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GEOLOGIC UNIT DESCRIPTIONS 

 

QUATERNARY 

 

Alluvial deposits 
Qal Alluvial deposits (Holocene) – Primarily clay, silt, and sand with some gravel 

lenses deposited by streams in channels and broad drainages; locally includes 
alluvial-fan, colluvial, low-level terrace, and eolian deposits; thickness generally 
less than about 20 feet (6 m). 

 
Qai Alluvial silt deposits (Holocene) – Silt, clay, some sand, and minor gravel 

deposited by streams and sheet wash within former lagoonal areas related to Lake 
Bonneville shorelines; bottom of lagoonal basins may include some unexposed, 
thin, fine-grained lacustrine deposits; thickness less than about 20 feet (6 m). 

 
Qat Alluvial-terrace deposits (Holocene to upper Pleistocene) – Sand, silt, clay, and 

gravel in terraces above floodplains; surfaces typically 10 feet (3 m) or more 
above adjacent drainages; thickness is 40 feet (12 m) or less. 

 
Qafy Younger alluvial-fan deposits, post-Bonneville (Holocene) – Poorly sorted 

gravel with sand, silt, and clay; deposited by streams, debris flows, and flash 
floods on alluvial fans and in mountain valleys; includes alluvium and colluvium 
in canyon and mountain valleys; may include small areas of eolian deposits and 
lacustrine fine-grained deposits below the Bonneville shoreline; includes active 
and inactive fans younger than Lake Bonneville, but may also include some older 
deposits above the Bonneville shoreline; locally, Qafy spreads out along the 
wave-cut terraces and abuts Lake Bonneville shorelines, and Qafy also drapes 
over but does not completely conceal shorelines; thickness variable, to 100 feet 
(30 m) or more. 

 
Qafb Alluvial-fan deposits, graded to Lake Bonneville (upper Pleistocene) – Poorly 

sorted gravel with sand, silt, and clay in alluvial fans that are graded to the 
Bonneville-level shoreline (transgressive) and lower (regressive) shorelines; may 
include small areas of eolian and colluvial deposits; incised by younger alluvial 
deposits; thickness variable, to 100 feet (30 m) or more. 

 
Qafo Older alluvial-fan deposits, pre-Bonneville (upper to middle? Pleistocene) – 

Poorly sorted gravel with sand, silt, and clay; forms higher level deposits that 
predate Lake Bonneville and that are incised by younger alluvial deposits; may 
locally include small areas of lacustrine or eolian deposits; Geomatrix (2001) 
reported on subsurface Quaternary deposits in Skull Valley that are of pre-
Bonneville age (~28 to >160 ka); thickness variable, to 100 feet (30 m) or more. 
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Spring deposits 
Qsm Spring and marsh deposits (Holocene) – Clay, silt, and sand that is variably 

organic-rich, calcareous, or saline; present in ephemeral or perennial saturated 
(marshy) areas near springs and seeps near the center of valleys; thickness 0 to 30 
feet (0-10 m). 

 
Eolian deposits 
Qe Eolian deposits (Holocene) – Windblown sand and silt in sheet and dune forms; 

mapped in Skull Valley and Cedar Valley; 0 to 20 feet (0-6 m) thick. 
 
Qes Eolian sheet sand deposits (Holocene) – Windblown sand and silt deposited as 

sheets rather than well-developed dunes; generally thin with no distinct bedding; 
mostly silty, well-sorted, fine-grained quartz sand; less than 15 feet (5 m) thick. 

 
Qed Eolian dune sand deposits (Holocene) – Well sorted sand in dunes and dune 

fields; mostly fine-grained quartz sand but also aggregates of clay, silt, and sand; 
present as parabolic, linear, dome, lunette, and shrub-coppice dunes (see Dean, 
1978); larger dune fields may include a thin fringe of unmapped sheet sand; 
thickness to 50 feet (15 m). 

 
Qei Eolian silt (Holocene) – Windblown silt and some fine sand; forms small dunes 

and sheet deposits; mapped in three areas near the Bonneville shoreline on the 
southeast side of Rush Valley; less than 20 feet (6 m) thick. 

 
Lacustrine deposits (post Bonneville lake cycle) 
 
Qpm Playa mud (Holocene) – Clay, silt, and small amounts of sand with local 

accumulations of gypsum, halite, and other salts; present within the playa lake bed 
of Rush Lake and one other area in Rush Valley; thickness is 10 feet (3 m) or less. 

 
Qlfy Younger lacustrine fine-grained deposits (Holocene) – Clay, silt, and small 

amounts of sand adjacent to Rush Lake playa; deposited by fluctuations of 
Holocene Rush Lake; thickness probably 15 feet (5 m) or less. 

 
Qlsy Younger lacustrine sand deposits (Holocene) – Sand with minor gravel adjacent 

to Rush Lake playa; deposited by fluctuations of Holocene Rush Lake; thickness 
probably 15 feet (5 m) or less. 

 
Lacustrine and deltaic deposits (Bonneville lake cycle) 
Table 1 presents ages and elevations of Lake Bonneville shorelines in the map area.  
Shoreline elevation ranges were determined from 1:24,000 scale topographic maps.  
These elevations generally increase from southeast to northwest across the map area due 
to isostatic rebound.  Crittenden (1963) and Currey (1982) provided regional data on 
shoreline elevations and rebound.  Several prominent erosional and depositional 
landforms related to Lake Bonneville exist in the map area, described below. 
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A small part of the Old River Bed crosses the southwest corner of the map area.  The Old 
River Bed is an abandoned river valley present on the south part of Dugway Proving 
Ground extending southward to the Sevier River southwest of Delta.  This feature formed 
during the most recent episode of overflow from the Sevier basin (Lake Gunnison) 
northward to the Great Salt Lake basin (Lake Bonneville) (Oviatt, 1987; Oviatt and 
others, 1994).  Where the river entered Lake Bonneville, a delta formed with numerous 
distributary channels (mapped by Clark and others, 2008); radiocarbon dating of the 
channels ranges from 8800 to 12,500 14C years B.P. (about 10,000 to 13,000 calendar 
years B.P.) (Oviatt and others, 2003). 
 
In the north-central part of the quadrangle, the Stockton Bar developed as a transverse 
barrier bar and spit complex between Tooele and Rush Valleys (Gilbert, 1890; Burr and 
Currey, 1988, 1992).  Rush Valley contains the Bonneville-level shoreline and two sets of 
regressive-phase shorelines.  These shorelines were initially described by Burr and 
Currey (1988, 1992) in conjunction with the Stockton Bar; co-author Oviatt also 
evaluated these shorelines in the field.  The construction of the Stockton Bar (during the 
Bonneville transgression) caused the lake in Rush Valley to be isolated from the main 
body of Lake Bonneville; during the regression from the Bonneville highstand, the lake 
level in Rush Valley varied independently of the level in the rest of the Bonneville basin.  
The regressive shorelines present in Rush Valley (previously attributed to Lake Shambip, 
about 5050 feet [1540 m] in elevation, and Lake Smelter, about 5010 feet [1527 m] in 
elevation) do not coincide in elevation with the Provo or Gilbert levels of Lake 
Bonneville. 
 
Qdg Deltaic gravel (upper Pleistocene) – Sand and gravel deposited near the mouth of 

the Sevier River in the Old River Bed area during the Bonneville lake cycle; well-
sorted pebbly sand containing volcanic and sedimentary pebbles; cross-bedded 
and very thick bedded; regressive deposits were locally reworked by waves into a 
thin sheet with delta ridge crests; thickness to 50 feet (15 m). 

 
Qlg Lacustrine gravel (upper Pleistocene) – Sandy gravel to boulders composed of 

locally derived rock fragments deposited in shore zones of Lake Bonneville; 
locally tufa-cemented (especially the Provo shoreline) and draped on bedrock; 
thickness variable, to 100 feet (30 m) or more. 

 
Qls Lacustrine sand (upper Pleistocene) – Sand and silt deposited by transgressive 

and regressive phases of Lake Bonneville; thickness to 100 feet (30 m) or more. 
 
Qlf Lacustrine fine-grained deposits (upper Pleistocene) – Sand, silt, marl, and 

calcareous clay of Lake Bonneville; thinly to very thick bedded; locally includes 
the white marl of Gilbert (1890); thickness to 100 feet (30 m) or more. 

 
Glacial deposits 
Qg Glacial deposits, undifferentiated (upper to middle? Pleistocene) – Till present 

in terminal, lateral, valley-head, and end moraines, and outwash composed of 
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fine- to coarse-grained detritus derived from glaciated bedrock; present in several 
cirques and valleys near Deseret Peak in the Stansbury Mountains and Flat Top 
Mountain of the Oquirrh Mountains (also see Rigby, 1958; Valora, 1968; 
Sorensen, 1982; Mulvey, 1985; Osborn and Bevis, 2001; Laabs and others, in 
press); locally includes unmapped landslides and rotational slumps, particularly in 
cirque basins, as well as alluvial and colluvial deposits; Osborn and Bevis (2001) 
reported these deposits are primarily of Angel Lake age (Great Basin equivalent 
to Pinedale of Middle Rocky Mountains) and that some are also older; the 
Pinedale extended from about 12,000 to 24,000 years ago, while the older Bull 
Lake extended from about 128,000 to 186,000 years ago (Imbrie and others, 
1984); up to 300 feet (90 m) thick. 

 
Colluvial deposits 
Qc Colluvial deposits (Holocene to upper Pleistocene) – Fine- to coarse-grained 

detritus derived from local bedrock; commonly includes talus in upper parts of 
deposits; may locally include lacustrine, alluvial, or eolian deposits; to 20 feet (6 
m) or more thick. 

 
Mass-movement deposits 
Qmtc Talus and colluvial deposits (Holocene to upper Pleistocene) – Mixed talus and 

colluvium locally present on Tabbys Peak of Cedar Mountains, Camels Back 
Ridge, and the Stansbury and Oquirrh Mountains; thickness to 15 feet (5 m) or 
more. 

 
Qms Landslide deposits (Holocene to middle? Pleistocene) – Poorly sorted clay- to 

boulder-size material; generally characterized by hummocky topography, main 
and internal scarps, and chaotic bedding in displaced bedrock; undivided as to 
inferred age because new research shows that even landslides with subdued 
morphology (suggesting they are older and have not moved recently) may 
continue to creep or are capable of renewed movement (Ashland, 2003); age and 
stability determinations require detailed geotechnical investigations; thickness 
highly variable. 

 
Mixed-environment deposits 
Qla Lacustrine and alluvial deposits (Holocene to upper Pleistocene) – Mixed and 

reworked, gravelly lacustrine and alluvial deposits on piedmont slopes; includes 
pre-Bonneville alluvial fans etched by waves in Lake Bonneville, and thin 
alluvial-fan deposits overlying fine- to coarse-grained lake sediments; grades 
from pebbly sand and silt to sandy pebble gravel; locally includes areas of thicker 
alluvial-fan deposits at surface in western Skull Valley; thickness locally exceeds 
30 feet (10 m). 

 
Qac Alluvial and colluvial deposits (Holocene to upper Pleistocene) – Primarily 

gravel, with sand, silt, and clay; forms aprons of small alluvial-fan and colluvial 
surfaces that spill out onto and grade into alluvial-fan deposits; also present within 
upland valleys; thickness generally less than 20 feet (6 m). 
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Qea Eolian and alluvial deposits (Holocene) – Included below solely as stacked unit 

Qea\Qlf. 
 
Human-derived deposits 
Qh Human disturbance (Historical) – Deposits and disturbed areas from human 

development; includes several disturbed areas on Dugway Proving Ground and 
Tooele Army Depot (South Area); also used for landfills on Skull Valley Indian 
Reservation and in Cedar Valley, several pits and quarries, tailings area north of 
Stockton Bar, and large mine areas (Mercur, Ophir, Bingham); thickness 
generally less than about 20 feet (6 m), but mine-dump deposits may exceed 200 
feet (60 m) thick. 

 
Stacked-unit deposits 
 
Qei/Qal 
 Eolian silt over alluvial deposits (Holocene over Holocene) – Windblown silt 

overlying alluvial deposits of clay, silt, sand, and some gravel in one area west of 
Ditto (formerly Dog) area at Dugway Proving Ground; cover unit thickness 
typically less than 10 feet (3 m). 

 
Qei/Qlf 
 Eolian silt over lacustrine fine-grained deposits (Holocene over upper 

Pleistocene) – Windblown silt overlying lacustrine silt, clay, marl, and some sand 
over a large area of Government Creek basin and smaller areas of southeastern 
Rush Valley; surface commonly contains distinctive vegetation stripes 
(characteristic landforms of sheetflow plains in arid to semiarid regions) (Oviatt 
and others, 2003); may locally include areas of thicker eolian deposits; cover unit 
thickness typically less than 3 feet (1 m). 

 
Qea/Qlf 
 Eolian and alluvial deposits over lacustrine fine-grained deposits (Holocene 

over upper Pleistocene) – Windblown silt deposited in sheets adjacent to and 
locally covering alluvial sand and gravel in unmapped channels overlying 
lacustrine marl and fine-grained deposits; locally saline or gypsiferous; forms one 
exposure in Government Creek basin that is part of extensive mudflats of southern 
Great Salt Lake Desert; may locally include small areas of thicker eolian deposits; 
cover unit thickness typically less than 15 feet (5 m) thick. 

 
Qe/Qlf 

Eolian deposits over lacustrine fine-grained deposits (Holocene over upper 
Pleistocene) – Windblown sand and silt deposited in sheets and dunes overlying 
lacustrine silt, clay, marl, and some sand; present in Skull and Cedar Valleys; 
cover unit thickness typically less than 10 feet (3 m) thick. 

 
Qes/Qlf 
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 Eolian sheet sand deposits over lacustrine fine-grained deposits (Holocene 
over upper Pleistocene) – Windblown sand and some silt deposited in sheets; 
overlies lacustrine silt, clay, marl, and some sand northeast of Little Granite 
Mountain; locally includes areas of thicker eolian deposits; cover unit thickness 
typically less than 6 feet (2 m). 

 
Qed/Qlf 

Eolian dune sand deposits over lacustrine fine-grained deposits (Holocene 
over upper Pleistocene) – Windblown dune sand and some silt overlying 
lacustrine sand, silt, marl, and clay; cover unit thickness typically less than 20 feet 
(6 m). 

 
Qes/Qla 

Eolian sheet sand deposits over lacustrine and alluvial deposits (Holocene 
over Holocene to upper Pleistocene) – Windblown sheet sand and silt overlying 
gravelly to fine-grained lacustrine and alluvial deposits; present at and northwest 
of Dugway and upland valley of White Rock-Post Hollow area; cover unit 
thickness typically less than 10 feet (3 m). 

 
Qes/Qafy 

Eolian sheet sand deposits over younger alluvial-fan deposits (Holocene over 
Holocene to upper Pleistocene) – Windblown sheet sand and silt covering 
younger alluvial fans west of Johnson Pass; cover unit thickness typically less 
than 10 feet (3 m). 

 
Qes/Qafo 

Eolian sheet sand deposits over older alluvial-fan deposits (Holocene over 
upper to middle? Pleistocene) – Windblown sheet sand and silt overlying older 
alluvial fans near Barlow Creek of the southwestern Stansbury Mountains; cover 
unit thickness typically less than 10 feet (3 m). 

 
Qed/Qla 

Eolian dune sand deposits over lacustrine and alluvial deposits (Holocene 
over Holocene to upper Pleistocene) – Windblown sand and some silt that forms 
well-developed dunes overlying gravelly to fine-grained lacustrine and alluvial 
deposits; locally well exposed in large gravel pit on southern margin of Cedar 
Mountains and north of the Dugway Proving Grounds airfield; cover unit 
thickness typically less than 20 feet (6 m). 

 
Qlf/Qls 
 Lacustrine fine-grained deposits over lacustrine sand deposits (upper 

Pleistocene over upper Pleistocene) – Thin marl and reworked marl overlying 
deltaic sediments of mostly sand and some fine gravel deposited near the 
Stansbury shoreline; sandy beach ridges (distributary mouth bars) were formed by 
longshore sediment transport (Currey, 1996, in Geomatrix, 2001), and were 
previously mapped as faults by Sack (1993); exposures located on north side of 
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Hickman Knolls on the Skull Valley Indian Reservation; cover unit thickness to 6 
feet (2 m) or more. 

 
Qed/Tac 
 Eolian dune sand deposits over andesitic and dacitic rocks of southern Cedar 

Mountains (Holocene over middle Eocene) – Windblown dune sand and silt 
overlying bedrock unit; locally includes small bedrock exposures; cover unit 
thickness typically less than 10 feet (3 m). 

 
Qlg/R Lacustrine gravel over undifferentiated bedrock (upper Pleistocene over 

Miocene? to Cambrian?) – Sandy and pebbly gravel overlying various bedrock 
units along western and southern margin of Cedar Mountains, on Camels Back 
Ridge, and in northern East Tintic Mountains; locally includes small bedrock 
exposures; cover unit thickness typically less than 15 feet (5 m). 

 
QUATERNARY-TERTIARY 
 
QTaf High-level alluvial-fan deposits (lower Pleistocene? to Pliocene?) – Poorly 

sorted gravel with sand, silt, and clay; forms high level deposits incised by 
younger alluvial deposits and locally etched by Lake Bonneville; may locally 
include small areas of lacustrine or younger alluvial deposits; thickness variable, 
to 100 feet (30 m) or more. 

 
TERTIARY 
 
Taf Tertiary alluvial-fan deposits (Pliocene? to Oligocene?) – Highest level of fan 

deposits; exposed along west flank of Sheeprock Mountains and near Little 
Valley; lower part contains limestone clasts whereas upper part contains solely 
quartzite clasts, suggesting deposition via extensional unroofing of Sheeprock 
Mountains; lower part of unit is partially lithified; unit overlies the rhyolite of 
Judd Creek, and is lapped onto and incised by younger alluvial deposits; exposed 
thickness is greater than 1200 feet (365 m). 

 
Tsl Salt Lake Formation (Miocene) – Mapped in three areas: (1) Skull Valley 

(surface and subsurface), (2) South Willow Canyon area of the Stansbury 
Mountains, and (3) central Rush Valley.  In Skull Valley, a single outcrop of 
charophytic marl and limestone is mapped along State Road 196 north of 
Dugway, with an exposed thickness of 30 feet (10 m); trenching at the proposed 
Private Fuel Storage site (located on Skull Valley Indian Reservation north of 
Hickman Knolls) exposed predominantly claystone and tuffaceous siltstone with 
interbeds of siliceous vitric ash (tuff) and minor gravelly sandstone (Geomatrix, 
2001); based on geochemical correlation of volcanic ashes, ages reported for this 
unit (table 2) were about 6 Ma (unknown tephra) and 6.31 + 0.04 Ma (Walcott 
tuff) (SWEC, 1997; Geomatrix, 2001; M.E. Perkins, University of Utah, written 
communication, November 18, 2009); maximum subsurface thickness 
encountered in Skull Valley is about 90 feet (27 m), total thickness unknown.  
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Stansbury exposures are interbedded tuffaceous sandstone and conglomerate that 
weather rusty-orange with carbonate, igneous, and quartzite pebbles in a fine 
sandy calcareous matrix (Rigby, 1958; Copfer and Evans, 2005); Perkins and 
others (1998) geochemically correlated a tephra here to the Cougar Point Tuff unit 
XIII ash, which has an 40Ar/39Ar age of 10.94 + 0.03 Ma (table 2); exposed 
thickness to about 1000 feet (300 m), total thickness unknown.  Rush Valley 
outcrops include varied lithologies of tan, pale-gray, and white interbedded 
tuffaceous sandstone, limestone, calcareous sandstone, gritty or pebbly sandstone, 
sandy mudstone, siltstone, marl and claystone; locally the tuffaceous sandstone is 
poorly consolidated waterlain sandy ash in intervals 60 to 100 feet (23-30 m) 
thick; yielded five tephra interpolation and correlation ages from about 6.31 to 9.8 
Ma (table 2) (Perkins and others, 1998); new U-Pb detrital zircon age  from a 
sample in southern Rush Valley yielded an age of 6.49 + 0.38 Ma (Kirby, in 
preparation; table 5); regional ages on the Salt Lake Formation extend from about 
6 to 16.2 Ma (Perkins and Nash, 2002; M.E. Perkins, University of Utah, written 
communication, August 2, 2010); unit is up to 4200 feet (1280 m) thick (Kirby, 
2010a, 2010c). 

 
 
IGNEOUS AND SEDIMENTARY ROCKS OF THE SOUTHERN CEDAR 
MOUNTAINS, DAVIS KNOLLS, NORTHERN SIMPSON MOUNTAINS, 
NORTHERN SHEEPROCK MOUNTAINS, AND SOUTHERN STANSBURY 
MOUNTAINS 
 
Geochemical and age data for Tertiary igneous rocks are presented in tables 3 and 4, 
NMGRL and UGS (2006), Clark (2008), UGS and NMGRL (2009a, 2009b), and UGS 
and NIGL (2012b).  Rock names are generally from the total alkali-silica classification 
diagrams for volcanic rocks (Le Bas and others, 1986) and plutonic rocks (Middlemost, 
1994).  Descriptions and thickness data from Clark and others (2008) and this study. 
 
Trr Rhyolite of Rydalch Canyon area (Eocene?) – Light-gray and very pale orange 

rhyolitic ash-flow tuff exposed south and east of Rydalch Canyon in southern 
Cedar Mountains; about 25% phenocrysts of feldspar, quartz, hornblende, and 
biotite; 40Ar/39Ar age of 39.18 + 0.06 Ma (sanidine); exposed thickness to 650 feet 
(200 m). 

 
Ts Tertiary strata (middle Eocene) – Grayish-orange, very pale orange, and 

moderate-orange-pink lacustrine limestone that is locally oncolitic, moderately 
crystalline, poorly to thin bedded, and underlain by moderate-reddish-orange 
tuffaceous sandstone in one area near Dugway; Little Valley exposure is moderate 
reddish orange micaceous mudstone and minor conglomerate; Davis Knolls area 
exposures include yellowish-brown to pale-red conglomerate and sandstone with 
rounded pebbles, cobbles, and boulders of quartzite and sandstone, locally these 
exposures are silicified to gray and red-brown colors; southern Stansbury 
Mountains exposure includes reddish-orange conglomerate with carbonate clasts 
in South Willow Canyon (queried there since no age control); U-Pb detrital zircon 
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age of 46.77 + 1.28 Ma from Davis Knolls (table 5); 0 to about 200 feet thick (0-
60 m) (Moore and Sorensen, 1977; Copfer and Evans, 2005; Clark and others, 
2008). 

 
Trdc Rhyodacite of Cherry Springs (upper Eocene) – Light-green dacitic ash-flow 

tuff with phenocrysts (~30%) of plagioclase, quartz, and biotite, and also pumice 
lapilli and volcanic rock fragments to 2 inches (5 cm) diameter; exposed near 
Simpson Springs, northwestern Simpson Mountains; outcrops correlated 
geochemically to rhyodacite of Cherry Springs (table 3; Yambrick, 1990); 
Yambrick (1990) reported an 40Ar/39Ar plateau age of 35.05 + 0.15 Ma on K-
feldspar; unit also includes small exposures of probable andesite near Simpson 
Springs; maximum exposed thickness is about 100 feet (30 m). 

 
Trj Rhyolite of Judd Creek (upper Eocene) – Light-gray to light-pink and locally 

light-green rhyolitic ash-flow tuff; phenocrysts (~25%) of plagioclase, quartz, and 
biotite; exposed at Simpson Canyon, northwestern Simpson Mountains; correlated 
geochemically to rhyolite of Judd Creek (table 3; Yambrick, 1990); Yambrick 
(1990) reported 40Ar/39Ar plateau ages of 35.46 + 0.15 and 35.88 + 0.15 Ma on 
biotite; maximum exposed thickness is 210 feet (65 m). 

 
Tlg Latite of Government Creek (upper-middle Eocene?) – Moderate-gray, latitic 

lava flow that is aphanitic with a few percent plagioclase and biotite phenocrysts; 
upper part is locally vesicular in a rubbly matrix; crops out near Government 
Creek between Davis Mountain and Simpson Mountains; does not appear to 
geochemically correlate to rocks of the eastern Simpson Mountains area (table 3; 
Yambrick, 1990); no age data, but may underlie Trj; exposed thickness is 40 feet 
(12 m) or less. 

 
Tdi Dacitic intrusions of White Rock and Little Granite Mountain (middle 

Eocene) – Light-gray weathering to white and yellowish-gray porphyritic dacite; 
phenocrysts (~25%) of plagioclase, quartz, biotite, and amphibole (0.5-2 mm long 
average); groundmass is intergrowth of plagioclase, potassium feldspar, and 
quartz (Maurer, 1970; Moore and Sorensen, 1977); 40Ar/39Ar ages of 38.69 + 0.10 
Ma (sanidine) for White Rock, and 39.56 + 0.10 Ma (biotite) and 40.95 + 0.32 Ma 
(hornblende) for Little Granite Mountain (UGS and NMGRL, 2009a, 2009b); 
exposures to 9500 feet (2900 m) across. 

 
Tac Andesitic and dacitic rocks of southern Cedar Mountains (middle Eocene) – 

Dark- to light-gray and pale-red lava flows interlayered with lahars and less 
common tuffs; lava flows are porphyritic to aphanitic, with phenocrysts of 
feldspar, quartz, and biotite; lahars contain clasts of intermediate volcanic rocks to 
4 feet (1 m) across; variously welded ash-flow tuffs contain phenocrysts of 
feldspar, hornblende, and biotite; calc-alkaline affinities are similar to those of 
other Oligocene-Eocene rocks in the region (Clark, 2008); erupted from local 
vents mapped as Taci; 40Ar/39Ar age of 38.17 + 0.47, and ages (from adjacent map 
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area) of 41.73 + 0.24 Ma (hornblende) and 40.66 + 0.45 (groundmass) (UGS and 
NMGRL, 2009b); exposed thickness to 1200 feet (370 m). 

 
Taci Andesitic intrusions of southern Cedar Mountains (middle Eocene) – Dark-

gray porphyritic to aphanitic andesitic intrusions associated with local vents for 
extrusive calc-alkaline volcanic rocks (Tac); phenocrysts of feldspar, hornblende, 
and lesser biotite; columnar jointing of exposures common; 40Ar/39Ar age of 40.61 
+ 0.78 Ma (groundmass) from Tabbys Peak (UGS and NMGRL, 2009b); 
exposures to 1600 feet (490 m) across. 

 
Tvs Intermediate volcanic rocks of Stansbury Mountains (middle Eocene) – 

Interlayered lahars, debris flows, lava flows, and tuff described by Davis (1959); 
light-gray lahars are thin to very thick bedded with mostly cobble-size clasts, and 
gray to pale-red debris flows are indistinctly bedded with shattered clasts to 
boulder size; lahars and debris flows contain clasts of pale-red and moderate- to 
dark-gray intermediate volcanic rocks; latitic lava flows are moderate-gray 
weathering to light gray brown with small phenocrysts of plagioclase and biotite; 
tuff is pumice rich; exposures in South Willow Canyon area of Stansbury 
Mountains; Moore and McKee (1983) reported K-Ar ages of about 39 to 42 Ma 
north of the map area; exposed thickness to about 1400 feet (430 m). 

 
 
IGNEOUS AND SEDIMENTARY ROCKS OF SOUTHERN OQUIRRH 
MOUNTAINS, SOUTH MOUNTAIN, AND WESTERN TRAVERSE MOUNTAINS 
 
These rocks are present at and near the Bingham, Stockton (Rush Valley), Ophir, and 
Mercur mining districts.  Bingham district rocks were divided into four informal 
compositional suites by Waite (1996) and Waite and others (1997):  (1) younger volcanic 
suite, (2) older volcanic suite, (3) nepheline minette-shoshonite suite (within the older 
volcanic suite), and (4) Bingham intrusive suite.  Biek and others (2005) and Biek 
(2006a) informally referred to the younger suite as the “volcanic and intrusive rocks of 
the west Traverse Mountains,” and combined the latter three suites as the “volcanic and 
intrusive rocks of the Bingham Canyon Suite.”  We also group the igneous rocks into 
younger and older suites, and further separate the suites into extrusive and sedimentary 
rocks, and intrusive rocks.  The terminology for the intrusive rocks of the Bingham 
district (after Lanier and others, 1978) is based on historic usage at Bingham mine (for 
the purpose of separating similar rock units); it is entrenched and does not necessarily 
reflect their geochemical compositions and newer geochemically-based rock 
classifications.  For geochemical and age data, see Waite (1996), Waite and others 
(1997), Pulsifer (2000), Maughan (2001), Biek and others (2005), Biek (2006b); also 
refer to table 4.  Unit thickness data is from Biek and others (2005) and this study. 
 
Younger Volcanic and Intrusive Suite (lower Oligocene to upper Eocene, ~30-37 Ma) 
Younger Extrusive and Sedimentary Rocks 
Tvbs Younger volcanic breccia (lower Oligocene) – Dark-gray to black, angular to 

subangular, pebble- to boulder-size clasts of monolithic, intermediate-
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composition volcanic rocks set in a well-lithified matrix of reddish-brown 
devitrified glass and lithic and crystal fragments; clasts generally make up more 
than 50% of the rock and contain phenocrysts of plagioclase, hornblende, and 
biotite in dark-gray to black glassy matrix; forms broad sloping surface of South 
Mountain and Black Ridge in the west Traverse Mountains; K-Ar age on clast of 
30.7 + 0.9 Ma (Moore, 1973); thickness to 300 feet (90 m). 

 
Tvfs Younger lava flows (lower Oligocene) – Intermediate composition lava flows 

that are strongly flow foliated (typically subvertical) with reddish-brown and 
dark-gray to black layering; underlies and compositionally identical to volcanic 
breccia unit (Tvbs) at South Mountain in west Traverse Mountains; no age data; 
maximum exposed thickness likely exceeds 1000 feet (300 m). 

 
Tvfb Intermediate lava flows of Black Ridge (lower Oligocene) – Dark-gray to 

pinkish-gray porphyritic intermediate-composition lava flows with common 
phenocrysts of plagioclase and rare to common biotite and hornblende; locally 
flow banded; forms boulder-covered slopes; likely derived from volcanic centers 
of west Traverse Mountains including South Mountain, Step Mountain, and 
nearby smaller vents; no radiometric age data, but overlies Tvlb; exposed 
thickness may exceed 600 feet (180 m). 

 
Tvlb Lahars and debris flows of Black Ridge (lower Oligocene) – Pebbles to 

boulders of intermediate-composition volcanic rocks and uncommon quartzite 
pebbles in a matrix of white to light-gray crystal lithic tuff; contains some thin, 
poorly exposed lava flows; forms poorly exposed slopes covered with resistant 
volcanic clasts in Black Ridge area of west Traverse Mountains; 40Ar/39Ar ages 
from near base of unit are 31.68 + 0.24 Ma from adjacent map area (Biek, 2005) 
and 32.12 + 0.14 Ma (Deino and Keith, 1997); maximum thickness likely exceeds 
1000 feet (300 m). 

 
Trf Rhyolitic lava flows of Tickville Gulch (lower Oligocene) – Rhyolite vitrophyre 

flows and lesser blocky flow breccia of green, pink, white, and black colors; flows 
contain phenocrysts of biotite and plagioclase in a glassy groundmass and are 
locally altered and chalky; probably erupted from concealed vent near Tickville 
Wash; K-Ar age of 31.2 + 0.9 Ma (Moore and others, 1968; Moore, 1973); 
thickness may exceed 1500 feet (460 m). 

 
Tvfa Basaltic andesite lava flow (lower Oligocene) – Dark-gray, very fine grained 

basaltic andesite flow with abundant reddish-brown cinders and local volcanic 
bombs; contains small olivine phenocrysts altered to iddingsite; forms deeply 
eroded vent area at Camp Williams; somewhat disturbed 40Ar/39Ar age of 32.86 + 
0.48 Ma (Biek and others, 2005); exposed thickness to 120 feet (35 m). 

 
Younger Intrusive Rocks 
Tdio Dacitic dike (early Oligocene) – Light-gray dacite porphyry with phenocrysts of 

plagioclase, hornblende, and biotite in a fine-grained matrix; present near Oak 
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Springs Hollow of western Traverse Mountains; 40Ar/39Ar age of 32.05 + 0.13 Ma 
(Biek and others, 2005); 75 to 90 feet (23-27 m) thick. 

 
Tri Rhyolitic intrusions (early Oligocene? to late Eocene) – Rhyolitic intrusions of 

Shaggy Peak (Rose-Butterfield Canyon area), Tickville Gulch area, Dry 
Mountain-Ophir area, and Eagle Hill-Mercur area.  Shaggy Peak plug or dome is 
light- to medium-gray porphyritic rhyolite that contains a border phase with 
abundant plagioclase, quartz, and biotite phenocrysts and generally near vertical 
flow foliations, and an interior phase with slightly larger phenocrysts and little or 
no flow foliation (Biek, 2006a); 40Ar/39Ar age of 35.49 + 0.13 Ma (Biek and 
others, 2005) and prior K-Ar age of 33.0 + 1.0 Ma (Moore, 1973).  Tickville 
Gulch intrusion is white, altered and chalky weathering, with phenocrysts of 
quartz common.  Eagle Hill Rhyolite is white, tan, and pink rhyolite and rhyolite 
porphyry; usually aphanitic with ~1% phenocrysts of quartz and rare biotite, 
locally flow banded; occurs as dikes and sills at Mercur (Mako, 1999) and Ophir 
(Laes and others, 1997); K-Ar age of 31.6 + 0.9 Ma (Moore, 1973), and new 
40Ar/39Ar isochron age on biotite of 32.38 + 0.10 Ma (UGS & NIGL, 2012b); U-
Pb age on zircon for a rhyolite dike near Ophir is 36.46 + 1.40 Ma (Kirby, in 
preparation; table 5). 

 
Tai Andesitic intrusion (late Eocene) – Medium-gray andesite porphyry with 

abundant plagioclase phenocrysts and common hornblende and minor biotite in a 
medium-grained matrix; forms resistant plug that includes two dikes with 
subhorizontal, columnar cooling joints at Step Mountain near mouth of Rose 
Canyon (Biek, 2006a); 40Ar/39Ar age of 36.26 + 0.18 Ma (Biek and others, 2005). 

 
Tpqmi Porphyritic quartz monzonite intrusions (late to middle Eocene) – Intrusions at 

the former Lark townsite and Porphyry Hill area.  Lark intrusion is light- to 
medium-gray granodiorite (dacite) porphyry with abundant phenocrysts of 
plagioclase and biotite and lesser hornblende in fine-grained groundmass; 
typically weathers to grussy or clayey soils; present near mouth of Butterfield 
Canyon near former Lark townsite (Swenson, 1975; Biek and others, 2005); prior 
K-Ar ages from Bingham tunnel portal (adjacent to map area) of 36.9 + 0.9 Ma 
(hornblende) and 36.9 + 1.0 Ma (biotite) (Moore and others, 1968).  Porphyry Hill 
area intrusions are medium-gray quartz monzonite porphyry with small 
phenocrysts of K-feldspar, plagioclase, biotite, and quartz in a fine-grained 
groundmass of predominantly K-feldspar; present as small dikes and sills on 
Porphyry Hill and Porphyry Knob north of Mercur (Mako, 1999); K-Ar age of 
36.7 + 0.5 Ma from Porphyry Hill (Moore and McKee, 1983). 

 
Older Volcanic and Intrusive Suite (middle Eocene, ~37-40 Ma) – Data indicate that the 
older suite rocks are largely comagmatic with the Bingham intrusive complex (Waite and 
others, 1997), and contain significantly higher chromium and barium concentrations and 
more magnetic minerals than the younger suite (Pulsifer, 2000). 
 
Older Extrusive and Sedimentary Rocks 
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Ts? Tertiary strata? (middle Eocene?) – White to rusty-brown and reddish orange, 
conglomerate, pebbly conglomerate, pebbly sandstone, and gritstone; clasts 
reflect local sources including quartzite, quartzitic sandstone, limestone, and black 
chert likely from Oquirrh Group and other Paleozoic units; medium- to very thick 
bedded (but commonly crudely so), and poorly to very resistant forming ledges, 
cliffs, and rounded knobs; present in western Traverse Mountains and Fivemile 
Pass; similar to other Ts exposures but queried since no direct age control; 0 to 
about 200 feet thick (0-60 m) (Disbrow, 1957; Biek and others, 2005). 

 
Tvfo Nepheline minette and shoshonite lava flows (middle Eocene) – Dark-gray 

minette with abundant phenocrysts of olivine and minor phlogopite and pyroxene, 
and another minette with minor olivine and more abundant phlogopite and 
pyroxene; also includes red, aa-type, shoshonite and olivine latite lava flows with 
abundant small phenocrysts of olivine, pyroxene, and biotite (Pulsifer, 2000; 
Maughan, 2001; Biek and others, 2005); poorly exposed near the Rose-Butterfield 
Canyon area of Oquirrh Mountains; minette 40Ar/39Ar age of 37.82 + 0.14 Ma 
(Deino and Keith, 1997) and prior K-Ar age of 38.5 + 0.3 Ma (Moore and 
McKee, 1983); exposed thickness to 150 feet (45 m). 

 
Tsu Lacustrine strata (middle Eocene) –Yellowish-brown, brownish–gray, and light-

gray, typically thin-bedded and tuffaceous mudstone, siltstone, oncolitic 
limestone, and volcaniclastic sandstone; locally silicified; present in one area near 
Butterfield Canyon; interlayered with Tvfou and Tvlo; exposed thickness about 
150 feet (45 m) (Biek and others, 2005; Biek, 2006a). 

 
Tvfou Older intermediate lava flows (middle Eocene) – Dark-gray lava flows of 

intermediate composition derived from Bingham intrusive complex; interlayered 
with and difficult to differentiate from the older lahars and debris flows (Tvlo); 
present between Butterfield and Rose Canyons; no age data; exposed thickness 
likely exceeds 1000 feet (300 m). 

 
Tvlo Older lahars and debris flows (middle Eocene) – Pebbles to boulders of 

intermediate-composition volcanic rocks in a matrix of lithic and crystal 
fragments; locally contains mostly mafic clasts or lenses of quartzitic and 
calcareous sandstone clasts derived from adjacent Oquirrh outcrops; contains 
some thin discontinuous lava flows of intermediate composition (Pulsifer, 2000; 
Maughan, 2001; Biek and others, 2005); generally forms rubbly slopes between 
Butterfield and Rose Canyons and along south flank of Bingham mine, and on 
northeast flank of South Mountain (western Traverse Mountains); Bingham area 
40Ar/39Ar ages of 38.68 + 0.13 Ma from waterlain tuff near top of unit (Maughan, 
2001) and 39.18 + 0.11 Ma from clast near base of unit (Deino and Keith, 1997); 
thickness may exceed 4000 feet (1200 m). 

 
Older Intrusive Rocks 
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Tdmo Mafic dikes (late or middle Eocene?) – Two heavily altered and poorly exposed 
lamprophyre dikes at Lion Hill near Ophir; Gilluly (1932) described samples from 
mine workings that consist primarily of altered biotite and olivine; no 
geochemical or direct age data exist; based on cross-cutting relations, Tdmo is 
older than Tri dikes; dikes are 1 to 4 feet (0.3 to 1 m) wide. 

 
Tqmi Quartz monzonite porphyry intrusion (middle Eocene?) – Altered part of the 

Soldier Canyon stock with K-spar and quartz phenocrysts and limonite staining 
(Lufkin, 1965); Laes and others (1997) suggested intrusion may be related to 
Bingham stock, which has a K-Ar age of 37.6 + 0.07 Ma (Moore, 1973). 

 
Tmi Monzonite intrusions (middle Eocene) – Monzonite intrusions of Spring Gulch, 

Soldier Canyon, and Bingham (Last Chance) areas.  Fine- to medium-grained, 
equigranular, containing augite, hornblende, biotite, and magnetite, and ranging 
compositionally from diorite to quartz monzonite; the Spring Gulch monzonite 
crops out just north of the Calumet mine east of Stockton (Krahulec, 2005); Tmi 
also present at the Soldier Canyon stock (Lufkin, 1965) and near the axis of Long 
Ridge anticline (Laes and others, 1997; Tooker, 1992); the monzonites of the 
Stockton/Rush Valley district are similar in appearance and composition to the 
Last Chance stock in the Bingham district (Krahulec, 2005) which has a prior K-
Ar age of 38.6 + 0.18 Ma (Moore, 1973), U-Pb age of 38.55 + 0.19 Ma, and 
40Ar/39Ar age of 38.40 + 0.16 Ma (Parry and others, 2001); K-Ar age of 38.0 + 1.1 
Ma (Moore, 1973) from monzonite porphyry stock of the Calumet Mine area, and 
new 40Ar/39Ar age on sanidine of 41.06 + 0.21 Ma (UGS & NIGL, 2012b). 

 
Tli Latite to dacite porphyry sills and dikes (middle Eocene) – Greenish-gray to 

dark-gray latite to dacite porphyry with abundant phenocrysts of plagioclase and 
hornblende and lesser biotite; present north of Butterfield and Middle Canyons in 
Oquirrh Group strata of south flank of Bingham mine area; K-Ar age of 37.1 + 
1.1 Ma (Moore, 1973), 40Ar/39Ar age of 38.84 + 0.19 Ma (Deino and Keith, 
1997); 0 to about 400 feet (120 m) thick. 

 
Tqli Quartz latite porphyry dikes (middle Eocene) – Fine-grained, biotite, quartz 

latite porphyry with large potassium feldspar phenocryts (to 1 inch [3 cm]) and 
some augite; named the Raddatz porphyry (along Continental fault) in the 
Stockton/Rush Valley district where it forms dikes (Krahulec, 2005), also may 
crop out on Bald Mountain (north of Ophir); K-Ar age of 38.6 + 1.1 Ma (Moore, 
1973), 40Ar/39Ar age on Raddatz dike of 39.4 + 0.34 Ma (Kennecott, unpublished 
date in Krahulec, 2005). 

 
Tbi Basalt sill (middle Eocene) – Dark-gray basalt sill intruding Oquirrh strata on 

South Mountain; may be related to unit Tvfo; K-Ar age of 40.1 + 0.5 Ma (Moore 
and McKee, 1983); previously called a nepheline basalt (Gilluly, 1932; Moore 
and McKee, 1983); only largest sill mapped, about 50 feet (15 m) thick. 
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IGNEOUS AND SEDIMENTARY ROCKS OF THE VERNON HILLS 
 
Unit descriptions and thickness data from Kirby (2010a, 2010b). 
 
TERTIARY 
 
Tbav Basaltic andesite (Oligocene?, Eocene?) – Dark-gray basaltic andesite lava flow 

with 20% olivine phenocrysts; weathered and poorly exposed; no direct age data 
but unit overlies and postdates map unit Trv; exposed thickness is 40 feet (13 m). 

 
Ts Tertiary strata (middle Eocene) – Interbedded conglomerate, limestone, 

mudstone, siltstone, and tuffaceous sandstone; red and red-brown conglomerate 
includes clasts of quartzite, carbonate, and sandstone in a sandy, gritty calcareous 
matrix; limestone is tan to pale-gray micrite that is medium bedded in intervals 10 
to 20 feet (3-6 m) thick; mudstone and siltstone are red, red-brown, and purple 
with sandy lenses and are crudely to finely bedded; includes small exposure of 
breccia with Oquirrh fragments; present adjacent to the Vernon Hills fault; U-Pb 
detrital zircon age of 38.70 + 0.28 and -0.62 Ma (table 5); exposed thickness is 
greater than 2200 feet (>670 m) (Kirby, 2010a, 2010b). 

 
Tdv Dacite (upper Eocene) - Light-gray to reddish-brown porphyritic dacite and 

trachydacite lava flows; phenocrysts (30%) of plagioclase and minor hornblende, 
and dark-gray lithic fragments; 40Ar/39Ar isochron age on plagioclase of 36.63 + 
0.16 Ma (UGS and NIGL, 2012a); maximum exposed thickness is 30 feet (10 m). 

 
Trv Rhyolite (upper Eocene) – White to light-gray and locally dark-gray, rhyolitic 

ash-flow tuff; ranges from densely welded and flow banded to unwelded and 
ashy; contains about 15% phenocrysts of quartz, also with angular and subangular 
lithic fragments of older volcanic rocks (to 10 mm) and black vitrophyre (to 20 
mm).  Also pale-red to gray porphyritic welded tuff; with 30% phenocrysts of 
plagioclase, biotite, hornblende; densely welded with flow banding; prior K-Ar 
biotite age of 38 + 0.5 Ma (Moore and McKee, 1983), 40Ar/39Ar fusion age on 
sanidine of 35.33 + 0.05 Ma and plateau age on plagioclase of 35.58 + 0.29 Ma 
(UGS and NIGL, 2012a); exposed thickness is 40 to 100 feet (12-30 m). 

 
 
IGNEOUS AND SEDIMENTARY ROCKS OF THE NORTHERN EAST TINTIC 
MOUNTAINS 
 
Unit descriptions, age and thickness data from Christiansen and others (2007), Biek and 
others (2009), McKean (2011), McKean and others (in preparation), Allen (in 
preparation), and this study. 
 
Tb Mosida Basalt (Miocene) – Medium-dark-gray, porphyritic, trachybasalt lava 

flow; contains phenocrysts of olivine, plagioclase, and clinopyroxene; vent is not 
exposed, but is located near Soldiers Pass in southern Lake Mountains (east of 
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map area); represents one of the oldest basaltic magmas of the eastern Great 
Basin, with 40Ar/39Ar ages of 19.47 + 0.17 and 19.65 + 0.15 Ma (Christiansen and 
others, 2007), additional Ar age pending (E.H. Christiansen, Brigham Young 
University [BYU]); 0 to 120 feet (35 m) thick. 

 
Unconformity 
 
Tfb Mafic lava of Broad Canyon (upper Oligocene) – Light gray to black, vesicular, 

porphyritic to aphanitic, shoshonitic lava flow with 10% megacrysts of 
anorthoclase and 5-15% phenocrysts of augite and highly altered micas that are 
replaced with Fe-oxides and olivine; preliminary 40Ar/39Ar age of 25.36 + 0.03 
Ma (E.H. Christiansen, BYU, written communication, July 20, 2011); thickness is 
30 to 100 feet (10-30 m). 

 
Tdm Mafic dikes (late Oligocene) – Aphanitic, dense basaltic intrusions with 10-25% 

phenocrysts of olivine, pyroxenes, and altered micas; forms three small exposures 
in the Boulter Peak quadrangle; preliminary 40Ar/39Ar age of 26.3 + 0.3 Ma (E.H. 
Christiansen, BYU, written communication, July 20, 2011); exposed thickness 
less than 30 feet (10 m). 

 
Tvm Minette intrusion (Oligocene) – Poorly consolidated intrusion with minette-like 

characteristics in one exposure at mouth of Black Rock Canyon (Boulter Peak 
quadrangle); 30-40% phenocrysts of brassy hexagonal biotite, and Fe-Ti oxides, 
apatite, clustered olivine, and possible carbonate; preliminary 40Ar/39Ar age of 
28.45 + 0.13 Ma (E.H. Christiansen, BYU, written communication, July 20, 
2011); exposed thickness less than 30 feet (10 m). 

 
Tpc Pinyon Creek Conglomerate (Oligocene?) – Agglomerate with reddish-brown to 

gray clasts up to boulder size probably derived from the Laguna Springs Volcanic 
Group; distinctly bedded (beds 1.5 to 10 feet [0.5-3 m] thick) with some beds of 
nearly all fine ash and small volcanic fragments and others with both fine and 
coarse volcanic fragments (Morris and Lovering, 1961); unit includes a dark-gray 
pillow lava breccia (shoshonite) in one small exposure near Chimney Rock Pass; 
no age data; thickness is greater than 150 feet (>50 m). 

 
Tlsl Laguna Springs Volcanic Group, lava flow unit (lower? Oligocene) – Andesite 

to trachyandesite lava flows that are reddish-brown, purplish-gray and gray; lavas 
are dense and commonly vitrophyric, with large phenocrysts (30-40%) of 
plagioclase, sanidine, biotite, hornblende, and clinopyroxene; 40Ar/39Ar age 
pending (E.H. Christiansen, BYU); exposed thickness to 750 feet (230 m). 

 
Tlsa Laguna Springs Volcanic Group, tuff unit (lower? Oligocene) – A 

heterogeneous unit composed mostly of ash and tuffaceous sediment of varying 
grain and clast sizes; dark-reddish-brown andesite to trachyandesite tuffs contain 
phenocrysts (10-20%) of plagioclase, biotite, and hornblende; no age data, but 
underlies Tlsl; exposed thickness to 400 feet (120 m). 
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Tlst Laguna Springs Volcanic Group, tuff of Twelvemile Pass unit (lower 

Oligocene) – Intensely welded tuff that is reddish brown to dark reddish brown; 
trachyandesite to trachydacite with phenocrysts (10-20%) of plagioclase, biotite, 
hornblende, and clinopyroxene, and flattened pumice lapilli (5-10%) (lapilli 6-20 
cm and pumice 1-2 cm diameter); preliminary 40Ar/39Ar age of 32.66 Ma (E.H. 
Christiansen, BYU, verbal communication, January 14, 2010); exposed thickness 
to 125 feet (40 m). 

 
Tsw Soldiers Pass Formation, White Knoll Member (lower Oligocene) – White and 

pale-yellowish-orange limestone that weathers yellowish gray, with interbedded 
very pale orange, white, and pale-red claystone; partly coeval with map unit Tsb, 
but probably spans a relatively large age range; thickness is 0 to 10 feet (3 m). 

 
Tsb Soldiers Pass Formation, breccia member (lower Oligocene) – Gray, white, 

brown, and pale-red shoshonite lava flow; exposed mostly as distinctive, 
brecciated, carbonate-impregnated lava, but also occurs as gray and pale-red, 
locally vesicular lava flow; interfingers with and partly overlain by the White 
Knoll Member (Tsw); forms ledges and rounded knobs; 40Ar/39Ar age of 33.73 + 
0.65 Ma (Christiansen and others, 2007); exposed thickness is less than 40 feet 
(12 m). 

 
Tsc Soldiers Pass Formation, Chimney Rock Pass Tuff Member (upper Eocene) – 

Yellowish-gray, porphyritic, rhyolitic ash-flow tuff; contains about 10% 
phenocrysts of quartz, plagioclase, sanidine, biotite, and Fe-Ti oxides in a glassy 
groundmass; also contains conspicuous pumice (10-15%, 1-5 cm) and lithic (10-
15%, 1-4.5 cm) fragments; vent unknown, but may be near Black Point in 
southern Lake Mountains (east of map area); 40Ar/39Ar sanidine age of 34.73 + 
0.08 Ma from Chimney Rock Pass (Christiansen and others, 2007; Biek and 
others, 2009) and preliminary 40Ar/39Ar ages of 34.61+ 0.2 and 34.82 + 0.06 Ma 
(E.H. Christiansen, Brigham Young University, verbal communication, January 
14, 2010, and written communication July 20, 2011, respectively); exposed 
thickness to 100 feet (30 m). 

 
Ttlr Tintic Mountain Volcanic Group, Latite Ridge Latite (upper Eocene) – Dark-

reddish-brown to brown, densely welded, trachytic tuff with phenocrysts (15-
20%) of plagioclase and biotite in a glassy groundmass; tuff is rich in lithic 
fragments (15-20%, ~1 cm), pumice (10-15%), and black flattened pumice lapilli 
(5-15 cm); 40Ar/39Ar biotite age of 34.64 + 0.17 Ma (UGS and NMGRL, 2007) 
from Tintic Mountain quadrangle (south of map area); exposed thickness is to 150 
feet (45 m). 

 
Tp Packard Quartz Latite, undivided (upper Eocene) – Light-gray to pink, non-

welded to welded rhyolite ignimbrite with large and abundant phenocrysts (30-
40%) of quartz, sanidine, plagioclase, and biotite; bi-pyramidal quartz 
phenocrysts are the distinguishing characteristic; also contains pumice (1-5%, 1-4 
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cm) and lithic fragments (1-5%, 1-4 cm) that are not as abundant as in the 
Chimney Rock Pass Tuff Member of the Soldiers Pass Formation; preliminary 
40Ar/39Ar age of 35.08 + 0.03 Ma (E.H. Christiansen, BYU, verbal 
communication, January 14, 2010); locally consists of a flow breccia with a 
preliminary 40Ar/39Ar age of 35.27 + 0.03 Ma (E.H. Christiansen, BYU, written 
communication, July 20, 2011); also includes one exposure of dark-brown, 
densely welded, ash-flow tuff (vitrophyre) with a preliminary 40Ar/39Ar age of 
35.21 + 0.03 Ma (E.H. Christiansen, BYU, verbal communication, January 14, 
2010); unit includes one small exposure of rhyolitic tuff underlying Packard 
Quartz Latite in Broad Canyon (Allen, in preparation); Morris and Lovering 
(1979) subdivided the Packard into several units that are not all present in the map 
area; exposed thickness to 500 feet (150 m). 

 
Ts? Tertiary strata? (middle Eocene?) – Moderate reddish orange conglomerate that 

is poorly bedded with subangular carbonate clasts; one exposure in Twelvemile 
Pass, northern East Tintic Mountains; 0 to about 50 feet thick (0-15 m) (Disbrow, 
1961). 

 
TERTIARY-CRETACEOUS 
 
TKj Jasperoid (Tertiary? and Cretaceous?) – Silica breccia, commonly dark red to 

dark red brown or moderate gray; probably associated with Sevier orogenesis and 
Tertiary volcanism; only larger exposures mapped in Davis Mountain, northern 
Sheeprock Mountains, Vernon Hills, northern East Tintic Mountains, and 
southern Oquirrh Mountains; variable thickness. 

 
DEVONIAN TO CAMBRIAN STRATA OF CAMELS BACK RIDGE AND SIMPSON 
BUTTES 
We apply the regional stratigraphic names of Hintze and Robison (1975) and Hintze 
(1980) to Devonian through Cambrian strata of Camels Back Ridge rather than local 
names of the Dugway Range (Staatz and Carr, 1964; Staatz, 1972).  Descriptions and 
thicknesses are from Clark and others (2008); age data are contained within several 
sources (see Hintze and Davis, 2003, for a comprehensive treatment). 
 
Dg? Guilmette Formation? (Upper to Middle Devonian) – Moderate- to dark-gray, 

thin- to thick-bedded, finely to moderately crystalline dolomite; locally weathers 
brownish gray, and forms ledges; queried due to structure and incomplete section; 
exposed thickness about 500 feet (150 m). 

 
Fault 
 
Dsi Simonson Dolomite (Middle Devonian) – Light- to dark-gray, finely to 

moderately crystalline dolomite; locally weathers brownish gray; local zones of 
chert; thin- to very thick bedded unit forms cliffs and ledges; exposed thickness 
about 500 feet (150 m). 
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Dsy Sevy Dolomite (Lower Devonian) – Moderate-gray, finely crystalline dolomite 
that weathers light gray with laminated surface appearance; thin to medium 
bedded, forms ledges; thickness is about 250 feet (75 m). 

 
Fault 
 
Sl Laketown Dolomite, undivided (Silurian) – Moderate- to dark-gray, finely to 

moderately crystalline dolomite that locally weathers to light and moderate brown 
and light gray, and contains some intervals of light-gray dolomite; contains gray 
and red chert in beds, masses and nodules, and rust-colored, case-hardened 
surfaces; mostly very thick bedded, forming cliffs and ledges; to south, separated 
into several members (Hintze, 1980) corresponding to formations of Staatz and 
Carr (1964); exposed thickness is about 500 feet (150 m). 

 
Oes Ely Springs Dolomite (Upper Ordovician) – Includes upper part (Floride 

Member) and lower part (lower member) not mapped separately; upper part is 
very light gray, finely crystalline dolomite with indistinct to medium bedding; 
lower part is cherty, resistant, moderate-gray dolomite at top underlain by brown-
weathering, less resistant, thin-bedded dolomite; both parts are thin to thick 
bedded, forming ledges, cliffs and slopes; thickness is 250 feet (75 m). 

 
Unconformity – Tooele Arch (Hintze, 1959); Eureka Quartzite and uppermost part of 
Pogonip Group likely missing 
 
OCu Lower Ordovician and Upper-Middle Cambrian strata, undivided (Lower 

Ordovician? to Upper-Middle Cambrian?) – Carbonate rocks of Simpson Buttes; 
gray-, brown-, and pink-weathering dolomite and limestone, thin to very thick 
bedded; further subdivision precluded due to lack of access and exposure, but 
may correspond to parts of Pogonip Group?, Notch Peak Formation, Orr 
Formation, Lamb Dolomite, and Trippe Limestone; exposed thickness about 2300 
feet (700 m). 

 
Op Pogonip Group, undivided (Middle to Lower Ordovician) – Exposed in low 

hills west of Camels Back Ridge; may include part of Kanosh Shale and 
underlying formations of this group; upper part is dark-gray and moderate-gray, 
finely to moderately crystalline dolomite, underlain by moderate-gray 
intraformational conglomerate, siltstone, and limestone; thin to medium bedded, 
forming ledges and slopes; Hintze (1980) described the various formations; 
exposed thickness to 150 feet (45 m). 

 
Fault – separating Camels Back Ridge from low hills to west 
 
We have not applied the changes to the Ordovician-Cambrian boundary reported in 
Hintze and Kowallis (2009), considering the ongoing debate on this issue. 
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Cn Notch Peak Formation (lowermost Ordovician to Upper Cambrian) – Present on 
crest and west flank of Camels Back Ridge; moderate- and light-gray, finely to 
moderately crystalline dolomite and limey dolomite, containing intervals several 
feet thick that weather to tan and light pink; locally includes pisolites, twiggy 
bodies, and Girvanella (algae); medium to very thick bedded, cliff and ledge 
forming; Dugway Ridge Formation of Staatz and Carr (1964); exposed thickness 
about 500 feet (150 m). 

 
Cou Orr Formation, upper part (Upper Cambrian) – Present on east flank and crest 

of Camels Back Ridge; likely includes (decending order) Sneakover Limestone 
Member, Corset Spring Shale Member, Johns Wash Limestone Member, and 
Candland Shale Member; forms less resistant and lighter-colored interval between 
Notch Peak Formation and Big Horse Limestone; very light gray to light-gray, 
finely to moderately crystalline dolomite and limestone, and green and light-
brown shale; commonly medium to thick bedded; Fera Limestone of Staatz and 
Carr (1964); 200 feet (60 m) thick. 

 
Cob Orr Formation, Big Horse Limestone Member (Upper Cambrian) – Crops out 

on east flank and north part of Camels Back Ridge; medium- to very thick 
bedded, resistant interval forming cliffs and ledges; locally dolomitized; 
moderate-gray to tan-gray, finely to moderately crystalline limestone, with some 
intervals weathering to light tan, pink, and mottled; Straight Canyon Formation of 
Staatz and Carr (1964); 425 feet (130 m) thick. 

 
Cl Lamb Dolomite (Upper to Middle Cambrian) – Largely present on east flank of 

Camels Back Ridge; upper part less resistant, mostly very thin to thin bedded and 
commonly rusty and pink weathering, consists of ledges of moderate-gray oolitic 
and silty limestone and flat-pebble conglomerate, underlain by moderate-gray 
dolomite and limestone with rusty-colored blebs and layers; lower part of more 
resistant gray dolomite that locally weathers to mottled gray, pink gray, and light 
brown, is moderate to coarsely crystalline, contains intervals of Girvanella 
(algae), and forms a thin- to very thick bedded ledgy interval; 900 feet (275 m) 
thick. 

 
Ctl Trippe Limestone (Middle Cambrian) – Present on northeast side of Camels 

Back Ridge; forms generally less resistant and ledgey interval between Lamb 
Dolomite and Pierson Cove Formation; upper part is moderate-gray, laminated 
and nodular limestone, shale, intraformational conglomerate, and light-tan-
weathering dolomite that is laminated to medium bedded; lower part is light- to 
moderate-gray, locally mottled, laminated to very thick bedded limestone; 
gradational contact with Pierson Cove Formation below; 700 feet (215 m) thick. 

 
Cpc Pierson Cove Formation (Middle Cambrian) – Present on northeast side of 

Camels Back Ridge; moderate-gray limestone with some light-gray dolomite 
interbeds, thin to very thick bedded forming ledges to cliffs; unit locally 
dolomitized; exposed thickness about 800 feet (245 m). 
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PERMIAN TO ORDOVICIAN STRATA OF SOUTHERN CEDAR MOUNTAINS 
AND SKULL VALLEY 
 
Clark and others (2008) provided unit descriptions and their fossil age data are included 
in table 6.  The Oquirrh Group has been substantially remapped to conform to the similar 
stratigraphy of the Oquirrh Mountains; refer to figure 3 for a comparison of Oquirrh 
strata between this map and Maurer (1970).  The total thickness of Oquirrh Group strata 
is roughly 12,350 feet (3770 m).  Following Laes and others (1997) and Hintze and 
Kowallis (2009), we combine Lower Permian (Wolfcampian) and Pennsylvanian 
formations under the Oquirrh Group, although this nomenclature differs from existing 
terminology established in the Oquirrh Mountains (Welsh and James, 1961; Tooker and 
Roberts, 1970). 
 
PIPo Oquirrh Group strata, undivided (Lower Permian to Lower Pennsylvanian) – 

One area of combined unit on south margin of Cedar Mountains; exposed 
thickness about 50 feet (15 m). 

 
PIPofm 

Oquirrh Group, Freeman Peak, Curry Peak, and Bingham Mine 
Formations, undivided (Lower Permian and Upper Pennsylvanian, 
Wolfcampian-Virgilian) – See unit description under Oquirrh Mountains; one 
area along Cedar thrust, north of Rydalch Canyon. 

 
Pofc Oquirrh Group, Freeman Peak and Curry Peak Formations, undivided 

(Lower Permian, Wolfcampian) – See unit description under Oquirrh Mountains; 
contains Schwagerina and Triticites cf. T. meeki (fusulinids); corresponds to most 
of Maurer’s (1970) Unit 4 and Unit 5; 3500 feet (1070 m) thick. 

 
Unconformity? 
 
IPobm Oquirrh Group, Bingham Mine Formation (Upper Pennsylvanian, Virgilian-

Missourian) – See unit description under Oquirrh Mountains; includes fusulinids 
(Triticites and Pseudofusulinella); corresponds to upper part of Maurer’s (1970) 
Unit 3 and lower part of Unit 4; upper contact mapped at uppermost substantial 
limestone bed; 2800 feet (850 m) thick. 

 
IPobw Oquirrh Group, Butterfield Peaks Formation and West Canyon Limestone, 

undivided (Middle to Lower Pennsylvanian, Desmoinesian-Morrowan) – 
Combined unit mapped in small exposures of southern Cedar Mountains. 

 
IPobp Oquirrh Group, Butterfield Peaks Formation (Middle to Lower 

Pennsylvanian, Desmoinesian-Morrowan) – See unit description under Oquirrh 
Mountains; includes fusulinids (Fusulina, Beedeina); corresponds to Maurer’s 
(1970) Unit 2 and most of Unit 3; 5400 feet (1650) thick. 



 23 

 
IPMwm 

Oquirrh Group, West Canyon Limestone, and Manning Canyon Shale, 
undivided (Lower Pennsylvanian to Upper Mississippian, Morrowan-Chesterian) 
– Combined unit in small exposures of southern Cedar Mountains. 

 
IPowc 

Oquirrh Group, West Canyon Limestone (Lower Pennsylvanian, Morrowan) – 
See unit description under Oquirrh Mountains; corresponds to Maurer’s (1970) 
Unit 1; 500 to 800 feet (150-245 m) thick. 

 
IPMmc 

Manning Canyon Shale (Lower Pennsylvanian to Upper Mississippian, 
Morrowan-Chesterian) – See unit description under Oquirrh Mountains; probably 
1500 to 2000 feet (450-600 m) thick. 

 
Faults 
 
Mgb Great Blue Limestone (Upper Mississippian) – See unit description under 

Oquirrh Mountains; no obvious shaley intervals; top not exposed; 2440+ feet 
(745+ m) thick. 

 
Mh Humbug Formation (Upper Mississippian) – See unit description under Oquirrh 

Mountains; base not exposed; 1014+ feet (310+ m) thick (Maurer, 1970). 
 
Fault 
 
Mg? Gardison Limestone? (Lower Mississippian) – See unit description under 

Oquirrh Mountains; greater than 600 feet (180 m) exposed. 
 
Faults 
 
Ou Ordovician strata, undivided (Upper to Lower Ordovician?) – Dark- to 

medium-gray calcitic dolomite breccia (75% of exposures), light-gray silicic 
limestone breccia, and light-reddish-brown, strongly recrystallized limestone with 
abundant reddish-brown chert (Geomatrix, 2001); exposed at Hickman Knolls on 
Skull Valley Indian Reservation, which was not accessed for this map; previously 
mapped by Moore and Sorensen (1979) as Ordovician carbonate rocks and 
quartzite; may include all or parts of the Fish Haven Dolomite and Pogonip 
Group; exposed thickness about 200 feet (60 m). 

 
 
TRIASSIC TO NEOPROTEROZOIC STRATA OF DAVIS AND LITTLE DAVIS 
MOUNTAINS, NORTHERN SIMPSON MOUNTAINS, SOUTHERN STANSBURY 
MOUNTAINS, ONAQUI MOUNTAINS, NORTHERN SHEEPROCK MOUNTAINS, 
AND VERNON HILLS 
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Triassic to Permian stratigraphy of the Martin Fork syncline area was modified from 
Jordan and Allmendinger (1979). 
 
Trtw Thaynes Limestone and Woodside Formation, undivided (Lower Triassic) – 

Thaynes consists of light- to medium-gray and brown gastropod- and pelecypod-
bearing limestone, sandstone, and siltstone; the unit is resistant, bioturbated, and 
medium bedded (irregularly); regionally contains Meekoceras (ammonite) at base 
of unit (Kummel, 1954); underlying Woodside contains pale-red and brown 
siltstone and calcareous sandstone, greenish-brown shale, and minor light-gray 
laminated limestone that is poorly exposed and forms slopes; exposed thickness 
of Thaynes is 590 feet (180 m) and Woodside is 210 feet (65 m), and combined 
unit thickness is 800 feet (245 m). 

 
Ppfm Park City Formation, Franson Member, and Phosphoria Formation, Meade 

Peak Phosphatic Shale Tongue, undivided (Middle to Lower Permian) – 
Franson consists of moderate-brown and gray limestone, sandy limestone, and 
calcareous sandstone that is medium bedded, with minor shale; underlying Meade 
Peak consists of pale-red, brown, and dark-gray shale, with lesser bedded chert 
and phosphorite; forms a distinct red-brown-weathering slope or saddle; Franson 
is 280 feet (85 m) and Meade Peak is 230 feet (70 m) thick, and combined unit 
thickness is 510 feet (155 m). 

 
Ppg Park City Formation, Grandeur Member (Lower Permian) – Gray cherty and 

bioclastic limestone, sandy and cherty dolomite, calcareous sandstone, quartzite, 
and bedded chert; medium- to thick-bedded ledge former; thickness is 500 feet 
(150 m). 

 
Pdc Diamond Creek Sandstone (Lower Permian) – Moderate-gray, weathering to 

light-brown, fine-grained calcareous sandstone that is thin to medium bedded; 
thickness is about 350 feet (105 m). 

 
Pk Kirkman Formation (Lower Permian) – Moderate-gray to light-brown 

limestone, calcareous sandstone, fossiliferous carbonate conglomerate, and 
oncolitic limestone; limestone is locally bioclastic and cherty, and laminated with 
chert stringers and nodules; thin to thick bedded; exposed thickness is about 400 
feet (120 m). 

 
Martin Fork thrust fault – upper Oquirrh Group omitted; Martins Fork Spring thrust 
(Tooker, 1983) 
 
Oquirrh strata of the southern Stansbury Mountains were evaluated and described by 
Wright (1961), Armin (1979), Armin and Moore (1981), and Jordan (1979a, 1979b).  
New and earlier fossil data are presented in table 6.  It appears that both the upper 
(Freeman Peak Formation) and lower (West Canyon Limestone) parts of the Oquirrh 
Group have been truncated and omitted by faults near their respective contacts with 
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enclosing units of regional decollement (Kirkman Formation above and Manning Canyon 
Shale below). 
 
Pofc Oquirrh Group, Freeman Peak and Curry Peak Formations (Lower Permian, 

Wolfcampian) – See unit description under Oquirrh Mountains; maximum 
exposed thickness is about 3500 feet (1100 m). 

 
Unconformity? 
 
IPobm Oquirrh Group, Bingham Mine Formation (Upper Pennsylvanian, Virgilian-

Missourian) – See unit description under Oquirrh Mountains; thickness is about 
8000 feet (2450 m) in southern Stansbury Mountains and exposed thickness is 
about 1850 to 3200 feet (560-980 m) in Vernon Hills. 

 
Fault in Vernon Hills 
 
IPobp Oquirrh Group, Butterfield Peaks Formation (Middle to Lower 

Pennsylvanian, Desmoinesian-Morrowan) – See unit description under Oquirrh 
Mountains; exposed thickness to 6000 feet (1800 m) in southern Stansbury 
Mountains, and 1100 to 1250 feet (340-380 m) in Vernon Hills. 

 
Broad Canyon and Big Hollow faults – West Canyon Limestone omitted in southern 
Stansbury Mountains.  These faults have several names and interpretations:  Broad 
Canyon fault (Rigby, 1958; Cashman, 1992), Broad Canyon thrust (Tooker and Roberts, 
1971; Sorensen, 1982; Tooker, 1983), and Central Range fault (Copfer and Evans, 
2005). 
 
Fault in Vernon Hills 
 
IPowc 
 Oquirrh Group, West Canyon Limestone (Lower Pennsylvanian, Morrowan) – 

See unit description under Oquirrh Mountains; exposed thickness about 1150 to 
1650 feet (350-500 m) in Vernon Hills. 

 
Onaqui fault 
 
IPMmc 
 Manning Canyon Shale (Lower Pennsylvanian to Upper Mississippian, 

Morrowan-Chesterian) – See unit description under Oquirrh Mountains; exposed 
thickness 0 to 1300 feet (0-400 m). 

 
Fault in Vernon Hills 
 
Mgb Great Blue Limestone, undivided (Upper Mississippian) – See unit description 

under Oquirrh Mountains; mapped as combined unit in the southernmost 
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Stansbury Mountains and areas to the south where the Long Trail Shale is not 
well exposed or absent; thickness about 1600 feet (490 m). 

 
Mgbu Great Blue Limestone, upper limestone member (Upper Mississippian) – See 

unit description under Oquirrh Mountains; thickness is 800 feet (240 m). 
 
Mgbs Great Blue Limestone, Long Trail Shale Member (Upper Mississippian) – See 

unit description under Oquirrh Mountains; thickness is 30 to 80 feet (10-25 m). 
 
Mgbl Great Blue Limestone, lower limestone member (Upper Mississippian) – See 

unit description under Oquirrh Mountains; thickness is 700 feet (210 m) in 
southern Stansbury Mountains and incomplete thickness is 440 to 820 feet (130-
250 m) in Vernon Hills. 

 
Mh Humbug Formation (Upper Mississippian) – See unit description under Oquirrh 

Mountains; thickness is 700 feet (210 m) in southern Stansbury Mountains, and 
850 to 1250 feet (260-380 m) in Vernon Hills. 

 
Fault in Vernon Hills 
 
Md Deseret Limestone (Upper to Lower Mississippian) – See unit description under 

Oquirrh Mountains; thickness is 525 feet (160 m) in southern Stansbury 
Mountains and attenuated thickness is about 200 feet (60 m) in Vernon Hills. 

 
MDgs Gardison Limestone, Fitchville Formation, Pinyon Peak Limestone, 

Stansbury Formation, undivided (Lower Mississippian to Upper Devonian) – 
Combined unit north of head of Dry Canyon in southern Stansbury Mountains; 
see individual unit descriptions below; Stansbury Formation thins northward to 
zero near head of Indian Hickman Canyon, and northward the Pinyon Peak and 
Fitchville pinch out; thickness is about 1200 feet (370 m). 

 
Mg Gardison Limestone (Lower Mississippian) – See unit description under Oquirrh 

Mountains; thickness is 700 feet (210 m) in southern Stansbury Mountains and 
840 feet (260 m) in Vernon Hills. 

 
Unconformity 
 
MDfs Fitchville Formation, Pinyon Peak Limestone, Stansbury Formation, 

undivided (Lower Mississippian to Upper Devonian) – Combined unit south of 
Dry Canyon; refer to Fitchville-Pinyon Peak description below; Stansbury 
Formation is distinctive carbonate-clast conglomerate with rounded and 
commonly oblate light- and dark-gray carbonate clasts from 0.5 to 4 inches (1-10 
cm) in diameter in a tan, sandy, dolomite matrix; Fitchville-Pinyon Peak thickness 
is about 450 feet (140 m), Stansbury thickness is about 0 to 60 feet (0-20 m), and 
combined unit thickness is about 500 feet (150 m). 
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MDfp Fitchville Formation and Pinyon Peak Limestone, undivided (Lower 
Mississippian to Upper Devonian) – Gray, medium-bedded limestone (Fitchville) 
overlying gray to tan sandy and silty limestone that is locally bioclastic and 
irregularly bedded (Pinyon Peak); thickness is about 200 feet (60 m) in southern 
Stansbury Mountains and 60 feet (20 m) in Vernon Hills. 

 
Dst Stansbury Formation (Upper Devonian) – White quartzite that weathers to tan 

and pale red, is locally cross-bedded, thin to medium bedded; exposed in quarry 
and adjacent hills southeast of Box Elder Canyon, Stansbury Mountains; exposed 
thickness is 200 feet (60 m) in Stansbury Mountains, but is absent to south and 
east. 

 
Major unconformity – Stansbury uplift (Rigby, 1959a; Morris and Lovering, 1961) 
 
Descriptions and thicknesses for Devonian through Cambrian units from Kirby (2010a, b) 
and this study.  Also refer to Hintze and Davis (2003) for age data. 
 
DOu Guilmette Formation, Simonson, Sevy, Laketown, and Ely Springs 

Dolomites, undivided (Upper Devonian to Upper Ordovician) – Combined unit 
in the southern Stansbury Mountains; Guilmette includes dark-gray, well bedded 
limestone; Simonson is dark-gray, coarsely to medium crystalline dolomite; Sevy 
is very light gray, finely crystalline dolomite; Laketown is gray, medium- to 
thick-bedded, locally cherty, coarsely to medium crystalline dolomite; Ely 
Springs is dark-gray and mottled, medium crystalline dolomite; Guilmette newly 
recognized and Ely Springs previously mapped as the Fish Haven Dolomite; 
thickness is 0 to about 2000 feet (600 m). 

 
Dg Guilmette Formation (Upper to Middle Devonian) – Dark-gray, medium- to 

fine-grained, moderately to weakly bedded, sparsely fossiliferous dark-gray 
dolomite with a few thin, dark-gray, fine-grained limestone beds near the top of 
unit; forms slopes and ledges; thickness is 180 feet (50 m) in Vernon Hills, and 
absent in northern Sheeprock Mountains and Davis Mountain. 

 
Dsi Simonson Dolomite (Middle Devonian) – Light-brownish to pale- and medium-

gray, fine to medium-grained, very thick or thin-bedded dolomite; generally more 
lithologically variable and less well bedded than the underlying Sevy; 670 to 930 
feet (200-280 m) thick in Vernon Hills, 640 to 1150 feet (195-350 m) in 
Sheeprocks, 750 feet (225 m) in Davis Mountain. 

 
Dsy Sevy Dolomite (Lower Devonian) – White to very-light or medium-gray, 

medium- to fine-grained dolomite; displays well developed fine-scale planar 
lamination on surface; rarely fossiliferous; contains uncommon thin beds of sandy 
dolomite; forms ledges and float-covered hills; 1310 feet (400 m) thick in Vernon 
Hills, 1200 to 1480 feet (360-450 m) in Sheeprocks, 590 feet (180 m) in Davis 
Mountain. 
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Unconformity 
 
SOu Laketown and Ely Springs Dolomites, undivided (Silurian and Upper 

Ordovician) – Dark- to medium-gray, granular to fine-grained, moderately or 
poorly bedded cherty dolomite; common pink to dark-gray chert bands or 
nodules; fossils include rugose corals and rare stromatolites in lower part of unit 
and chain corals near upper contact; poorly bedded parts of this unit appear 
bioturbated; forms small blocky outcrops and steep slopes; exposed thickness is 
1060 to 1280 feet (320-390 m) in Vernon Hills, 1070 to 1690 feet (325-510 m) in 
Sheeprocks, and 1420 feet (430 m) in Davis Mountain. 

 
Oe Eureka Quartzite (Upper Ordovician) – Grayish-tan to light-gray, medium- to 

thick-bedded, medium-grained, vitreous orthoquartzite; commonly displays well-
developed trough cross-bedding and planar bedding; variable thickness from 40 to 
80 feet (12-24 m) in Vernon Hills, 260 to 1000 feet (80-300 m) in Sheeprock 
Mountains, 420 feet (125 m) in Davis Mountain, and absent in southern Stansbury 
Mountains. 

 
Ok Pogonip Group, Kanosh Shale (Middle Ordovician) – Black to dark brown shale 

and lesser siltstone and sandstone; slope-forming unit; where thicker, locally 
mapped as separate unit, elsewhere mapped with Op; variable thickness from 0 to 
250 feet (0-75 m). 

 
Unconformity – Tooele Arch (Hintze, 1959); Eureka Quartzite and Kanosh Shale locally 
missing 
 
Op Pogonip Group, undivided (Middle to Lower Ordovician) –Blue-gray-

weathering limestone and reddish-tan-weathering silty limestone with lesser 
intraformational conglomerate and minor shale; thin to medium bedded in ledgey 
exposures; upper part locally includes about 100 feet (30 m) of slope-forming 
black to dark-brown shale and lesser siltstone and sandstone (Kanosh Shale); 
previously mapped as Kanosh Shale and Garden City Formation (Rigby, 1958; 
Teichert, 1958); thickness is 0 to 1350 feet (410 m) in southern Stansbury 
Mountains. 

 
Clark and Kirby (2009) reevaluated the Cambrian stratigraphy of the Stansbury and 
northern Sheeprock Mountains.  These strata closely resemble the western Utah section 
(Hintze and Robison, 1975) rather than the East Tintic Mountains section as initially 
applied by Rigby (1958) and perpetuated by Sorensen (1982) and Copfer and Evans 
(2005).  Our revised terminology includes the following units (descending order):  Notch 
Peak Formation; Orr Formation, upper part, includes Sneakover Limestone Member, 
Corset Spring Shale Member, and Johns Wash Limestone Member?; Orr Formation, Big 
Horse Limestone Member; Lamb Dolomite; Trippe Limestone (Fish Springs Member and 
lower member); Pierson Cove Formation; Wheeler Formation; Swasey Limestone; 
Whirlwind Formation; Dome Limestone; Chisholm Formation; Howell Limestone; 
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Pioche Formation; Prospect Mountain Quartzite (figure 4).  Locally some of these units 
are combined due to map scale limitations or where structurally complex. 
 
Cu Upper Cambrian strata, undivided (lowermost Ordovician and Upper 

Cambrian) – Combined Notch Peak and Orr Formations in eastern Davis 
Mountain where poorly exposed and structurally disturbed; thickness roughly 
1600 feet (490 m). 

 
Cum Upper and Middle Cambrian strata, undivided (lowermost Ordovician, Upper 

and Middle Cambrian) – Combined unit of several formations in the southern 
Stansbury Mountains and northern Sheeprock Mountains where structural 
complexities make subdivision difficult; includes carbonates and shales from all 
or parts of the following formations:  Notch Peak, Orr, Lamb, Trippe, Pierson 
Cove, Wheeler, Swasey, Whirlwind, Dome, Chisholm, and Howell; northward, 
the upper part of the section was removed by erosion associated with the 
Stansbury uplift; thickness roughly 1500 to 5000 feet (450-1500 m). 

 
Cn Notch Peak Formation (lowermost Ordovician and Upper Cambrian) – 

Moderate to dark-gray dolomite with some light-gray intervals; medium to very 
thick bedded; thickness is about 1000 feet (330 m) in Stansbury Mountains, about 
700 feet (210 m) in Sheeprocks, and greater than 500 feet (150 m) in Davis 
Mountain. 

 
Co Orr Formation (Middle Cambrian) – Moderate-gray silty limestone that is thin 

to medium bedded; primarily upper part of unit exposed; exposed thickness is 
greater than 1200 feet (365 m) in the Stansbury and Sheeprock Mountains, and 
greater than 470 feet (140 m) in Davis Mountain. 

 
Cl Lamb Dolomite (Middle Cambrian) – See description under Camels Back Ridge; 

thickness is about 1290 feet (390 m) in the Stansbury Mountains. 
 
Red Pine fault – Lamb Dolomite omitted in northern Sheeprock Mountains 
 
Cm Middle Cambrian strata, undivided (Middle Cambrian) – Several carbonate 

and shale units composing the upper plate of a low-angle normal fault (Dry 
Canyon fault) on the southwest margin of the Stansbury Mountains; formations 
may include the lower Trippe, Pierson Cove, and Wheeler; thickness roughly 
1500 feet (450 m). 

 
Ctl Trippe Limestone (Middle Cambrian) – See description under Camels Back 

Ridge; thickness is about 1000 feet (305 m) in the Stansburys, and 1600 feet (490 
m) in the Sheeprock Mountains. 

 
Cpc Pierson Cove Formation (Middle Cambrian) – See description under Camels 

Back Ridge; thickness is about 620 feet (190 m) in the Stansbury Mountains, 
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1970 feet (600 m) in the Sheeprock Mountains, and greater than 540 feet (165 m) 
in the Simpson Mountains. 

 
Cws Wheeler Formation and Swasey Limestone, undivided (Middle Cambrian) – 

Wheeler is red-brown to medium- or dark-gray, thin- to medium-bedded 
calcareous shale and limestone that generally forms slopes; contains Peronopsis 
trilobite fauna (Hintze and Davis, 2003); Swasey is medium-gray, medium- to 
thin-bedded, blocky, cliff- and ledge-forming limestone; includes sections of silty 
ribbon limestone and wackestone; contains Elrathia trilobite fauna (Hintze and 
Davis, 2003); combined unit thickness is about 340 to 970 feet (100-295 m) in the 
Stansbury Mountains, 550 feet (167 m) in the Sheeprock Mountains, and 1410 
feet (430 feet) in the Simpson Mountains. 

 
Cwh Whirlwind Formation, Dome Limestone, Chisholm Formation, Howell 

Limestone, undivided (Middle Cambrian) – Whirlwind is light-olive-gray to red 
or brown shale and argillite interbedded with thin-bedded limestone; contains 
Ehmaniella trilobite fauna (Hintze and Davis, 2003); Dome is medium-gray, 
medium- to thin-bedded, blocky limestone that forms ledges; Chisholm is brown 
to red-brown shale and some dark-gray pisolitic limestone, and contains 
Glossopleura trilobite fauna (Hintze and Davis, 2003); Howell is light- to dark-
gray limestone that forms ledges; combined unit thickness is 330 to 830 feet (100-
250 m) in the Stansbury Mountains, and 340 feet (103 m) in the Sheeprock 
Mountains, and 1410 feet (430 m) in the Simpson Mountains. 

 
Cp Pioche Formation (Middle and Lower Cambrian) – Red-brown and green-brown 

shale and phyllitic shale with interbedded quartzite; upper part contains red-brown 
limestone that is irregularly bedded and some gray limestone and shale; thin to 
medium bedded unit forms ledges and slopes; thickness is about 400 feet (120 m) 
or less. 

 
Cpm Prospect Mountain Quartzite (Lower Cambrian) – Light-gray, light-brownish-

gray, and pinkish-gray, commonly reddish-brown-weathering quartzite that is thin 
to thick bedded and medium to coarse grained; locally contains a few beds of 
sandy phyllitic argillite near top and lenses of quartzite conglomerate in lower 
half; incomplete thicknesses in Stansbury Mountains about 4200 feet (1280 m) 
and Davis Mountain greater than 2800 feet (850 m); complete thicknesses of 4260 
feet (1290 m) in Sheeprock Mountains, and 2800 feet (850 m) in northern 
Simpson Mountains. 

 
Zm Mutual Formation (Neoproterozoic) – Maroon, pink, and purple quartzite that is 

feldspathic, medium to coarse grained, commonly gritty or pebbly with zones of 
red and white pebbles, locally contains abundant trough cross-beds; contact with 
overlying Prospect Mountain is transitional and can be difficult to place due to 
similar lithologies; 1660 feet (500 m) thick in Sheeprocks, and greater than 3900 
feet (1180 m) exposed in northern Simpson Mountains. 
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Zi Inkom Formation (Neoproterozoic) – Olive-green and maroon slate and argillite 
that is locally micaceous with subordinate interbeds of moderate-brown quartzite 
and pebbly quartzite; present in hanging wall of Government Canyon thrust fault 
in Sheeprock Mountains; in northern Simpson Mountains previously mapped as 
Inkom Formation? by Morris and Kopf (1986) and part of siltstone and quartzite 
unit, undivided (Moore and Sorensen, 1977); thickness is 600 feet (180 m) in 
Sheeprock Mountains, and greater than 790 feet (240 m) in northern Simpson 
Mountains. 

 
Zcc Caddy Canyon Quartzite (Neoproterozoic) – White to very pale pink and 

medium- to dark-brown, medium-bedded, medium-grained quartzite, with 
scattered lenses of white quartz-pebble conglomerate; similar to Prospect 
Mountain Quartzite but generally darker in color; queried in one large area of 
incomplete exposure in northern Simpson Mountains where neither top nor 
bottom contacts exposed (Morris and Kopf, 1986), greater than 3850 feet (1165 
m) thick there. 
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PERMIAN TO CAMBRIAN STRATA OF SOUTHERN OQUIRRH MOUNTAINS, 
SOUTH MOUNTAIN, AND WESTERN TRAVERSE MOUNTAINS 
 
The Permian-Pennsylvanian rocks of the southern Oquirrh Mountains are considered part 
of the Bingham Sequence, present south of the North Oquirrh thrust fault (Tooker and 
Roberts, 1970).  Considering regional relations, and similar to Laes and others (1997) and 
Hintze and Kowallis (2009), we combine Lower Permian (Wolfcampian) and 
Pennsylvanian formations under the Oquirrh Group.  This nomenclature differs from 
existing terminology established in the Oquirrh Mountains (Welsh and James, 1961; 
Tooker and Roberts, 1970), which restricted the Oquirrh Group to strata of Pennsylvanian 
age.  Oquirrh Group strata of the southern Oquirrh Mountains total nearly 20,000 feet 
(6100 m) (Tooker and Roberts, 1970; Swenson, 1975), while equivalent strata in the 
Wasatch Range total up to approximately 29,000 feet (8850 m) (Constenius and others, 
2011).  Regarding the South Mountain-Stockton area, relations indicate that these rocks 
are in a different thrust plate than rocks of the southern Oquirrh Mountains, but we 
disagree with Tooker and Roberts’ separate terminology of formational units (South 
Peak, Salvation, and Rush Lake) that they apply to Oquirrh Group rocks in their South 
Mountain nappe (Tooker and Roberts, 1988; Tooker and Roberts, 1992; Tooker and 
Roberts, 1998; Tooker, 1999); instead, we use nomenclature of the Bingham Sequence.  
We also revised the mapping and stratigraphic interpretations of Welsh and James (1998) 
on South Mountain.  New fossil data are provided in table 6.  Unit descriptions and ages 
for the Permian-Pennsylvanian-Mississippian strata are from Welsh and James (1961), 
Tooker and Roberts (1970), Swenson (1975), Jordan (1979a, 1979b), Tooker (1987), 
Biek (2004), Biek and others (2005), and this study. 
 
Thrust fault 
 
Pdk Diamond Creek Sandstone and Kirkman Formation, undivided (Lower 

Permian, Leonardian? to Wolfcampian) – Gray to tan, weathering to red brown, 
fine-grained sandstone and quartzite that is thin to medium bedded; slope-forming 
unit weathers to chips and blocks; the Kirkman is atypical and may be represented 
by a 30-foot-thick (10 m) sandy limestone at base of unit and some overlying 
sandstone (Welsh and James, 1998) or may be attenuated; the Kirkman is 
regionally a weak, intensely deformed interval (refer to descriptions of this unit in 
the Oquirrh Mountains [Tooker and Roberts, 1970; Swenson, 1975; Laes and 
others, 1997] and Wasatch Range [Constenius and others, 2011]); limited age 
data; top not exposed, incomplete thickness is 2600 feet (790 m) in South 
Mountain. 

 
Pofp Oquirrh Group, Freeman Peak Formation (Lower Permian, Wolfcampian) – 

Light-brown, weathering to red brown, fine-grained sandstone and quartzite; 
medium to thick bedded, resistant, and jointed forming blocky ledges and talus-
covered slopes; thickness is 2900 feet (880 m) in South Mountain; 2400 feet (730 
m) thick on Freeman Peak in Bingham district (Swenson, 1975). 
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Pocp Oquirrh Group, Curry Peak Formation (Lower Permian, Wolfcampian) – 
Dark-gray, weathering to light gray and tan, very fine grained calcareous 
sandstone and siltstone that is thin bedded (poorly), and includes some minor 
quartzite and limestone intervals; sparsely fossiliferous, but worm tracks and trails 
are abundant on bedding planes; quartzite lacks fine banding; forms chippy slopes 
with few ledges; thickness is 1800 feet (550 m) in South Mountain; 2450 feet 
(750 m) thick in reference section on Curry Peak in Bingham district (Swenson, 
1975). 

 
Unconformity? 
 
IPo Oquirrh Group, Bingham Mine and Butterfield Peaks Formations, 

undivided (Upper to Lower Pennsylvanian) – Combined unit in small exposures 
of western Traverse Mountains and southern Oquirrh Mountains. 

 
Tooker and Roberts (1970, 1998) separated the Bingham Mine Formation into the 
Markham Peak and Clipper Ridge Members based on lithology.  Swenson (1975, p. 28) 
did not consider the type locality of the Markham Peak Member to represent a valid 
section and instead informally referred to these two divisions as the upper and lower 
members following Welsh and James (1961).  Although subsequent Kennecott maps 
largely followed Swenson’s mapping, they used the names Markham and Clipper 
Members for the upper and lower parts (Swenson and Kennecott, 1991; Laes and others, 
1997).  We use Swenson’s informal two-member terminology only in the vicinity of 
Bingham mine. 
 
IPobm Oquirrh Group, Bingham Mine Formation, undivided (Upper Pennsylvanian, 

Virgilian-Missourian) – Brown-weathering, fine-grained quartzitic sandstone, 
quartzite, and calcareous sandstone with interbeds of medium- to dark-gray, fine-
grained sandy and cherty limestone; light-brown to pale-red sandstones are very 
fine grained, feldspathic, and cross-laminated; limestone can be poorly bedded; 
overall sandstone predominates over limestone; forms talus-covered slopes with 
some intervening ledges; thickness is 5300 to 6500 feet (1600-2000 m) in 
Bingham district (Welsh and James, 1961; Swenson, 1975) and 6375 feet (1940 
m) in South Mountain (Welsh and James, 1998). 

 
IPobmu 
 Oquirrh Group, Bingham Mine Formation, upper member (Upper 

Pennsylvanian, Virgilian?) – Light-gray to brownish-tan, thin-banded, locally 
cross-bedded, calcareous quartzite with interbedded thin, light- to medium-gray, 
calcareous, fine-grained sandstone, limestone, and siltstone; several of the thin 
calcareous units are locally important as marker beds; unit is very similar to the 
lower member above the Commercial Limestone; 2200 feet (670 m) thick in the 
Oquirrh Mountains (Swenson, 1975). 

 
IPobml 
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 Oquirrh Group, Bingham Mine Formation, lower member (Upper 
Pennsylvanian, Missourian) – Unit includes the Commercial and basal Jordan 
Limestone marker beds (important Bingham ore hosts); most of the unit consists 
of light-gray to brownish-tan, banded orthoquartzite and calcareous quartzite with 
thin, interbedded, light- to medium-gray, calcareous, fine-grained sandstone, 
limestone, siltstone, and minor shale; the Commercial consists of thin-bedded, 
dark-gray to black, argillaceous, silty and cherty limestone, whereas the Jordan is 
thin-bedded, dark-gray, argillaceous and silty, cherty limestone and arenaceous 
limestone; Missourian-age conodont fauna were recovered from the Jordan 
Limestone east of Tooele (S.R. Ritter, Brigham Young University, written 
communication, October 27, 2009); thickness is about 3100 feet (945 m) near 
Middle Canyon (Swenson, 1975). 

 
The Butterfield Peaks Formation was divided into upper and lower parts on Laes and 
others’ (1997) map after Swenson (1975, p. 26).  The upper part corresponds to the 
sandier upper portion of Swenson, whereas the lower part corresponds to Swenson’s 
middle and lower parts, which contain more limestone.  Swenson and Kennecott’s (1991) 
map did not include this separation, and we do not find it useful regionally. 
 
IPobp Oquirrh Group, Butterfield Peaks Formation (Middle to Lower 

Pennsylvanian, Desmoinesian-Morrowan) – Generally characterized by cyclically 
interbedded limestone and clastic intervals; limestone is medium gray and locally 
fossiliferous, arenaceous, cherty, and argillaceous in thin to thick beds; limestone 
contains locally abundant brachiopod, bryozoan, coral, and fusulinid fauna; 
diagnostic black chert weathers brown and locally occurs as spherical nodules and 
laterally linked masses; light-brown calcareous quartzite, orthoquartzite, and 
calcareous sandstone is thin to medium bedded and locally cross-bedded; includes 
some poorly exposed light-gray siltstone and mudstone interbeds; overall 
limestone predominates over quartzite and sandstone, with clastic percentages 
increasing upsection; unit forms ledges and cliffs with regularly intervening 
slopes; thickness is 9000 feet (2765 m) on Butterfield Peaks in the Oquirrh 
Mountains (Tooker and Roberts, 1970). 

 
IPowc Oquirrh Group, West Canyon Limestone (Lower Pennsylvanian, Morrowan) – 

Medium-gray limestone, sandy limestone, and fossiliferous limestone that is thin 
to medium bedded; locally laminated with silt and sand, some sparse chert; 
locally includes minor thin sandstone and quartzite in middle and near contacts; 
fossils include crinoid columnals, brachiopods, bryozoans, rugose corals, and 
fusulinids; forms ledgy exposures; forms basal carbonate package of Oquirrh 
Group; thickness from 1053 to 1456 feet (321-444 m) at reference and type 
sections in the Oquirrh Mountains (Nygreen, 1958; Tooker and Roberts, 1970). 

 
IPMmc 
 Manning Canyon Shale (Lower Pennsylvanian to Upper Mississippian, 

Morrowan to Chesterian) – Lithologically diverse unit of predominantly shale 
with lesser sandstone, quartzite, and limestone; black to grayish purple calcareous 
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and carbonaceous shale and siltstone; light-brown, fine-grained calcareous 
sandstone with cross-bedding; brown-weathering, medium- to thick-bedded 
orthoquartzite with vitreous luster; medium-gray to bluish-gray, thin to thick 
bedded, fossiliferous and argillaceous limestone; fossils include brachiopods, 
bryozoans, rare trilobites, and leaves; weak, slope-forming unit; in Soldier 
Canyon, conodont age data from Webster and others (1984), and palynomorphs 
(C. Morgan, UGS, verbal communication, April 13, 2009) suggest a middle to 
late Chesterian age (table 7); interval of regional decollement, commonly 
exhibiting substantial deformation; Soldier Canyon in the Oquirrh Mountains 
contains one of the few relatively intact sections, although some internal 
disturbance is noted; thickness at Soldier Canyon is 1140 feet (347 m) (Gilluly, 
1932) to 1559 feet (475 m) (Moyle, 1959). 

 
Faults 
 
Mgbus 
 Great Blue Limestone, upper limestone and shale member (Upper 

Mississippian) – Interbedded, banded, silty and arenaceous, blue-gray, medium-
bedded, sparsely fossiliferous limestone and thick section of fissile, greenish-
black shale and interbedded thin chert and quartzite lenses; source of brick clay 
deposits and local variscite deposits north of Fivemile Pass; unit is a different 
facies of the upper limestone member with more shale at south end of the Oquirrh 
Mountains near Fivemile Pass, which Tooker (1999) called a separate structural 
block, whereas Laes and others (1997) mapped it as an upper shale unit within 
their upper limestone unit; Mgbus may be transitional with the Manning Canyon 
Shale; exposed thickness is roughly 2000 feet (610 m). 

 
Fault 
 
Mgbu Great Blue Limestone, upper limestone member (Upper Mississippian) – 

Limestone, cherty and argillaceous limestone, and calcareous shale; sparsely 
fossiliferous and thin to medium bedded forming ledges, cliffs, and slopes; also 
informally called Mercur limestone member (Gordon and others, 2000); unit 
changes to Mgbus southward across Wells-Clay Canyon fault near Fivemile Pass; 
Great Blue age data from Gordon and others (2000); thickness of upper limestone 
member is 3000 feet (915 m) (Gilluly, 1932), and north of Mercur Canyon is 
between 2500 and 2800 feet (760-850 m) (Kirby, in preparation). 

 
Mgbs Great Blue Limestone, Long Trail Shale Member (Upper Mississippian) – 

Black to dark-green calcareous and carbonaceous shale in upper part, fossiliferous 
argillaceous limestone and silty limestone in lower part; thin-bedded, slope-
forming interval between enclosing limestones; maximum thickness is 110 feet 
(33 m) (Gilluly, 1932). 

 
Mgbl Great Blue Limestone, lower limestone member (Upper Mississippian) – Blue-

gray limestone and argillaceous limestone, interbedded with calcareous sandstone 
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and sandy limestone; thin to medium bedded, locally silicified (jasperoid of Laes 
and others, 1997), and locally fossiliferous (brachipods, corals, bryozoans), 
forming ledges, slopes, and cliffs; also informally called Silveropolis limestone 
member (Gordon and others, 2000); upper part of lower limestone member 
(mineralized interval) was called the Mercur series (Laes and others, 1997) and 
Mercur member (Mako, 1999); thickness is 460 to 560 feet (140-170 m) (Gilluly, 
1932). 

 
Mh Humbug Formation (Upper Mississippian) – See unit description under northern 

East Tintic Mountains; thickness is 650 feet (200 m) (Gilluly, 1932). 
 
Md Deseret Limestone (Upper to Lower Mississippian) – See unit description under 

northern East Tintic Mountains; thickness is 650 feet (200 m) (Gilluly, 1932). 
 
Mg Gardison Limestone (Lower Mississippian) – See unit description under 

northern East Tintic Mountains; thickness is 460 feet (140 m) (Gilluly, 1932). 
 
Unconformity 
 
MDfp Fitchville Formation and Pinyon Peak Limestone, undivided (Lower 

Mississippian and Upper Devonian) – Also see unit description under northern 
East Tintic Mountains; gray, coarsely crystalline dolomite that weathers dark 
gray; within upper cliffy part of unit is one massive bed that contains conspicuous 
white calcite fossil casts up to a few inches in diameter, called the “eye bed” 
(Gilluly, 1932); some thin limestone and sandstone beds are present in slope 
below this bed; forms prominent cliff and slope in Dry and Ophir Canyons of the 
Oquirrh Mountains; Gilluly (1932) originally mapped as Jefferson(?) dolomite 
and Tooker (1987) subsequently used Fitchville-Pinyon Peak; thickness is 130 
feet (40 m) (Kirby, in preparation). 

 
Unconformity 
 
Cambrian rock units are only exposed in the core of the Ophir anticline of the 
southwestern Oquirrh Mountains.  Gilluly (1932) noted the lithologic similarities of 
Cambrian units in the Oquirrh Mountains to the East Tintic Mountains area, but was 
unsure of direct correlations and thus applied local names; these names were later used by 
Tooker (1987, 1999).  Rigby (1959b) used East Tintic terminology for the Cambrian rock 
units in the Oquirrh Mountains, and this terminology was also used on Laes and others’ 
(1997) map.  We conclude that although there are similarities to the East Tintic section, 
the lithofacies present warrant use of the local names of Gilluly (1932).  Descriptions and 
thickness data from Gilluly (1932) and Kirby (in preparation). 
 
Cly Lynch Dolomite (Upper? to Middle? Cambrian) – Light-gray dolomite with a 

few limestone beds in lower half; lower part also includes dark-gray dolomite 
containing twiggy bodies (short white carbonate rods less than 1 inch [3 cm] in 
length); thick-bedded, prominent cliff-forming unit in Ophir Canyon; may 
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correlate with Opex Formation? and Cole Canyon and Bluebird Dolomites in the 
East Tintics (Gilluly, 1932; Morris and Lovering, 1961); thickness from 810 to 
1050 feet (245-320 m). 

 
Cb Bowman Limestone (Middle? Cambrian) – Mottled shaley limestone, 

intraformational conglomerate, and oolitic limestone; includes a shaley/hornfels 
unit about 40 feet (12 m) thick at base; sparse trilobite fauna; may correlate with 
upper part of Herkimer Limestone in East Tintics (Gilluly, 1932; Morris and 
Lovering, 1961); thickness is 310 to 345 feet (95-105 m). 

 
Ch Hartmann Limestone (Middle? Cambrian) – Banded gray, mottled, thin-bedded, 

silty and shaley limestone; oolitic toward the top, and contains sparse trilobite 
fauna; may correlate to the lower part of Herkimer Limestone and Teutonic 
Limestone in East Tintics (Gilluly, 1932; Morris and Lovering, 1961); thickness 
is 590 to 630 feet (180-190 m). 

 
Cop Ophir Formation (Middle Cambrian) – Gray shale and micaceous shale, with 

several beds of mottled shaley limestone in middle of unit, and sandy shale and 
quartzite near base; brachiopod and trilobite (Olenellus) fauna; thickness in core 
of Ophir anticline is 280 to 310 feet (85-95 m). 

 
Ct Tintic Quartzite (Middle? to Lower? Cambrian) – White quartzite that weathers 

to reddish brown; bedding is thick and locally irregular and cross-bedded; only 
upper part exposed in core of Ophir anticline, where it becomes increasingly 
shaley and grades into the overlying Ophir Formation; exposed thickness to 300 
feet (90 m). 

 
PENNSYLVANIAN TO NEOPROTEROZOIC STRATA OF THORPE HILLS AND 
NORTHERN EAST TINTIC MOUNTAINS 
 
Unit descriptions, age and thickness data from Disbrow (1957, 1961) and Morris and 
Lovering (1961), in part modified from the work of Lindgren and Loughlin (1919). 
 
IPobp Oquirrh Group, Butterfield Peaks Formation (Middle to Lower 

Pennsylvanian, Desmoinesian-Morrowan) – See unit description under Oquirrh 
Mountains; corresponds to Disbrow’s (1957, 1961) Oquirrh formation units 2 
through 5; Desmoinesian conodont age from Ten Mile Hill (McKean and others, 
2011); incomplete thickness is about 3650 feet (1110 m). 

 
IPowc Oquirrh Group, West Canyon Limestone (Lower Pennsylvanian, Morrowan) – 

See unit description under Oquirrh Mountains; corresponds to Disbrow’s (1957, 
1961) Oquirrh formation unit 1; about 750 feet (230 m) thick. 

 
IPMmc 
 Manning Canyon Shale (Lower Pennsylvanian to Upper Mississippian, 

Morrowan to Chesterian) – See unit description under Oquirrh Mountains; medial 
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limestone interval about 30 to 80 feet (10-25 m) thick; unit thickness is up to 1050 
feet (320 m). 

 
Tenmile Pass fault 
 
We re-evaluated the stratigraphic nomenclature of the Great Blue Limestone in the 
southern Oquirrh and northern East Tintic Mountains.  Based on lithofacies relationships 
over a broader area and palynology data (table 7), we include strata previously mapped 
by Disbrow (1957, 1961) and Morris and Lovering (1961) as the Poker Knolls Limestone 
Member and Chiulos Shale Member with the Manning Canyon Shale, and the Paymaster 
Member and Topliff Limestone Member as the Great Blue Limestone, undivided. 
 
Mgb Great Blue Limestone, undivided (Upper Mississippian) – Blue-gray limestone 

with chert; upper part (the Paymaster Member of others) is mostly limestone with 
some interbedded brown-weathering olive-green shale and quartzite; limestone is 
blue- and medium-gray to tan, fine to medium grained, commonly streaked with 
tan- and red-weathering siltstone and claystone; black chert is common as 
nodules, pods and thin layers; lower part (the Topliff Member of others) is blue-
gray and medium-gray, fine- to medium-grained limestone that is distinctly 
bedded from thin to thick, locally with uncommon nodules of black and brown 
chert; fossils are locally abundant (crinoids, horn corals, bryozoans, brachiopods); 
thickness is 1080 feet (330 m). 

 
Mh Humbug Formation (Upper Mississippian) – Interbedded calcareous quartz 

sandstone, orthoquartzite, and limestone that weather to ledgy slopes; limestone is 
medium to dark gray, medium to very thick bedded, locally cross-bedded, with 
uncommon brachiopod, coral and bryozoa fauna; locally contains some light-gray 
sublithographic limestone in uppermost part; sandstone and quartzite is brown 
weathering and commonly lenticular, medium to very thick bedded, locally cross-
bedded; in isolated exposures can be confused for Oquirrh Group strata; about 
600 feet (180 m) thick. 

 
Md Deseret Limestone (Upper to Lower Mississippian) – Blue-gray limestone that is 

medium to very thick bedded and locally sandy, fossiliferous, and cherty, forming 
ledges and cliffs; basal part contains slope-forming black shale and chert (red 
weathering) of the Delle Phosphatic Shale Member (0 to 30 feet [10 m] thick) 
(also see Sandberg and Gutschick, 1984); in the Tintic mining district, Morris and 
Lovering (1961) subdivided the Deseret above the Delle into the Tetro Member 
and Uncle Joe Member based on lithology, but we did not map these members 
separately; thickness is about 700 feet (215 m). 

 
Mg Gardison Limestone (Lower Mississippian) – Medium- to dark-gray limestone 

and cherty limestone that is very fossiliferous and well bedded; upper part is 
thicker bedded (medium to very thick), sandy and cherty, forming cliffs and 
ledges, whereas lower part is thinner bedded (thin and medium) and less resistant 
forming ledges and slopes; black chert occurs as nodules and thin beds; fossils 
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include rugose and colonial corals, brachiopods, gastropods, and bryozoans, and 
some fossils are replaced by white calcite; 450 feet (140 m) thick. 

 
Unconformity 
 
MDf Fitchville Formation (Lower Mississippian and Upper Devonian) – Commonly 

divided into three parts; upper part consists of very thick bedded pink 
sublithographic limestone capped by a bed of laminated light- and dark-gray 
stromatolitic limestone (the “Curley” limestone, see Proctor and Clark, 1956) that 
is as much as 3 feet (1 m) thick; middle part is black dolomite or limestone with 
scattered pods of chert or coarsely crystalline white dolomite; lower part is light- 
to medium-gray shaly limestone; fossils include corals and brachiopods; forms 
cliffs and ledges; thickness about 300 feet (90 m). 

 
Dpv Pinyon Peak Limestone and Victoria Formation, undivided (Upper Devonian) 

– Pinyon Peak is thin- and very thick bedded, medium-gray to light-blue-gray 
limestone; sandy at the top and containing a brown sandstone and a tan shaley 
limestone unit near the base; fossils include crinoids, brachiopods and bryozoans; 
125 to 175 feet (40-55 m) thick; separated by a probable unconformity from the 
underlying Victoria Formation; Victoria is medium- to light-gray dolomite that is 
fine to medium grained with a minor amount of light-brown, rusty weathering 
quartzite and quartzite breccia; locally a 4-foot-thick (1 m) bed of dark-gray 
dolomite crowded with ¼-inch white dolomite crystals is present a few feet above 
base of formation; Victoria is 125 feet (40 m) thick; Dpv forms slopes and ledges; 
combined unit thickness is 250 to 300 feet (75-90 m). 

 
Unconformity 
 
DOb Bluebell Dolomite (Upper Devonian to Upper Ordovician) – Light- and dark-

gray dolomite, thick and thin bedded, generally banded and mottled in 
appearance, locally cherty at base and sandy near top; sparsely fossiliferous with 
crinoids, corals, and pentamerid brachipods; locally distinctive 10-foot-thick (3 
m) bed of laminated light- and dark-gray dolomite in middle of formation 
(Colorado Chief marker bed of Morris and Lovering, 1961); ledge former; 
contains two unconformities (Budge and Sheehan, 1980); thickness is about 600 
feet (180 m). 

 
Of Fish Haven Dolomite (Upper Ordovician) – Medium- and light-gray dolomite in 

very thick and thin beds that weather to a rough surface texture; nodular chert-
bearing and mottled beds common in upper 1/3 of formation; fossils include 
crinoids, corals, brachiopods; distinctive dark-gray and white mottled dolomite, 
the Leopard Skin marker bed (50 to 100 feet [15-30 m] thick) is at top of 
formation; forms cliffs and slopes; Fish Haven is 270 feet (80 m) thick. 

 
Unconformity 
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Oo Opohonga Limestone (Lower Ordovician) – Distinctive unit of light-blue-gray, 
thin-bedded limestone with seams and beds of yellow, pink, and red mudstone 
that give a striped, mottled or mosaic appearance; flat-pebble conglomerate beds 
common throughout; pods of white chert typical in lower 1/3 of formation; basal 
beds are brown sandstone; slope forming unit with flaggy outcrops; thickness is 
about 800 feet (245 m). 

 
We have not applied the changes to the Ordovician-Cambrian boundary reported in 
Hintze and Kowallis (2009), considering the ongoing debate on this issue. 
 
Cao Ajax Dolomite and Opex Formation, undivided (lowermost Ordovician to 

Upper Cambrian) – Ajax is light- to dark-blue-gray, cherty dolomite with a 
medial interval of creamy white dolomite (Emerald Member) that is 15 to 30 feet 
(5-10 m) thick; chert is less common in lower part; well bedded (thin to thick) 
forming cliffs and ledges; Ajax thickness is 600 feet (180 m); Opex is light- and 
dark-gray limestone mottled and streaked with yellow and red mudstone; thin 
beds of sand-streaked limestone and flat-pebble conglomerate interlayered 
throughout; 10 feet (3 m) of greenish-gray shale near top and light-gray oolitic 
dolomite 40 to 70 feet (12-20 m) thick near base; thin bedded and forms slopes; 
Opex thickness is 250 feet (75 m); combined unit thickness is 850 feet (260 m). 

 
Cc Cole Canyon Dolomite (Middle Cambrian) – Upper part (about 625 feet [190 

m]) of alternating light- and dark-gray dolomite beds; light-gray beds are mottled 
or laminated; dark-gray beds are locally mottled, laminated, or with white twig-
like dolomite/calcite bodies (twiggy bodies) included; lower part (about 200 feet 
[60 m]) of blue-gray limestone streaked and mottled with yellow and red 
mudstone interlayered with light-colored laminated dolomite and with lenses of 
intraformational conglomerate; well stratified (medium to thick bedded) forming 
ridges and steps; thickness is 825 feet (250 m). 

 
Cbh Bluebird Dolomite and Herkimer Limestone, undivided (Middle Cambrian) – 

Bluebird is dusky blue-gray dolomite or limestone with twiggy bodies and is very 
thick bedded forming ridges and ledges; Bluebird thickness is about 200 feet (60 
m); Herkimer is light-blue-gray limestone mottled and striped with yellow and 
red mudstone that is thin to medium bedded; unit of 20-foot-thick (6 m) green to 
tan shale exists about 180 feet (55 m) above base; oolitic and pisolitic near top; 
moderately resistant forming slopes and low cliffs; Herkimer thickness is 400 feet 
(120 m); combined unit thickness is 600 feet (180 m). 

 
Cdt Dagmar Dolomite and Teutonic Limestone, undivided (Middle Cambrian) – 

Dagmar is medium-gray fine-grained laminated dolomite with minor interbedded 
light-gray limestone; distinctive unit is thin-bedded and weathers to creamy white 
color with a blocky fracture; Dagmar is about 75 feet (20 m) thick; Teutonic is 
light- and dark-gray limestone generally mottled and streaked with yellow-brown 
argillaceous lenses; oolite and pisolite beds common in lower and middle parts; 
locally contains Girvanella spherules; medium bedded, forming smooth cliffs and 
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ledges; Teutonic thickness is 420 feet (130 m); combined unit thickness is about 
500 feet (150 m). 

 
Cop Ophir Formation (Middle Cambrian) – Upper part is gray-green micaceous shale 

overlying a medial limestone interval of dark-gray limestone mottled and streaked 
with yellow-brown mudstone; lower part is gray-green shale with minor 
interlayered limestone, and near base is brown and purple sandstone; slope-
forming unit; thickness is about 430 feet (130 m). 

 
Ct Tintic Quartzite (Middle? and Lower? Cambrian) – Pink, white, brown, and 

greenish-gray quartzite that is medium to very thick bedded, cross-bedded, and 
fractured, containing shaly and conglomeratic zones; a thin, altered diabase flow 
is locally interbedded about 980 feet (300 m) above base; lower part is marked by 
a purple conglomerate unit 300 feet (90 m) thick; forms resistant ridges and 
rounded hills; approximately 2500 feet (760 m) thick. 

 
Unconformity 
 
Zbc Big Cottonwood Formation (Neoproterozoic) – Olive-green to brownish-green 

phyllitic shale, argillite, quartzite, and quartzite conglomerate; well bedded and 
slightly metamorphosed; age from Dehler and others (2010); only about 200 feet 
(60 m) exposed along the core of the North Tintic anticline in the East Tintic 
Mountains; maximum exposed thickness in the Tintic district is 1675 feet (510 
m). 
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Figure 1.  Location map showing primary geographic features in the Rush Valley 30' x 60' quadrangle, years 1, 2 and 3 map areas, and hydrogeologic framework study 
area.  TAD is Tooele Army Depot.  The year 1 map area includes part of the Dugway Proving Ground and adjacent areas by Clark and others (2008).  Gardner and Kirby 
(2011) and Kirby and Hurlow (in preparation) are conducting the Rush Valley hydrogeologic study.



Figure 2.  Index map showing primary sources of geologic mapping in the Rush Valley 30' x 60' quadrangle, 
7.5' quadrangles, and hydrogeologic framework study area.



Figure 3.  Comparison of Oquirrh strata of the southern Cedar Mountains.  The stratigraphy used in this map for the Lower 
Permian (Wolfcampian) and Pennsylvanian formations is based on that of the Oquirrh Mountains/Bingham mining district.



Figure 4.  Comparison of Cambrian stratigraphy of the Stansbury Mountains.  The stratigraphy used in this map is the western Utah type rather than the East Tintic type.
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Contact − Angled where scratch

Normal fault – Dashed where approximately 
located, dotted where concealed; bar and ball on 
down-thrown side

Normal fault, concealed – Inferred principally from 
gravity data; bar and ball on down-thrown side

Strike-slip or oblique-slip fault – Dashed where 
approximately located, dotted where concealed; 
arrows and bar and ball indicate relative 
displacement

Fault of unknown geometry – Dashed where 
approximately located, dotted where concealed

Thrust fault – Dashed where inferred, dotted where 
concealed; teeth on hanging wall

Reverse fault – Dotted where concealed; teeth on 
hanging wall

Attenuation fault – Dotted where concealed; boxes 
on hanging wall

Low-angle normal fault – Dotted where concealed; 
boxes on hanging wall

Lineament – From air photo interpretation

Igneous dike (map unit Tqli)

Igneous dike (map unit Tdio)

Igneous dike (map unit Tdmo)

Igneous dike (map unit Tpqmi)

Igneous dike (map unit Tri)

Axial trace of anticline – Dashed where 
approximately located, dotted where concealed; 
arrow shows plunge

Axial trace of overturned anticline − Dashed where 
approximately located, dotted where concealed; 
arrow shows plunge

Axial trace of syncline – Dashed where 
approximately located, dotted where concealed; 
arrow shows plunge

Axial trace of overturned syncline − Dashed where 
approximately located, dotted where concealed; 
arrow shows plunge

Major shorelines of the Bonneville lake cycle (see 
table 1) – 

Bonneville shoreline

Provo shoreline

Shambip shoreline

Smelter Knolls shoreline

Stansbury shoreline

other transgressive and regressive shorelines

Lake Bonneville crest of barrier ridge or delta ridge

Delta distributary channel crest (on map unit 
Qlf/Qls in Skull Valley)

Holocene shoreline of Rush Lake 

Strike and dip of bedding (refer to index map for 
prior mapping sources) – 

Inclined from current mapping

Inclined from prior mapping

Inclined approximate, approximate dip included 
where known 

Vertical

Overturned from current mapping

Overturned from prior mapping

Sand and gravel pit

Mine or quarry

Adit

Shaft

Drill hole

Rock sample location and number for geochemical 
analyses and Ar/Ar age (see tables 3, 4)

Rock sample location and number for prior Ar/Ar 
age analyses (see table 4)

Rock sample location and number for geochemical 
analyses (see table 3)

Tephra sample location and number for 
geochemical analyses and age (see table 2)

Fossil sample location and number for age 
evaluation (see table 6)

Rock sample location and number for U-Pb zircon 
age analyses (see table 5)

Rock sample location and number for palynology 
age analyses (see table 7)

Indicates thin cover of the first unit overlying the 
second unit

GEOLOGIC SYMBOLS

! ! ! ! ! ! ! !! ! ! ! ! ! ! ! ! ! ! ! ! ! !G G G

Qed/Qlf

S

SK

Sh

20

20

H

B

P

30

! ! ! ! ! ! ! !

UTAH GEOLOGICAL SURVEY
a division of 
Utah Department of Natural Resources

Plate 2
Utah Geological Survey Open-File Report 593

Interim Geologic Map of the Rush Valley 30' x 60' Quadrangle

?

?

?
?

?

? ?

?

_n

Dsi

Dg?

Sl

Oes

Op

_ou

_ob

_l

_tl

_pc

O_u

_p

_pm

_m

_um

Camels Back Ridge 
& Simpson Buttes

Mh

Mgb Mgb
Mgbu
Mgbs
Mgbl

Mh

Md

*Mmc
*Mmc

*owc

*obp

*obm *obm

*obp

*owc

*Mmc

*obm
*o*obml

*obp

Pofc

P*o

Southern Cedar Mtns.
& Skull Valley

Davis and Little Davis Mtns.,
Northern Simpson Mtns.,

Southern Stansbury Mountains, Onaqui 
Mtns.,

Northern Sheeprock Mountains, & Vernon 
Hills 

*obw

*
M

w
m

P*ofm

Dsy

?

?

faults

unconformity

unconformity

unconformity

unconformity

unconformity? unconformity

unconformity

unconformity?

unconformity

fault

fault

fault

L.
M

.
U

.
U

pp
er

L.
U

pp
er

L.
M

.
U

.
Lo

w
er

M
IS

S
IS

S
IP

P
IA

N
D

E
V

O
N

IA
N

P
E

N
N

.
P

E
R

M
IA

N

P
A

L
E

O
Z

O
I

C

K
-T

T R

Lo
w

er
M

id
dl

e
U

.
L.

-M
.

S
IL

.
C

A
M

B
R

IA
N

O
R

D
.

^tw

Ppfm

Ppg

Pdc

Pofc
Pofp
Pocp

Mg

MDfp

M
D

fs

M
D

gs

DOu

Op

Pk
Pdk

Mh

Mgbs
Mgbu

Mgbl

Md

Mg

MDfp

fault

fault

fault

Southern Oquirrh Mountains,
South Mountain &

Western Traverse Mountains

CORRELATION OF MESOZOIC, PALEOZOIC, AND PRECAMBRIAN GEOLOGIC UNITS
Rush Valley 30' x 60' Quadrangle

M
.

L.

Dst

Dsi

Dsy

SOu

Dg

Oe

*obmu

Mgbus

_ly

_h

_b

_op

_t

Thorpe Hills & Northern
East Tintic Mountains

_t

_op

_dt

_bh

_c

_ao

Oo
unconformity

Of

DOb

Dpv
MDf
Mg

Md

Mh

Mgb

fault

*Mmc

*owc

*obp

unconformity

unconformity

TKj
?

?

=

N
eo

pr
ot

.

_wh

_ws

unconformity

Zbc

unconformity

Ou

fault

  
  

  
  

F
A

U
L

T
S

?

fault

fault

*owc

T
H

R
U

S
T

  
  

  
  

F
A

U
L

T

T
H

R
U

S
T

  
  

  
  

F
A

U
L

T

C
E

N
O

ZO
IC

an
d

M
E

S
O

ZO
IC

faults

Ma

23

100

251

~246

299

318

359

416

444

488

542

Mg?

fault

Ok

_n

_o

_l

_tl

_pc

_u

fault

Zm

Zi

Zcc

*Mmc

TKj
?

?
TKj
?

?

WEST EAST

Qal

Qafo

QTaf

Qafb

Qsm Qes Qed Qei Qpm Qlfy QlsyQafy Qat

Qlg Qls Qlf

Qc Qla Qac
Qea

Qh

Qdg

EolianSpringAlluvial Lacustrine and Deltaic
Col-
luvialGlacial

Mixed-
Environment

Human- 
Derived

Qg

Qe
Qmtc

Qms

P
lio

ce
ne

Qai

?

?

?

CORRELATION OF QUATERNARY GEOLOGIC UNITS
Rush Valley 30' x 60' Quadrangle

Mass Movement

Q
U

AT
E

R
N

A
R

Y

H
ol

oc
en

e
P

le
is

to
ce

ne

up
pe

r
m

id
dl

e
lo

w
er

TE
R

TI
AR

Y

?

?

Ma

0.0117

0.126

2.588

0.781

5.332

Ts?

M
IO

C
E

N
E

O
LI

G
O

C
E

N
E

E
O

C
E

N
E

lo
w

er
up

pe
r

m
id

dl
e

Tsl

Trr

Ts

#Tvs

+Tdi +Tac
+Taci

Southern
Stansbury
Mountains

Southern
Cedar Mountains

and
Skull Valley

Yo
un

ge
r s

ui
te

O
ld

er
 s

ui
te

#Tvbs

Tvfs
Tvfb #Trf

*Tvfa

*Tvlb

*Tvfo

*Tvlo Tvfou Tsu

*Tdio

Tri

*Tai

*Tli

*Tqli

Tqmi
#Tpqmi

Tmi

#Tbi

#

Extrusive and Sedimentary Intrusive

Southern Oquirrh Mountains, South Mountain, Western Traverse Mountains

CORRELATION OF TERTIARY GEOLOGIC UNITS
Rush Valley 30' x 60' Quadrangle

23

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

Ma

+  New 40Ar/39Ar age
*   40Ar/39Ar age
•   Zircon age
#  K-Ar age
x  Tephra correlation/interpolation age

up
pe

r

?

?

?

?

5.3

?

?

?

?

?

?

?

?

*

Tsl

Tb

Tbav

Tdv

Trv

Tpc

Tlst

Tsc
Ttlr
Tp

Northern East Tintic MountainsVernon Hills
and

Rush Valley

*

**

Tsl
x

x

x

Tdm

Tvm

*

?

?
Tsw

WEST EAST

Tsb
*

Tlsa
Tlsl

x

*

26

27

24

25
Tfb

Tlg

*Trj

*Trdc

?

?

Taf

?

Northern Simpson
Mtns.,

Northern Sheeprock
Mountains

?

?

?

?

Tdmo

?

?

*

*

•

•

44

45

46

47

48

#

?

Ts

•

?

?

2.5

P
LI

O
C

E
N

E

•

Ts?

Ts? *

*

*
#

#

?

?

?

?

?

?

?

?

LITHOLOGIC COLUMN 
Southern Cedar Mountains, Skull Valley

THICKNESS
Feet (Meters)

GEOLOGIC
UNIT

TIME-
STRATI-

GRAPHIC 
UNIT

LITHOLOGY

Butterfield 
Peaks 

Formation 

500-800
(150-245) 

West 
Canyon 

Limestone 

Interval of regional 
decollement

5400 (1650)  

1500-2000
(450-600) 

*Mmc 
Manning 
Canyon
Shale 

Great Blue 
Limestone 2440+ (745+) 

Unconformity?

Unconformity

Tuff

Lava flows, lahars, 
tuffs

Humbug 
Formation 

Mgb 

1014+ (310+) Mh 

faults 

U
pp

er

2800 (850) 
Bingham

Mine 
Formation 

3500 (1070) 

Freeman
Peak

and Curry 
Peak 

Forma-
tions 

1200 (370) 

Andesitic
and dacitic

rocks of 
southern 

Cedar 
Mountains 

Tac

650 (200) 
Rhyolite of 

Rydalch 
Canyon area 

Trr

Triticites

Cyclic lithologic 
character

Cliffy near top

Fusulina

Chaetetes

Beedeina

Millerella

"Worm trail" markings

Schwagerina

38.17 Ma Ar/Ar
40.66 Ma Ar/Ar
41.73 Ma Ar/Ar

MAP 
SYMBOL

0-200 (60) Ts Tertiary strata 

*
o

b
p

*
o

b
w

*
p

o
w

c

M
id

dl
e

Lo
w

er
U

pp
er

M
IS

S
IS

S
IP

P
IA

N

U
pp

er

M
IS

S
IS

S
IP

P
IA

N
P

E
N

N
S

Y
LV

A
N

IA
N

P
E

R
M

IA
N

P
of

c 

Lo
w

er
E

oc
en

e

TE
R

TI
A

R
Y

*
M

w
m

 

O
qu

irr
h 

G
ro

up

faults

O
R

D
.

L-
U Ord. strata

undiff. Ou ~200+ (~60+) Hickman Knolls
breccia

fault

M L Gardison Ls? Mg? >600 (180)

39.18 Ma Ar/Ar

P
*

o

*
o

b
m

P
*

o
fm


