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MAP UNIT DESCRIPTIONS 
 
QUATERNARY 
Alluvial deposits 
Qal1 Stream alluvium (Holocene) − Moderately sorted sand, silt, clay, and pebble to 

boulder gravel deposited in active stream channels and floodplains of the Sevier 
River and major tributaries; locally includes minor stream-terrace alluvium as 
much as about 10 feet (3 m) above current base level; probably less than 30 feet 
(<9 m) thick. 

 
Qat Stream-terrace alluvium (Holocene to middle? Pleistocene) − Moderately sorted 

sand, silt, and pebble to boulder gravel that forms incised gently sloping terraces 
above principal streams in the mapped area; deposited in stream-channel 
environment, but locally includes colluvium and small alluvial fans; terraces are 
at elevations of 10 to 120 feet (3-35 m) above adjacent streams, but are not 
subdivided here due to limitations of map scale; typically less than 20 feet (<6 m) 
thick. 

 
Qaly Younger stream alluvium (Holocene) − Similar to stream alluvium (Qal1) and 

lower elevation stream-terrace alluvium (Qat), but undivided here due to 
limitations of map scale; includes small alluvial-fan deposits from tributary 
drainages; locally includes historical debris-flow and debris-flood deposits 
derived from tributary drainages, as, for example, the deposits of the 1995 Black 
Mountain debris flow that entered the upper reaches of Coal Creek in Cedar 
Canyon (Giraud and Lund, 2006); typically less than 20 feet (<6 m) thick, but 
deposits of major stream valleys may locally exceed 30 feet (9 m) thick. 

 
Qalo Older stream alluvium (Holocene and upper Pleistocene) – Similar to lower- to 

middle-elevation stream-terrace alluvium (Qat), but mapped in upland drainages 
not well graded to the Sevier River; typically less than 20 feet (<6 m) thick. 

 
Qao Oldest stream alluvium (Pleistocene) – Moderately sorted sand, silt, and pebble 

to boulder gravel that forms topographically inverted channel deposits at the 
mouth of Clear Creek and on the south side of Panguitch Lake, both in the 
Panguitch Lake 7.5’ quadrangle; the latter deposits were well exposed near 
Panguitch Lake in excavations associated with a new housing development that 
revealed interbedded sand and pebbly to cobbly, locally iron-stained gravel 
containing clasts mostly of the Isom Formation (Ti; typically grussy weathering) 
and subordinate chalcedony and quartzite, but apparently lacking basalt; unit also 
includes deposits that underlie the nearby Cooper Knoll lava flow and that consist 
of subrounded to rounded pebbles to boulders of the Isom Formation, mafic 
volcanic rocks, chalcedony, and, especially near the base of the deposits, quartzite 
pebbles and cobbles; the source of the quartzite pebbles and cobbles is unknown, 
but they may be recycled from the Grand Castle Formation now exposed in 
grabens below the western rim of the Markagunt Plateau; deposits near Panguitch 
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Lake are 40 to 60 feet (12-18 m) thick, and those underlying the Cooper Knoll 
lava flow are as much as 120 feet (35 m) thick. 

 
Qam Marsh alluvium (Holocene and upper Pleistocene) − Dark-yellowish-brown clay, 

silt, sand, and minor gravel lenses deposited in closed depressions on landslides 
and glacial moraines in the Lowder Creek area east of Brian Head peak; forms 
small marshy areas characterized by cattails and other hydrophilic vegetation; 
typically less than 10 feet (3 m) thick, but marsh alluvium of Lowder Creek bog is 
at least 21 feet (7 m) thick (Mulvey and others, 1984). 

 
Qap Pediment alluvium (Holocene and Pleistocene) – Poorly sorted, subangular to 

rounded sand and gravel that forms a locally resistant cap that overlies eroded 
bedrock surfaces or locally overlies old fan alluvium (Taf, Qafo) in the Sevier 
Valley near Panguitch; deposited principally as debris flows, debris floods, and in 
ephemeral stream channels; probably less than 20 feet (<6 m) thick. 

 
Qaf1 Level 1 fan alluvium (Holocene) − Poorly to moderately sorted, non-stratified, 

subangular to subrounded, clay- to boulder-size sediment deposited principally by 
debris flows and debris floods at the mouths of active drainages; equivalent to the 
upper part of younger fan alluvium (Qafy), but differentiated because Qaf1 
typically forms smaller, isolated fans; probably less than 30 feet (<9 m) thick. 

 
Qaf2 Level 2 fan alluvium (Holocene and upper Pleistocene) − Similar to level 1 fan 

alluvium (Qaf1), but forms inactive, incised surfaces cut by younger stream and 
fan deposits; equivalent to the older, lower part of younger fan alluvium (Qafy); 
these deposits preserve previously unreported fault scarps east and north of 
Summit in southern Parowan Valley that appear to be the southwest continuation 
of the Parowan Valley faults that Black and Hecker (1999) inferred to be latest 
Pleistocene to early Holocene in age; probably less than 30 feet (<9 m) thick. 

 
Qafy Younger fan alluvium (Holocene and upper Pleistocene) − Poorly to moderately 

sorted, non-stratified, subangular to subrounded, boulder- to clay-size sediment 
deposited at the mouths of streams and washes; forms both active depositional 
surfaces (Qaf1 equivalent) and low-level inactive surfaces incised by small 
streams (Qaf2 equivalent) that are undivided here; deposited principally as debris 
flows and debris floods, but colluvium locally constitutes a significant part; small, 
isolated deposits are typically less than a few tens of feet thick, but large, 
coalesced deposits in Sevier and Parowan Valleys are much thicker and form the 
upper part of Sevier Valley basin-fill deposits. 

 
Qafo Older fan alluvium (Pleistocene) – Poorly to moderately sorted, non-stratified, 

subangular to subrounded, boulder- to clay-size sediment with moderately 
developed calcic soils (caliche); forms broad, gently sloping, incised surfaces in 
Sevier and Parowan Valleys; fault scarps locally prominent on these deposits; 
deposited principally as debris flows and debris floods; exposed thickness as 
much as several tens of feet. 



 4 

 
Qafc Coalesced fan alluvium of Parowan Valley (Holocene and Pleistocene) – 

Similar to younger fan alluvium but forms large, coalesced fans of Parowan 
Valley; typically exhibits a lower overall slope than younger fan alluvium (Qafy), 
which we mapped as smaller fans close to the range front; forms unfaulted, active 
surfaces deposited principally as debris flows and debris floods; thin planar beds 
with small snails exposed in arroyo walls immediately east of Winn Gap (at the 
south end of the Red Hills) may represent deposits of a shallow lake or playa 
(Biek, Maldonado and Sable, in preparation), but it is unclear what may have 
blocked the outlet at Winn Gap (alternatively, these deposits may simply be distal 
fan alluvium); thickness uncertain, but Hurlow (2002) showed that Quaternary 
and Neogene basin fill is in excess of 2000 feet (600 m) thick in southern 
Parowan Valley west of Parowan and that this basin fill thickens to the northeast; 
only the uppermost part of this basin-fill is included in map unit Qafc, which we 
assume to be in excess of several tens of feet thick. 

 
Qaf Oldest fan alluvium (Pleistocene) – Similar to older fan alluvium, but forms 

deeply dissected surfaces with little or no remaining fan morphology; preserved in 
the footwall of inferred faults in southern Sevier Valley; also used for deposits 
that enclose the 1.0 Ma Summit lava flow and overlie the 1.3 Ma Red Hills lava 
flow at the south end of the Red Hills; maximum exposed thickness is about 150 
feet (45 m). 

 
Artificial deposits 
Qf Artificial fill (Historical) − Engineered fill used to construct the dam at Navajo 

Lake; fill of variable thickness and composition should be anticipated in all 
developed or disturbed areas; typically less than 20 feet (6 m) thick. 

 
Qfd Disturbed land (Historical) − Area in Castle Valley (about 5 miles [ 9 km] 

southwest of Panguitch Lake) mapped because it obscures extent of glacial 
deposits and landforms; also used for large sand and gravel operation southeast of 
Panguitch.  

 
Colluvial deposits 
Qc Colluvium (Holocene and upper Pleistocene) − Poorly to moderately sorted, 

angular, clay- to boulder-size, locally derived sediment deposited by slope wash 
and soil creep on moderate slopes and in shallow depressions; locally grades 
downslope into deposits of mixed alluvial and colluvial origin; mapped only 
where it conceals contacts or fills broad depressions; the Claron and Brian Head 
Formations and Upper Cretaceous strata shed enormous amounts of colluvium, 
such that an apron of heavily vegetated colluvium (unmapped because it forms a 
veneer having poor geomorphic expression) typically envelops at least the lower 
part of steep slopes along their outcrop belt; typically less than 20 feet (6 m) thick. 

 



 5 

Eolian deposits 
Qed Eolian dune sand (Holocene) − Grayish-pink to pale-red, well-sorted silt and 

fine-grained sand largely stabilized by vegetation; most of the sand consists of 
tiny clay pellets eroded from the Claron Formation and carried eastward by strong 
winds and updrafts where it was deposited in the lee of the Cedar Breaks 
escarpment; typically less than 15 feet (5 m) thick. 

 
Qes Eolian sand (Holocene) − Yellowish-brown to reddish-brown, moderately well 

sorted sand and silt derived from deflation of Little Salt Lake playa deposits 
located to the south and west; forms thin sheets and poorly developed dunes 
partly covered by sparse vegetation; generally more saline than underlying 
alluvium and so allows greasewood to flourish at the expense of sagebrush; 
description modified from Maldonado and Williams (1993b); typically less than 6 
feet (2 m) thick. 

 
Glacial deposits 
Glacial till and outwash are present east of Brian Head peak in the Castle Creek and 
Lowder Creek drainages and in the greater Castle Valley area.  These deposits are of the 
Pinedale alpine glacial advance and an older glaciation of unknown Quaternary age 
(possibly the Bull Lake alpine glacial advance).  Pinedale deposits in their type area in 
the Wind River Range of Wyoming are about 12 to 24 ka (Imbrie and others, 1984) (with 
glacial maxima about 16 to 23 ka based on cosmogenic 26Al and 10Be dating; Gosse and 
others, 1995), and are roughly coeval with the late Wisconsin glaciation, Last Glacial 
Maximum (LGM), and marine oxygen isotope stage 2 (MIS 2).  Early Wisconsin glacial 
moraines (MIS 4, about 59 to 71 ka; Imbrie and others, 1984) are not known in Utah 
(Laabs and Carson, 2005).  Deposits of the Bull Lake alpine glacial advance in their type 
area in the Wind River Range of Wyoming are about 128 to 186 ka (Imbrie and others, 
1984) (with glacial maxima about 140 to 160 ka; Gosse and Phillips, 2001; Sharp and 
others, 2003), and are roughly coeval with the Illinoian glaciation or MIS 6. 
Qgtp Glacial till of Pinedale age (upper Pleistocene) – Non-stratified, poorly sorted, 

sandy pebble to boulder gravel in a matrix of sand, silt, and minor clay; clasts are 
matrix supported, subangular to subrounded, and were derived from the Leach 
Canyon, Isom, and Brian Head Formations and the Markagunt megabreccia 
exposed in the headwaters of the Castle Creek and Lowder Creek drainage basins; 
terminal moraine at the west end of Castle Valley is at an elevation of about 9750 
feet (2973 m), whereas the terminal moraine of the smaller Lowder Creek basin is 
at Long Flat at an elevation of about 10,100 feet (3080 m); recessional and lateral 
moraines and hummocky, stagnant ice topography are locally well developed, but 
sculpted bedrock is absent or inconspicuous, probably owing to the relatively 
small size and suspected short duration of the glaciers (Mulvey and others, 1984); 
well-developed terminal and recessional moraines are as much as 120 feet (37 m) 
thick, but till is much thinner elsewhere and locally consists only of scattered 
boulders or a veneer of meltout till on bedrock. 

The Brian Head-Sidney Peaks area marks the southernmost occurrence of 
late Pleistocene glaciation in Utah (Mulvey and others, 1984), which was first 
briefly described by Gregory (1950); Agenbroad and others (1996) interpreted 
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glacial deposits and features that they attributed to their “Mammoth Summit 
glacier” at the southwest side of Brian Head peak and northern edge of Cedar 
Breaks National Monument, but that we interpret as landslide deposits and in-
place Brian Head Formation, the latter partly covered by a lag of large blocks of 
the Isom Formation. 

Till is Pinedale age based on distinct, well-preserved morainal 
morphology and relatively unweathered clasts, and minimum limiting age of 
14,400 ± 850 14C yr B.P. from marsh deposits of the Lowder Creek bog that 
overlies the till (Mulvey and others, 1984; Currey and others, 1986; see also 
Anderson and others, 1999); Madsen and others (2002) identified the 14,300 14C 
yr B.P. Wilson Creek #3 ash (erupted from Mono Craters in California) in the 
Lowder Creek bog; Marchetti and others (2005, 2007) reported 3He cosmogenic 
ages of 20.0 ± 1.4 to 23.1 ± 1.3 ka on basaltic andesite boulders on moraines of 
the main Pinedale advance on Boulder Mountain approximately 80 miles (130 
km) to the northeast; Weaver and others (2006) reported 3He cosmogenic ages of 
21.1 ± 2.1 to 23.2 ± 3.7 ka on andesite boulders on moraines of the main Pinedale 
advance on the Fish Lake Plateau just northwest of Boulder Mountain; these ages 
coincide with the global LGM (21 ± 2 ka) and thus likely are the age of the main 
Pinedale moraines on the Markagunt Plateau; Marchetti and others (2005) also 
reported a smaller advance at 15.2 ± 0.5 to 16.8 ± 0.5 ka in the Fish Creek 
drainage on Boulder Mountain. 

 
Qgop Glacial outwash of Pinedale age (upper Pleistocene) – Moderately to well-

sorted, generally subrounded, clast-supported, pebble to boulder sand and gravel; 
clasts are typically little weathered and of the same provenance as glacial till 
(Qgtp); mapped on the east side of Castle Valley where the deposits likely 
represent the waning stages of Pinedale glaciation; probably about 20 to 30 feet 
(6-9 m) thick. 

 
Qgtu Older glacial till of uncertain pre-Pinedale age (middle? Pleistocene) – Similar 

to glacial till of Pinedale age, but glacial landforms are poorly preserved or 
absent; forms a low-relief, rubble-covered, locally hummocky surface both 
northeast and southwest of the Long Flat cinder cone (peak 10,392, the 
southernmost map unit Qblfc); the northeast flank of the cinder cone is 
conspicuously truncated, perhaps by this glacial advance; also forms low hills 
south of Castle Valley, in the southwest part of the Panguitch Lake 7.5’ 
quadrangle, that are composed almost entirely of large blocks of Leach Canyon 
Formation, with minor blocks of Isom Formation and chalcedony, that we infer to 
be deeply eroded remains of a medial or recessional moraine; Mulvey and others 
(1984) and Currey and others (1986) first suggested that glacial till older than 
Pinedale age may be present in the Brian Head quadrangle, west of Castle Valley; 
we sampled a sandy till exposed in a bluff northwest of the confluence of 
Mammoth and Crystal Creeks (map unit Qgtou) that yielded an Optically 
Stimulated Luminescence  (OSL) age of 48.95 ± 19.24 ka, suggesting that the 
deposits may correspond to the MIS 3-4 advance; however, given the widespread 
extent and degree of incision of Qgtou deposits, we interpret these glacial deposits 
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to be older, more likely of Bull Lake age; probably about 10 to 30 feet (3-10 m) 
thick. 

 
Qgtou Older glacial till and outwash, undivided (upper to middle? Pleistocene) – 

Similar to older glacial till of uncertain pre-Pinedale age, but forms broad, open, 
boulder-strewn and sage-brush-covered, eastward-sloping surfaces of the Castle 
Creek and Mammoth Creek areas; exposures just north of the junction of Crystal 
Creek and Mammoth Creek suggest that most of this surface is underlain by till 
now deeply incised at its eastern end; glacial outwash deposits, especially those 
graded to the Pinedale terminal moraines, are presumed to be present locally on 
this till plain, but are not readily differentiated at this map scale; Mulvey and 
others (1984) and Currey and others (1986) briefly reported on possible ice wedge 
polygons as evidence for periglacial features on the southwest side of Castle 
Valley; glacial till is as much as 60 feet (18 m) thick where exposed near the 
confluence of Castle and Mammoth Creeks. 

 
Lacustrine and playa deposits 
Qlg Coarse-grained lacustrine sediment (Holocene and upper Pleistocene) – Sand 

and gravel deposited at the east end of Navajo Lake, which formed behind a lava 
dam created by the Henrie Knolls lava flows; probably 10 to 15 feet (3-5 m) thick. 

 
Qlp Little Salt Lake playa deposits (Holocene) – Calcareous, saline, and gypsiferous 

gray clay, silt, and fine-grained sand deposited on the flat playa floor of Little Salt 
Lake in the southwest part of Parowan Valley; locally includes small dunes of 
eolian silt; playa formed in response to relative uplift of the Red Hills structural 
block (Threet, 1952; Maldonado and Williams, 1993a, b); the playa reflects 
ponded drainage and represents the latest stage in the history of antecedent 
drainage through Parowan Gap; description modified from Maldonado and 
Williams (1993b); we infer that a playa has occupied this area intermittently 
throughout the Pleistocene, but near-surface deposits are doubtless Holocene in 
age; at least 25 feet (8 m) thick. 

 
Qlm Little Salt Lake playa-margin deposits (Holocene and upper Pleistocene) – 

Calcareous, saline, and gypsiferous gray clay, silt, sand, and local volcanic and 
quartzite pebbles, deposited on gentle slopes around the margin of Little Salt Lake 
playa; periodically flooded during high lake levels; includes small alluvial fans, 
eolian sand and silt, and alluvium; less than 12 feet (4 m) thick. 

 
Mass-movement deposits 
Qms, Qmsh, Qms?, Qms(Kd), Qms(Ti), Qms(Tql) 
 Landslides (Historical? and upper? Pleistocene) − Very poorly sorted, locally 

derived material deposited by rotational and translational movement; composed of 
clay- to boulder-size debris as well as large, partly intact, bedrock blocks; 
characterized by hummocky topography, numerous internal scarps, chaotic 
bedding attitudes, and common small ponds, marshy depressions, and meadows; 
the largest landslide complexes involve tuffaceous strata of the Brian Head 
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(Tbhv) and Dakota (Kd and Ktd) Formations, and to a lesser extent the Limerock 
Canyon Formation (Tl), and are several square miles in size; undivided as to 
inferred age because new research shows that even landslides having subdued 
morphology (suggesting that they are older, weathered, and have not experienced 
recent large-scale movement) may continue to exhibit slow creep or are capable  
of renewed movement if stability thresholds are exceeded (Ashland, 2003); Lund 
and others (2009) reported on a rock fall associated with the large landslide in 
Cedar Canyon where State Highway 14 crosses the upper part of the Dakota 
Formation; Qmsh denotes landslides known to be active in historical time, but any 
landslide deposit may have been historically active even if not so identified; large 
rotational slump blocks of Isom Formation (Qms[Ti]) and Leach Canyon 
Formation (Qms[Tql]) are mapped in the Yankee Meadows graben and in the 
lower part of the Lowder Creek basin, and slump blocks of Dakota Formation 
(Qms[Kd]) are mapped in Cedar Canyon; query indicates areas of unusual 
morphology that may be due to landsliding; thickness highly variable, but 
typically several tens of feet or more thick and the largest landslides, for example 
at Yankee Meadows graben, may be as much as 600 feet (200 m) thick 
(Maldonado and others, 1997). 

Dense forests and widespread colluvium may conceal unmapped 
landslides, and more detailed imaging techniques such as LiDAR may show that 
many slopes, particularly those developed on the Brian Head (Tbhv), Bear Valley 
(Tbv), and Limekiln Knoll (Tl) Formations and on Upper Cretaceous strata host 
surficial deposits that reveal evidence of creep or shallow landsliding.  
Understanding the location, age, and stability of landslides, and of slopes that may 
host as-yet unrecognized landslides, requires detailed geotechnical investigations. 

 
Qmt Talus (Holocene and upper Pleistocene) − Poorly sorted, angular cobbles and 

boulders and finer-grained interstitial sediment deposited principally by rock fall 
on or at the base of steep slopes; talus that is part of large landslide complexes is 
not mapped separately; talus is common at the base of steep slopes across the map 
area, but is only mapped where it conceals contacts or forms broad aprons below 
cliffs of resistant bedrock units; typically less than 30 feet (9 m) thick. 

 
Mixed-environment deposits 
Qac Alluvium and colluvium (Holocene and upper Pleistocene) − Poorly to 

moderately sorted, generally poorly stratified, clay- to boulder-size, locally 
derived sediment deposited in swales and small drainages by fluvial, slope-wash, 
and creep processes; generally less than 20 feet (6 m) thick. 

 
Qaco Older alluvium and colluvium (upper Pleistocene?) − Similar to mixed alluvium 

and colluvium (Qac), but forms incised, isolated remnants, typically in the upper 
reaches of streams that drain the map area; probably about 20 to 30 feet (6-9 m) 
thick. 

 
Qacf Colluvium and fan alluvium (Holocene and upper Pleistocene?) − Poorly to 

moderately sorted, non-stratified, clay- to boulder-size sediment deposited 
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principally by debris flows, debris floods, and slope wash at the mouths of active 
drainages and the base of steep slopes; locally reworked by small, ephemeral 
streams; forms coalescing apron of fan alluvium and colluvium that cannot be 
mapped separately at this scale; typically 10 to 40 feet (3-12 m) thick. 

 
Qacfo Older colluvium and fan alluvium (Pleistocene) − Mapped below the west edge 

of the Markagunt Plateau, where it consists of poorly sorted, boulder- to clay-size 
sediment mostly derived from the Claron, Brian Head, and Isom Formations; 
deposited principally by debris flows, debris floods, and slope wash; typically 
forms a resistant cap on isolated hill tops and ridges underlain by Upper 
Cretaceous strata, remnants of a once larger apron of sediment shed off the 
plateau and now preserved as deeply dissected inverted valleys; also forms broad 
bench, preserved in the Iron Peak graben, west of the town of Brian Head, where 
it is locally exposed in the main scarp of a large landslide complex southeast of 
Sugarloaf Mountain (T. 36 S., R. 9 W., SE1/4SW1/4 section 8); also forms 
incised, isolated remnants south of Haycock Mountain, in the upper reaches of the 
Clear Creek drainage, and a single deposit southeast of Brian Head peak; typically 
about 20 to 30 feet (6-9 m) thick but larger deposits may locally exceed 50 feet 
(15 m) thick. 

 
Qae Alluvium and eolian sand (Holocene and upper Pleistocene) − Moderately to 

well sorted, mostly light-reddish-brown silt and sand deposited by sheetwash and 
ephemeral streams in small drainages and swales on the Henrie Knolls lava flow 
in the west-central part of the Henrie Knolls quadrangle; probably less than 10 
feet (3 m) thick. 

 
Qea Eolian sand and alluvium (Holocene and upper Pleistocene) − Moderately to 

well sorted, yellowish-brown sand deposited by wind and locally reworked by 
ephemeral streams; includes sand, silt, clay, and pebble to boulder gravel of 
stream channels; mapped in the southern Red Hills; probably less than 20 feet (6 
m) thick. 

 
Qaec Alluvium, eolian sand, and colluvium (Holocene and upper Pleistocene) − 

Moderately sorted, light-reddish-brown and moderate- to dark-yellowish-brown 
silt and sand and locally gravelly lenses deposited in swales and small drainages 
on and adjacent to the Henrie Knolls lava flow (Qbhk); the margins of the 
deposits include significant colluvium derived from adjacent hillslopes developed 
on the Claron Formation and basaltic lava flows; soils developed on this unit have 
an argillic horizon 1 to 1.5 feet (0.3-0.5 m) thick of moderate-reddish-brown 
sandy clay and clayey fine-grained sand; typically less than 10 feet (3 m) thick, 
although deposits in the Cow Lake area, south of the Henrie Knolls flows, are 
likely as much as 20 feet (6 m) thick. 

 
Qca Colluvium and alluvium (Holocene to middle Pleistocene) − Poorly to 

moderately sorted, angular, clay- to pebble-size, locally derived sediment 
deposited principally by slope wash and locally reworked by alluvial processes; 
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typically mapped where lava flows dammed local washes causing ponding of 
mixed colluvial and alluvial sediment; distal, finer-grained parts form broad, open 
meadows; thickness uncertain, but likely less than about 20 feet (6 m) thick. 

 
Qce Colluvium and eolian sand (Holocene to upper Pleistocene) − Poorly to 

moderately sorted, angular, clay- to boulder-size, locally derived sediment ― 
partly covered by a veneer of eolian sand ― deposited by slope wash on moderate 
slopes and in shallow depressions in the Red Hills graben south of Parowan Gap; 
colluvial debris is derived from the Red Hills lava flow and underlying Navajo 
Sandstone; probably less than 20 feet (6 m) thick. 

 
Qmtc Talus and colluvium (Holocene and upper Pleistocene) – Poorly sorted, angular 

to subangular, cobble- to boulder-size and finer-grained interstitial sediment 
deposited principally by rock fall and slope wash on steep slopes throughout the 
quadrangle; includes minor alluvial sediment at the bottom of washes; generally 
less than 30 feet (9 m) thick. 

 
Qmsc Landslides and colluvium (Holocene and upper Pleistocene) – Landslides and 

colluvium impractical to differentiate at this scale; typically mapped below the 
west rim of the Markagunt Plateau, where Upper Cretaceous strata, locally 
covered by basalt talus and colluvium, reveal evidence of slumping and soil 
creep; as much as several tens of feet thick. 

   
Qla Lacustrine sediment and alluvium (Holocene) − Not exposed, but forms the 

meadow of Blue Spring Valley about 2 miles (3 km) southwest of Panguitch 
Lake, which we interpret to be moderately to well-sorted, thinly bedded, light-
gray and light-brown, fine-grained sand, silt, and clay derived principally from 
Brian Head strata in the Bunker and Deer Creek drainages; upper surface is 
marked by numerous small stream channels and meander cutoffs; also mapped 
near the east end of Navajo Lake, where it consists of fine-grained sediment 
eroded from the red member of the Claron Formation. 

Blue Spring Valley was flooded to form a shallow reservoir following 
completion of the Blue Spring Valley dam in the late 1800s or early 1900s; the 
small dam was breached by 1917 (Ipson and Ipson, 2008).  The valley is now 
drained at its north end by Spring Creek, which may have formed in response to 
the Miller Knoll lava flows that blocked the original outlet at the southeast end of 
the valley possibly as late as middle Holocene time.  Lacustrine sediment and 
alluvium is likely several tens of feet thick in Blue Spring Valley, and may overlie 
stream deposits of ancestral Bunker Creek, which may have exited the southeast 
side of the valley prior to being blocked by the Miller Knoll lava flows.  

 
Qlao  Older lacustrine sediment and alluvium (Holocene and upper Pleistocene) − 

Similar to lacustrine sediment and alluvium (Qla), but forms incised surfaces 5 to 
10 feet (2-3 m) above the meadows of Blue Spring Valley; likely several tens of 
feet thick. 
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Stacked unit deposits 
Stacked unit deposits are used to indicate a discontinuous veneer of Quaternary deposits 
that mostly conceal underlying bedrock units.  Although most bedrock in the quadrangle 
is partly covered by colluvium or other surficial deposits, we use stacked units to indicate 
those areas where bedrock is almost wholly obscured by surficial deposits that are 
derived from more than just residual weathering of underlying bedrock.  
Qlao/Qbmk3 

Older lacustrine sediment and alluvium over the Miller Knoll lava flow 
(Holocene and upper Pleistocene/Holocene to upper Pleistocene) − Mapped along 
the southeast edge of Blue Spring Valley (about 2 miles [3 km] southwest of 
Panguitch Lake) where the oldest Miller Knoll lava flow (Qbmk3) is partly 
concealed by a veneer of sediment interpreted to be a mixture of lacustrine and 
alluvial, and possibly eolian, sand and silt; Blue Spring Valley likely drained 
through Black Rock Valley prior to being blocked by the Miller Knoll lava flows, 
with lacustrine and alluvial sediment accumulating in the basin upstream of the 
flows; surficial cover is likely less than 6 feet (2 m) thick. 

 
Qc/Tbh 

Colluvium over the Brian Head Formation (Holocene to Pleistocene/Oligocene 
to Eocene) – Mapped on the west flank of Houston Mountain (6 miles [10 km] 
east of Cedar Breaks National Monument) and south of the town of Brian Head, 
where colluvium, residual deposits, and possibly landslide deposits conceal the 
underlying Brian Head Formation; at Houston Mountain, colluvium includes large 
blocks of the Houston Mountain lava flow enclosed in a matrix of colluvium 
derived from weathered, tuffaceous Brian Head strata; surficial cover may exceed 
20 feet (6 m) thick. 

 
Qc/Tcwu 

Colluvium over the upper limestone unit of the white member of the Claron 
Formation (Holocene and upper Pleistocene/Eocene) – Mapped on the southwest 
side of Houston Mountain (6 miles [10 km] east of Cedar Breaks National 
Monument) where colluvium conceals the underlying upper limestone unit of the 
white member of the Claron Formation; colluvium includes large blocks of the 
Houston Mountain lava flow enclosed in a matrix of colluvium derived from 
weathered, tuffaceous Brian Head strata and the upper limestone unit of the white 
member of the Claron Formation; surficial cover may exceed 10 feet (3 m) thick. 

 
QUATERNARY-TERTIARY 
Holocene(?) to Late Tertiary lava flows 
Basaltic and andesitic lava flows in the Panguitch 30’ x 60’ quadrangle are at the 
northern edge of the Western Grand Canyon basaltic field, which extends across the 
southwest part of the Colorado Plateau and adjacent transition zone with the Basin and 
Range Province in southwest Utah, northeast Arizona, and adjacent Nevada (Hamblin, 
1963, 1970, 1987; Best and Brimhall, 1970, 1974; Best and others, 1980; Smith and 
others, 1999; Johnson and others, 2010).  This volcanic field contains hundreds of 
relatively small-volume, widely scattered, mostly basaltic lava flows and cinder cones 
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that range in age from Miocene to Holocene.  In southwestern Utah, basalts are 
synchronous with basin-range deformation and are part of mostly small, bimodal (basalt 
and high-silica rhyolite) eruptive centers (Christiansen and Lipman, 1972; Rowley and 
Dixon, 2001).  The oldest basalts in southwestern Utah are about 17 Ma (basalt of 
Harrison Peak; Biek and others, 2009).  The youngest dated lava flow in southwest Utah 
is the 32,000-year-old Santa Clara basaltic lava flow (Willis and others, 2006; Biek and 
others, 2009), but the Miller Knoll, Dry Valley, and Panguitch Lake lava flows south of 
Panguitch Lake may be younger still.  Red-hot lava flows, an integral part of the 
Southern Paiute legend “How the whistler [bird] and badger got their homes,” may relate 
to the Panguitch Lake-area lava flows (Palmer, 1957; Southern Paiutes lived in southwest 
Utah beginning about A.D. 1100 [Canaday, 2001]).  Schulman (1956) briefly reported on 
850- to 950-year-old juniper (Juniperus scopulorum) trees growing on young lava flows, 
thus showing that the lava flows are at least that old but still could be many thousands of 
years old; these lava flows are apparently near Panguitch Lake although definitive sample 
locations are unavailable (samples BRY 2104 and BRY 2110, table “Overage drought 
conifers,” p. 32).  Apart from the mafic block and ash flow that is apparently part of the 
20 Ma Markagunt megabreccia, the oldest basaltic lava flows in the map area are the 
Houston Mountain flow (Tbhm), for which we report a new 40Ar/39Ar plateau age of 5.27 
± 0.14 Ma, and the 5.3 Ma Dickinson Hill and Rock Canyon flows; Stowell (2006) 
reported an 40Ar/39Ar plateau age of 2.78 ± 0.16 Ma for what is likely the Blue Spring 
Mountain lava flow, and an 40Ar/39Ar maximum isochron age of 0.60 ± 0.25 Ma for what 
is likely the Long Flat lava flow.   

Lava flows in the map area typically have a rubbly base, a dense, jointed middle 
part, and – if not eroded away – a vesicular upper part that has a rough aa (a Hawaiian 
term for a blocky, jagged flow) or, rarely, a poorly developed pahoehoe (a Hawaiian term 
for a smooth or ropy flow) surface.  Several lava flows, including the Duck Creek and 
Bowers Knoll lava flows, contain open lava tubes; the best known is Mammoth Cave (6 
miles [10 km] northeast of Duck Creek Village).  The flows commonly overlie stream-
gravel and other surficial deposits.  Older lava flows are partly covered by eolian sand 
and calcic soil (caliche) not shown on this map.  Most lava flows are dark gray and fine 
grained, and contain small olivine phenocrysts and common crystal clusters of olivine, 
plagioclase, and clinopyroxene.  With few exceptions, these lava flows are difficult to 
distinguish by hand sample alone.  They are distinguished for this geologic map by 
detailed geologic mapping, trace-element geochemistry, and radiometric ages. 
 The lava flows in the map area provide a “snapshot” of the local landscape as it 
existed when the flow erupted.  Each flow was emplaced in a “geological instant” (most 
small basaltic volcano vents produce only one eruptive cycle that may last less than a 
year or as much as a few tens of years in duration), flowed several miles across the 
landscape, and is resistant to erosion.  Because lava flows blocked drainages, streams 
were shunted to the side where they preferentially eroded adjacent, less resistant 
sedimentary strata, ultimately leaving the resistant lava flows stranded as elevated, 
sinuous ridges (called inverted valleys) that mark the location of former channels.  
Southwest Utah is famous for its classic examples of inverted topography, such as 
Washington and Middleton Black Ridges near St. George, as first described in detail by 
Hamblin (1963, 1970, 1987) and Hamblin and others (1981).  Classic, if lesser known, 
inverted valleys are present on the east-tilted Markagunt Plateau as well, as at the distal 
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ends of the Asay Knoll (Qbak), Bowers Knoll (Qbbk), and Coopers Knoll (Qbck) lava 
flows. 
 Several lava flows cross and are cut by range-bounding normal faults, including 
the Water Canyon (Qbw), Summit (Qbs), and Red Hills (Qbrh) flows.  For example, the 
0.44 Ma Water Canyon flow crosses a relay ramp between two en echelon sections of the 
Parowan-Paragonah fault zone; at the mouth of Water Canyon, the flow reveals about 
250 feet (75 m) of displacement, yielding a long-term slip rate of about 0.17 mm/yr 
(about 0.007 in/yr or 550 feet/Ma) for the eastern fault strand.   
 Basaltic magmas are partial melts derived from the compositionally 
heterogeneous lithospheric mantle, and this, coupled with fractional crystallization, may 
account for most of the geochemical variability between individual lava flows (Lowder, 
1973; Best and Brimhall, 1974; Leeman, 1974; Nealey and others, 1995, 1997; Nelson 
and Tingey, 1997; Nusbaum and others, 1997; Smith and others, 1999; Downing, 2000; 
Johnson and others, 2010).  Nb/La ratios for virtually all samples of basaltic and andesitic 
lava flows from the map area are less than 1.0, thus suggesting a lithospheric mantle 
source (Fritton and others, 1991).  Rock names are from LeBas and others (1986). 
QTb  Basaltic lava flow, undivided (Pleistocene? to Miocene?) – Medium- to dark-

gray basalt lava flow that caps a ridge north of Wilson Creek, a southern tributary 
of Mammoth Creek, in the Asay Bench quadrangle; correlation is uncertain, but 
major- and trace-element geochemistry shows affinities to the 5.3 Ma Houston 
Mountain lava flow, although its degree of topographic inversion suggests that it 
is not that old; about 20 to 30 feet (6-9 m) thick. 

 
Qbpl1, Qbpl2, Qbpl3 

Panguitch Lake lava flows (middle Holocene to upper Pleistocene) – Mapped as 
three separate lava flows, with Qbpl1 being the youngest; all three flows are 
mostly unvegetated, blocky, and exhibit steep flow fronts 100 to 200 feet (30-60 
m) high:  Qbpl1 is dark-gray to black latite (potassium-rich trachyandesite) 
containing small (1 mm), stubby plagioclase phenocrysts in a glassy to aphanatic 
groundmass; Qbpl2 and Qbpl3 are dark-gray latite containing small stubby 
plagioclase and abundant acicular hornblende phenocrysts in a fine-grained 
groundmass; the Qbpl1 lava flow lacks collapsed lava tubes and exhibits blocky 
flow lines similar to those of the Dry Valley lava flow (Qbdv); the smaller Qbpl2 
lava flow has collapsed lava tubes and partly buries the Qbpl3 lava flow; the Qbpl3 
flow, which has abundant collapsed lava tubes and branching distributary lobes, 
erupted from a vent apparently now concealed by the younger vents of the Qbpl1 
and Qbpl2 lava flows (immediately northeast of Miller Knoll, the large cinder 
cone about 3 miles [5 km] south of Panguitch Lake) and flowed northward about 
3 miles (5 km) nearly to Panguitch Lake; this is the “northern Panguitch flow” of 
Stowell (2006); age uncertain, but may be as young as middle Holocene; 
individual lava flows are typically about 200 feet (60 m) thick. 

 
Qbdv Dry Valley lava flow (middle Holocene to upper Pleistocene) – Dark-gray latite 

(potassium-rich trachyandesite) that contains olivine and abundant hornblende 
phenocrysts in an aphanatic to fine-grained groundmass; forms a thick, blocky, 
laterally restricted flow west of Black Rock Valley that exhibits high, steep flow 
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fronts (except at Dry Valley, immediately west of the vent, where a slightly older 
more fluid phase is present); upper surface shows prominent arcuate ridges that 
reveal flow directions, but vent area lacks scoria or cinders and there is no “tuff 
ring” as stated by Stowell (2006); northern flank of flow is partly vegetated, but 
upper surface and south-facing slopes are not vegetated; age uncertain, but 
overlies and is younger than the Miller Knoll lava flow (Qbmk2 – the “arcuate 
andesite flow” of Stowell, 2006); lava flow is typically 100 to 120 feet (30-35 m) 
thick. 

 
Qbmk1, Qbmk2, Qbmk3, Qbmkc 

Miller Knoll lava flows and cinder cone (middle Holocene to upper Pleistocene) 
– Mapped as three separate lava flows in the Black Rock Valley area south of 
Panguitch Lake, with Qbmk1 being the youngest flow:  Qbmk1 is dark-gray to 
black andesite that contains small (1 mm), stubby plagioclase phenocrysts in a 
glassy to aphanatic groundmass; Qbmk2 and Qbmk3 are dark- to medium-gray 
basaltic trachyandesite containing clusters of olivine, plagioclase, and 
clinopyroxene phenocrysts in an aphanatic to fine-grained groundmass and 
includes both sodium-rich (mugearite) and potassium-rich (shoshonite) rock 
types, locally containing small, thin plagioclase phenocrysts; the Qbmk1 lava flow 
erupted from a vent near the top of the Miller Knoll cinder cone (Qbmkc, at the 
northwest end of Black Rock Valley) and forms a blocky, mostly unvegetated 
flow that looks morphologically similar to, and may be chemically transitional 
with, latite of the Panguitch Lake lava flows (Qbpl); the much larger Qbmk2 lava 
flow erupted from vents on the south side of the Miller Knoll cinder cone and 
flowed about 4 miles (6 km) southeast through Black Rock Valley to Mammoth 
Creek, forming a young-looking, blocky, poorly vegetated flow that has abundant 
collapsed lava tubes and branching distributary lobes; the Qbmk3 lava flow 
erupted from a vent now concealed by the Miller Knoll cinder cone; the Qbmk3 
lava flow is mostly well vegetated and was the first flow to block Blue Spring 
Valley – the western part of this flow is partly covered by old mixed lacustrine 
and alluvial deposits (Qlao) that we interpret as having accumulated upstream of 
the lava-flow dam; the southern extent of the Qbmk2 lava flow (in the northwest 
corner of the Asay Bench quadrangle) was clearly limited by pre-existing 
topography of the red member of the Claron Formation, but the flow now lies at 
the modern base level of  Mammoth Creek, suggesting that the lava flow blocked 
Mammoth Creek, which has since eroded the adjacent, less-resistant Claron strata 
(lacustrine sediments are absent upstream of the lava flow along Mammoth Creek, 
but stream terraces there may record partial infilling and subsequent exhumation 
of the valley); this is the “southern Panguitch flow” of Stowell (2006); the Qbmk2 
lava flow yielded preliminary cosmogenic exposure ages of about 37,000 years 
(Dave Marchetti, Western State College of Colorado, written communication, 
August 4, 2009) – the Qbmk2 and Qbmk3 flows are thus likely late Pleistocene in 
age; the Qbmk1 flow unit may be as young as middle Holocene; lava flows are 
typically 30 to 100 feet (10-30 m) thick, but may be thicker where they fill 
paleotopography. 
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Qbnl, Qbnlc 
Navajo Lake lava flows and cinder cone (upper? Pleistocene) – Medium- to 
dark-gray mugearite (sodium-rich basaltic trachyandesite) containing clusters of 
olivine and clinopyroxene phenocrysts in an aphanitic to fine-grained 
groundmass; some lava flows contain common small plagioclase phenocrysts; 
lava flows (Qbnl) erupted from vents at a cinder cone (Qbnlc) about 3 miles (5 
km) north of Navajo Lake (Moore and others, 2004) and coalesced into flow 
complexes not mapped separately; margins of flows typically form steep, blocky 
flow fronts 10 to 30 feet (3-9 m) high; cinder cone is well vegetated; lava flows 
are locally well vegetated, but more commonly barren and characterized by a 
rough, blocky surface; vegetated areas collect wind-blown sediment that forms a 
sparse soil cover on parts of the flow; age unknown, but likely late Pleistocene 
based on degree of incision and weathering, although Moore and others (2004) 
considered the lava flow as probably Holocene; lava flows are typically several 
tens of feet thick, but thicker where they fill paleotopography. 

 
Qbrd, Qbrdc 

Red Desert lava flows and cinder cone (upper? Pleistocene) – Medium- to dark-
gray basalt and basaltic andesite that contains clusters of olivine and 
clinopyroxene phenocrysts in an aphanitic to fine-grained groundmass; some lava 
flows contain common small plagioclase phenocrysts; lava flows (Qbrd) erupted 
from vents at a cinder cone (Qbrdc) north of Navajo Lake quadrangle (Moore and 
others, 2004), and from a small vent in the adjacent Henrie Knolls quadrangle, 
and coalesced into flow complexes not mapped separately; margins of flows 
typically form steep, blocky flow fronts 10 to 30 feet (3-9 m) high; cinder cone is 
well vegetated; lava flows are locally well vegetated, but more commonly are 
barren and have a rough, blocky surface; vegetated areas collect wind-blown 
sediment that forms a sparse soil on parts of the flow; age unknown, but lava 
flows are likely late Pleistocene based on degree of incision and weathering, 
although Moore and others (2004) considered the lava flow as probably 
Holocene; lava flows are typically several tens of feet thick, but thicker where 
they fill paleotopography. 
 

Qbhk, Qbhkc 
Henrie Knolls lava flows and cinder cones (upper Pleistocene) – Medium- to 
dark-gray basalt that contains clusters of olivine and clinopyroxene phenocrysts in 
an aphanitic to fine-grained groundmass; some lava flows, particularly those 
between Duck Creek Sinks and Dry Camp Valley Spring, also contain common 
plagioclase phenocrysts and have a slightly coarser groundmass; lava flows that 
erupted from the northeasternmost group of cinder cones tend to be of basaltic 
andesite composition; forms coalescing lava flows (Qbhk) that erupted from at 
least 20 separate vents marked by cinder cones (Qbhkc), including the largest two 
cones at Henrie Knolls, in the northeast part of the Henrie Knolls quadrangle; the 
wide chemical variation reflects the fact that these flows erupted from multiple 
vents and coalesced into flow complexes not mapped separately; cinder cones are 
strikingly aligned along a northeast trend, subparallel to mapped normal faults in 
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the quadrangle; no fault that postdates eruption of the Henrie Knolls lava flows 
has been identified along this trend, but a concealed fault likely controls the 
alignment of vents; margins of flows typically form steep, blocky flow fronts 10 
to 30 feet (3-9 m) high; cinder cones are well vegetated; lava flows are locally 
well vegetated but more commonly barren, exhibiting a rough, blocky surface; the 
southernmost of the Henrie Knolls lava flows blocked the Navajo Lake and Dry 
Valley drainages, forming Navajo Lake and intermittent Cow Lake; age unknown, 
but probably late Pleistocene because the north end of flow complex is incised by 
Tommy Creek and capped by level 4 stream-terrace deposits (Biek and others, 
2007, here mapped as Qat) assumed to be of late Pleistocene age; sample 
HK092106-1 near Henrie Knolls yielded a low-precision 40Ar/39Ar age of 0.058 ± 
0.035 Ma (UGS and NMGRL, 2009); vegetated areas collect wind-blown 
sediment that forms a sparse soil cover on parts of the flow; lava flows are 
typically several tens of feet thick, but likely exceed 200 feet (60 m) thick where 
they fill paleotopography. 

 
Qbmc, Qbmcc 

Midway Creek lava flow and cinder cones (Pleistocene) – Medium- to dark-
gray basalt that contains clusters of olivine and clinopyroxene phenocrysts in an 
aphanitic to fine-grained groundmass; lava flow (Qbmc) erupted from a vent at a 
cinder cone (Qbmcc) and is partly covered by the Navajo Lake lava flow (Qbnl) 
(Moore and others, 2004); this cinder cone may be the source of the Duck Creek 
lava flow (Qbdc); lava flow is typically several tens of feet thick, but thicker 
where it fills paleotopography. 
 

Qbde, Qbdec 
Deer Valley lava flow and cinder cone (Pleistocene) – Medium- to dark-gray 
basalt that contains clusters of olivine and clinopyroxene phenocrysts in an 
aphanitic to fine-grained groundmass; small lava flow (Qbde) erupted from a vent 
at a cinder cone (Qbdec) 1.5 miles (2.5 km) north of Navajo Lake; lava flow is 
typically several tens of feet thick, but thicker where it fills paleotopography. 

 
Qbho, Qbhoc 

Horse Pasture lava flow and cinder cone (Pleistocene) – Medium- to dark-gray 
basalt and hawaiite (sodium-rich trachybasalt) containing clusters of olivine and 
clinopyroxene phenocrysts in an aphanitic to fine-grained groundmass; lava flow 
(Qbho) erupted from a vent at a cinder cone (Qbhoc) 4 miles (6 km) north of 
Navajo Lake; this cinder cone may be the source of the Duck Creek lava flow 
(Qbdc); lava flow is typically several tens of feet thick, but thicker where it fills 
paleotopography. 

 
Qbdc Duck Creek lava flow (Pleistocene) – Medium-gray basalt that contains clusters 

of olivine and clinopyroxene phenocrysts and abundant small plagioclase 
phenocrysts in a fine-grained groundmass; location of vent unknown, but it may 
be concealed by the Henrie Knolls (Qbhk) or Navajo Lake (Qbnl) lava flows; 
alternatively, geochemical data suggest that the Duck Creek lava flow may be the 
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distal part of either the Midway Creek or Horse Pasture lava flows; the lava 
flowed from west to east down the ancestral Duck Creek drainage and continued 
northeastward to at least the Bowers Flat area at the west edge of the Asay Bench 
quadrangle; contains a long, open lava tube near Aspen Mirror Lake, just west of 
Duck Creek village (U.S. Forest Service restricts access); lava flow is typically 
partly concealed by a veneer of unmapped surficial deposits of alluvial, colluvial, 
and eolian origin; age unknown, but it locally covers the Bowers Knoll lava flow 
(Qbbk) and in turn is locally covered by the Henrie Knolls lava flow (Qbhk), thus 
is probably late to middle Pleistocene; however, Johnson and others (2010) 
suggested that the distal end of the Bowers Knoll flow as mapped here, including 
the part that contains Mammoth Cave, may be the Duck Creek flow―if so, 
incision there suggests that the Duck Creek flow is about 500,000 years old, far 
older than the degree of incision suggests along the upstream part of the flow; 
maximum exposed thickness is about 15 feet (5 m) near Aspen Mirror Lake, but 
likely several tens of feet thick where it fills paleotopography in the Duck Creek 
drainage. 

 
Qbsk, Qbskc 

Strawberry Knolls lava flows and cinder cones (Pleistocene) – Medium- to 
dark-gray potassic trachybasalt that contains clusters of olivine and clinopyroxene 
phenocrysts in an aphanitic to fine-grained groundmass; lava flows (Qbsk) 
erupted from Strawberry Knolls (Qbskc), two cinder cones located about 2 miles 
(3 km) east of Duck Creek village, and flowed mostly northeast along Strawberry 
Creek to Uinta Flat; age unknown, but cinder cones are well vegetated and flow is 
incised by Strawberry Creek as much as 40 feet (12 m) at its downstream end and 
so is probably middle Pleistocene; lava flows are typically 20 to 30 feet (6-9 m) 
thick, but doubtless many tens of feet thick near vent areas. 

 
Qblhc Lake Hollow cinder cone (Pleistocene) – Forms a small, partly eroded cinder 

cone about 1.5 miles (3 km) north of Mammoth Creek and east of Black Rock 
Valley, with a small lava flow (not differentiated on this map) at the base of the 
cone of medium- to dark-gray hawaiite (sodium-rich trachybasalt) that contains 
clusters of olivine and clinopyroxene phenocrysts in an aphanitic to fine-grained 
groundmass; vent is on-trend with the Henrie Knolls lava flows, to which it may 
be related; age unknown, but likely late to middle Pleistocene based on position in 
landscape; lava flow is less than about 20 feet (6 m) thick. 

 
Qbef, Qbefc 
 East Fork Deep Creek lava flow and cinder cone (Pleistocene) – Medium- to 

dark-gray, fine-grained olivine basalt lava flow (Qbef) west of Navajo Lake; 
cinder cone (Qbefc) is deeply eroded due to its location just below the western 
escarpment of the Markagunt Plateau, just west of Navajo Lake; the distal 
southern end of this flow was called the Three Creeks lava flow by Biek and 
Hylland (2007), which they estimated to be less than 300,000 years old based on 
degree of incision and comparison with nearby dated lava flows; lava flow is 
probably 20 to 40 feet (6-12 m) thick. 
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Qbw, Qbwc 
 Water Canyon lava flow and cinder cone (middle Pleistocene) – Dark-gray 

potassic trachybasalt and shoshonite (potassium-rich basaltic trachyandesite) that 
contains clusters of olivine and clinopyroxene phenocrysts in an aphanitic to fine-
grained groundmass; quartz xenocrysts common; lava flow (Qbw) erupted from 
cinder cone (Qbwc) in Water Canyon about 3 miles (5 km) southeast of 
Paragonah (Maldonado and Moore, 1995); Fleck and others (1975) reported a K-
Ar age of 0.44 ± 0.04 Ma for this flow; lava flow is as much as 200 feet (60 m) 
thick where it partly fills Water Canyon. 

 
Qbbk, Qbbkc 
 Bowers Knoll lava flow and cinder cones (middle Pleistocene) – Medium-gray 

mugearite (sodium-rich basaltic trachyandesite) containing abundant clusters of 
olivine, plagioclase, and clinopyroxene phenocrysts in a fine-grained groundmass; 
lava flow erupted from Bowers Knoll, a cinder cone (Qbbkc) about 3 miles (5 
km) northeast of Duck Creek village; forms rugged, heavily vegetated, blocky 
surface having steep flow fronts 40 feet (12 m) or more high; as mapped, contains 
Mammoth and Bower caves, large open lava tubes, but this part of the flow may 
belong to the Duck Creek flow (Johnson and others, 2010); age unknown, but 
locally underlies the Duck Creek lava flow (Qbdc), so is probably middle 
Pleistocene; Best and others (1980) reported a K-Ar age of 0.52 ± 0.05 Ma for the 
nearby Asay Knoll lava flow (Qbak), which exhibits a similar degree of incision 
and weathering; typically 40 feet (12 m) or more thick near flow margins, but 
may exceed 100 feet (30 m) thick near the central part of the flow. 

 
Qbak, Qbakc 
 Asay Knoll lava flow and cinder cone (middle Pleistocene) – Medium- to dark-

gray potassic trachybasalt and shoshonite (potassium-rich basaltic trachyandesite) 
that contains clusters of olivine and clinopyroxene phenocrysts in an aphanitic to 
fine-grained groundmass; lava flow (Qbak) erupted from Asay Knoll cinder cone 
(Qbakc) and covers Asay Bench; Best and others (1980) reported a K-Ar age of 
0.52 ± 0.05 Ma for this flow; lava flow is typically 20 to 30 feet (6-9 m) thick, but 
is doubtless many tens of feet thick near vent area. 

 
Qbck, Qbckc 
 Cooper Knoll lava flow and cinder cone (middle Pleistocene) – Medium-gray 

basalt that contains clusters of olivine, plagioclase, and clinopyroxene 
phenocrysts in a fine-grained groundmass; lava flow (Qbck) erupted from a vent 
at a cinder cone (Qbckc) on the south flank of Cooper Knoll, about 1 mile (1.6 
km) southeast of Panguitch Lake; overlies stream gravels containing rounded 
pebbles and cobbles of the Isom Formation, mafic and intermediate volcanic 
rocks of the Mount Dutton Formation, chalcedony, and minor quartzite; age 
uncertain, but may be about 500,000 years old based on comparison with the 
similarly incised Asay Bench lava flow (Qbak) for which Best and others (1980) 
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reported a K-Ar age of 0.52 ± 0.05 Ma; lava flow is about 20 to 40 feet (6-12 m) 
thick. 

 
Qbwf, Qbwfc 

Webster Flat lava flow and cinder cone (middle Pleistocene) – Medium-gray, 
fine-grained olivine basalt with small plagioclase phenocrysts; lava flow (Qbwf) 
erupted from vent at cinder cone (Qbwfc) about 1 mile (1.6 km) east of Black 
Mountain in the Webster Flat quadrangle and flowed mostly south down the 
Kolob Terrace; age uncertain, but probably about 500,000 years old based on 
comparison with nearby dated flows and its position in the landscape; lava flow is 
typically several tens of feet thick. 

 
Qbal, Qbalc 

Aspen Lake lava flow and cinder cone (middle Pleistocene) – Medium-gray, 
fine-grained olivine basalt with small plagioclase phenocrysts; lava flow (Qbal) 
erupted from vent at cinder cone (Qbalc) about 1 mile (1.6 km) south of Black 
Mountain in the Webster Flat quadrangle and flowed mostly south down the 
Kolob Terrace; age uncertain, but probably about 500,000 years old based on 
comparison with nearby dated flows and its position in the landscape; lava flow is 
typically several tens of feet thick. 

 
Qblf, Qblfc 
 Long Flat lava flow (middle Pleistocene) – Medium-gray basalt to hawaiite 

(sodium-rich trachybasalt) that contains clusters of olivine and clinopyroxene 
phenocrysts; lava flow (Qblf) erupted from hills 10,392 and 10,352 (Brian Head 
7.5’ topographic map), two cinder cones (Qblfc) near Long Flat about 3 miles (5 
km) east of Brian Head peak; Stowell (2006) reported an 40Ar/39Ar maximum 
isochron age of 0.60 ± 0.25 Ma for sample LEA71SS2, which is likely from the 
Long Flat lava flow, but minor- and trace-element signatures of the Long Flat and 
nearby Hancock Peak flows are similar and Stowell’s sample location lacks 
precision to be properly located, thus age is uncertain; parts of the lava flow are 
covered by Pinedale-age glacial till and glacial outwash, and the cinder cones 
appear to be more heavily eroded than the nearby Hancock Peak cinder cone 
(Qbhpc); the northeast flank of hill 10,392 is conspicuously truncated and it may 
have been eroded by an earlier glacial advance (if so, likely the Bull Lake 
[Illinoian or MIS 6] advance); lava flow is several tens of feet thick. 

 
Qbwk, Qbwkc 

Wood Knoll lava flow and cinder cone (middle Pleistocene) – Medium- to dark-
gray, fine-grained olivine basalt; lava flow (Qbwk) erupted from vent at Wood 
Knoll, a cinder cone (Qbwkc) about 2 miles (3 km) southwest of Cedar Breaks 
National Monument and flowed northwest into Long Hollow; a remnant of the 
flow, perched 1100 feet (335 m) above the junction of Ashdown Creek and Coal 
Creek yielded an 40Ar/39Ar age of 0.63 ± 0.10 Ma and a long-term down cutting 
rate of 0.53 mm/yr (about 21 inches per thousand years or 1700 ft/Ma), inferred to 
be a minimum rate of relative uplift on the Hurricane fault to the west (Lund and 



 20 

others, 2007); lava flow is typically several tens of feet thick, but is as much as 
about 300 feet (90 m) thick where it fills the ancestral Coal Creek channel.  

 
Qbub, Qbubc 
 Upper Bear Springs lava flows and cinder cones (middle to lower Pleistocene) 

– Medium- to dark-gray, fine-grained olivine basalt; lava flows (Qbub) erupted 
from vents at cinder cones (Qbubc) about 2 miles (3 km) southwest of Navajo 
Lake and flowed mostly south onto the Kolob Terrace; probably about 750,000 
years old because they appear to be the same lava flows as those at Horse Knoll 
(Sable and Hereford, 2004; Doelling, 2008), which yielded a K-Ar age of 0.81 ± 
0.05 Ma and an 40Ar/39Ar age of 0.73 ± 0.02 Ma (Biek and Hylland, 2007; UGS 
and NMGRL, 2008); lava flows are several tens of feet thick.  

 
Qbbm Black Mountain lava flow (middle to lower Pleistocene) – Medium-gray, fine-

grained olivine basalt with small plagioclase and pyroxene phenocrysts; lava flow 
caps the northwest sloping surface of Black Mountain in the Webster Flat 
quadrangle; vent unknown but may be concealed by nearby younger lava flows or 
surficial deposits to the southeast; yielded K-Ar ages of 0.80 ± 0.24 and 0.87 ± 
0.24 Ma (Anderson and Mehnert, 1979; Best and others, 1980); lava flow is 
typically several tens of feet thick. 

 
Qbhp1, Qbhp2, Qbhpc 

Hancock Peak lava flows and cinder cone (middle to lower Pleistocene) – 
Medium-gray basalt that contains clusters of olivine and clinopyroxene 
phenocrysts in a fine-grained groundmass; based on chemistry and morphology 
the map unit is divided into two flows, both of which are well vegetated; erupted 
from Hancock Peak, a large, well-preserved cinder cone (Qbhpc) southeast of 
Brian Head peak; Qbhp1 appears to overlie Qbhp2 and extends farther 
downstream where it caps an inverted valley about 600 feet (180 m) above 
Mammoth Creek just north of the community of Mammoth Creek; age unknown, 
but estimated to be middle to early Pleistocene based on comparison with the 
600,000-year-old Long Flat lava flow (Qblf) and the 2.8 Ma Blue Spring 
Mountain lava flow (Tbbm); lava flows are typically several tens of feet thick, but 
likely exceed 100 feet (30 m) thick where they fill paleotopography. 

 
Qbc First Left Hand Canyon vent area (middle to lower Pleistocene?) – Lower part 

contains abundant angular blocks of Claron Formation and mafic volcanic rocks 
and minor rounded quartzite pebbles and cobbles; the whole is cut by several 
basaltic dikes; some blocks are as large as 12 feet (4 m) in size, but most are 
pebble to small cobble size; unbedded; appears to be a volcanic mudflow deposit.  
Upper part is mostly basaltic blocks and lesser Claron blocks, welded into 
scoriaceous matrix.  Unconformably overlies the lower conglomerate and middle 
sandstone members of the Grand Castle Formation on the northwest side of 
Henderson Hill in First Left Hand Canyon; forms deeply eroded vent area about 
600 feet (180 m) above modern drainage, and may be associated with adjacent 
basaltic dikes; about 400 feet (120 m) thick. 
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Qbtp The Pass lava flow (Pleistocene?) – Medium- to dark-gray basalt that contains 

clusters of olivine and clinopyroxene phenocrysts in a fine-grained groundmass; 
caps small knob just south of The Pass east of Panguitch Lake that Wagner (1984) 
interpreted as a small gabbroic intrusion, but that appears to be a flow remnant 
partly involved in a landslide; chemically similar to the 5.3 Ma Houston Mountain 
lava flow (Tbhm), but source is uncertain; lava flow may be about 50 feet (15 m) 
thick. 

 
Qbs, Qbsc 
 Summit lava flow and cinder cone (lower Pleistocene) – Medium- to dark-gray, 

fine-grained olivine basalt that Maldonado and others (1997) referred to as the 
Cinder Hill cone and flow; lava flow (Qbs) erupted from vent at cinder cone 
(Qbsc) at the base of the Hurricane Cliffs, about 2 miles (3 km) southwest of 
Summit; lava flow also crops out at the southeast margin of the Red Hills and is 
presumed to underlie the southern part of the Parowan Valley graben, where it is 
displaced by graben-bounding faults; yielded K-Ar ages of 1.00 ± 0.16 Ma  and 
0.94 ± 0.14 Ma (Anderson and Mehnert, 1979); lava flow is typically several tens 
of feet thick. 

 
Qbe Elliker Basin lava flow (lower Pleistocene) – Medium- to dark-gray, fine-grained 

olivine basaltic trachyandesite; vent area unknown, but minor scoria and blocky 
flow breccia is present on the north rim of Elliker Basin, suggesting that the vent 
could underlie the basin, which is southwest of Summit; yielded K-Ar ages of 
1.00 ± 0.16 Ma and 1.11 ± 0.11 Ma (Anderson and Mehnert, 1979); lava flow is 
typically several tens of feet thick. 

 
Qbrh, Qbrhc 
 Red Hills lava flows and cinder cones (lower Pleistocene) – Medium- to dark-

gray, fine-grained basaltic andesite with small olivine and plagioclase 
phenocrysts; lava flows (Qbrh) erupted from vents at three cinder cones (Qbrhc) 
in the northwest corner of the Summit quadrangle and adjacent Enoch quadrangle 
(Rowley and Threet, 1976); lava flows are mostly covered by eolian sand and silt, 
and locally by small areas of fan alluvium, but only larger such areas are mapped 
due to map scale; lava flow is cut by faults associated with the Red Hills horst and 
graben; yielded K-Ar ages of 1.28 ± 0.4 Ma (Anderson and Mehnert, 1979) and 
1.30 ± 0.3 Ma (Best and others, 1980); lava flow is typically several tens of feet 
thick. 

 
Tbbm, Tbbmc 

Blue Spring Mountain lava flow and cinder cone (Pliocene) – Medium-gray 
hawaiite and mugearite (sodium-rich trachybasalt and basaltic trachyandesite, 
respectively) lava flow (Tbbm) that contains clusters of olivine and clinopyroxene 
phenocrysts in an aphanitic to fine-grained groundmass; erupted from vents at a 
cinder cone (Tbbmc) on Blue Spring Mountain and flowed east and south, mostly 
toward the ancestral Mammoth Creek drainage; an erosional outlier caps 
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Mahogany Hill, about 500 feet (150 m) above Mammoth Creek east of its 
intersection with Black Rock Valley; the cinder cone is heavily eroded and the 
lava flow is well vegetated; between Blue Spring Mountain and Blue Spring 
Valley, the flow is involved in a large landslide complex, which slid on the 
underlying Brian Head Formation; Stowell (2006) reported an 40Ar/39Ar plateau 
age of 2.78 ± 0.16 Ma for what is likely the Blue Spring Mountain lava flow, but 
Stowell’s sample location lacks precision to be properly located, thus age is 
uncertain; based on their similar chemistry, the map unit includes a northeast-
trending dike at the north end of Blue Spring Valley and a small flow remnant a 
few tens of feet above Blue Spring Creek (Biek and Sable, in preparation); if the 
Blue Spring Creek remnant is indeed part of the 2.8-million-year-old Blue Spring 
Mountain lava flow, it means that the Blue Spring Valley area has been a 
topographic low for nearly the past 3 million years, an unlikely scenario; lava 
flow is typically several tens of feet thick, but is doubtless thicker near the vent 
area and where it fills paleotopographic lows. 

 
Tbhm Houston Mountain lava flow (lower Pliocene to upper Miocene) – Medium-gray 

basalt containing clusters of olivine and clinopyroxene phenocrysts in a fine-
grained groundmass; unconformably overlies the Brian Head Formation (Tbhv) 
and Leach Canyon Formation (Tql) along the west edge of Blue Spring Mountain; 
an erosional outlier on the south side of Clear Creek contains abundant 1- to 2-
mm-long plagioclase phenocrysts, but is otherwise chemically similar to the 
Houston Mountain flow; also caps Houston Mountain (about 6 miles [10 km] east 
of Cedar Breaks National Monument) and other hills of lower elevation to the 
south (about 3 miles [5 km] northeast of Navajo Lake), where it is typically platy 
weathering; source vent unknown and margins of lava flow are entirely eroded 
away, but elevation of remnants suggests flow was derived from the west in the 
Brian Head quadrangle, likely at a vent now eroded and concealed by younger 
deposits; sample HK092006-3 yielded an 40Ar/39Ar age of 5.27 ± 0.14 Ma (UGS 
and NMGRL, 2009); maximum thickness is about 140 feet (43 m) at Houston 
Mountain.  

 
Tbdh, Tbdhc  

Dickinson Hill lava flows and cinder cones (lower Pliocene to upper Miocene) – 
Medium-gray basalt containing clusters of olivine and clinopyroxene phenocrysts 
in a fine-grained groundmass; interbedded with upper Tertiary fan alluvium (Taf); 
lava flows (Tbdh) erupted from vents at mostly eroded cinder cones (Tbdhc) 
southwest of Panguitch; Anderson and Christenson (1989) reported a K-Ar age of 
5.3 ± 0.5 Ma for one of these lava flows; major- and trace-element chemistry and 
age are similar to that of the nearby Rock Canyon lava flow, making 
differentiation of the two lava flows uncertain in the DD Hollow and Graveyard 
Hollow area; exposed thickness of lava flows is as much as 65 feet (20 m), and 
cinder deposits are 3 to 10 feet (1-3 m) thick. 

 
Tbrc, Tbrcc 
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Rock Canyon lava flow and cinder cone (lower Pliocene to upper Miocene) – 
Medium-gray potassic trachybasalt that contains clusters of olivine and 
clinopyroxene and small plagioclase phenocrysts in a fine-grained groundmass; 
lava flow (Tbrc) is interbedded with upper Tertiary fan alluvium (Taf); erupted 
from a cinder cone (Tbrcc) about 4 miles (6 km) northwest of Hatch; apparent 
age, and major- and trace-element chemistry, is similar to the nearby 5.3 Ma 
Dickinson Hill lava flow (Tbdh); query indicates our uncertainty in correlating 
these two flows in their area of possible overlap; maximum exposed thickness is 
about 100 feet (30 m). 

Based on limited geochemistry, the Rock Canyon lava flow may be the 
same lava flow exposed in the footwall and hanging wall of the Sevier fault just 
south of State Route 12 and Red Canyon; Lund and others (2008) reported 
40Ar/39Ar ages on the Red Canyon flow of 4.94 ± 0.03 (footwall outcrop) and 4.98 
± 0.03 (hanging wall outcrop).  If this correlation is correct, it implies that Sevier 
Valley and the footwall of the Sevier fault zone did not exist as topographic 
barriers to eastward movement of the Rock Canyon lava flow in early Pliocene 
time, about 5 million years ago; it further implies that the Rock Canyon lava flow 
underlies parts of Sevier Valley. 

 
Tbsp Sidney Peaks lava flow (lower Pliocene to upper Miocene) – Medium-gray 

basalt containing clusters of olivine and clinopyroxene phenocrysts as much as ¼ 
inch (5 mm) in diameter in a fine-grained groundmass; forms deeply dissected 
flow and flow breccia that unconformably overlies the Markagunt megabreccia; 
deposit just northeast of Sidney Peaks, which unconformably overlies the Leach 
Canyon Formation, consists of lava blocks in a cinder matrix, is locally cut by 
basaltic dikes, and may be a deeply eroded vent area; as much as 80 feet (25 m) 
thick. 

 
QUATERNARY-TERTIARY 
QTr Residuum (Holocene to Pliocene) − Mapped about 4 miles (7 km) northeast of 

Navajo Lake where blocky remnants of the Houston Mountain lava flow (Tbhm) 
have been let down by erosion of underlying beds; angular to subangular blocks 
of the lava flow, typically 3 feet (1 m) or less in diameter but locally as large as 
about 12 feet (4 m), tend to accumulate in swales, on ridge crests, and at and near 
the base of steep slopes; locally, the blocks form a basaltic pavement on the white 
member of the Claron Formation, but typically they are widely scattered; other 
than uncommon small fragments of chalcedony (itself likely the remains of the 
Brian Head Formation that was once buried by the Houston Mountain lava flow), 
no other exotic rock types are present; probably formed as former basalt-capped 
hilltops succumbed to chemical weathering of carbonate beds in the underlying 
Claron Formation and concomitant hillslope erosion, undermining the lava flow 
and scattering resistant basalt blocks over the bedrock; unmapped colluvium 
derived from this unit blankets much of the nearby Claron Formation; typically 
less than a few feet thick.  Also mapped on the south side of Blue Spring 
Mountain (about 5 miles [8 km] southwest of Panguitch Lake) where the deposit 
is of likely Quaternary age and consists of blocks of the Blue Spring Mountain 
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lava flow (Tbbm) that conceal the upper part of the white member of the Claron 
Formation and possibly the lower part of the Brian Head Formation.   

 
QTbx Regolithic breccia deposits (Holocene to Pliocene?) – Mapped south of the 

outcrop belt of the Markagunt megabreccia (Tm), from the west rim of the 
Markagunt Plateau eastward to the Haycock Mountain area; typically consists 
mostly of rubble of the Isom Formation, locally with minor blocks of chalcedony 
from the Brian Head Formation; near the north end of Cedar Breaks National 
Monument, consists of large blocks of Isom Formation as much as several 
hundred feet in extent that rest on lowermost Brian Head strata; many of the large 
Isom blocks are internally brecciated on a fine scale, then rehealed by 
silicification, presumably by devitrification of the ash flow itself (the brecciation 
is a direct result of formation of the Markagunt megabreccia, discussed below); 
deposits are unconsolidated and blocks are subangular and commonly as much as 
10 feet (3 m) or more in size, but deposits near the north end of Cedar Breaks 
contain rafted Isom blocks that are at least as large as a city block; as described 
below, and like the interpretations of Moore (1992) and Sable and Maldonado 
(1997a), lead-author Biek interprets these deposits to be a remobilized product of 
the Miocene Markagunt megabreccia, emplaced after the megabreccia in later 
Tertiary through modern time; maximum thickness about 120 feet (40 m) at 
Blowhard Mountain immediately south of Cedar Breaks National Monument, but 
most deposits are 5 to 30 feet (2-9 m) thick. 

Between Blowhard Mountain and Long Valley Creek, these deposits form 
an extensive, hummocky surface draped over the Claron Formation that lead-
author Biek interprets as landslide debris, residuum, and colluvium derived from 
the Markagunt megabreccia following Moore (1992), not as Brian Head strata as 
did Moore and others (2004); Moore and Nealey (1993) considered the unit to be 
an unconsolidated mantle of Pleistocene to late Tertiary age but were uncertain of 
its origin, whereas Hatfield and others (2003) interpreted the unit to be Markagunt 
megabreccia, as discussed below.  These deposits are exposed only on the west 
side of Blowhard Mountain, revealing large fractured blocks of Brian Head 
tuffaceous mudstone, sandstone, micritic limestone, and chalcedony; some blocks 
are as large as 100 feet (30 m) across.  The base of this deposit overlies alluvial 
boulder gravel that consists mostly of subrounded Isom Formation clasts and 
minor quartzite clasts, but much of the west side of this outcrop belt at Blowhard 
Mountain is involved in landslides, many with historical movement, and so it is 
uncertain if the gravel is part of the megabreccia residuum or part of an 
underlying channel.  Elsewhere, the deposit at Blowhard Mountain and areas to 
the east and south is characterized by abundant large, angular Isom boulders that 
litter the surface.  The hummocky surface is due to dissolution and collapse of 
underlying Claron limestone, which created numerous sinkholes in this area 
(Hatfield and others, 2003; Moore and others, 2004; Spangler, in preparation), but 
is also likely due to ongoing slumping and slope creep that results from admixed 
tuffaceous Brian Head strata (Moore, 1992).   

The large blocks of Isom near the north end of Cedar Breaks National 
Monument rest unconformably on Brian Head and Claron strata, whereas not far 
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to the north, the main mass of the Markagunt megabreccia rests on Leach Canyon 
Formation.  Because the southern margin of the megabreccia (and underlying 
regional ash-flow tuffs) is erosional in nature, we do not know their southern 
depositional limit.  However, because debris from the Leach Canyon Formation is 
missing in areas mapped as QTbx in the northern part of Cedar Breaks National 
Monument and at and near Blowhard Mountain, it seems likely that the Leach 
Canyon did not extend much further south than its present-day outcrop.  Because 
there is no evidence for a post-Leach Canyon (but pre-Markagunt megabreccia) 
unconformity that cuts out strata southward across the west edge of the 
Markagunt Plateau, lead-author Biek interprets these large Isom blocks to be 
landslide remnants that are at a lower structural level than the main mass of the 
Markagunt megabreccia, inferring that the blocks reflect late Tertiary and 
Quaternary northward retreat of the erosional escarpment that stretches from 
Brian Head peak eastward to Haycock Mountain.  Thus in this view, similar to 
that suggested by Moore (1992) and Sable and Maldonado (1997a), the blocks are 
remobilized parts of the Markagunt megabreccia, the southern extent of which 
was emplaced on a paleohigh of Brian Head strata that served to constrain the 
southern limit of the Isom and Leach regional ash-flow tuffs; the megabreccia has 
since been let down to its present position principally by landsliding in late 
Tertiary and Quaternary time, with smectitic clays of the Brian Head Formation 
providing the weak shear surface for downslope movement of the blocks.  
Hatfield and others (2003), Moore and others (2004), and Rowley and others (in 
preparation), however, interpreted the blocks as a bona fide part of the Miocene 
Markagunt megabreccia, which thus must have been emplaced as far south as 
Blowhard Mountain over a significant Miocene unconformity; subsequent 
weathering and sapping of the megabreccia and underlying Claron Formation then 
spread debris southward to the area beyond State Route 14.  Our differences in 
interpretation reflect this uncertainty.   

 
QTaf High-level fan alluvium (Pleistocene and Pliocene?) – Poorly to moderately 

sorted, non-stratified, subangular to subrounded, boulder- to clay-size sediment; 
mapped in the Sevier Valley southeast of Panguitch, where it forms deeply 
dissected surfaces; deposited principally as debris flows and debris floods; 
exposed thickness is about 100 feet (30 m). 

 
QTap High-level pediment alluvium (Pleistocene and Pliocene?) – Moderately sorted, 

subrounded to rounded pebble to boulder gravel and sand that forms a gently east-
dipping, locally resistant cap over the Limerock Canyon Formation (Tl) and upper 
Tertiary fan alluvium (Taf) near the east margin of the Markagunt Plateau; surface 
of deposit typically covered by veneer of pebble and cobble residuum; divisible 
into two different levels (Moore and Straub, 1995), but undivided here due to map 
scale; deposited principally as debris flows, debris floods, and in ephemeral 
stream channels; probably less than 20 feet (<6 m) thick. 

 
QTh Basin-fill deposits of Long Hill (Pleistocene and Pliocene?) – Poorly sorted, 

poorly stratified, subangular to subrounded, boulder- to clay-size sediment 
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preserved in down-dropped blocks on the west side of the Red Hills; northern 
exposures consist predominantly of volcanic clasts, some as much as 3 feet (1 m) 
in diameter; southern exposures contain abundant quartzite cobbles in a reddish-
brown calcareous matrix; original depositional form is not preserved; interpreted 
to represent deeply eroded basin-fill deposits deposited principally as debris flows 
and debris floods on large alluvial fans; Maldonado and Williams (1993a) 
mapped kilometer-scale blocks of Oligocene and Miocene ash flow tuffs within 
this basin-fill unit that they interpreted to be gravity-slide blocks of Pliocene or 
Pleistocene age; lead author Biek reinterprets these blocks simply as 
autochthonous normal-fault-bounded blocks partly covered by basin-fill deposits; 
exposed thickness as much as about 300 feet (90 m). 

 
TERTIARY 
 
Taf Upper Tertiary fan alluvium (Pliocene to Miocene) – Moderately to poorly 

consolidated, brown and grayish-brown sandstone, siltstone, pebbly sandstone, 
and conglomerate that forms incised, east-tilted surface of low, rounded hills 
along the west side of Sevier Valley; clasts are of various volcanic rocks (95%) 
and about 5% quartzite and sandstone (Kurlich and Anderson, 1997); clasts were 
derived from the west and north from the Mount Dutton Formation and regional 
ash-flow tuffs and deposited as agrading alluvial fans in a structurally closed 
basin later incised by through-going drainage of the  Sevier River (Moore and 
Straub, 1995; Kurlich and Anderson, 1997); includes uncommon, thin, ash-fall 
tuff beds; interbedded with upper Tertiary basaltic lava flows (including the Rock 
Canyon lava flows [Tbrc] and the 5.3 Ma Dickinson Hill lava flows [Tbdh]) and 
uncommon, thin, lenticular beds of lacustrine limestone; east part of the outcrop 
belt locally includes upper Tertiary stream alluvium representing an axial valley 
stream; unconformably overlies Claron, Brian Head, Isom, and Limekiln Knoll 
strata and locally capped by pediment deposits (QTap); as much as 760 feet (230 
m) thick in the Hatch quadrangle (Kurlich and Anderson, 1997) and at least 1000 
feet (300 m) thick in the Panguitch quadrangle (Moore and Straub, 1995). 

  Previously referred to as the Sevier River Formation, which was named by 
Callaghan (1938) for partly consolidated basin-fill deposits near Sevier, Utah, on 
the north side of the Marysvale volcanic complex (see, for example, Anderson 
and Rowley, 1975; Anderson and others, 1990a; Moore and others, 1994; Rowley 
and others, 1994a), a name that formerly had value in reconnaissance-scale 
studies in the High Plateaus.  In later, more detailed mapping in the High 
Plateaus, the name Sevier River Formation was restricted to its type area for older 
basin-fill sediments deposited in post-20 Ma basins that preceded development of 
the present topography (Rowley and others, 2002) (later basin-fill deposits of the 
main phase of basin-range deformation in the northern Marysvale area were 
referred to as “sedimentary basin-fill deposits [QTs]”; Rowley and others, 2002).  
J.J. Anderson (verbal communication, November 16, 2004) referred to these 
deposits as the Panguitch gravels.  Rowley and others (1981) used K-Ar ages of 
mapped volcanic rocks in the Sevier Plateau to the north to constrain the main 
phase of basin-range faulting to between 8 and 5 Ma, during which time the 
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Sevier Plateau was uplifted along the Sevier fault zone at least 6000 feet (2000 
m).  Anderson (1987) provided evidence that basin-fill deposits once filled the 
ancestral Sevier Valley to a depth at least 1000 feet (300 m) above the modern 
river where it cuts through Circleville Canyon, immediately north of the map area, 
showing that Circleville Canyon was cut by superposition of the Sevier River 
across the resistant Spry intrusion and vent-facies rocks of the Mount Dutton 
Formation. 

 
Tvf Upper Tertiary fine-grained basin fill (Miocene) – Light-brown, pinkish-gray, 

and white tuffaceous mudstone, siltstone, fine-grained sandstone, and local 
diatomite; moderately to poorly consolidated; laminated to thick beds, locally 
with small gastropods; contains few thin beds of peloidal micritic limestone; 
exposed along Sevier Valley southeast of Panguitch; likely deposited in small 
lake basins and floodplains (Moore and Straub, 1995); exposed thickness about 
100 feet (30 m). 

 
unconformity 
 
Markagunt megabreccia (lower Miocene) – Structurally chaotic assemblage of 
Miocene and Oligocene regional ash-flow tuff, local volcanic rock, and lesser 
sedimentary strata that covers much of the central and northern Markagunt Plateau; 
mapping and stratigraphic studies during the 1970s to 1990s show how understanding of 
this complex unit has evolved and continues to be controversial, as summarized by 
Maldonado and others (1992), Anderson (1993), Moore and Nealey (1993), Sable and 
Maldonado (1997a), Hatfield and others (2003, 2004), Moore and others (2004), and 
Rowley and others (in preparation).  Sable and Maldonado (1997a) noted that four 
separate rock units have been termed the megabreccia, including (1) primary volcanic 
mudflow deposits, (2) megabreccia that resulted from collapse of high-angle fault scarps, 
(3) megabreccia associated with the Red Hills shear zone (Maldonado and others, 1989, 
1992; Maldonado, 1995), and (4) the principal mass of the Markagunt megabreccia that 
covers much of the central and northern Markagunt Plateau; to this we add a fifth unit, 
namely unconsolidated megabreccia rubble.  Sable and Maldonado (1997a) restricted the 
term to unit (4), with which we concur, noting that unit 1 consists of primary volcano-
sedimentary breccia, likely the alluvial facies of the 22-32 Ma Mount Dutton Formation; 
that unit 2 is now known to be a large, modern landslide complex below Black Ledge 
(Maldonado and others, 1997; Rowley and others, in preparation); and that unit 3 is 
geographically separate from, but may be a dismembered part of, the main mass of the 
Markagunt megabreccia.  We interpret the unconsolidated rubble breccia (the fifth unit), 
located south of the main mass of the Markagunt megabreccia, to be simply the 
weathering product of the Markagunt megabreccia – residuum, colluvium, landslide and 
collapse material, and alluvium, here collectively mapped as QTbx – that is commonly 
present at a lower structural level along its distal southern margin (such rubble is also 
present on the main mass of megabreccia, but it is not practical to differentiate such late 
Tertiary and Quaternary weathering products where they overlie the rubble of the 
Miocene megabreccia itself).  Hatfield and others (2003, 2004), Moore and others (2004), 
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and Rowley and others (in preparation) mapped or called this rubble (here mapped as 
QTbx)  “Markagunt megabreccia,” although they noted its unconsolidated nature. 
 Most reports describe the megabreccia as consisting of house-size to city-block-
size blocks, or even blocks that are as much as one square mile (2.5 km2) in size, but in 
this map area (which covers only the southern part of the megabreccia outcrop belt), we 
see the megabreccia principally as a large sheet, tens of square miles in extent, of mostly 
intact Isom Formation and comparatively minor amounts of thin underlying Wah Wah 
Springs and Brian Head Formations and overlying mafic block and ash-flow tuff, Bear 
Valley Formation, and Mount Dutton Formation that has moved more or less as a 
coherent mass and remained in proper stratigraphic order.  Exposures of the megabreccia 
are limited so it is difficult to ascertain attitudes of individual units, but outcrop patterns 
suggest that most of the strata within the megabreccia, and the megabreccia as a whole, 
dips gently east following the regional dip of the plateau. Only in a few locations in the 
map area, as northwest of Castle Valley and north of Bunker Creek in the SW1/4 section 
35, T. 35 S., R. 8 W., are strata seen to dip moderately 20° to 25° northeast.  Clearly there 
must be faults within the megabreccia that bound isolated tilted blocks such as these, but 
they are not readily discernable on aerial photographs and are thus impractical to map at 
1:100,000 scale. 

The basal slip surface of the Markagunt megabreccia generally dips gently east 
(mimicking the regional dip of the plateau because it was tilted with underlying strata 
following its emplacement) and south (because the inferred source of the megabreccia 
was to the north; Sable and Maldonado, 1997a; Anderson, 2001), but at Haycock 
Mountain the basal slip surface dips north.  The northward-dipping Isom Formation (cap 
rock of Haycock Mountain) was interpreted by Anderson (1993) and Sable and 
Maldonado (1997a) as autochthonous, and they also interpreted autochthonous Isom 
Formation at the type area of the megabreccia along Highway 143 east of Panguitch 
Lake.  However, we identified a previously unreported basal conglomerate and associated 
clastic dikes exposed at the base of the megabreccia on the south side of Haycock 
Mountain (figures 1a, 1b; 2a, 2b, and 2c).  These exposures show that the entire Isom 
section is likely part of the gravity slide.  If true, the northward dip likely reflects 
thrusting and folding in the toe of the gravity slide, not post-megabreccia tilting and 
folding.  Moderately northeast-dipping blocks near Castle Valley and Bunker Creek, 
described above, may also reflect thrusting and folding in the toe area of the Markagunt 
megabreccia gravity slide.  Just south of Panguitch Lake, Claron and Brian Head strata 
dip moderately to the northwest, and this may reflect folding above a structurally deeper 
level of the gravity slide.  Several previous workers reported slickenlines on the basal slip 
surface of the megabreccia, as well as roche-moutonnée-like features and tilted beds, that 
collectively suggest southward transport.  Slickenlines at the base of the megabreccia 
exposed on the south side of Haycock Mountain, as well as clastic dikes, also 
demonstrate south-southeast transport, as well as catastrophic emplacement by gravity 
sliding.   

Among the authors of this map, there remains disagreement as to the age of 
emplacement of the Markagunt megabreccia; Anderson (2001) described the key points 
of this disagreement, and an additional complication is described below.  The resolution 
of this problem involves, among other issues, the Haycock Mountain Tuff in the type area 
of the Markagunt megabreccia, first described in detail by Anderson (1993).  He reasoned 
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that the Haycock Mountain Tuff (22.75 ± 0.12 Ma, Ed Sable, U.S. Geological Survey, 
unpublished data, 1996) and underlying alluvial gravels are unconformable on and thus 
postdate the Markagunt megabreccia.  Sable and Maldonado (1997a) interpreted the 
Haycock Mountain Tuff to be part of the upper plate of the Markagunt megabreccia, as a 
distal facies of the Leach Canyon Formation.  Mapping in the Panguitch Lake 
quadrangle, described below (see description of the Leach Canyon Formation), however, 
now confirms that the 23.8 Ma Leach Canyon Formation and 22.8 Ma Haycock 
Mountain Tuff are different units of slightly different age.  Thus, the interpretation of 
Anderson (1993, 2001) that the Haycock Mountain Tuff represents a post-Markagunt-
megabreccia tuff that partly filled a stream channel eroded into the megabreccia appears 
eminently reasonable.  The fact that the Haycock Mountain Tuff at its type location is 
undeformed was used by Anderson (1993) as evidence that it postdates emplacement of 
the megabreccia.  However, it should be noted that the caprock of Haycock Mountain, 
although composed of resistant Isom Formation that is part of the megabreccia, also 
appears undeformed as little as 30 feet (10 m) above the basal gravity-slide plane.  
Furthermore, on the south side of Haycock Mountain, the basal slip surface of the 
megabreccia is in strata we tentatively identify as the 20 to 21 Ma Limerock Canyon 
Formation (it is possible that these beds are in the pre-30 Ma Brian Head Formation, or in 
the 24 Ma Bear Valley Formation, or that the Limerock Canyon has a wider age range 
than we can now demonstrate; this awaits further geochemical and radiometric age 
control).  One final complication involves exposures in Parowan Canyon that were 
interpreted by Maldonado and Moore (1995) as Harmony Hills Tuff in normal fault 
contact against Isom Formation, but that lead-author Biek reinterprets as Isom Formation 
that is part of the Markagunt megabreccia that unconformably overlies the 22.03 Ma 
Harmony Hills Tuff (i.e., the two units are separated by a gently southeast-dipping 
gravity-slide fault, not a steeply west-dipping normal fault).  If this interpretation is 
correct, it suggests that the Markagunt megabreccia was emplaced sometime after 22.03 
Ma.  To summarize, all workers agree that catastrophic emplacement of the Markagunt 
megabreccia postdates the 23.8 Ma Leach Canyon Formation; most of us now agree that 
it also postdates the 22.8 Ma Haycock Mountain Tuff.  Lead-author Biek tentatively 
interprets the megabreccia as post-dating the 22.03 Ma Harmony Hills Tuff, suggesting 
that it may be somewhat younger than most workers previously envisioned; ongoing 
mapping and pending 40Ar/39Ar age analyses may resolve timing of Markagunt 
megabreccia emplacement.   

The Markagunt megabreccia was interpreted by Maldonado (1995) and Sable and 
Maldonado (1997a) to have formed by either gravity sliding off the Iron Peak laccolith 
and associated large shallow intrusive bodies or by low-angle, thinned-skinned thrusting 
away from the intrusions about 20 to 22 million years ago.  Anderson (2001), however, 
noted that the 20 to 21 Ma Iron Peak laccolith may be too young and too small to produce 
a dome large enough to produce the megabreccia.  Rather, Anderson (2001) suggested 
that the megabreccia originated from southward failure off the backslope of west-
northwest-striking Miocene fault blocks.   

Interestingly, on-trend with the south margin of the Markagunt megabreccia in the 
Bryce Canyon area, south-vergent thrust faults involving Upper Cretaceous and 
Paleocene-Eocene Claron Formation strata are well documented.  These thrust faults have 
been interpreted to represent gravitational loading and collapse of the Marysvale volcanic 
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field (or possibly coeval batholithic emplacement) (Davis and Krantz, 1986; Lundin, 
1989; Davis and Rowley, 1993; Merle and others, 1993; Davis, 1999).  In the “two-
tiered” model of Davis (1999), the Markagunt megabreccia is but one – a surficial part – 
of a second, deeper series of Tertiary thrusts directed outward from the Marysvale 
volcanic field, which spread and collapsed under its own weight, resulting in southward-
directed thrust faults rooted in gypsiferous strata of the Middle Jurassic Carmel 
Formation.   
 

 
Figure 1a.  Base of Markagunt megabreccia (exposed just south of Haycock Mountain on 
the southwest side of hill 8652, NW1/4SE1/4 section 5, T. 36 S., R. 6 W.).  Note planar 
slip surface (strike N. 10° W., dip 6° NE.) and underlying thin basal conglomerate, which 
in turn unconformably overlies similarly dipping volcaniclastic pebbly sandstone, 
tentatively assigned to the Limerock Canyon Formation (Tl).  Basal conglomerate is 
light-reddish-brown and consists of both angular (Isom) and rounded (intermediate 
volcanics and quartzite) clasts floating in a well-cemented sandy matrix; the 
conglomerate is texturally similar to concrete and is inferred to have been derived from 
pulverized Isom and underlying strata immediately above and below the detachment 
surface.  This conglomerate is injected as dikes into the basal part of the megabreccia, 
which here consists of pulverized and recemented Isom Formation (Tm[Ti]).  Pulverized 
Isom Formation forms a cliff 15 to 30 feet (5-10 m) high and grades abruptly upward into 
fractured but otherwise undisturbed Isom Formation. 
 
 



 31 

 
Figure 1b.  Close-up of area near pack in figure 1a.  Note clastic dikes injected into base 
of megabreccia. 
 

 
Figure 2a.  Base of Markagunt megabreccia (exposed just south of Haycock Mountain on 
the southeast side of an unnamed hill at the head of Little Coal Wash, NE1/4 section 6, T. 
36 S., R. 6 W.).  The basal part of the megabreccia consists of about 30 feet (10 m) of 
brecciated, pulverized, and resilicified Isom Formation (Tm[Ti]), which grades abruptly 
upward into fractured but otherwise undisturbed Isom Formation.  Basal conglomerate is 
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hidden by shadow; we tentatively assign underlying volcaniclastc sandstone to the 
Limerock Canyon Formation (Tl). 
 

 
Figure 2b.  Close-up of brecciated and pulverized Isom Formation shown in figure 2a; 
Brunton compass for scale. 
 

  

 
Figure 2c.  Close-up of slickenlines 
exposed at the west side of figure 
2a.  Slickenlines trend 20° NW. and 
plunge 30° on the base of the 
megabreccia, which forms a planar 
surface that strikes N. 50° W. and 
dips 15° NE.  Note basal 
conglomerate at base of 
megabreccia. 
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Tm Markagunt megabreccia, undivided – The Markagunt megabreccia (restricted 

usage following Sable and Maldonado, 1997a) is undivided where exposures are 
insufficient to delineate bedrock units, and in the remote northwest part of the 
Flanigan Arch quadrangle; most areas mapped as Tm consist predominantly of 
the Isom Formation (which is typically pervasively and finely fractured so that 
it weathers to grussy soils and rounded hills), but locally includes Wah Wah 
Springs and Brian Head strata, and, north of Panguitch Lake, large amounts of 
mafic block and ash-flow tuff, volcaniclastic sandstone, and pebbly 
conglomerate; on top of the Markagunt Plateau, north of the latitude of 
Panguitch Lake, Tm is unconformable on the resistant, planar, gently east-
dipping surface of the Isom Formation, but between Brian Head peak and Clear 
Creek, it unconformably overlies the Leach Canyon Formation; at the west edge 
of the plateau, south of Iron Peak, it unconformably overlies Brian Head strata; 
maximum thickness exceeds 500 feet (150 m). 

 
Tm(Ta) Markagunt megabreccia – middle Tertiary alluvium component – 

Volcaniclastic conglomerate and pebbly sandstone on the north flank of 
Haycock Mountain that may be a coarse alluvial facies of the Mount Dutton 
Formation; contains quartzite cobbles and small boulders in the basal part of the 
deposits; typically forms cobble-covered hillsides, but is locally well-
consolidated in exposures on the southwest side of Haycock Mountain; this 
middle Tertiary alluvium that locally caps Haycock Mountain is likely older 
than similar alluvium under the Haycock Mountain Tuff described by Anderson 
(1993); as mapped here, the alluvium (Tm[Ta]) at Haycock Mountain overlies 
and is in turn locally overlain by Isom Formation (Tm[Ti]), all interpreted to be 
part of the upper plate of the Markagunt megabreccia; additionally, this 
alluvium is as much as 800 feet (250 m) above Panguitch Creek and the type 
section of Haycock Mountain Tuff (thus to have postdated emplacement of the 
megabreccia, the alluvium we map as [Tm(Ta)]would have had to completely 
fill the ancestral Panguitch Creek drainage and then been exhumed, but we see 
no compelling evidence for this interpretation); maximum thickness in this area 
is probably about 100 feet (30 m).  

 
Tm(Td) Markagunt megabreccia – Mount Dutton Formation component – Massive 

block and ash-flow tuff of mafic and intermediate composition, volcaniclastic 
pebble to boulder conglomerate, and minor tuffaceous sandstone; characterized 
by brown or locally reddish-brown hues; mapped northwest of Haycock 
Mountain; tentatively interpreted to be part of the Markagunt megabreccia, but 
may contain strata that postdate emplacement of megabreccia (ongoing mapping 
in areas to the north may resolve this uncertainty); maximum thickness in this 
area is probably about 300 feet (100 m).  

 
Tm(Thm) Markagunt megabreccia – Haycock Mountain Tuff component – Consists 

of two cooling units:  lower unit is white to very light pink, unwelded, crystal-
poor rhyolite tuff that is overlain by light-pink, poorly welded, moderately 
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resistant crystal-poor rhyolite tuff; both contain common pumice fragments and 
lithic fragments of black, aphanatic, mafic volcanic rock; forms gently east-
dipping ledge that at its type section overlies apparently undeformed 
volcaniclastic conglomerate and elsewhere overlies deformed Bear Valley 
Formation sandstone; petrographically and chemically similar to the Leach 
Canyon Formation (see the Leach Canyon Formation unit description for 
details); yielded 40Ar/39Ar age of 22.75 ± 0.12 Ma (Ed Sable, U.S. Geological 
Survey, unpublished data, 1996); Anderson (1993) interpreted the Haycock 
Mountain Tuff to postdate emplacement of the Markagunt megabreccia, but 
lead-author Biek tentatively interprets the tuff as riding largely undisturbed in 
the upper plate of the megabreccia; mapped north of Haycock Mountain; about 
35 feet (11 m) thick. 

 
Tm(Tbvs) Markagunt megabreccia – Bear Valley volcaniclastic strata component – 

White to light-gray, moderately to well-sorted, fine- to medium-grained 
volcaniclastic sandstone having high-angle cross-beds, and similarly colored 
tuffaceous mudstone and siltstone; typically pervasively deformed by faults and 
folds indicative of deformation as part of the Markagunt megabreccia; mapped 
north of Haycock Mountain; exposed thickness as much as 120 feet (35 m). 

 
Tm(Tbvt) Markagunt megabreccia – Bear Valley ash-flow tuff component – White, 

unwelded, massive, likely rhyolitic ash-flow tuff that contains common pebble-
size lithic fragments of intermediate volcanic rocks and rounded quartzite 
pebbles; mapped north of Haycock Mountain; exposed thickness as much as 
100 feet (30 m). 
 

Tm(Tl) Markagunt megabreccia – Limerock Canyon Formation component – 
White and light-gray, locally tuffaceous, volcaniclastic sandstone, pebbly 
sandstone, mudstone, minor tuffaceous limestone, and local multi-hued 
chalcedony; mapped on the southeast side of Haycock Mountain, where it is 
faulted and folded, indicative of deformation as part of the Markagunt 
megabreccia; we are uncertain of the identification of the Limerock Canyon 
Formation at Haycock Mountain (it is possible that these beds are in the pre-30 
Ma Brian Head Formation, or are part of the  24 Ma Bear Valley Formation, or 
that the Limerock Canyon has a wider age range than the 20 to 21 Ma age we 
can now demonstrate), and this awaits further geochemical and radiometric age 
control; exposed thickness as much as 150 feet (45 m). 

 
Tm(Tdm) Markagunt megabreccia – Mafic block and ash-flow tuff of the Mount 

Dutton Formation component – Dark-gray, vesicular, basaltic andesite and 
basalt present as angular cobble- to boulder-size blocks floating in a light-gray 
sandy matrix of the same composition; monolithic; minor basaltic scoria, likely 
a rafted block, is present north of Bunker Creek in the NE1/4NE1/4 section 12, 
T. 36 S., R. 8 W.; mapped between Panguitch Lake and Sidney Peaks where it 
unconformably overlies 24 Ma Leach Canyon Formation (Tql); in the Bunker 
Creek drainage west of Panguitch Lake, the map unit is overlain by Isom 
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Formation or locally by Wah Wah Springs Formation, each as part of the 
Markagunt megabreccia; exposures north of Bunker Creek (in the north-central 
part of section 12, T. 36 S., R. 8 W.) show 30 feet (9 m) of paleotopography cut 
into the upper surface of the Leach Canyon, with blocks of the rhyolite tuff 
incorporated into the base of the overlying mafic block and ash flow; similar 
mafic block and ash-flow tuff is present north of Panguitch Lake, where it is 
clearly part of the Markagunt megabreccia and so mapped as Tm(Tdm) and 
lumped as Tm in hill 8980 to the north; it is unclear if the deposits between 
Panguitch Lake and Sidney Peaks partly underlie or are everywhere part of the 
megabreccia; maximum thickness is about 80 feet (24 m). 

 
Tm(Ti)  Markagunt megabreccia – Isom Formation component – Medium-gray, 

crystal-poor, densely welded, trachydacitic ash-flow tuff; small (1-3 mm) 
euhedral crystals constitute 15 to 20 % of the rock and are mostly plagioclase 
(90%) and minor pyroxene, magnetite, and quartz set in a devitrified glassy 
groundmass; most outcrops and blocks weather to grussy soils and rounded 
hills; except at Haycock Mountain, rarely forms cliffs as is typical of the 
autochthonous Isom Formation; although generally poorly exposed, constitutes 
the great bulk of the megabreccia mapped between Panguitch Lake and Brian 
Head; may locally include areas of Brian Head Formation, Wah Wah Springs 
Formation, and mafic block and ash-flow tuff that are difficult to delineate 
given extensive forest cover and inconspicuous outcrop habit; generally 
unconformably overlies the Leach Canyon Formation west of Panguitch Lake 
(but also locally overlies Wah Wah Springs Formation and Brian Head 
Formation in this area), whereas east of Panguitch Lake, unconformably 
overlies what we tentatively map as Limerock Canyon Formation; maximum 
thickness as much as about 400 feet (120 m). 

 
Tm(Tnw) Markagunt megabreccia – Wah Wah Springs Formation component – 

Pale-red, grayish-orange-pink, and pale-red-purple, crystal-rich, moderately 
welded, dacitic ash-flow tuff; phenocrysts of plagioclase, hornblende, biotite, 
and quartz (with minor Fe-Ti oxides and sanidine) comprise about 40% of the 
rock; forms a single cooling unit; mapped northeast of Castle Valley, where it 
rests on displaced Brian Head strata (Tm[Tbhv]) and in the upper reaches of 
Bunker Creek, where it rests on displaced Isom Formation (Tm[Ti]) or 
displaced mafic block and ash-flow tuff (Tm[Tdm]); about 40 feet (12 m) thick. 

 
Tm(Tbhv)Markagunt megabreccia – Brian Head Formation component – Poorly 

exposed, but distinctive white to light-gray volcaniclastic mudstone, pebbly 
sandstone, micritic limestone, and chalcedony are present as colluvium, thus 
betraying the formation’s presence northeast of Castle Valley where it rests out-
of-sequence on the Leach Canyon Formation; on the ridge at the common 
border of sections 9 and 16, T. 36 S., R. 8 W., pebbly volcaniclastic sandstone 
of the Brian Head Formation, well exposed at the head of a landslide, dips about 
25° northeast and is overlain by similarly dipping Wah Wah Springs Formation; 
on the hill to the south, however, Brian Head strata appear to be subhorizontal; 
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thickness uncertain but outcrop patterns suggest that displaced Brian Head strata 
likely exceed 100 feet (30 m) thick. 

 
Tl Limerock Canyon Formation (lower Miocene) – White, light-gray, and pale- to 

olive-green, locally tuffaceous, volcaniclastic sandstone, pebbly sandstone, 
gritstone, pebbly conglomerate, mudstone, and minor tuffaceous limestone; may 
contain minor multi-hued chalcedony in areas north and west of the type section 
near Hatch, but as described below, we are as yet uncertain in differentiating 
Brian Head strata (which contain abundant chalcedony), Bear Valley Formation, 
and Limerock Canyon Formation; includes at least 10 thin beds of ash-fall tuff; 
commonly bioturbated; clasts are about 90% volcanic but include as much as 10% 
quartzite and sandstone; Kurlich and Anderson (1997) stated that the formation 
lacks Needles Range, Isom, Bear Valley, and Mount Dutton clasts, but most clasts 
appear to lead-author Biek to be Isom; mapped on the east part of the Markagunt 
Plateau north and west of Hatch, where it appears to cut out much of the Brian 
Head Formation, although this interpretation is uncertain as described below; 
unconformably overlain by upper Tertiary unconsolidated fan alluvium (Taf); 
query indicates uncertain identification; deposited in fluvial and minor lacustrine 
environments; two ash-fall tuff beds, about 100 feet (30 m) and 200 feet (60 m) 
above the base of the formation at the type section west of Hatch, respectively, 
yielded K-Ar ages of 21.5 ± 0.6 Ma (biotite) and 21.0 ± 1.0 Ma (sanidine), and 
20.2 ± 1.4 Ma (biotite) and 19.8 ± 0.8 Ma (sanidine) (Sable and Maldonado, 
1997b); Sable and Maldonado (1997b) also reported an 40Ar/39Ar age of 20.48 ± 
0.8 Ma (biotite) and 21.0 ± 1.0 Ma (sanidine); as much as 290 feet (88 m) thick in 
a composite type section west of Hatch (Kurlich, 1990; Kurlich and Anderson, 
1997). 

  Sable and Maldonado (1997b) described the difficulty of differentiating 
similar volcaniclastic strata of the Limerock Canyon, Bear Valley, and Brian 
Head Formations.  The type section of the Limerock Canyon Formation (west of 
Hatch) contains a few tens of feet of strata that we tentatively reassign to the 
Brian Head Formation, and we interpret that the limestone that Kurlich and 
Anderson (1997) assigned to the Brian Head Formation at the base of this type 
section is in fact the upper white member of the Claron Formation as originally 
described by Kurlich (1990).  Relationships of strata that we assign to the Brian 
Head and Limerock Canyon Formations are much clearer in the southeast corner 
of the Haycock Mountain quadrangle, 1 to 2 miles (1.5-3 km) west of the type 
section.  There, and along the flanks of Hatch Mountain and Haycock Mountain, 
we place the contact between the two formations at the top of a massive 
multihued chalcedony bed that is typically 3 to 6 feet (1-2 m) thick.  Strata 
underlying this chalcedony are typical of Brian Head strata as they are exposed at 
Brian Head peak; overlying strata are typically sandier and locally, as on the south 
flank of Hatch Mountain, contain significant pebble conglomerate.   

 
Tip Iron Peak laccolith (early Miocene) – Medium-gray gabbro-diorite porphyry 

composed almost entirely of augite and plagioclase (calcic labradorite) and about 
8% opaque oxide minerals, mostly magnetite, with diorite the dominant phase 
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(Anderson, 1965; Spurney (1984); magnetite veins are present throughout the 
intrusion and are as much as 10 feet (3 m) in width, but most are less than one 
inch (2.5 cm) wide (Spurney, 1984); base of laccolith is well exposed in the north 
canyon wall of Little Creek, which has incised through the laccolith to reveal 
numerous feeder dikes; originally referred to as the Iron Point laccolith by 
Anderson (1965) and Anderson and Rowley (1975), as the namesake peak was 
then known, but the peak was renamed and is now referred to as Iron Peak; 
intruded at the stratigraphic level of Brian Head Formation and is preserved in a 
graben at the west edge of the Markagunt Plateau, about 5 miles (8 km) northeast 
of Paragonah; roof rocks are not preserved; yielded K-Ar whole-rock age of  19.7 
± 0.5 Ma (Fleck and others, 1975); exposed thickness is as much as about 800 feet 
(240 m). 

  Forms the easternmost laccolith of the Iron Axis, a northeast-trending belt 
of early Miocene calc-alkaline laccoliths and concordant stocks that rose at about 
22 to 20 Ma above the roof of an inferred large batholith (Blank and Mackin, 
1967; Cook and Hardman, 1967; Rowley, 1998; Rowley and others, 1998); Iron 
Peak is the second youngest and most mafic of the Iron Axis intrusions; most of 
the central quartz monzonite plutons appear to be partly controlled by northeast-
striking, southeast-verging Sevier-age thrust faults and were emplaced at shallow 
depths, mostly within about 1.2 miles (2 km) of the surface (Mackin and others, 
1976; Van Kooten, 1988; Hacker and others, 2002, 2007; Rowley and others, 
2006), but the Iron Peak laccolith exhibits no such structural control; like the 
other laccoliths in the belt, the Iron Peak laccolith probably formed rapidly 
following a two-stage emplacement process – injection of a sill immediately 
followed by inflation – at shallow crustal depth of less than 4000 feet (1.2 km) 
based on stratigraphic reconstructions (Spurney, 1984; see also Hacker and others, 
2002, 2007; Willis, 2002); rapid inflation of the laccoliths commonly led to partial 
unroofing by gravity sliding, immediately followed by volcanic eruptions 
(Mackin, 1960; Blank and Mackin, 1967; Hacker and others, 1996, 2002, 2007; 
Hacker, 1998; Willis, 2002), although it is unclear if the Iron Peak laccolith 
experienced a similar history; Spurney (1984) interpreted exposures immediately 
east of the Iron Peak laccolith as a peripheral breccia complex and described 
volcanic rocks of similar composition to the south in the adjacent Red Creek 
Reservoir quadrangle that suggest that the intrusion erupted and produced lava 
flows or block and ash flow breccias; Maldonado and others (in preparation), 
however, interpreted the eastern exposures as older Bear Valley breccia; ongoing 
mapping in the Red Creek Reservoir and Cottonwood Mountain quadrangles may 
further elucidate the emplacement history of the Iron Peak laccolith. 

  Emplacement of the Iron Peak laccolith was suggested as one possible 
source of the Markagunt megabreccia (Sable and Maldonado, 1997a), but 
Anderson (1993, 2001) suggested that the intrusion was too small to have 
produced such a large gravity slide; however, because the laccolith is only 
exposed in a graben, we do not know its original extent, particularly how far west 
it may hhave once reached; we mapped megabreccia deposits (here lumped with 
the Markagunt megabreccia for lack of suitable criteria for differentiation) on the 
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divide between Red Creek and Little Creek canyons, and these deposits may be a 
result of local gravity sliding off the south flank of the laccolith.  

  Spurney (1982, 1984) suggested that magnetite veins formed late in the 
laccolith’s emplacement, a result of alteration of augite phenocrysts; while 
magnetite veins are common, they are apparently of insufficient number to have 
been of economic importance, unlike the nearby Iron Springs mining district west 
of Cedar City, the largest iron-producing district in the western U.S. (Mackin, 
1947, 1954, 1960, 1968; Blank and Mackin, 1967; Bullock, 1970; Mackin and 
others, 1976; Mackin and Rowley, 1976; Rowley and Barker, 1978; Barker, 1995; 
Rowley and others, 2006). 

 
Tipd Feeder dikes of Iron Peak laccolith (lower Miocene) – Mafic dikes exposed in 

the north canyon wall of Little Creek, immediately south of the Iron Peak 
laccolith; of the same composition as the adjacent laccolith, and so are interpreted 
to be its feeder dikes (Anderson, 1965; Spurney, 1984; Hacker and others, 2007); 
dikes intrude altered Brian Head Formation, which early workers then called the 
upper part of the Claron Formation, and are resistant and so stand as tall fins; 
most dikes trend northeast, dip moderately to steeply west, and most are about 6 
feet (2 m) wide but range from about 0.8 to 25 feet (0.25-8 m) wide. 

 
Timd Mafic dikes at the west edge of the Markagunt Plateau (lower Miocene) – 

Highly altered, greenish-gray to brownish-gray, aphanitic to fine-grained mafic 
dikes that trend both north-northwest and northeast in the Cottonwood Mountain 
quadrangle; some dikes contain small plagioclase phenocrysts; typically deeply 
weathered and so poorly exposed, but most dikes fill joints and small-
displacement faults, which are especially well developed in a horst of gently 
northwest-tilted Claron strata at the west edge of the plateau, west of Iron Peak; 
Maldonado and others (1997a; in preparation) suggested that the dikes may be 
related to an older phase of the Iron Peak intrusion or to dikes of Mount Dutton; a 
sample from one of the northwest-trending dikes west of the Iron Peak laccolith 
yielded a K-Ar age of about 20 Ma (H.H. Mehnert and R.E. Anderson, written 
communication to F. Maldonado, 1988); dikes range from about 1 to 20 feet (0.3-
6 m) wide. 

 
Td Mount Dutton Formation, alluvial facies (lower Miocene to Oligocene) – 

Light- to dark-gray and brown, andesitic to dacitic volcanic mudflow breccia and 
lesser interbedded volcaniclastic conglomerate and tuffaceous sandstone; also 
contains subordinate lava flows, flow breccia, and minor felsic tuff; Anderson and 
Rowley (1975) defined the Mount Dutton Formation as consisting of most of the 
rocks exposed on the south flank of the Marysvale volcanic pile, and divided it 
into complexly interfingering and cross-cutting vent and alluvial facies derived 
from clustered stratovolcanoes and dikes that form most of the southern 
Marysvale volcanic field; most of the formation consists of intermediate-
composition volcanic rocks of the alluvial facies, with comparatively thin, 
intercalated formally named members; on the northern Markagunt Plateau, the 
formation overlies the Bear Valley Formation; makes up the youngest (in the 
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Panguitch quadrangle) of several voluminous calc-alkaline, subduction-related 
volcanic centers and underlying source plutons that characterized the West from 
Oligocene to Miocene time at this latitude (Lipman and others, 1972; Rowley and 
Dixon, 2001); Fleck and others (1975) and Rowley and others (1994a) reported 
several K-Ar ages of 21 to 30 Ma on rocks of the coeval vent facies; at least 1000 
feet (300 m) thick in the map area in the northern Markagunt Plateau (Anderson 
and Rowley, 1987) (and at least 6000 feet [2000 m] thick farther north; Rowley 
and others, 2005), but pinches out radially from an east-trending string of 
stratovolcanoes along the southern part of the Marysvale volcanic pile.   

 
Tbv Bear Valley Formation, undivided (lower Miocene to upper Oligocene) – White 

to light-gray, yellowish-gray, and olive-gray, moderately to well-sorted, fine- to 
medium-grained volcaniclastic sandstone; sand is about 60% quartz, and the 
remainder is feldspar, biotite, hornblende, augite, and relict pumice replaced by 
zeolite; cement is mostly zeolite (clinoptilolite) (Anderson, 1971); sandstone is 
characterized by high-angle cross-beds indicative of eolian deposition; thick 
eolian sand was derived from the south and west and accumulated in a low-relief 
basin bounded on the north by an east-trending fault scarp possibly associated 
with the 25 Ma Spry intrusion (Anderson, 1971; Anderson and others, 1990a); 
also contains lesser interbedded lava flows, volcanic mudflow breccia, 
conglomerate, and ash-fall and ash-flow tuff beds, especially in the upper part of 
the formation; where mapped as part of the Markagunt megabreccia, sandstone 
facies (Tbvs) and ash-flow tuff facies (Tbvt) are mapped separately; Fleck and 
others (1975) reported two K-Ar ages of 24.0 ± 0.4 Ma and 23.9 ± 0.5 Ma from 
the upper part of the formation; an incomplete section of Bear Valley strata is 
only 100 feet (30 m) thick in the Panguitch quadrangle (Moore and Straub, 1995) 
and about 400 feet (120 m) thick in the Cottonwood Mountain quadrangle, but the 
formation is in excess of 1000 feet (300 m) thick on the northern Markagunt 
Plateau (Anderson, 1971); the unit is as much as about 260 feet (80 m) thick in 
the Red Hills (Maldonado and Williams, 1993b).  

 
Tbvb Bear Valley Formation mudflow breccia (lower Miocene to upper Oligocene) –

Pale-yellowish-brown breccia composed of pebble- to cobble-size clasts, mostly 
of intermediate composition volcanic rocks and lesser amounts of tuff and 
tuffaceous sandstone; as much as about 800 feet (245 m) thick in the Cottonwood 
Mountain quadrangle. 

 
Quichapa Group (lower Miocene to upper Oligocene) – Regionally consists of three 
distinctive ash-flow tuffs: in ascending order, the Leach Canyon Formation, Condor 
Canyon Formation, and Harmony Hills Tuff (Mackin, 1960; Williams, 1967; Anderson 
and Rowley, 1975; Rowley and others, 1995); the lower two formations erupted from the 
Caliente caldera complex, but the Harmony Hills Tuff likely erupted from the eastern 
Bull Valley Mountains (Rowley and others, 1995). 
Tqh Harmony Hills Tuff (lower Miocene) – Resistant, pale-pink to grayish-orange-

pink, crystal-rich, moderately welded, dacitic ash-flow tuff; contains about 50% 
phenocrysts of plagioclase (63%), biotite (16%), horneblende (9%), quartz (7%), 
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pyroxene (5%), and sanidine (trace) (Williams, 1967); exposed in Parowan 
Canyon where it overlies the Bauers Tuff Member of Condor Canyon Formation 
and reinterpreted by lead-author Biek to underlie the Isom Formation that is part 
of the Markagunt megabreccia; source of Harmony Hills Tuff unknown but 
isopachs are centered on Bull Valley (Williams, 1967), suggesting that it was 
derived from the east Bull Valley Mountains, probably from an early, much more 
voluminous eruptive phase of the Bull Valley/Hardscrabble Hollow/Big Mountain 
intrusive arch, as suggested by Blank (1959), Williams (1967), and Rowley and 
others (1995); consistent with this interpretation is the fact that the 40Ar/39Ar 
plateau age of the Harmony Hills is 22.03 ± 0.15 Ma (Cornell and others, 2001), 
nearly identical to that of those intrusions; as much as 50 feet (15 m) thick. 

 
Tqcb    Bauers Tuff Member of Condor Canyon Formation (lower Miocene) – 

Resistant, light-brownish-gray to pinkish-gray, densely welded, rhyolitic ash-flow 
tuff; contains about 10 to 20% phenocrysts of plagioclase (40-70%), sanidine (25-
50%), biotite (2-10%), Fe-Ti oxides (1-8%), and pyroxene (<3%) (Rowley and 
others, 1995); bronze-colored biotite and light-gray flattened lenticules are 
conspicuous; exposed in Parowan Canyon where it is as much as 50 feet (15 m) 
thick and overlies volcaniclastic sandstone and mudflow breccia, here ascribed to 
the Mount Dutton Formation but mapped by Maldonado and Moore(1995) as 
Oligocene mudflow and lava-flow breccia and tuffaceous sandstone; also exposed 
in a fault block in the Red Hills, where it is as much as about 100 feet (30 m) 
thick (Maldonado and Williams, 1993a); derived from the northwest part (Clover 
Creek caldera) of the Caliente caldera complex and at the time of its eruption, 
covered an area of at least 8900 square miles (23,000 km2) (Best and others, 
1989b; Rowley and others, 1995); the prefered 40Ar/39Ar age of the Bauers Tuff 
Member is 22.7 Ma (Best and others, 1989a) or 22.8 Ma (Rowley and others, 
1995), which is also the 40Ar/39Ar age of its intracaldera intrusion exposed just 
north of Caliente (Rowley and others, 1994b); Fleck and others (1975) reported 
K-Ar ages of 22.1 ± 0.6 Ma (plagioclase) and 20.7 ± 0.5 Ma (whole rock) for 
Bauers Tuff that is east of Fivemile Ridge and south of Horse Valley, 
respectively. 

 
Tql Leach Canyon Formation (lower Miocene to upper Oligocene) – Grayish-

orange-pink to pinkish-gray, unwelded to moderately welded, crystal-rich rhyolite 
tuff that contains abundant white or light-pink collapsed pumice fragments and 
several percent lithic clasts, many of which are reddish brown; contains 25 to 35% 
phenocrysts of quartz, feldspar, and biotite; forms the resistant caprock of Brian 
Head peak and the southern part of Black Ledge, and is also exposed eastward 
nearly to the Panguitch Lake area, as described below; source is unknown, but it 
is probably the Caliente caldera complex because isopachs show that it thickens 
toward the complex (Williams, 1967; Rowley and others, 1995); typically about 
100 feet (30 m) thick in the map area. 

At Brian Head peak, the Leach Canyon Formation, which unconformably 
overlies the Isom Formation, consists of four parts, the lower three of which are 
rarely exposed elsewhere.  At the base is nonresistant, 6- to 10-foot-thick (2-3 m), 
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unwelded, white, rhyolite tuff that is overlain by a 10-foot-thick (3 m) moderate-
orange-pink rhyolite tuff that has sparse reddish-brown lithic clasts, which 
becomes slightly more indurated in the upper part of the unit.  This is overlain by 
a massive, 12-foot-thick (4 m) black vitrophyre, which is in turn overlain by a 25-
foot-thick (8 m) resistant, pale-red, moderately welded rhyolite tuff that contains 
pale-lavender flattened pumice lenticules and as much as 1% distinctive, small, 
reddish-brown lithic clasts of flow rock torn from the vent walls; this resistant 
upper unit forms the cap rock of Black Ledge northward to beyond the Sidney 
Peaks area. 

  To the east, west of  Panguitch Lake, the Leach Canyon Formation 
unconformably overlies the Brian Head Formation or locally stream gravel 
containing clasts of Isom Formation welded tuff (for example, on the southeast 
side of Prince Mountain at sample location PL061708-3); pumice makes up about 
10% of the tuff and is typically less than 0.5 inch (1 cm) in length, but somewhat 
larger near the top of the cooling unit; a nonresistant, moderate-orange-pink ash-
fall tuff identical to that at Brian Head peak is present at the base of the unit; the 
main part of the cooling unit contains only rare, small, reddish-brown lithic 
fragments. 

  Previously, there was considerable confusion over the distribution of the 
petrographically and chemically similar Leach Canyon Formation and the 
Haycock Mountain Tuff in the map area (the two units are not reliably 
distinguishable based on their major- and trace-element chemistry, but the 
Haycock Mountain Tuff is typically less welded than the Leach Canyon and 
contains conspicuous black lithic fragments, unlike the reddish-brown lithic 
fragments of the Leach Canyon).  Detailed mapping of the Panguitch Lake 
quadrangle (Biek and Sable, in preparation) has resolved this problem.  The Leach 
Canyon Formation can be traced in continuous outcrop from Brian Head peak 
northward to the head of Bunker Creek and then east to the east end of Prince 
Mountain just west of Panguitch Lake; it is unconformably overlain by the 
Markagunt megabreccia, which consists mostly of the Isom Formation.  Samples 
from the south side of Prince Mountain yielded K-Ar ages of 22.8 ± 1.1 Ma 
(biotite) and 24.8 ± 1.0 Ma (sanidine) (Rowley and others, 1994a, sample 89USa-
1a) and a duplicate K-Ar age of 24.3 ± 1.0 Ma (sanidine) as well as an 40Ar/39Ar 
age of 23.86 ± 0.26 Ma (biotite) (Sable and Maldonado, 1997a, on the same 
sample 89USa-1a).  The Leach Canyon Formation is widely agreed to be about 
23.8 Ma (Best and others, 1993; Rowley and others, 1995).  However, both 
Rowley and others (1994a) and Sable and Maldonado (1997a) interpreted this tuff 
to be the Haycock Mountain Tuff, which yielded a slightly younger 40Ar/39Ar age 
of 22.75 ± 0.12 Ma (sanidine) at its type section one mile (1.6 km) northeast of 
Panguitch Lake (Sable, unpublished data, 1996).  The facts that the tuff at Prince 
Mountain yielded an age analytically indistinguishable from the Leach Canyon 
Formation, that it can be traced continuously to outcrops at Brian Head peak, and 
that it is unconformably overlain by the Markagunt megabreccia, are irrefutable 
evidence that it is the Leach Canyon Formation and not the Haycock Mountain 
Tuff. 
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The Leach Canyon Formation unconformably overlies the Isom Formation 
at Brian Head peak and the southern part of Black Ledge.  North of Castle Valley 
and at Prince Mountain, however, the Leach Canyon unconformably overlies 
Brian Head strata.  This distribution suggests that the Prince Mountain-Castle 
Valley area was a paleohigh of Brian Head strata during Isom time, and that, once 
the resistant Isom was in place, this paleohigh was preferentially eroded to form a 
broad, east-trending stream valley in which the Leach Canyon accumulated; the 
Leach Canyon is not present north of Clear Creek in the map area.  We speculate 
that northwest-trending Clear Creek may conceal a pre-Isom down-to-the-north 
normal fault that helped control distribution of the Isom Formation.  

 
unconformity 
 
Ti Isom Formation (upper Oligocene) – Medium-gray, crystal-poor, densely 

welded, trachydacitic ash-flow tuff, locally having distinctive rheomorphic 
features including flow folds, elongated vesicles, and flow breccia; small (1-3 
mm) euhedral crystals constitute 10 to 15% or less of the rock and are mostly 
plagioclase (90%) and minor pyroxene and Fe-Ti oxides set in a devitrified-glass 
groundmass; exhibits pronounced platy outcrop habit and is thus accompanied by 
extensive talus deposits; rarely, a black basal vitrophyre is exposed, and locally 
fracture surfaces and elongated vesicles (lenticules, described below) are dark 
reddish brown to dusky red; query indicates uncertain correlation in the upper 
reaches of the Clear Creek drainage 

  The best and most extensive exposures of the Isom Formation are at Brian 
Head peak and to the northeast along Black Ledge where at least three cooling 
units are locally present; at Brian Head peak, the lower part of the formation is 
classic tufflava about 80 feet (24 m) thick, whereas the upper part is a flow 
breccia 60 to 90 feet (18-27 m) thick; along Black Ledge, about 7 miles (11 km) 
northeast of Brian Head peak, the flow breccia is absent and the Isom there 
appears to consist of a single cooling unit about 350 feet (100 m) thick; the Isom 
also forms prominent cliffs north of Clear Creek and Panguitch Lake. 

  Regionally, many outcrops of all cooling units in the Isom Formation 
reveal secondary flow characteristics, including flow breccias, contorted flow 
layering, and linear vesicles such that the unit was considered a lava flow until 
Mackin (1960) mapped its widespread distribution (300 cubic miles [1300 km3] 
today spread over an area of 9500 square miles [25,000 km2]; Best and others, 
1989a) and found evidence of glass shards, thus showing its true ash-flow tuff 
nature; for that reason it is commonly referred to as a tufflava, and is also called a 
rheomorphic ignimbrite, an ash-flow tuff that was sufficiently hot to move with 
laminar flow as a coherent ductile mass – see, for example, Anderson and Rowley 
(1975) and Andrews and Branney (2005); exhibits pronounced subhorizontal 
lamination or platiness, which Mackin (1960) called “lenticules”; Fryman (1986, 
1987), Anderson and others (1990b), and Anderson (2002) described the light-
gray, pancake-shaped lenticules, which are typically spaced 4 to 8 inches (10-20 
cm) apart and that may extend for 30 feet (10 m) or more, and which are locally 
contorted, suggesting turbulence in the flow as it moved over uneven topography; 
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Fryman (1986, 1987) also described fumaroles in the Isom of the northern 
Markagunt Plateau, a result of degassing of the flow as it came to a rest. 

  The source is unknown, but isopach maps and pumice distribution suggest 
that the Isom Formation was derived from late-stage eruptions of the 27-32 Ma 
Indian Peak caldera complex that straddles the Utah-Nevada border, possibly in 
an area now concealed by the western Escalante Desert (Rowley and others, 1979; 
Best and others, 1989a, 1989b); estimated crystallization temperature and 
pressure of phenocrysts of the Isom is 950°C and < 2 kbar (Best and others, 
1993), and this relatively high temperature is supported by its degree of welding 
and secondary flow features; at its type area in the Iron Springs district southwest 
of the map area, Mackin (1960) defined three members, a lower unnamed 
member, the Baldhills Tuff Member, and the upper Hole-in-the-Wall Tuff 
Member; Rowley and others (1975) redefined the Baldhills Tuff Member to 
include Mackin’s lower unnamed member, and noted that the Baldhills consists of 
at least six cooling units; Maldonado and Williams (1993a, b) described nine 
apparent cooling units in the northern Red Hills at the west edge of the map area; 
in the northern Markagunt Plateau, Anderson and Rowley (1975) defined the Blue 
Meadows Tuff Member, which underlies the Baldhills Tuff Member, but it is 
possible that the Blue Meadows Tuff is part of the Mount Dutton Formation, and 
thus a local tuff of the Marysvale volcanic field (Rowley and others, 1994a); in 
some places in the Panguitch 30’ x 60’ quadrangle, autochthonous Isom 
Formation may include the Baldhills Tuff Member, but this member was not 
recognized in the southern part of its outcrop belt in the map area; the Isom 
Formation is about 26 to 27 Ma on the basis of many 40Ar/39Ar and K-Ar ages 
(Best and others, 1989b; Rowley and others, 1994 a); maximum exposed 
thickness is about 350 feet (110 m) at Black Ledge and about 250 feet (75 m) 
along Ipson Creek. 

Mapped as the Blue Meadows Tuff Member of the Isom Formation at the 
east edge of the Cottonwood Mountain quadrangle (Maldonado and others, in 
preparation), but refered to simply as Isom Formation undivided here pending 
ongoing mapping in areas to the east. 

 
Tn Needles Range Group, undivided (lower Oligocene) – Lund Formation and 

Wah Wah Springs Formation undivided in the Red Hills due to map scale. 
 
Tnl Lund Formation (lower Oligocene) – Grayish-orange-pink, moderately welded, 

crystal-rich, dacitic ash-flow tuff exposed in the Red Hills; similar to underlying 
Wah Wah Springs Formation, but with generally smaller mafic phenocrysts and a 
lighter-colored matrix; locally contains spheroidal masses of tuff as large as 1 foot 
(0.3 m) in diameter near the top of the unit; base of the formation includes about 
12 feet (4 m) of pale-greenish-yellow tuffaceous sandstone and lesser pebbly 
volcaniclastic conglomerate; exhibits normal magnetic polarity (Best and Grant, 
1987); derived from the White Rock caldera, the southwest part of the older 
Indian Peak caldera, and is of similar volume to the underlying Wah Wah Springs 
Formation (Best and Grant, 1987; Best and others, 1989a, b); preferred age is 27.9 
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Ma (Best and others, 1989a); as much as about 200 feet (60 m) thick; unit 
description modified from Maldonado and Williams (1993a). 

 
unconformity 
 
Tnw Wah Wah Springs Formation (lower Oligocene) – Pale-red to grayish-orange-

pink, moderately welded, crystal-rich, dacitic ash-flow tuff that rests on Brian 
Head strata and is overlain by the Isom Formation; phenocrysts of plagioclase, 
hornblende, biotite, and quartz (plus minor Fe-Ti oxides and sanidine) constitute 
about 40% of the rock; elongate collapsed pumice is common; exposed west of 
Cottonwood Mountain and west of Bear Valley in the Cottonwood Mountain 
quadrangle, at the head of Bunker Creek in the Brian Head quadrangle, and in the 
Red Hills; exhibits reversed magnetic polarity (Best and Grant, 1987); derived 
from the 27-32 Ma Indian Peak caldera complex that straddles the Utah-Nevada 
border (Best and others, 1989a, 1989b); today, Wah Wah Springs covers at least 
8500 square miles (22,000 km2) with an estimated volume as much as about 720 
cubic miles (3000 km3) (Best and others, 1989a); about 30 Ma based on many K-
Ar and 40Ar/39Ar age determinations (Best and Grant, 1987; Best and others, 
1989a, b; Rowley and others, 1994a); about 40 feet (12 m) thick near the west 
edge of the Markagunt Plateau, but as much as 400 feet (120 m) thick in the Red 
Hills (Maldonado and Williams, 1993a, b). 

  A small exposure on Lowder Creek (east of Brian Head peak) is deeply 
weathered, nonresistant, white, crystal-rich ash-flow tuff about 6 feet (2 m) thick; 
phenocrysts of plagioclase, hornblende, biotite, and quartz (plus minor Fe-Ti 
oxides and sanidine) make up about 30 to 40% of the rock; color and degree of 
welding contrast sharply with typical Wah Wah Springs, leading Rowley and 
others (in preparation) to suggest that the tuff at Lowder Creek was deposited in a 
lake; the Lowder Creek exposure is overlain by 3 to 6 feet (1-2 m) of volcanic 
mudflow breccia, which is in turn overlain by 10 to 15 feet (3-5 m) of deeply 
weathered, nonresistant, crystal-poor ash-flow tuff(?) of uncertain provenance, 
which is itself overlain by autochthonous Isom Formation.   

 
unconformity 
 
Brian Head Formation (lower Oligocene to uppermost Eocene) – The Brian Head 
Formation is the oldest widespread Tertiary volcaniclastic unit in the region; it 
disconformably overlies the uppermost mudstone, siltstone, and sandstone interval 
(Tcwt) and the upper white limestone interval (Tcwu) of the white member of the Claron 
Formation on the Markagunt Plateau (in the northern Markagunt Plateau and Red Hills, 
where the white member appears to be missing, Brian Head strata overlie the red member 
of the Claron Formation).  Sable and Maldonado (1997b) divided the Brian Head 
Formation into three informal units, ascending:  (1) nontuffaceous sandstone and 
conglomerate, (2) a volcaniclastic unit that has minor but conspicuous limestone and 
chalcedony, and (3) a volcanic unit, locally present, characterized by volcanic mudflow 
breccia, mafic lava flows, volcaniclastic sandstone and conglomerate, and ash-flow tuff; 
we include the basal nontuffaceous sandstone and conglomerate as a new uppermost part 
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of the Claron Formation (Tcwt), so that only their middle volcaniclastic unit is present in 
the map area; in the map area, Brian Head strata are unconformably overlain by the 30 
Ma Wah Wah Springs Formation (Tnw), or locally by the 26 to 27 Ma Isom Formation 
(Ti), and so is early Oligocene to latest Eocene (Sable and Maldonado, 1997b).  
Maldonado and Moore (1995) reported 40Ar/39Ar ages of 33.00 ± 0.13 Ma (plagioclase) 
and 33.70 ± 0.14 Ma (biotite) on an ash-flow tuff in the northern Red Hills that lies in the 
upper part of the formation.  We obtained a U-Pb age on zircon from an airfall tuff at the 
base of the formation at Cedar Breaks National Monument of 35.77 ± 0.28 Ma. 
Tbhv Middle volcaniclastic unit – White to light-gray volcaniclastic mudstone, 

siltstone, silty sandstone, sandstone, conglomerate, volcanic ash, micritic 
limestone, and multi-hued chalcedony; near Mineral Canyon and northwest of 
Little Salt Lake (hill 7292), conglomerate consists of pebble- to boulder-size, 
rounded clasts of intermediate volcanic rocks of unknown affinity and quartzite 
pebbles and cobbles; Maldonado and Williams (1993a) reported clasts of ash-flow 
tuff that resemble some overlying rocks (for example the Bauers Tuff), and 
additional work is underway to investigate this possibility; sandstone is 
commonly bioturbated with pencil-size root or burrow casts that weather out in 
relief; soft-sediment slump features are locally common; chalcedony is various 
shades of white, gray, yellow, red, black, and brown, typically has a white 
weathering rind, is commonly highly brecciated and resilicified, typically occurs 
in beds 1 to 3 feet (0.3-1 m) thick but locally as much as 8 feet (2.5 m) thick, is 
locally stained by manganese oxides, and may have resulted from silicification of 
limestone beds (Maldonado, 1995; Sable and Maldonado, 1997b) or possibly 
volcanic ash beds (Bakewell, 2001); chalcedony is almost always highly 
fractured, but some is useful for lapidary purposes (Strong, 1984); the formation 
is typically nonresistant, poorly exposed, and extensively covered by colluvium, 
but locally well exposed near Panguitch Lake and on the southwest side of Brian 
Head peak; because of abundant bentonitic clay derived from weathered volcanic 
ash, this unit weathers to strongly swelling soils (unlike underlying Claron 
Formation) and forms large landslide complexes; deposited in low-relief fluvial, 
floodplain, and lacustrine environments in which large amounts of volcanic ash 
accumulated; thickness uncertain, but maximum exposed thickness, at Brian Head 
peak, is about 500 feet (150 m). 

 
Tbht Rhyolitic tuff of middle volcaniclastic unit – Pinkish-brown, unwelded rhyolite 

tuff in the upper part of the formation in the northern Red Hills, on the west flank 
of Jackrabbit Mountain; yielded K-Ar ages of 34.2 ± 2.1 Ma (plagioclase) and 
36.3 ± 1.3 Ma (biotite), and 40Ar/39Ar ages of 33.00 ± 0.13 Ma (plagioclase) and 
33.70 ± 0.14 Ma (biotite) (Maldonado and Williams, 1993b); as much as about 
200 feet (60 m) thick.   

 
unconformity 
 
Claron Formation (Eocene to Paleocene) – Mapped as five informal lithostratigraphic 
units described below:  an upper white member (which is itself divided into an uppermost 
mudstone interval, an upper limestone interval, a middle mudstone and sandstone 
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interval, and a lower limestone interval) and the lower red member.  This map is the first 
publication with the several lithologic facies of the white member of the Claron mapped 
separately, which has proven useful to better understand faulting at the west edge of the 
Markagunt Plateau, the distribution of overlying volcaniclastic units of the Brian Head 
and Limerock Canyon Formations, and the southern depositional limit of the Markagunt 
megabreccia and location of inferred toe thrusts.  The Claron Formation consists of 
mudstone, siltstone, sandstone, limestone, and minor conglomerate deposited in fluvial, 
floodplain, and lacustrine environments of an intermontaine basin bounded by Laramide 
uplifts (Schneider, 1967; Goldstrand, 1990, 1991, 1992; Taylor, 1993; Ott, 1999).  Much 
of the red member, and clastic parts of the white member, were greatly modified by 
bioturbation and pedogenic processes, creating a stacked series of paleosols (Mullett and 
others, 1988a, b; Mullett, 1989; Mullett and Wells, 1990; see also Bown and others, 
1997).  The Claron Formation is typically forested and covered by colluvium, but it forms 
the Pink Cliffs, the uppermost riser of the Grand Staircase, and is spectacularly exposed 
at Cedar Breaks National Monument and Bryce Canyon National Park.  It is mostly 
nonfossiliferous and its age is poorly constrained as Eocene to Paleocene (Goldstrand, 
1994; Feist and others, 1997). 
Tcw White member, undivided (Eocene) – Used for areas south of Blue Spring 

Mountain and west of the Brian Head resort where incomplete and isolated 
exposures preclude subdivision; query indicates uncertain correlation in the 
northwest corner of the Brian Head quadrangle.  The entire white member is 
about 340 feet (100 m) thick in Rock Canyon; Hatfield and others (2003) reported 
that it is 360 feet (110 m) thick at Cedar Breaks National Monument, but if the 
lower sandstone and conglomerate unit of Sable and Maldonado (1997b) is 
included as part of the white member, as suggested here, the thickness is 440 feet 
(135 m) (regardless, the white member is truncated south of Cedar Breaks 
National Monument by late Tertiary and Quaternary erosion associated with 
development of the Markagunt Plateau); Moore and others (1994) reported 
significant facies changes in the white member in the Asay Bench quadrangle, but 
there, in aggregate, it is 448 feet (137 m) thick.  Sinkholes are common in the 
white member in the central Markagunt Plateau (Hatfield and others, 2003; Moore 
and others, 2004; Biek and others, 2007; Rowley and others, in preparation); large 
sinkholes visible on 1:20,000-scale aerial photographs are plotted on the geologic 
map, and doubtless many smaller sinkholes are present; these sinkholes capture 
local runoff and serve to shunt shallow ground water rapidly down dip where it 
emerges as springs, including the large Mammoth and Asay Springs (Wilson and 
Thomas, 1964; Spangler, in preparation). 

 
Tcwt Uppermost mudstone, siltstone, and sandstone interval of white member 

(upper and middle Eocene) – Varicolored and commonly mottled, pale-reddish-
orange, reddish-brown, moderate-orange-pink, dark-yellowish-orange, grayish-
pink, and similarly hued calcareous mudstone and siltstone, locally with minor 
fine-grained silty sandstone and micritic limestone; indistinguishable in lithology 
and color from the middle white (Tcwm) and red members (Tcr) of the Claron 
Formation; forms a brightly colored slope on top of the upper white member of 
the Claron Formation in the northern part of Cedar Breaks National Monument 
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(figure 3); best exposed near the North View overlook, where it is 109 feet (33 m) 
(Schneider, 1967) of mudstone and siltstone capped by a thin calcareous 
sandstone and pebbly conglomerate; this capping bed is 1 to 10 feet (0.3-3 m) 
thick and has chert, quartzite, and Claron limestone clasts but apparently no 
volcanic clasts; the sandstone and pebbly conglomerate are overlain by gray 
bentonitic mudstone of the Brian Head Formation (Tbhv); also exposed 
immediately south of Panguitch Lake, where it is about 50 feet (15 m) thick, and 
in the upper reaches of Rock Canyon, but is apparently absent elsewhere on the 
Markagunt Plateau; queried near Winn Gap at the south end of the Red Hills, 
where, based on similar four-part limestone-clastic-limestone-clastic section 
above the red member, we infer that the white member may be present; also 
queried near Mineral Canyon northeast of Paragonah, where as much as a few 
hundred feet of Claron redbeds lie above what may be the upper limestone 
interval. 

Schneider (1967) reported biotite in some of these beds, and while some 
beds exhibit slightly expansive soils, we found no biotite – even so, it is the 
apparent presence of biotite-bearing strata, and possible correlation to variegated 
strata on the southern Sevier Plateau (see Feist and others, 1997), that led Sable 
and Maldonado (1997b) to provisionally include these strata as part of their Brian 
Head Formation.  However, these same exposures strongly suggest to us that the 
nontuffaceous sandstone and conglomerate as defined by Sable and Maldonado 
(1997b) is simply the uppermost facies of the Claron Formation; they reasoned 
that because Brian Head volcaniclastic strata overlie different parts of the Claron 
Formation on the Markagunt Plateau, a disconformity separates the two 
formations; although we agree that an unconformity exists, we place the 
unconformity at the base of the thin sandstone and conglomerate (not at the top of 
the limestone ledge of the white member), thereby including the Claron-like red 
beds as a new upper unit of the white member.  Sable and Maldonado (1997b) and 
Feist and others (1997) reported on sparse late to middle Eocene vertebrate fossils 
and charophytes in strata on the southern Sevier Plateau that may be equivalent to 
this map unit. 
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Figure 3.  View northwest to North View overlook at Cedar Breaks National Monument 
showing contact between Claron and Brian Head strata (the North Overlook is on basal 
strata of the gray volcaniclastic unit of the Brian Head Formation, Tbhv).  Sable and 
Maldonado (1997b) assigned variegated, nontuffaceous mudstone, siltstone, and minor 
sandstone and pebble conglomerate (here labeled Tcwt, 109 feet [33 m] thick) to their 
lower Brian Head Formation.  However, these strata appear identical to strata of the 
middle white unit (Tcwm); they are nontuffaceous and appear simply to be an uppermost 
facies of the white member of the Claron Formation, to which we assign them.  The top of 
the Claron, as defined here, is marked by a thin, calcareous, pebbly sandstone that has 
rounded clasts of chert, quartzite, and Claron limestone but apparently no volcanic 
clasts. 

 
Tcwu Upper limestone interval of white member (Eocene) – White, pale-yellowish-

gray, pinkish-gray, and very pale orange micritic limestone and uncommon 
pelmicritic limestone, locally containing intraformational rip-up clasts; locally 
contains sparse charophytes and planispiraled snails; typically poorly bedded and 
knobby weathering; locally vuggy with calcite spar and commonly cut by calcite 
veinlets; resistant and so forms prominent ledge and flat ridge tops; upper 
conformable contact with Tcwt corresponds to a pronounced color change from 
white to very pale orange micritic limestone below to brightly colored reddish-
orange mudstone and siltstone above; queried at the south end of the Red Hills, 
and near Mineral Canyon northeast of Paragonah; thins to the west from 80 to 100 
feet (24-30 m) thick in the southwest quarter of the Haycock Mountain 
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quadrangle, 80 to 165 feet (24-50 m) thick in the Asay Bench quadrangle (Moore 
and others, 1994), about 150 to 180 feet (45-55 m) thick in the Henrie Knolls 
quadrangle (Biek and others, 2007), but only 45 to 60 feet (14-18 m) thick at 
Cedar Breaks (Schneider, 1967; Moore and others, 2004; Rowley and others, in 
preparation) and about 30 feet (10 m) thick in the southern Red Hills (Threet, 
1952). 

 
Tcwml Lower limestone interval and middle mudstone, siltstone, and sandstone 

interval of white member, undivided (Eocene) – Locally undivided at Cedar 
Breaks National Monument due to map scale, and in the northwest part of the 
Henrie Knolls quadrangle due to poor exposure; as mapped, less than about 250 
feet (75 m) thick. 

 
Tcwm Middle mudstone, siltstone, and sandstone interval of white member (Eocene) 

– Varicolored and commonly mottled, pale-reddish-orange, reddish-brown, 
moderate-orange-pink, yellowish-gray, dark-yellowish-orange, and grayish-pink 
calcareous mudstone and siltstone, and minor fine-grained calcareous sandstone 
and chert-pebble conglomerate that weathers to a poorly exposed slope; upper 
conformable contact corresponds to a pronounced color change from brightly 
colored reddish-orange mudstone and siltstone below to white to very pale orange 
micritic limestone above; queried at the south end of the Red Hills, and near 
Willow Creek northeast of Paragonah; about 120 feet (36 m) thick near Cameron 
Troughs south of Panguitch Lake, but appears to thin abruptly to about 50 feet (15 
m) thick about one mile (1 km) to the north; at Cedar Breaks National Monument, 
Schneider (1967) measured 227 feet (69 m) of strata we assign to Tcwm, but 
Rowley and others (in preparation) reported that this interval is 310 feet (94 m) 
thick in this same area; Moore and others (1994) reported that their middle sandy 
unit is 175 to at least 220 feet (54-67 m) thick in the Asay Bench quadrangle. 

 
Tcwl Lower limestone interval of white member (Eocene) – Micritic limestone 

similar to the upper white limestone interval (Tcwu); forms cliff or steep, ledgy, 
white slope above more colorful but typically subdued slopes of the red member 
(Tcr); contains sparse charophytes; upper conformable contact corresponds to a 
pronounced color change from white to very pale orange micritic limestone below 
to brightly colored reddish-orange mudstone and siltstone above; query indicates 
uncertain identification on Navajo Ridge, at the south end of the Red Hills, and 
near Willow Creek northeast of Paragonah; about 100 to 120 feet (30-35 m) thick 
in the upper reaches of Rock Canyon; Moore and others (1994) reported that their 
lower white limestone is generally 85 to 120 feet (26-36 m) thick, but as much as 
180 feet (55 m) thick, in the Asay Bench quadrangle; only about  47 feet (14 m) 
thick at Cedar Breaks National Monument, where it is informally called the 
“lower white limestone” (Schneider, 1967; Rowley and others, in preparation), 
and about 30 feet (10 m) thick in the southern Red Hills (Threet, 1952). 

 
Tcr Red member (Eocene and Paleocene) − Alternating beds of varicolored and 

commonly mottled, pale-reddish-orange, reddish-brown, moderate-orange-pink, 
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dark-yellowish-orange, grayish-pink, and similarly hued sandy and micritic 
limestone, calcite-cemented sandstone, calcareous mudstone, and minor pebbly 
conglomerate that weathers to colluvium-covered slopes.  Limestone is poorly 
bedded, microcrystalline, generally sandy with 2 to 20% fine-grained quartz sand, 
and is locally argillaceous; contains common calcite veinlets, calcite spar-filled 
vugs, calcite spar- and micrite-filled burrows, and stylolites; also contains sparse 
small bivalves and planispiral gastropods; many of these limestone beds may be 
calcic paleosols (Mullett and others, 1988a, b; Mullett, 1989; Mullett and Wells, 
1990).  Sandstone is thick-bedded, fine- to coarse-grained, calcareous, locally 
cross-bedded quartz arenite that typically weathers to sculpted or fluted ledges 
that pinch out laterally; sandstone locally contains pebble stringers.  Mudstone is 
generally moderate reddish orange, silty, calcareous, contains calcareous nodules, 
and weathers to earthy, steep slopes between ledges of sandstone and limestone.  
Pebbly conglomerate forms lenticular beds 5 to 15 feet (2-5 m) thick with 
rounded quartzite, limestone, and chert pebbles, cobbles, and, locally, small 
boulders; conglomerate is uncommon on the Markagunt Plateau south of Parowan 
Canyon, but lower red member strata are abundantly conglomeratic in the Red 
Hills and at the northwest edge of the Markagunt Plateau north of Parowan; at 
Sugarloaf Mountain west of Brian Head, several tens of feet of conglomerate (or 
several thinner beds within this interval) overlie the basal Claron limestone.  
Upper, conformable contact corresponds to a pronounced color and lithologic 
change from brightly colored reddish-orange mudstone and siltstone below to a 
white to very pale orange micritic limestone above; mostly nonfossiliferous and 
its age is poorly constrained as Eocene to Paleocene(?) (Goldstrand, 1994), but 
Nichols (1997) reported Late Cretaceous (Santonian?) pollen from gradationally 
underlying strata here mapped as TKu south and west of Blowhard Mountain, 
thus suggesting that the Claron Formation may be older than previously thought; 
measurements from the map suggest that the red member is about 1000 feet (300 
m) thick at Cedar Breaks National Monument, similar to the measured thickness 
of Schneider (1967), who reported that the red member there was 993 feet (303 
m) thick (the lower 56 feet [17 m] of his section includes beds we assign to TKu, 
thus the red member there is 937 feet [286 m] thick), considerably less than the 
1300 feet (400 m) reported in Sable and Maldonado (1997b); strata that we 
include in the red member are likely of similar thickness in more structurally 
complicated outcrops of the Red Hills (Threet, 1952, 1963). 

 
TERTIARY-CRETACEOUS 
TKu Tertiary-Cretaceous strata, undivided (Paleocene? to Upper Cretaceous?) – 

Yellowish-brown, commonly stained dark-reddish-brown, fine-grained sandstone 
and lesser interbedded, similarly colored mudstone and siltstone; bedding is thin 
to very thick and appears tabular from a distance; weathers to ledgy slope or cliff; 
outcrop habit and surficial color make it look like the red member of the Claron 
Formation from a distance (figure 4); not yet mapped in Parowan Canyon and 
areas to the north, where basal Claron strata are conglomeratic and identification 
of this interval, if present, is problematic; upper contact placed at the base of the 
first sandy limestone bed (calcic paleosol) of the red member of the Claron 
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Formation, following Moore and Straub (2001); appears to represent fluvial and 
floodplain environments gradationally overlain by the Claron Formation; like 
Moore and Straub (2001), we recognize no significant erosion beneath the Claron 
Formation at the west edge of the Markagunt Plateau, leading to uncertainty as to 
the age of this interval and the age of basal Claron strata; Nichols (1997) reported 
Late Cretaceous (Santonian?) pollen from strata we map as TKu south and west 
of Blowhard Mountain, but the apparently gradationally overlying red member of 
the Claron Formation is widely believed to be Paleocene(?) to Eocene 
(Goldstrand, 1994) and Goldstrand (1991) reported late Paleocene palynomorphs 
from basal Claron strata in the Pine Valley Mountains; about 200 feet (60 m) 
thick near State Highway 14 at the west edge of the Markagunt Plateau, but 
apparently thins to the north where it may be about 60 feet (20 m) thick in 
Parowan Canyon. 

 

 
 
Figure 4.  View east to Brian Head peak from High Mountain.  Note sandstone cliff 
(TKu), stained dark-reddish-brown from runoff from overlying red member of the Claron 
Formation (Tcr).  In most areas south of Parowan Canyon, the base of TKu corresponds 
to the top of a thin conglomerate with rounded quartzite and limestone clasts (TKgcu), 
although in some areas, as here, the conglomerate appears to be missing.  Underlying 
yellowish-brown mudstone, siltstone, and sandstone are tentatively assigned to the 
Wahweap Formation (Kw?).  The base of the Claron Formation corresponds to the base 
of the first limestone bed, likely a calcic paleosol. 
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TKgc Grand Castle Formation, undivided (Paleocene? to Upper Cretaceous) – In its 

type area of Parowan Canyon, divided into an upper light-gray and light-red, 
massive, cliff-forming conglomerate, a middle light-gray to white slope-forming 
sandstone, and a lower, cliff-forming, light-gray conglomerate that weathers to 
form hoodoos (commonly shaped like old-fashioned beehives [bee skeps]); 
undivided along the northwest flank of the Markagunt Plateau between Red Creek 
and Little Creek where the three members are too thin to map separately at this 
scale; about 200 feet (60 m) thick. 

 
TKgcu Upper conglomerate of the Grand Castle Formation (Paleocene? to Upper 

Cretaceous) – Light-gray and light-red, massive, cliff-forming conglomerate; 
clasts are well-rounded, pebble- to boulder-size quartzite, limestone, sandstone, 
and chert; like the lower conglomerate member (Kgcl), locally weathers to form 
hoodoos (commonly shaped like old-fashioned beehives [bee skeps]); upper 
contact with strata here mapped as TKu on the Markagunt Plateau, and as basal 
red member of the Claron Formation in the Red Hills and northwestern 
Markagunt Plateau, appears gradational; on the Markagunt Plateau south of 
Parowan, the upper contact corresponds to the base of ledge- and cliff-forming, 
tabular bedded sandstone stained dark-reddish-brown from overlying Claron 
strata (figure 4); elsewhere, upper contact generally corresponds to the top of the 
cliff-forming conglomerate, above which is interbedded reddish-brown siltstone, 
sandstone, mudstone, and sandy limestone of the Claron Formation; deposited in 
a braided fluvial environment with paleoflow direction principally to the east to 
south-southeast, suggesting source areas in the Wah Wah, Blue Mountain, and 
Iron Springs thrust sheets of southwest Utah (Goldstrand and Mullett, 1997); as 
much as about 200 feet (60 m) (Threet, 1952, 1963) to 300 feet (90 m) 
(Maldonado and Williams, 1993a) thick near Parowan Gap; on the Markagunt 
Plateau, thins abruptly to the south from 183 feet (56 m) thick at the type area in 
First Left Hand Canyon southeast of Parowan (Goldstrand and Mullet, 1997) and 
the conglomerate may locally be absent south of Navajo Ridge (where it was not 
recognized in the measured sections of Goldstrand, 1991), but this interval is 
typically mantled in talus and colluvium that may obscure its presence; however, 
based on mapping of Upper Cretaceous strata between Parowan and Cedar 
Canyons, we believe it is present at Sugarloaf Mountain, in the upper reaches of 
Spring Creek Canyon, west of Blowhard Mountain, and west of Navajo Lake 
where it is no more than a few feet thick, and in Last Chance Canyon where it is 
about 25 feet (8 m) thick; mapped as the conglomerate of Parowan Gap by 
Maldonado and Williams (1993a) but, following Goldstrand and Mullet (1997) 
inferred to be the upper conglomerate of the Grand Castle Formation because it is 
gradationally overlain by the red member of the Claron Formation and the 
underlying middle Grand Castle sandstone is absent; a debris-flow deposit within 
the upper part of the unit in its type section yielded Late Cretaceous (Santonian?) 
pollen that Goldstrand and Mullett (1997) interpreted as recycled from older 
strata; however, Nichols (1997) reported Late Cretaceous (Santonian?) pollen 
from beds here mapped as TKu west and south of Blowhard Mountain, suggesting 
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that the entire Grand Castle Formation is Late Cretaceous; Goldstrand and Mullett 
(1997) inferred a Paleocene age for the entire Grand Castle Formation based on 
distant correlations with Canaan Peak and Pine Hollow Formations on the Table 
Cliff Plateau, but we found evidence that the lower two members are Late 
Cretaceous (described below) and that the upper conglomerate may be Late 
Cretaceous or early Paleocene. 

Anderson and Dinter (2010) reported a 10- to 15-foot-thick (3-5 m) poorly 
sorted, matrix supported conglomerate at the base of the Grand Castle that they 
informally called the conglomerate of Parowan Gap.  They described this unit, 
which is restricted to the hanging wall of the Iron Springs thrust, as distinct from 
overlying Grand Castle conglomerate, but lead-author Biek found mostly clast-
supported conglomerate identical to the Grand Castle conglomerate at this horizon 
in his remapping of the Parowan Gap area.  The basal few feet of Grand Castle 
Conglomerate are locally iron stained throughout the Parowan Gap area, likely a 
result of a strong permeability contrast between underlying Upper Cretaceous 
strata and the overlying Grand Castle conglomerate. 

 
CRETACEOUS 
Kgcml Middle sandstone and lower conglomerate of the Grand Castle Formation, 

undivided (Upper Cretaceous) – Mapped north of Red Creek where the lower 
two members are too thin to map separately at this scale. 

 
Kgcm Middle sandstone of the Grand Castle Formation (Upper Cretaceous) – Light-

gray to white, fine- to medium-grained sandstone composed of well rounded and 
commonly frosted quartz grains (apparently recycled from the Navajo Sandstone); 
thin to medium bedded, cross stratified or horizontally stratified, and locally 
contains carbonized or petrified plant debris, small mudstone rip-up clasts, iron 
concretions, and soft-sediment deformation features; locally contains thin 
mudstone intervals, especially in the lower part of the member; typically forms 
poorly exposed slope, but well exposed about 2 miles (km) southwest of Parowan, 
at the mouth of Summit Creek canyon, at the type area in First Left Hand Canyon, 
and in a State Highway 14 road cut west of Blowhard Mountain; deposited in a 
braided fluvial environment with a paleoflow direction principally to the east to 
south-southeast, suggesting source areas in Navajo Sandstone exposed in the 
upper plate of the Iron Springs thrust, now exposed in the Red Hills (Goldstrand 
and Mullett, 1997; Lawton and others, 2003); appears to interfinger southward 
with strata tentatively assigned to the Wahweap Formation (Kw?), and, except at 
the southwest edge of Blowhard Mountain, we include it as the upper part of that 
formation south of the Summit and Parowan quadrangles where exposures are 
typically inadequate to map at this scale; our mapping confirms the finding of 
Goldstrand and Mullet (1997), who first correlated the sandstone at the Websters 
Flat turnoff with the middle sandstone member of the Grand Castle Formation, 
and this interval may be equivalent to the capping sandstone member of the 
Wahweap Formation as suggested by Lawton and others (2003); detrital zircon 
analyses are planned that may help constrain age and provenance of this interval; 
we discovered Campanian to Santonian palynomorphs and a theropod dinosaur 
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track (the latter found by Eric Roberts, formerly with Southern Utah University 
and now at James Cook University, Australia) in the lower part of the interval in 
an unnamed canyon about 2 miles (3 km) southwest of Parowan, confirming our 
suspicion of a Late Cretaceous age for this member; 277 feet (85 m) thick at its 
type section in First Left Hand Canyon southeast of Parowan, about 100 feet (30 
m) thick in last Chance Canyon, and about 200 feet (60 m) thick at the southwest 
side of Blowhard Mountain; collectively, the middle sandstone and queried 
Wahweap Formation thickens southward from 277 feet (85 m) in Parowan 
Canyon (where only the middle sandstone is present) to about 900 feet (275 m) in 
Cedar Canyon where both units are present. 

 
Kgcl Lower conglomerate of the Grand Castle Formation (Upper Cretaceous) – 

Similar to the upper Grand Castle Conglomerate; locally weathers to form 
hoodoos (commonly shaped like old-fashioned beehives [bee skeps]), but forms 
resistant ledge in the upper reaches of Summit Creek canyon and the upper 
reaches of Pickering Creek canyon; 135 feet (41 m) thick at the type section in 
First Left Hand Canyon southeast of Parowan (Goldstrand and Mullet, 1997), and 
of similar thickness southward to Sugarloaf Mountain; south of this area, 
however, the lower conglomerate thins irregularly southward, ranging from a few 
feet thick to nearly 100 feet (30 m) thick, and locally appears as two conglomerate 
intervals separated by a few feet to a few tens of feet of yellowish-brown, fine-
grained sandstone or variegated mudstone; pebbly sandstone and conglomerate at 
the top of the “S” curve switchback on the north side of State Highway 14 is 
among the thinnest exposures of this conglomerate, but it is several tens of feet 
thick immediately south of the highway and is nearly 100 feet (30 m) thick on the 
north side of Black Mountain; suggested by Eaton and others (2001), Moore and 
Straub (2001), Lawton and others (2003), and Eaton (2006) to possibly be 
equivalent to the Drip Tank Member of the Straight Cliffs Formation, which is 
late Santonian or early Campanian at its type section on the Kaiparowits Plateau, 
possibly somewhat younger than the conglomerate here; typically overlies stacked 
or amalgamated sandstone beds (as at the State Highway 14 and Black Mountain 
exposures) but locally overlies variegated mudstone (as at Ashdown Creek); 
inferred by Goldstrand and Mullett (1997) to be Paleocene, but as described 
above is Late Cretaceous (Campanian or Santonian). 

 
Upper Cretaceous strata undergo significant west-to-east and north-to-south facies 

changes on the Markagunt Plateau, thus presenting significant challenges to correlation 
and mapping as described by Eaton and others (2001), Moore and Straub (2001), Moore 
and others (2004), and Rowley and others (in preparation).  These strata consist of coastal 
plain, marginal marine, and a westward-thinning wedge of marine strata deposited in a 
foreland basin east of the Sevier orogenic belt.  Collectively, this sedimentary package, 
represented by the Dakota, Tropic, and Straight Cliffs Formations, was deposited during 
the Greenhorn Marine Cycle, a large-scale sea-level rise and fall recognized world-wide 
and that here corresponds to the maximum transgression of the Western Interior Seaway 
(figure 5).  They are overlain by river and floodplain strata that we tentatively assign to 
the Wahweap Formation, but that may be an exceptionally thick section of the underlying 
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John Henry Member of the Straight Cliffs Formation.  Ongoing stratigraphic studies at 
the west edge of the Markagunt Plateau may further elucidate relationships among these 
foredeep basin strata. 
 
 

 
Figure 5.  Strata of the Greenhorn Cycle, showing maximum flooding surface 
represented by the open-marine strata of the Tropic Shale and intermediate flooding 
surfaces represented by coal zones (4 to 9) that accumulated in brackish, estuarine 
environments near the margin of the Western Interior Sea.  Note numerous smaller cycles 
superimposed on the larger Greenhorn Cycle, which are due to changes in subsidence, 
compaction, and climate.  Note also the diachronous nature of the strata, meaning that 
the same facies differ in age from place to place.  The upper Dakota Formation is 
equivalent in age to the lower part of the Tropic Shale exposed farther east ― that is, 
they are the time-correlative coastal-plain and estuarine facies of the deeper water, 
offshore mud deposits of the Tropic Shale.  Similarly, the Tibbet Canyon Member of the 
Straight Cliffs Formation is older in western exposures; it respresents eastward 
prograding shoreline deposits that also are time-correlative with offshore Tropic muds.  
The Iron Springs Formation was deposited principally in braided-stream and floodplain 
environments of a coastal plain and is considered correlative with the Straight Cliffs 
Formation, Tropic Shale, and Dakota Formation.  Simplified from Tibert and others 
(2003).   
 
Kw? Wahweap Formation(?) (Upper Cretaceous, Campanian? or Santonian?) –

Varicolored and mottled mudstone of brown, gray, reddish-brown, and pinkish 
hues, and lesser interbedded yellowish-brown fine-grained sandstone and silty 
sandstone; upper part of formation contains more sandstone than mudstone, also 
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noted by Moore and Straub (2001) and Moore and others (2004); deposited in 
braided river and floodplain environments of a coastal plain by northeast-flowing 
rivers longitudinal to the foreland basin that tapped sources in the Cordilleran 
magmatic arc and Mogollon Highlands (Pollock, 1999; Lawton and others, 2003; 
Eaton, 2006); Eaton and others (1999a) and Eaton (2006) reported enigmatic 
fossil mammals from near the base and top of the formation in Cedar Canyon that 
may be Campanian, and Lawton and others (2003) reported middle Campanian 
pollen from the upper part of the formation near Webster Flat (we also recovered 
Santonian to Campanian pollen near Webster Flat); Jinnah and others (2009) and 
Larsen and others (2010) reported an 40Ar/39Ar age of 80.6 ± 0.3 Ma (Campanian) 
on lower Wahweap strata on the Kaiparowits Plateau; measurements from the 
map show that the Wahweap(?) Formation is about 800 feet (245 m) thick below 
Cedar Breaks National Monument and south of Blowhard Mountain; Moore and 
Straub (2001) measured 760 feet (230 m) of strata in Cedar Canyon that we assign 
to Wahweap(?).  If the lower conglomerate of the Grand Castle Formation is not 
equivalent to the Drip Tank Member of the Straight Cliffs Formation, strata here 
mapped as Wahweap(?) may simply be the upper part of the Straight Cliffs 
Formation (John Henry Member equivalent); ongoing stratigraphic studies may 
help assess the validity of our tentative correlation to early to middle Campanian 
Wahweap strata on the Kaiparowits Plateau, a correlation initially proposed by 
Eaton and others (1999a) and Moore and Straub (2001). 

 
Ksu Straight Cliffs Formation, upper unit (Upper Cretaceous, Santonian[?] to 

Turonian) – Consists of strata widely interpreted as equivalent to the Smoky 
Hollow and John Henry Members of the Straight Cliffs Formation on the 
Kaiparowits Plateau, which form an overall regressive sequence following the last 
marine incursion of the Western Interior Seaway (see, for example, Eaton and 
others, 2001; Moore and Straub, 2001; Tibert and others, 2003).  Lower, Smoky 
Hollow-equivalent strata are slope-forming, brown and gray mudstone, shale, and 
interbedded yellowish-brown fine-grained sandstone; lower part contains a few 
thin coal beds, common carbonaceous shale, and several thin oyster coquina beds; 
on the Kaiparowits Plateau, upper contact corresponds to the top of the Calico 
bed, which Moore and Straub (2001, their subunit 4 of interval A) suggested may 
be present in Cedar Canyon about 285 feet (87 m) above the base of the 
formation; this sandstone is about 30 feet (9 m) thick and is not distinctive – it 
lacks pebbles and we were unable to use this bed as a marker horizon; however, 
we did locally map a thin pebble conglomerate about 330 feet (100 m) above the 
base of the formation in the southern part of the Webster Flat quadrangle, which 
may be the Calico bed; Smoky Hollow strata are middle to upper Turonian based 
on a diverse assemblage of mollusks, benthic foraminifera, and ostracods from 
Cedar Canyon exposures (Eaton and others, 2001; Tiebert and others, 2003); 
Eaton and others (2001) measured 364 feet (110 m) of strata that likely belong to 
the Smoky Hollow Member, the lower 167 feet (54 m) of which are brackish and 
an order of magnitude thicker than equivalent brackish strata on the Kaiparowits 
Plateau, reflecting greater subsidence rates in the western part of the foredeep 
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basin; Moore and Straub (2001) assigned 313 feet (95 m) of strata in Cedar 
Canyon as likely equivalent to the Smoky Hollow Member. 

Upper, John Henry-equivalent strata are slope-forming, variegated, gray, 
brown, and reddish-brown mudstone and thin- to thick-bedded, grayish-orange to 
yellowish-brown, fine-grained subarkosic sandstone; stacked or amalgamated 
sandstone beds make up most of the upper part of the unit; upper contact 
corresponds to the base of the lower conglomerate of the Grand Castle Formation 
(which may be the Drip Tank Member of the Straight Cliffs Formation as 
described above); deposited in fluvial and floodplain environments of a coastal 
plain (Eaton and others, 2001); biotite from an ash bed about 800 feet (245 m) 
above the base of the upper unit in Cedar Canyon yielded an 40Ar/39Ar age of 
86.72 ± 0.58 Ma (early Coniacian) (Eaton, 1999; Eaton and others, 1999b); 
probably about 900 to 1000 feet (275-300 m) thick in Cedar Canyon (Moore and 
Straub, 2001). 

We tentatively assign strata previously mapped as the Iron Springs 
Formation in Parowan Canyon and in the Summit quadrangle to the Straight 
Cliffs Formation; these strata consist of ledge-forming, calcareous, cross-bedded, 
fine- to medium-grained sandstone and less-resistant, slope-forming mudstone; 
the formation here is variously colored grayish orange, pale yellowish orange, 
dark yellowish orange, white, pale reddish brown, and greenish gray and is locally 
stained by iron-manganese oxides; Liesegang banding is locally common in the 
sandstone beds; thin coal seams and oyster coquinas are present in the lower part 
of the section in both areas, suggesting correlation to the brackish deposits of the 
Smoky Hollow Member; incomplete section is about 1100 feet (335 m) thick in 
Parowan Canyon (Maldonado and Moore, 1995). 

The striking difference in facies and outcrop habit of correlative strata 
between Cedar and Parowan Canyons has long been noted (see, for example, 
Eaton and others, 2001).  However, only about the upper 1000 feet (300 m) of 
strata previously assigned to the Iron Springs Formation is exposed in Parowan 
Canyon, where it is characterized by repetitive ledge-forming tabular sandstone 
beds and interbedded, slope-forming mudstone.  Equivalent strata to the south in 
Cedar Canyon, widely correlated to the John Henry Member of the Straight Cliffs 
Formation, are characterized by generally poorly exposed, typically slope-
forming, stacked or amalgamated sandstone and relatively little mudstone; 
mudstone, however, dominates the lower part of the John Henry in Cedar Canyon.   

 
Kst Tibbet Canyon Member (Upper Cretaceous, Turonian) − Grayish-orange to 

yellowish-brown, generally medium- to thick-bedded, planar-bedded, fine- to 
medium-grained quartzose sandstone and minor interbedded, grayish-orange to 
gray mudstone and siltstone; locally contains pelecypods, gastropods, and thin to 
thick beds of oyster coquina; forms bold cliffs in Cedar Canyon and in the West 
and East Forks of Braffits Creek south of Summit; upper contact corresponds to a 
pronounced break in slope and is placed at the top of a coquinoid oyster bed and 
base of overlying thin coal and carbonaceous shale interval that caps the member; 
forms the riser of the Gray Cliffs part of the Grand Staircase; represents initial 
progradational (overall regressive) strata of the Greenhorn Cycle deposited in 
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shoreface, beach, lagoonal, and estuarine environments adjacent to a coastal plain 
(Laurin and Sageman, 2001; Tibert and others, 2003); about 650 to 800 feet (200-
245 m) thick. 

 
Kt Tropic Shale (Upper Cretaceous, Turonian to Cenomanian) − Dark-gray and 

yellowish-brown sandy mudstone, silty fine-grained sandstone, and minor shale; 
best developed at the south edge of the Kolob Terrace in the Webster Flat 
quadrangle, where the basal mudstone is locally characterized by a lag of 
septarian nodules; locally contains Inoceramus sp. fossils indicative of open 
shallow-marine environment (see, for example, Eaton and others, 2001); very 
poorly exposed, but forms subtle, vegetated slope at the base of the Straight Cliffs 
Formation and above the prominent “sugarledge sandstone” (Cashion, 1961) at 
the top of the Dakota Formation; upper contact placed at the base of the cliff-
forming, planar beds of the Straight Cliffs Formation (figure 6); deposited in 
shallow-marine environment dominated by fine-grained clastic sediment (Tibert 
and others, 2003); thins north westward across the map area, from about 40 feet 
(12 m) thick in the southwest part of the Webster Flat quadrangle to a few feet 
thick in Cedar Canyon. 

 

 
Figure 6.  View north into Maple Canyon, tributary to Cedar Canyon at the west edge of 
the Markagunt Plateau; State Highway 14 is in the foreground.  The Tropic Shale is 
represented by a thin, dark-gray mudstone and siltstone that forms a slope between ledge 
and cliff-forming sandstone of the Dakota Formation (Kd) and the Tibbet Canyon 



 59 

Member of the Straight Cliffs Formation (Kst).  The thin slope of Tropic represents the 
maximum incursion of the Western Interior Seaway in Late Cretaceous (early Turonian) 
time.  Underlying Dakota strata – deposited as an overall regressive unit of floodplain, 
estuarine, lagoonal, and swamp environments of a coastal plain – record the 
encroachment of that seaway, whereas overlying Tibbet Canyon strata were deposited in 
an overall progradational sequence of marginal-marine and beach environments 
following retreat of the Western Interior Sea. 
 Several normal faults cut strata of Maple Canyon, which  partly follows the south 
end of the Summit Mountain graben.  Tcr (red member) and Tcw (white member) of the 
Claron Formation; regional ash-flow tuffs of the Leach Canyon Formation (Tql) and 
Isom Formation (Ti), which overlie the vegetated Brian Head Formation (Tbhv), are 
unconformably overlain by the Markagunt megabreccia (Tm). 
 
Ktd Tropic Shale and Dakota Formation, undivided (Upper Cretaceous, Turonian 

to Cenomanian) − Undivided in Cedar Canyon where the Tropic Shale is a few 
feet to at most a few tens of feet thick. 

 
Kd Dakota Formation (Upper Cretaceous, Cenomanian) − Interbedded, slope- and 

ledge-forming sandstone, siltstone, mudstone, claystone, carbonaceous shale, 
coal, and marl; sandstone is yellowish brown or locally white, thin to very thick 
bedded, fine to medium grained; includes several prominent cliff-forming 
sandstone beds each several tens of feet thick in the upper part of the formation, 
the upper one of which may correspond to the “sugarledge sandstone” of Cashion 
(1961); mudstone and claystone are gray to yellowish brown and commonly 
smectitic; oyster coquina beds, clams, and gastropods, including large Craginia 
sp., are common, especially in the upper part of the section; thin marl beds above 
the “sugarledge sandstone” locally contain small, distinctive gastropods with 
beaded edge (Admetopsis n. sp. indicative of a latest Cenomanian brackish 
environment [Eaton and others, 2001]); Dakota strata are typically poorly exposed 
and involved in large landslides in the Cedar Canyon area; most workers divide 
the Dakota Formation into three members, the lower one of which we re-assign to 
the Cedar Mountain Formation and the upper two of which we combine given the 
difficulty of mapping their mutual contact; upper contact placed at the top of the 
thin marl beds overlying the “sugarledge sandstone;” represents an overall 
regressive sequence, the lower part of which was deposited in floodplain and river 
environments, whereas the upper part represents estuarine, lagoonal, and swamp 
environments of a coastal plain (Gustason, 1989; Eaton and others, 2001; Laurin 
and Sageman, 2001; Tibert and others, 2003); Gustavson (1989), based in part on 
study of Cedar Canyon exposures, was the first to correlate fluvial packages of the 
Dakota with orbital cycles of marine sedimentation of the deeper parts of the 
Western Interior Sea; Laurin and Sageman (2001) expanded on that work, 
constructing a high resolution temporal and stratigraphic framework of middle 
Cretaceous marginal-marine deposits – they documented changes in shoreline 
position and also linked these changes to rhythmic, Milankovitch-driven 
deposition of marine limestone of the Western Interior Seaway; invertebrate and 
palynomorph fossil assemblages indicate shallow-marine, brackish, and fresh-
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water deposits of Cenomanian age (Nichols, 1997); based on map measurements, 
about 1300 to 1400 feet (400-425 m) thick at the south end of Jones Hill west of 
Maple Canyon. 

    
Ki Iron Springs Formation, undivided (Upper Cretaceous, Santonian or lower 

Campanian to Cenomanian) – Interbedded, ledge-forming, calcareous, cross-
bedded, fine- to medium-grained sandstone and less-resistant, poorly exposed 
sandstone, siltstone, and mudstone present in the Red Hills at the west edge of the 
map area; the formation is variously colored grayish orange, pale yellowish 
orange, dark yellowish orange, white, pale reddish brown, and greenish gray and 
is locally stained by iron-manganese oxides; Liesegang banding is common in the 
sandstone beds; sandstone beds range from quartz arenite to litharenite (Fillmore, 
1991; Goldstrand, 1992); the entire formation weathers to repetitive, thick tabular 
sandstone beds and thinner interbedded mudstone; lower part (in the upper plate 
of the Iron Springs thrust) contains numerous oyster coquina beds commonly 1 to 
3 feet (0.3-1 m) thick; upper contact with the upper conglomerate of the Grand 
Castle Formation is difficult to map on the east and south sides of the Red Hills 
due to abundant TKgcu-derived colluvium and faults; deposited principally in 
braided-stream and floodplain environments of a coastal plain (Johnson, 1984; 
Fillmore, 1991; Eaton and others, 2001; Milner and others, 2006); mapped in the 
Red Hills where it is correlated to the Dakota Formation, Tropic Shale, and 
Straight Cliffs Formation (Eaton, 1999; Eaton and others, 2001); age from 
Goldstrand (1994) and an ash that is 712 feet (217 m) below the top of the 
formation in Parowan Canyon (here reassigned to the upper part of the Straight 
Cliffs Formation), which yielded an 40Ar/39Ar age of 83.0 ± 1.1 Ma (Eaton and 
others, 1999b); lower Iron Springs strata (in the upper plate of the Iron Springs 
thrust) may be associated with the maximum transgression of the Greenhorn Sea 
of late Cenomanian or early Turonian age (Eaton and others, 1997; Eaton, 1999); 
Milner and others (2006) reported on dinosaur tracks in upper Iron Springs strata 
near Parowan Gap, and also noted a diverse assemblage of plant fossils, bivalves, 
gastropods, turtles, fish, and trace fossils suggestive of upper Santonian to early 
Campanian age (Milner and Spears [2007] mistakenly reported an early Turonian 
age for these same beds); incomplete sections are about 2500 feet (750 m) thick in 
the Red Hills (Maldonado and Williams, 1993a) and about 1100 feet (335 m) 
thick in Parowan Canyon (Maldonado and Moore, 1995), but the entire formation 
is about 3500 to 4000 feet (1070-1220 m) thick in the Pine Valley Mountains 
(Cook, 1960). 

 
Kcm Cedar Mountain Formation (Cretaceous, Cenomanian to Albian) − Consists of 

a basal pebble conglomerate overlain by brightly colored variegated mudstone in 
Cedar Canyon.  Mudstone is variegated gray, purplish-red, and reddish-brown, 
distinctly different from the gray and yellowish-brown hues of overlying Dakota 
strata; clay is smectitic and weathers to “popcorn-like” soils; includes minor light-
gray to dark-yellowish-brown, fine- to medium-grained channel sandstone.  Basal 
conglomerate is grayish brown and typically poorly cemented and non-resistant; 
clasts are subrounded to rounded, pebble- to small-cobble-size quartzite, chert, 
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and limestone; red quartzite clasts are common; ranges from less than one foot 
(0.3 m) to about 10 feet (3 m) thick. 

Except for thin conglomerate ledge at base, weathers to generally poorly 
exposed slopes covered with debris from the overlying Dakota Formation; upper 
contact is poorly exposed and corresponds to a color and lithologic change, from 
comparatively brightly colored smectitic mudstone below to gray and light-
yellowish-brown mudstone and fine-grained sandstone above (figures 7 and 8); 
regionally, the Cedar Mountain Formation is unconformably overlain by the 
Dakota Formation (see, for example, Kirkland and others, 1997); volcanic ash 
from correlative strata on the Kolob Plateau yielded a single-crystal 40Ar/39Ar age 
of 97.9 + 0.5 Ma on sanidine (Biek and Hylland, 2007), and pollen analyses 
indicate an Albian or older age (Doelling and Davis, 1989; Hylland, 2010); 
Dyman and others (2002) obtained an 40Ar/39Ar age of 101.7 + 0.42 Ma (latest 
Albian) on equivalent strata near Gunlock; additionally, palynomorphs from a 
thin mudstone interval, including rare occurrences of Trilobosporites humilis and 
possibly Pseudoceratium regium, collected immediately to the west in the Cedar 
City quadrangle (NW1/4 NW1/4 SE1/4 section 17, T. 36 S., R. 10 W.) suggest a 
late Albian age for this horizon (Michael D. Hylland, unpublished data, 
November 9, 2001); deposited in floodplain environment of a broad coastal plain 
(Tschudy and others, 1984; Kirkland and others, 1997; Cifelli and others 1997; 
Kirkland and Madsen, 2007); previously mapped as the lower part of the Dakota 
Formation, but the lithology, age, and stratigraphic position of these beds suggest 
correlation to the Cedar Mountain Formation (Biek and others, 2009); 
specifically, the mudstone interval appears to be time-correlative with the 
Mussentuchit Member of the Cedar Mountain Formation of central and eastern 
Utah; ongoing detrital zircon studies may help resolve the provenance and 
correlation of the underlying conglomeratic unit; about 60 feet (18 m) thick in 
Cedar Canyon. 
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Figure 7.  Cedar Mountain Formation 
exposed in Cedar Canyon near the 
west edge of the map area.  Base of 
Cedar Mountain Formation (Kcm) is 
marked by a thin pebble conglomerate 
and overlying dark-gray bentonitic 
ash; note thin, lenticular channel 
sandstone near base of Cedar 
Mountain strata and bleached upper 
part of Winsor Member of the Carmel 
Formation (Jcw).  Coop Creek 
Limestone Member of the Carmel 
Formation (Jcc) is exposed at road 
level; Crystal Creek strata are hidden 
from view; Paria River Member (Jcp).  
View west down Cedar Canyon; 
outcrop is in the SW1/4NE1/4NW1/4 
section 21, T. 36 S., R. 10 W. 
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unconformity (K)  No rocks of late Middle Jurassic to middle Early Cretaceous age are 
preserved in southwest Utah.  This is because during this time, the back-bulge basin that 
developed in front of the Sevier orogenic belt had migrated eastward, and much of Utah 
was a forebulge high, a broad, gentle uplift that was high enough to undergo a prolonged 
period of modest erosion (see, for example, Willis, 1999).  In this area, this 60-million-
year-long gap in the rock record is marked by a bleached zone at the top of the Winsor 
Member of the Carmel Formation (figure 7).  The Cretaceous unconformity cuts down 
section to the west, where, on the south flank of the Pine Valley Mountains, first Winsor, 
then Paria River, and finally Crystal Creek strata are completely eroded away, so that at 
Gunlock the Cedar Mountain Formation rests upon the Co-op Creek Limestone, the 
lower member of the Carmel Formation (Biek and others, 2009).  
 
JURASSIC 
Carmel Formation (Middle Jurassic) 
Nomenclature follows that of Doelling and Davis (1989); deposited in a shallow inland 
sea of a back-bulge basin, together with the underlying Temple Cap Formation, the first 
clear record of the effects of the Sevier orogeny in southwestern Utah; age from Imlay 
(1980); measured thicknesses in Cedar Canyon are from Doug Sprinkel, Utah Geological 
Survey, written communication, June 22, 2010). 
 
Jcw  Winsor Member (Middle Jurassic, Callovian to Bathonian) – Light-reddish-

brown, fine- to medium-grained sandstone and siltstone; uppermost beds typically 

Figure 8.  View north to the Cedar 
Mountain Formation (Kcm) in the 
SW1/4SE1/4SW1/4 section 16, T. 36 
S., R. 10 W.  Swelling mudstone of 
light-gray, reddish-brown, and 
purplish hues contrast sharply with 
yellowish-brown and olive-gray 
mudstone of overlying Dakota 
Formation (Kd).  About 40 feet (12 
m) above the base of the Dakota 
Formation there is a ledge-forming 
20-foot-thick (6 m) pebbly sandstone 
and conglomerate with rounded 
quartzite and black chert clasts, and 
it is this bed that may have been 
mistaken in the past for the basal 
Cretaceous unconformity.  Jcw = 
Winsor Member of Carmel 
Formation. 
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bleached white under the Cretaceous unconformity; poorly cemented and so 
weathers to vegetated slopes, or, locally, badland topography; upper contact is at 
the base of a pebble conglomerate, which marks the Cretaceous unconformity; 
deposited on a broad, sandy mudflat (Imlay, 1980; Blakey and others, 1983); 250 
feet (75 m) thick in Cedar Canyon. 

 
Jcp Paria River Member (Middle Jurassic, Bathonian) – Consists of three parts not 

mapped separately:  (1) upper part is about 50 feet (15 m) of cliff-forming, olive-
gray, micritic and argillaceous limestone and calcareous mudstone; laminated in 
very thick beds; locally contains small pelecypod fossils; (2) middle part is about 
20 feet (6 m) of reddish-brown and greenish-gray shale that forms slope; and (3) 
lower part is gypsum and minor interbedded shale as much as 80 feet (25 m) thick 
in nodular, highly fractured and contorted beds and as thin, laminated beds.  
Upper contact is sharp and planar; deposited in shallow-marine and coastal-
sabkha environments (Imlay, 1980; Blakey and others, 1983); 173 feet (53 m) 
thick in Cedar Canyon. 

 
Jcx Crystal Creek Member (Middle Jurassic, Bathonian) – Thin- to medium-

bedded, reddish-brown siltstone, mudstone, and fine to medium-grained 
sandstone; commonly gypsiferous and contains local contorted pods of gypsum; 
forms vegetated, poorly exposed slopes; upper contact is sharp and broadly wavy 
and corresponds to the base of the thick Paria River gypsum bed; Kowallis and 
others (2001) reported two 40Ar/39Ar ages of 167 to 166 million years old for 
altered volcanic ash beds within the member near Gunlock that were likely 
derived from a magmatic arc in what is now southern California and western 
Nevada; deposited in coastal-sabkha and tidal-flat environments (Imlay, 1980; 
Blakey and others, 1983); 294 feet (90 m) thick in Cedar Canyon. 

 
Jcc Co-op Creek Limestone Member (Middle Jurassic, Bajocian) − Thin- to 

medium-bedded, light-gray micritic limestone and calcareous shale; locally 
contains Isocrinus sp. columnals, pelecypods, and gastropods; forms sparsely 
vegetated, ledgy slopes and cliffs; Kowallis and others (2001) reported several 
40Ar/39Ar ages of 168 to 167 million years old for altered volcanic ash beds within 
the lower part of the member in southwest Utah that were likely derived from a 
magmatic arc in what is now southern California and western Nevada; deposited 
in a shallow-marine environment (Imlay, 1980; Blakey and others, 1983); 
probably about 400 feet (120 m) thick, but may be about 300 feet (90 m) thick if 
the lower gypsiferous part is the Temple Cap Formation; the member is as much 
as about 350 feet (105 m) thick on the Kolob Terrace north of Zion National Park 
(Biek and Hylland, 2007). 

 
unconformity (J-2?) (Pipiringos and O’Sullivan, 1978); formed about 169 to 168 million 
years ago in southwest Utah (Kowallis and others, 2001).  New research suggests that the 
Temple Cap Formation, lower part of the Page Sandstone (Harris Wash Tongue of south-
central Utah), and Gypsum Springs Member of the Twin Creek Limestone (of central and 
northern Utah) are time equivalent (Dickinson and Gehrels, 2009a, b; Dickinson and 
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others, 2009; Sprinkel and others, 2009).  Thus, whereas the J-2 unconformity locally 
marks a significant change in depositional environments, recording encroachment of a 
shallow inland sea, it may not represent a significant gap in the rock record as envisioned 
by Pipiringos and O’Sullivan (1978). 
 
Jct Carmel and Temple Cap Formations, undivided (Middle Jurassic, Bajocian to 

Aalenian) – Poorly exposed in fault blocks near Parowan Gap where it consists of 
light-gray micritic limestone and calcareous shale (Co-op Creek Limestone 
Member of the Carmel Formation) and reddish-brown mudstone and siltstone 
(Temple Cap Formation); Sprinkel and others (2009) reported that the Temple 
Cap Formation is 177.8 to 171.4 ± 1.5 Ma based on several 40Ar/39Ar and U-Pb 
zircon ages; deposited in coastal-sabkha and tidal-flat environments (Blakey, 
1994; Peterson, 1994); incomplete section about 30 feet (10 m) thick near 
Parowan Gap (Maldonado and Williams, 1993a). 

Reddish-brown mudstone and siltstone, and gypsum, of the Temple Cap 
Formation may be exposed immediately west of the map area in Cedar Canyon 
(Doug Sprinkel, Utah Geological Survey, verbal communication, December 7, 
2009), although it is unclear if these beds belong to the Sinawava Member or 
newly recognized red beds previously included at the base of the Co-op Creek 
Limestone Member of the Carmel Formation.  

 
unconformity (J-1) 
 
Jn Navajo Sandstone (Lower Jurassic) − Massively cross-bedded, poorly to 

moderately well-cemented, light-gray or white sandstone that consists of well-
rounded, fine- to medium-grained, frosted quartz; upper, unconformable contact is 
sharp and planar and regionally corresponds to a prominent break in slope, with 
cliff-forming, cross-bedded sandstone below and reddish-brown mudstone above; 
deposited in a vast coastal and inland dune field with prevailing winds principally 
from the north (Blakey, 1994, Peterson, 1994); correlative in part with the Nugget 
Sandstone of northern Utah and Wyoming and the Aztec Sandstone of southern 
Nevada and adjacent areas (see, for example, Kocurek and Dott, 1983; Riggs and 
others, 1993; Sprinkel, 2009); much of the sand may originally have been 
transported to areas north and northwest of Utah via a transcontinental river system 
that tapped Grenvillian-age (about 1.0 to 1.3 billion-year-old) crust involved in 
Appalachian orogenesis of eastern North America (Dickinson and Gehrels, 2003; 
Rahl and others, 2003; Reiners and others, 2005); incomplete thickness exposed at 
Parowan Gap may be as much as 1300 feet (400 m) thick; the entire formation is 
about 2100 to 2200 feet (640-670 m) thick in the Zion area (Biek and others, 
2009). 
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Note:  Stacking order of Tertiary volcanic and 
volcaniclastic units is approximate because of 
age overlap and age uncertainty; not all units 
are in contact as shown.  Lithology of some units 
not shown. 
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