ledge-
forming part of thin to very thick bedded, moderately to coarsely crystalline, gray 
dolomite that locally weathers to mottled gray, pink gray, and light brown, with 
intervals of Girvanella (algae); present on east flank, and south and north ends of 
Camels Back Ridge; 900 feet (275 m) thick.

Lower Ordovician and Upper Cambrian strata, undivided (Lower Ordovician? 
and Upper Cambrian?) –Gray-, brown-, and pink-weathering, thin- to very thick 
bedded dolomite and limestone; further subdivision precluded due to lack of 
access and exposure, but may correspond to parts of Pogonip Group, Notch Peak 
Formation, Orr Formation, and Lamb Dolomite; mapped on Simpson Buttes; 
exposed thickness about 2300 feet (700 m).

Trippe Limestone (Middle Cambrian) –Upper part of moderate-gray limestone and 
possible shale, intra-formational conglomerate, and light tan-weathering dolomite 
that is laminated to medium bedded; lower part of light- to moderate-gray and 
locally mottled, laminated to very thick bedded limestone; present on northeast 
side of Camels Back Ridge as a generally less resistant and ledgy interval between 
Lamb and Pierson Cove; gradational contact with Pierson Cove below; 700 feet 
(215 m) thick.

Pierson Cove Formation (Middle Cambrian) – Ledge- to cliff-forming, thin- to 
very thick bedded, moderate-gray limestone with some light-gray dolomite 
interbeds; locally dolomitized; present on northeast side of Camels Back Ridge; 
exposed thickness about 800 feet (245 m).

MISSISSIPPIAN STRATA OF LITTLE DAVIS MOUNTAIN

Wig Mountain thrust fault

Manning Canyon Shale (Lower Pennsylvanian to Upper Mississippian) – Gray to 
black, fissile, slope-forming shale with lesser light-brown and multicolored 
quartzite and uncommon brownish-gray, carbonaceous limestone; exposed north 
and south of Little Davis Mountain; interval of regional decollement; probably 
only lower part exposed, exposed thickness to 200 feet (60 m).

Ochre Mountain Limestone (Upper Mississippian) – Medium- to dark-gray, thin- 
to thick-bedded limestone and fossiliferous limestone, black chert locally 
common as nodules and beds; southwestern exposures silicified; base and 
possibly the top are not exposed; exposed thickness is 1200 feet (370 m).

PERMIAN TO MISSISSIPPIAN STRATA OF SOUTHERN CEDAR MOUN-
TAINS AND WILDCAT MOUNTAIN

New fossil age data is included in table 5.  Refer to figure 5 for a comparison of 
Oquirrh strata between this map and Maurer (1970).  Oquirrh strata have been 
substantially remapped to conform to the stratigraphy of the Oquirrh Mountains.  
However, considering regional relations, and similar to Laes and others (1997) 
and Hintze (1988), we combine Lower Permian (Wolfcampian) and Pennsylva-
nian formations under the Oquirrh Group; this nomenclature differs from existing 
formal terminology established in the Oquirrh Mountains (Welsh and James, 
1961; Tooker and Roberts, 1970), which restricts the Oquirrh Group to strata of 
Pennsylvanian age.

Pequop Formation (Lower Permian [Leonardian]) – Moderate-gray cherty 
limestone that weathers to light gray, interbedded with light-brown to pale-red 
sandstone that weathers to dark brown, and some calcareous sandstone in lower 
part; bedding is thin to thick to indistinct, forming ledgy and cliffy outcrops; 
sandstone is slightly calcareous with fine to medium sand and tabular cross-
bedding; limestone is finely crystalline and locally bioclastic, with black chert in 
nodules and thin beds; contains Parafusulina (fusulinid); Maurer (1970) mapped 
as Permian unnamed formation; top not exposed, and exposed thickness is 2000 
feet (600 m); Maurer (1970) reported measurement of 3953 feet (1205 m) north of 
map area where this unit underlies Grandeur Member of Park City Formation.

Oquirrh Group strata, undivided (Lower Permian to Lower Pennsylvanian) – One 
area on south margin of Cedar Mountains where about 30 feet (10 m) thick; total 
thickness of Oquirrh Group strata roughly 12,350 feet (3770 m) (figure 5).

Oquirrh Group, Freeman Peak-Curry Peak and Bingham Mine Formations, 
undivided (Lower Permian [Wolfcampian] and Upper Pennsylvanian [Virgilian]) 
– One area of combined unit along Cedar thrust and north of Rydalch Canyon; 
only upper Bingham Mine strata present there.

Oquirrh Group, Freeman Peak and Curry Peak Formations, undivided (Lower 
Permian [Wolfcampian]) – Medium- to dark-gray, weathering to yellowish-gray, 
calcareous, fine-grained sandstone and siltstone with uncommon very pale 
orange, medium-gray and pale-red orthoquartzite and sandy limestone; laminated 
to thick-bedded unit breaks into chips and plates forming rounded hills and slopes 
with occasional ledges; “worm trail” markings common on bedding planes in 
lower part of unit; also contains Schwagerina and Triticites cf. T. meeki 
(fusulinids); corresponds to most of Maurer’s Unit 4 and Unit 5; 3500 feet (1070 
m) thick.

Unconformity?

Oquirrh Group, Bingham Mine Formation (Upper Pennsylvanian [Virgilian-
Missourian]) – Very pale orange to pale-red calcareous sandstone with lesser 
medium-gray sandy limestone; thin- to medium-bedded, forming ledges and 
slopes; fossils include brachiopods, bryozoans, and fusulinids (Triticites and 
Pseudofusulinella); corresponds to upper part of Maurer’s Unit 3 and lower part 
of Unit 4; upper contact mapped at uppermost substantial limestone bed; 2800 
feet (850 m) thick.

Oquirrh Group, Butterfield Peaks Formation and West Canyon Limestone, 
undivided (Middle to Lower Pennsylvanian [Desmoinesian-Morrowan]) – 
Combined unit mapped in small exposures of southern Cedar Mountains, on 
Wildcat Mountain in one small area above the Bonneville shoreline, and as 
stacked unit Qlg/IPobw on most of Wildcat Mountain where only reconnaissance 
conducted due to access restrictions.

Oquirrh Group, Butterfield Peaks Formation (Middle to Lower Pennsylvanian 
[Desmoinesian-Morrowan]) – Medium- to dark-gray, sandy limestone, cherty 
limestone, and fossiliferous limestone interbedded with light-brown calcareous 
sandstone and quartzite; thin- to very thick bedded, forming ledges, cliffs, and 
slopes of a cyclic character; lower part forms ledgy escarpment; limestone is 
finely crystalline to bioclastic; gray, yellow-brown, and black chert occurs as 
spherical nodules and semi-bedded masses; contains sandy laminae and 
horizontally-flattened concretionary structures; fossils include Chaetetes and 
Syringopora (colonial corals), rugose corals, fusulinids (Fusulina, Beedeina), 
brachiopods, and bryozoans; corresponds to Maurer’s Unit 2 and most of Unit 3; 
5400 feet (1650) thick.

Oquirrh Group, West Canyon Limestone and Manning Canyon Shale, 
undivided (Lower Pennsylvanian [Morrowan] to Upper Mississippian) – 
Combined unit in small exposures of southern Cedar Mountains.

Oquirrh Group, West Canyon Limestone (Lower Pennsylvanian [Morrowan]) – 
Medium- to dark-blue-gray and brown-gray limestone and fossiliferous limestone 
with sparse chert; weathers to gray and yellow-brown; thin- to medium-bedded, 
forming ledges and slopes; corresponds to Maurer’s Unit 1; 500 to 800 feet (150-
245 m) thick.

Manning Canyon Shale (Lower Pennsylvanian to Upper Mississippian) – Gray to 
black, fissile, slope-forming shale with lesser light-brown and multicolored 
quartzite and uncommon brownish-gray, carbonaceous limestone; typically forms 
dark shaley slopes littered with quartzite fragments; interval of regional decolle-
ment; probably 1500 to 2000 feet (450-600 m) thick (Maurer, 1970).

faults

Great Blue Limestone (Upper Mississippian) – Medium- to dark-gray, medium- 
and thick-bedded, finely crystalline or bioclastic limestone that forms rugged 
ledges; gray and black chert locally common in upper part; no obvious shaley 
intervals; fossils include colonial and horn corals, crinoids, and bryozoan 
fragments; top not exposed; 2440+ feet (745+ m) thick (Maurer, 1970).

Humbug Formation (Upper Mississippian) – Yellow-brown and gray sandstone 
and quartzite, and medium- to dark-gray limestone mostly in middle part; forms 
slopes and ledges; sandstone weathers to brown and maroon, is fine to medium 
grained, thin to medium bedded; limestone is thin to medium bedded with numer-
ous thin horizontal black chert stringers, and locally common corals and brachio-
pods; base not exposed; 1014+ feet (310+ m) thick (Maurer, 1970).

Note on Granite Peak:
Granite Peak (elevation 7082 feet [2159 m]) is the highest point of an unnamed 

mountain of largely granitic rock on Dugway Proving Ground.  The name Granite 
Peak is used on the USGS 7.5' topographic maps of this area.  This mountain has 
informally been called by different names, including the Granite Range (Butler 
and others, 1920), Granite Mountain (Hanley and others, 1950; Stokes, 1963; 
Moore and Sorenson, 1979), Granite Peak Mountain (Fowkes, 1964; Moore and 
McKee, 1983), and Granite Peak (Ives, 1946, 1949; Bullock, 1976).  Although 
DPG personnel typically (informally) refer to this feature as Granite Mountain 
(Rachel Quist, U.S. Army DPG, verbal communication, August 2005), some 
confusion remains since Granite Mountain is the formal name applied to three 
different mountains in Utah located in Juab, Iron, and Washington Counties (see 
U.S. Geological Survey Geographic Names Information Systems website).  The 
inappropriately named Granite Mountain in Juab County is located about 43 miles 
(69 km) to the southwest of Granite Peak in the northern Confusion Range and 
consists largely of carbonate rock!  Considering all of the above, we continue to 
apply the existing name Granite Peak to this mountain of granitic rock.
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Table 1.  Ages and elevations of major shorelines of Lake Bonneville in Dugway Proving Ground and adjacent areas. 

Age Lake Cycle and Phase Shoreline 
(map symbol) radiocarbon years B.P. calendar years B.P.1 

Elevation 
feet (meters) 

Lake Bonneville 
Stansbury (S) 22,000-20,0002 24,400-23,200 4450-4480 (1357-1366) Transgressive Phase 
Bonneville (B) 15,500-14,5003 18,000-16,800 5220-5262 (1591-1604) 
Provo (P) 14,500-12,0004 16,800-13,5005 4860-4880 (1482-1488) Regressive Phase 
Gilbert 11,000-10,0006 12,800-11,600 Not exposed 

1Calendar-calibrated ages of most shorelines have not been published.  Calendar-calibrated ages shown here, except for the age of the end of the Provo shoreline, 
are from D.R. Currey, University of Utah (written communication to Utah Geological Survey, 1996; cal yr B.P. = 1.16 14C yr B.P.). 

2Oviatt and others (1990); Currey (written communication to Utah Geological Survey, 1996, assumed a maximum age for the Stansbury shoreline of 21,000 14C yr 
B.P., which is used in the conversion to calendar years). 

3Oviatt and others (1992), Oviatt (1997). 
4Godsey and others (2005) revised the timing of the occupation of the Provo shoreline and subsequent regression; Oviatt and others (1992) and Oviatt (1997) 

proposed a range from 14,500 to 14,000 14C yr B.P.  Oviatt and Thompson (2002) summarized many recent changes in the interpretation of the Lake Bonneville 
radiocarbon chronology. 

5Calendar-calibrated age of the end of the Provo shoreline estimated by interpolation from data in Godsey and others (2005), table 1, who used Stuiver and 
Reimer (1993) for calibration. 

6Murchison (1989), figure 20. 
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Table 2.  Summary of U-Pb zircon age analyses from Granite Peak.

Map 
Number

Sample 
Number Map Unit Rock Name 7.5' Quadrangle Latitude (N) Longitude (W)

Weighted Average 
238U/206Pb Age Mean (Ma)

Jgd1 GP102605-3 Jgd Granodiorite Granite Peak 40o05'16.2" 113o16'45.9" 149.8+1.3
Jg1 GP081605-9 Jg Granite porphyry Granite Peak 40o07'40" 113o18'23" 148.8+1.3

Notes:
Location data in NAD27.
Analyses performed by Eric H. Christiansen (Brigham Young University) and Jeffrey D. Vervoort (Washington State University).
Analyses by laser ablation-inductively coupled mass spectrometry.
See Christiansen and Vervoort (in preparation) for complete presentation of data.

Map 
Number

Sample 
Number Map Unit Rock Name 7.5' Quadrangle Latitude (N) Longitude (W) Age + 2sd (Ma) Material Dated Comments

Trd1 GP081605-6c Trd Rhyolite Granite Peak 40o07'44" 113o17'04" 7.78 + 0.05 sanidine single-crystal laser fusion
Trs1 SM071405-11 Trs Rhyolite Granite Peak SE 40o03'55.4" 113o16'18.5" 8.20 + 0.05 sanidine single-crystal laser fusion
Jgd1 GP102605-3 Jgd Monzonite Granite Peak SE 40o05'16.2" 113o16'45.9" 15.97 + 0.04 biotite step heating, plateau age
Jgd1 GP102605-3 Jgd Monzonite Granite Peak SE 40o05'16.2" 113o16'45.9" 27.13 + 0.05 K-feldspar integrated age
Jg2 GP102605-1 Jg Granite Granite Peak 40o09'58.2" 113o15'56.2" 13.69 + 0.12 muscovite step heating, plateau age
Jg2 GP102605-1 Jg Granite Granite Peak 40o09'58.2" 113o15'56.2" 19.14 + 0.08 K-feldspar integrated age
Tdi1 FM083105-1 Tdi Dacite Camels Back Ridge NE 40o12'08" 112o50'16" 40.95 + 0.32 hornblende step-heating, plateau age
Tdi1 FM083105-1 Tdi Dacite Camels Back Ridge NE 40o12'08" 112o50'16" 39.56 + 0.10 biotite integrated age
Tdi2 D-4 Tdi Dacite Tabbys Peak SW 40o19'17.9" 112o54'01.1" 38.69 + 0.10 sanidine laser total fusion
Tac1 D-7 Tac Andesite Wig Mountain 40o21'37.8" 113o00'04.0" 41.73 + 0.24 hornblende furnace step-heat
Tac3 D-17 Tac Andesite Tabbys Peak SW 40o18'39.6" 112o56'36.3" 38.17+ 0.47 groundmass concentrate furnace step-heat
Tac5 D-42 Tac Andesite Wig Mountain NE 40o26'55.3" 113o01'57.8" 40.66 + 0.45 groundmass concentrate furnace step-heat
Taci1 D-6 Taci Andesite Wig Mountain 40o20'03.3" 113o01'42.2" 39.55 + 0.22 groundmass concentrate furnace step-heat
Taci2 D-40 Taci Andesite Tabbys Peak 40o27'47.7" 112o59'13.8" 40.61 + 0.78 groundmass concentrate furnace step-heat

Notes:
Location data in NAD27.
All analyses performed at the New Mexico Geochronology Research Laboratory, Socorro, New Mexico.
Results for Jgd1 and Jg2 are considered cooling ages rather than intrusion ages.

See UGS & NMGRL (2007), UGS & NMGRL (2008), UGS & NMGRL (in preparation) for complete presentation of data.

NMGRL reported unreliable age data for samples D-2, D-15, D-25, D-47, as samples were too felsic for good groundmass concentrate analysis and/or were unable to separate any other datable mineral 
phases.

Table 3.  Summary of 40Ar/39Ar age analyses from Dugway Proving Ground and adjacent areas.

Table 4.  Fossil identifications and ages from Dugway Proving Ground and adjacent areas.

Sample 
No. Map Unit Rock Type 7.5' Quadrangle Latitude (N) Longitude (W) Fossil Type Fauna

Preservation & 
Abrasion

D-77 Pp biomicrite wackestone Wig Mountain NE 40o24'05.2" 113o02'06.2" fusulinid Parafusulina Poor
D-74 Pp biomicrite wackestone Wig Mountain NE 40o29'06.5" 113o07'07.3" fusulinid Parafusulina, Schwagerina Poor
D-60 Pofc silicified shale Wig Mountain NE 40o23'25.8" 113o01'16.8" fusulinid Schwagerina longisimoidea Poor
D-69 Pofc biomicrite wackestone Tabbys Peak 40o27'48.0" 112o59'49.6" fusulinid Triticites cf. T. meeki Good
D-75 Pofc biomicrite mudstone Tabbys Peak 40o28'10.9" 112o58'46.9" fusulinid Triticites cf. T. meeki Fair
D-76 Pl obm biomicrite wackestone Tabbys Peak 40o29'53.8" 112o56'41.1" fusulinid Triticites Fair
D-68 Pl obm biomicrite wackestone Tabbys Peak 40o23'37.1" 112o59'45.3" fusulinid Triticites Fair
D-52 Pl obm biomicrite wackestone Tabbys Peak SW 40o21'18.4" 112o59'14.5" fusulinid Pseudofusulinella, Triticites Fair
D-57 Pl obm biosparite packstone Tabbys Peak SW 40o19'31.0" 112o58'13.0" fusulinid Triticites cullomensis Good
D-71 Pl obm biomicrite mudstone Tabbys Peak 40o23'05.6" 112o59'05.3" fusulinid Triticites Good
D-78 Pl obm biomicrite wackestone Tabbys Peak SW 40o20'04.3" 112o58'34.9" fusulinid Triticites Fair
D-70 Pl obp biomicrite wackestone Tabbys Peak 40o23'08.4" 112o58'34.7" fusulinid Beedeina Fair
D-50 Pl owc crinoidal packstone Tabbys Peak 40o22'38.9" 112o57'57.4" conodont Adetognathus lautus -

Note: Location data based on NAD27.
Fusulinids identified by A.J. Wells (independent).
Conodonts identified by S.R. Ritter (Brigham Young University).

Calcareous Algae 
Present Age

None lower Leonardian
None Leonardian
None middle Wolfcampian
None lower Wolfcampian
None lower Wolfcampian
None Virgilian
None Virgilian
None lower Virgilian
None lower Virgilian
None Missourian
None Missourian

Fragments lower Desmoinesian
- latest Mississippian to early Permian



Figure 1.  Location map showing primary geographic features associated with Dugway Proving Ground and adjacent areas.
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Figure 2.  Total alkali-silica classification plot (after LeBas and others, 1986) for Tertiary dikes and volcanic
rocks of the Granite Peak and Sapphire Mountain area.
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Figure 3.  Total alkali-silica plot (after Middlemost, 1994) with field names for plutonic rocks of Granite Peak.
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Figure 4.  Total alkali-silica plot (after LeBas and others, 1986) for extrusive and intrusive rocks from southern
Cedar Mountains and northern Dugway Range.
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Figure 5.  Comparison of Oquirrh strata of the southern Cedar Mountains.  Maurer (1970) provided thicknesses for his
units measured in the Cochran Spring section and overall estimates.  Our work indicated the Cochran Spring section is
incomplete and provide revised thickness estimates.  The stratigraphy used in this map for the Lower Permian (Wolfcampian)
and Pennsylvanian formations is based on that of the Oquirrh Mountains/Bingham mining district.
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Contact

Normal fault, concealed – Inferred principally from 
gravity data; bar and ball on down-thrown side

Steeply dipping fault – Dashed where inferred, 
dotted where concealed; bar and ball and/or 
arrows indicate relative displacement if known

Thrust fault – Dashed where inferred, dotted where 
concealed; teeth on upper plate

Low-angle normal fault – Dotted where concealed

Lineament – From air photo interpretation

Igneous dike

Igneous dike

Axial trace of anticline – Dashed where 
approximately located, dotted where concealed; 
arrow shows plunge

Axial trace of syncline – Dashed where 
approximately located, dotted where concealed; 
arrow shows plunge

Major shorelines of the Bonneville lake cycle – 

Bonneville shoreline

Provo shoreline

Regressional shoreline (shoreline scarps on  Old 
River Bed delta and low beach ridges on 
lacustrine fine-grained deposits)

Stansbury shoreline

Channel systems of the Old River Bed delta –

Exposed (eroded) – Center line, map unit Qas

Buried (uneroded) – Center line, map unit Qas

Gravel – Channel extent, map unit Qag

Delta ridge crest associated with Old River Bed

Strike and dip of bedding (refer to index map for 
prior mapping sources) – 

Inclined from current mapping

Inclined from prior mapping

Inclined approximate from current mapping

Strike and dip of mineral foliation

Strike of steeply dipping joint from air photo 
interpretation

Sand and gravel pit

Adit

Rock sample location and number for age and 
geochemical analyses (see tables 2 and 3; Clark, 
2008)

Rock sample location and number for geochemical 
analysis (see Clark, 2008)

Fossil sample location and number for age 
evaluation (see table 4)

Indicates thin cover of the first unit overlying the 
second unit
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