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INTRODUCTION

The Tooele 30' x 60' quadrangle straddles urban and rural areas and is west of Salt Lake City, in Tooele, Salt Lake, and Davis 
Counties, northwest Utah. The map area is in the eastern Basin and Range Province, and includes several mainly north-south-
trending mountain ranges and intervening valleys, and the southern part of Great Salt Lake (plate 1, figure 1).

This geologic map is part of an ongoing effort to map the geology of the state of Utah at an intermediate scale. This map 
shows the progress in the third year of a multi-year project to map the geology of the Tooele 30' x 60' quadrangle at 1:62,500 
scale. Revisions to the map may occur in subsequent years of the project. Map data were compiled from several prior sources 
and updated where needed (see Primary Sources of Geologic Mapping). Clark revised the bedrock and surficial deposit geol-
ogy, Oviatt revised the Quaternary-Tertiary geology (see also scientific updates to Lake Bonneville in Oviatt and Shroder, in 
preparation), and Dinter mapped the Great Salt Lake fault zone and Carrington fault (see also Dinter and Pechmann, 2014). 
Additional geologic and geotechnical data for the year 3 area are by Dames & Moore and others (1987). This map updates the 
prior regional-scale (1:250,000) geologic maps by Stokes (1963) and Moore and Sorensen (1979).

Locations of prior subsurface data (drill holes, sediment cores, monitoring wells), and new and prior surface samples for geo-
chronology, fossils, and geochemistry are indicated on the map. These data will be tabulated in the fourth and final year of this 
multi-year project. The final map publication will also include geologic cross sections, gravity data, and GIS data.

We updated and made the stratigraphic nomenclature more consistent across the map area. In the description of bedrock geo-
logic units we indicate various prior mapping/stratigraphic designations to show how the nomenclature has evolved over time.

GEOLOGIC UNIT DESCRIPTIONS

QUATERNARY-TERTIARY SURFICIAL DEPOSITS

Alluvial deposits
Qal  Alluvium, undivided (Holocene) – Primarily clay, silt, and sand with some gravel lenses deposited by streams in 

channels and broad drainages; sediment reflects local sources; locally merges with alluvial-fan deposits; locally includes 
alluvial-fan, colluvial, low-level terrace, lacustrine, and eolian deposits; thickness generally less than about 20 feet (6 m).

Qai Alluvial silt (Holocene to upper Pleistocene?) – Silt, clay, some sand, and minor gravel deposited by streams and sheet wash 
within former lagoonal areas related to Great Salt Lake and Lake Bonneville shorelines; bottom of lagoonal basins may include 
some unexposed, thin, fine-grained lacustrine deposits; thickness less than about 20 feet (6 m).

Qafy Younger fan alluvium, post-Lake Bonneville (Holocene to uppermost Pleistocene) – Poorly sorted gravel with 
sand, silt, and clay; deposited by streams, debris flows, and flash floods on alluvial fans and in mountain valleys; 
merges with unit Qal; includes alluvium and colluvium in canyon and mountain valleys; may include small areas 
of eolian deposits and lacustrine fine-grained deposits below the Bonneville shoreline; includes active and inactive 
fans younger than Lake Bonneville, but may also include some older deposits above the Bonneville shoreline; lo-
cally, unit Qafy spreads out on lake terraces and, due to limitations of map scale, is shown to abut Lake Bonneville 
shorelines, even though it is not cut by these shorelines; Qafy also locally drapes over, but does not completely 
conceal shorelines; thickness variable, to 50 feet (15 m) or more.

Qafo Older fan alluvium, syn- and pre-Lake Bonneville (upper to middle? Pleistocene) – Poorly sorted gravel with sand, 
silt, and clay; forms higher level deposits that are coeval with and predate Lake Bonneville; includes fan surfaces of dif-
ferent levels; fans are incised by younger alluvial deposits and locally etched by Lake Bonneville; may locally include 
small areas of lacustrine or eolian deposits, and younger alluvium; thickness variable, to 100 feet (30 m) or more.

QTaf Oldest fan alluvium, pre-Lake Bonneville (lower Pleistocene? to Pliocene?) – Poorly sorted gravel with sand, silt, 
and clay; unconsolidated to semi-consolidated with calcic soil development on upper surfaces; forms high-level depos-
its incised by younger alluvial deposits and locally etched by Lake Bonneville; may overlap in age with unit Tslc; may 
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locally include small areas of lacustrine or younger alluvial deposits; only a few deposits mapped at northern Cedar and 
Stansbury Mountains; thickness variable, as much as 100 feet (30 m).

Spring deposits
Qsm Spring and marsh deposits (Holocene) – Clay, silt, and sand that is variably organic-rich, calcareous, or saline; pres-

ent in ephemerally or perennially saturated (marshy) areas near springs and seeps; form extensive areas mapped near 
Great Salt Lake and in Skull Valley; thickness 0 to 30 feet (0–10 m).

Eolian deposits
Qes Eolian sand (Holocene) – Windblown sand and silt deposited as dunes and sheets; generally thin with no distinct bed-

ding; mostly silty, well-sorted, fine-grained quartz sand; only thicker deposits mapped; also mapped in stacked units; 
less than 15 feet (5 m) thick.

Qeo Eolian oolitic sand (Holocene) – Deposits of windblown sand composed of oolites formed in Great Salt Lake; forms 
sparsely vegetated, active dunes on shores of Stansbury Island and northern Antelope Island and in Lakeside Valley; less 
than 10 feet (3 m) thick.

Qei Eolian silt (Holocene) – Windblown silt with minor clay and fine sand that is commonly oolitic; occurs as low-relief 
dunes that cap fine-grained lacustrine and alluvial deposits in lower Tooele Valley; thickness as much as 10 feet (3 m).

Lacustrine deposits (Great Salt Lake)
Qpm Playa mud (Holocene) – Deposits of clay, silt, oolitic sand, and pelletal sand composing the bed of Great Salt Lake 

and some higher adjacent areas, and much of the floor of Skull Valley; formed through a mix of lacustrine, alluvial, and 
eolian processes; locally mud is organic rich and contains carbonate chips; salts accumulate on playa surfaces as these 
deposits are locally and intermittently exposed depending on lake level; gradational with units Qal, Qlf, Qlk; the extent 
of Great Salt Lake is indicated on the map by the historic average altitude of 4200 feet (1280 m) (Baskin and Allen, 
2005; U.S. Geological Survey, 2016); the historic highstand of Great Salt Lake was 4212 feet (1284 m) in 1873, 1986, 
and 1987 (U.S. Geological Survey, 2016), and Atwood (2006) reported on shoreline superelevation in 1986–1987 that 
locally exceeded 4212 feet (1284 m) due to prevailing wind fetch; the historic lowstand was 4191 feet (1278 m) in 1963 
(U.S. Geological Survey, 2016); thickness is variable, generally less than 15 feet (5 m).

Qly Younger lacustrine deposits (Holocene to upper Pleistocene?) – Silt, clay, and minor sand from higher levels of Great 
Salt Lake; form islands near Great Salt Lake wetlands and mudflats northeast of Magna; deposits are gradational upslope 
with fine-grained regressive Lake Bonneville deposits and downslope with units Qlmy and Qldy; near Magna unit Qly is 
incised by post-Lake Bonneville alluvium; locally covered with a loess veneer; thickness generally less than 15 feet (5 m).

Qdy Younger deltaic deposits (Holocene) – Silt, sand, and clay present in a lobate, paleo-Jordan River delta complex of the 
Baileys Lake and Browns Island area, lower Salt Lake Valley; locally includes distributary channel fill and deltaic fan 
deposits and a loess veneer; deposits overlie units Qlmy and Qldy; exposed thickness less than 10 feet (3 m).

Qlk Younger lacustrine carbonate-chip sand and gravel (Holocene) – Lacustrine sand and gravel primarily com-
posed of calcium-carbonate clasts, including ooids, pellets, and rounded, irregularly shaped flakes and chips, with 
some pebbles of local rocks; formed on the floor of Great Salt Lake when the mudflats (unit Qpm) were submerged, 
or were precipitated from pore waters in mud, and later reworked by waves; locally present in barrier bars and islands 
fringing Great Salt Lake and some beaches of Antelope Island; locally grades into units Qla and Qpm; exposed thick-
ness as much as 6 feet (2 m).

Qlmy Younger lacustrine mud (Holocene to upper Pleistocene?) – Mud composed of silt, clay, and minor sand; locally 
includes thin salt deposits and some organic materials; forms mudflats in lower Salt Lake Valley from the margin of 
Great Salt Lake extending upslope where it laterally interfingers with units Qly and Qldy; thickness probably less than 
10 feet (3 m).

Qldy Younger lacustrine and deltaic deposits (Holocene to upper Pleistocene?) – Clay, silt, sand, and minor pebble 
gravel deposited by the ancestral Jordan River where it entered Great Salt Lake; locally include a loess mantle; form 
a broad, gently sloping surface with some channel remnants; exposed thickness less than 10 feet (3 m).
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Lacustrine deposits (Great Salt Lake and Lake Bonneville)
Qlb Lacustrine boulders (Holocene? to upper Pleistocene) – Shore-zone boulders of Lake Bonneville and locally of 

Great Salt Lake; boulders are in areas where finer-grained sediments were winnowed out by waves, leaving large boul-
ders on bedrock knobs and headlands; form boulder fields and strandlines on hillsides of Antelope Island; thickness is 
probably as much as 10 feet (3 m).

Qlg Lacustrine gravel (Holocene to upper Pleistocene) – Sandy gravel to boulders composed of locally derived rock 
fragments deposited in shore zones of Great Salt Lake and Lake Bonneville; clasts are typically well rounded and 
sorted; locally tufa-cemented (especially the Provo shoreline, figure 2) and draped on bedrock; thickness variable, to 
100 feet (30 m) or more.

Lacustrine and deltaic deposits (Lake Bonneville)
Qls Lacustrine sand (upper Pleistocene) – Sand and silt deposited by transgressive and regressive phases of Lake Bonn-

eville; generally thick bedded and well sorted; typically grades downslope to finer-grained lacustrine deposits; thick-
ness to 100 feet (30 m) or more.

Qlf Lacustrine fine-grained deposits (upper Pleistocene) – Sand, silt, marl, and calcareous clay of Lake Bonneville; 
thinly to very thick bedded; may include ostracode- and gastropod-rich layers; locally includes the white marl of Gil-
bert (1890); can include thin eolian sand deposits at surface; thickness to 100 feet (30 m) or more.

Qlt Lacustrine tufa (upper Pleistocene) – Light-gray tufa with laminated and vuggy appearance; locally caps small hills 
in six small exposures located just below Provo shoreline near Redlam Spring, northern Cedar Mountains; other un-
mapped deposits in northern Oquirrh Mountains; thickness as much as 10 feet (3 m).

Glacial deposits
Qgt Glacial till (upper Pleistocene) – Poorly sorted gravel, sand, and mud in eroded moraines within cirque basins in north-

ern Stansbury and Oquirrh Mountains; locally includes glacial outwash, and some small areas of younger alluvium and 
colluvium; gravel is typically angular and poorly sorted; till is probably associated with the younger Pinedale/Angel 
Lake glaciation, ~12 to 24 ka, and the older Bull Lake/Lamoille glaciation, ~130 to 190 ka (Pierce, 2004); Osborn and 
Bevis (2001) reported on glacial deposits in the Stansbury and Oquirrh Mountains, older till may be present downslope 
of the younger till; probably as much as 50 feet (15 m) thick.

Mass-movement deposits
Qmct Colluvium and talus (Holocene to upper Pleistocene) – Local accumulations of mixed colluvium and talus located 

across the map area; common near Lake Bonneville shorelines; thickness up to 15 feet (5 m).

Qms Landslide deposits (Holocene to middle? Pleistocene) – Poorly sorted, clay- to boulder-size material, and large, dis-
placed blocks; generally characterized by hummocky topography, main and internal scarps, and chaotic bedding in dis-
placed bedrock; also includes several displaced bedrock blocks along the north end of the Oquirrh Mountains (Tooker 
and Roberts, 1971a; Solomon, 1993); we did not map the massive April 10, 2013, landslide at the Kennecott/Rio Tinto 
Bingham Canyon mine (see Pankow and others, 2014), which was subsequently altered to allow access to the mine 
operations; unit undivided as to inferred age because research shows that even landslides with subdued morphology 
(suggesting they are older and have not moved recently) may continue to creep or are capable of renewed movement 
(Ashland, 2003); age and stability determinations require detailed geotechnical investigations; thickness highly variable.

Mixed-environment deposits
Qla Lacustrine and alluvial deposits, undivided (Holocene to upper Pleistocene) – Unconsolidated deposits of sand, 

gravel, silt, and clay; consist of alluvial deposits reworked by lakes, lacustrine deposits reworked by streams and 
slopewash, and alluvial and lacustrine deposits that cannot be readily differentiated at map scale; can grade into other 
lacustrine and alluvial deposits; thickness locally exceeds 30 feet (10 m).

Qac Alluvial and colluvial deposits, undivided (Holocene to upper Pleistocene) – Mixed alluvium and colluvium lo-
cally in upland valleys and along bases of slopes; clay- to boulder-size materials; locally grade into other deposits; 
thickness generally less than 20 feet (6 m).
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Human-derived deposits
Qh Human disturbance (Historical) – Deposits and disturbed areas from human development; includes some Ken-

necott/Rio Tinto and former mining operations, gravel pits and quarries, landfills, wastewater and storm water ponds, 
the Grantsville reservoir, motor sports area, and thicker fill for Interstate Highway 80 and its overpasses; also mapped 
in several stacked units; laterally extensive mine dumps, and tailings and evaporation ponds are mapped separately 
(see below); additional unmapped disturbed areas and smaller fill deposits are common throughout the map area; 
thickness generally less than about 20 feet (6 m).

Qhm Mine dumps (Historical) – Unconsolidated mine waste at the Kennecott/Rio Tinto Barneys Canyon mine; mine 
dumps are principally coarse rock fragments with lesser sand- and silt-sized particles; most dumps are mapped as 
stacked units; mine dump thickness is highly variable, but locally exceeds 200 feet (60 m).

Qht Tailings impoundment (Historical) – Large mine tailings disposal area of Kennecott/Rio Tinto located at the north end 
of the Oquirrh Mountains; aboveground diked area contains unconsolidated, fine-grained mine tailings that have been 
slurried and pumped to this location; also includes some areas of human disturbance; maximum thickness planned to be 
as much as 247 feet (75 m); maximum permitted elevation of the active north tailings pond is 4462 feet (1360 m), and the 
average elevation of the inactive south pond is 4430 feet (1350 m), with an original ground surface elevation in this area 
of ~4215 feet (~1285 m) (Leslie Heppler, Utah Division of Oil, Gas and Mining, verbal communication, June 21, 2016).

Qhe Evaporation ponds (Historical) – Laterally extensive salt evaporation ponds (both active and inactive) operated by 
various companies near the southern margin of Great Salt Lake; lake water is pumped to a series of diked areas that con-
tain brine of varying concentrations and evaporates to form salt deposits; thickness is typically less than 10 feet (<3 m).

Stacked-unit deposits
Qh/unit (Qh/Tbx, Qh/Tsl, Qh/Tnf, Qh/Tso, Qh/Tvu, Qh/Tipqm, Qh/Tvlo?, Qh/Tiqmp, Qh/Tim, Qh/Tilp, Qh/Tiqlp, Qh/

Ppp, Qh/Pdk, Qh/Pofp, Qh/Pocp, Qh/*obp, Qh/*obmu, Qh/*obml, Qh/*obml?)    
Human disturbance over unit (Historical over Tertiary, Permian, Pennsylvanian) – Disturbed areas and deposits 
from human development overlying various bedrock map units at Kennecott/Rio Tinto open-pit mines (Bingham Can-
yon, Barneys Canyon, Melco) and large gravel pit on southeast side of Antelope Island; at the Kennecott mines unit 
Qh is largely the open pits and bedrock geology is from Kennecott Utah Copper Corporation (2009) and Swensen and 
Kennecott staff (1991); thickness of upper disturbed areas is highly variable.

Qhm/unit (Qhm/Qal, Qhm/Tbx, Qhm/Tvu, Qhm/Tso, Qhm/Tim, Qhm/Tilp, Qhm/Ppp, Qhm/Pdk, Qhm/Pofp, Qhm/
Pocp, Qhm/*obp, Qhm/*obmu, Qhm/*obml, Qhm/*obml?)      
Mine dumps over unit (Historical over Quaternary, Tertiary, Permian, Pennsylvanian) – Unconsolidated mine waste 
materials overlying various surficial deposit and bedrock map units at the Kennecott/Rio Tinto mines; mine dumps 
are principally coarse rock fragments with lesser sand- and silt-sized particles; mine dumps were mapped from 2011 
orthophotos and underlying geology is from KUCC (2009) and Swensen and Kennecott staff (1991); mine dump 
thickness is highly variable, but locally exceeds 200 feet (60 m).

Qes/unit (Qes/Qafy, Qes/Qla, Qes/Qlg, Qes/Qafo, Qes/TKs)        
Eolian sand over unit (Holocene over Holocene, Pleistocene, Tertiary?, Cretaceous?) – Eolian sand forming a mantle 
on other surficial deposits and rock units, particularly along the flanks of the northern Cedar Mountains and southern 
Lakeside Mountains; thickness is highly variable, but possibly as much as 60 feet (20 m).

QTaf/Tslc             
Oldest fan alluvium over Salt Lake Formation, conglomerate lithosome (lower Pleistocene? to Pliocene? over 
Pliocene? to Miocene) – Quartzite-clast gravel overlying conglomerate unit along east flank of northern Stansbury 
Mountains; thickness of QTaf is from 0 to about 350 feet (105 m).

TERTIARY (NEOGENE-PALEOGENE) ROCK UNITS

Tsl Salt Lake Formation, undivided (Pliocene? to Miocene) – Tuffaceous sandstone, conglomerate, volcanic ash, con-
glomeratic limestone, and possibly poorly consolidated sandstone that locally crops out on eastern Antelope Island in 
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small exposures and in a large sand and gravel pit (Doelling and others, 1990; Willis and Jensen, 2000) and in Hastings 
Canyon area, northern Cedar Mountains (Maurer, 1970, his “Tertiary unnamed unit”; this study); gray tuffaceous sand-
stone is very fine grained, moderately indurated, laminated to medium bedded, and locally cross-bedded; pale-gray 
conglomerate is crudely stratified, has clasts of quartzite and limestone cobbles that are subangular to subrounded, and 
a calcareous and sandy matrix; very light gray volcanic ash consisting of glass shards is present within poorly exposed 
fine-grained sediments; tephrochronology analyses from the east side of Antelope Island indicate ages from ~8 to 11 
Ma (Willis and Jensen, 2000), and a fission-track age of 6.1 Ma (Bryant and others, 1989) appears too young (Willis 
and Jensen, 2000); no direct age data from Hastings Canyon, but interbedded with unit Tb; unit Tsl unconformably 
overlies older rock units; incomplete thicknesses are about 1800 feet (550 m) at Antelope Island (Doelling and others, 
1990), and 300 feet (90 m) at Hastings Pass/Redlam Spring area in northern Cedar Mountains.

Tslc Salt Lake Formation, conglomerate lithosome (Pliocene? to Miocene) – Conglomerate, tuffaceous sandstone and 
gritstone, minor limestone and volcanic ash; clast composition includes volcanic, quartzite, and carbonate rock types; 
mapped on east and west flanks of northern Stansbury Mountains; east flank exposures are mapped as unit QTaf/Tslc 
since overlying quartzite-clast fan gravels cannot be readily separated at map scale; tephrochronology age from South 
Willow Canyon is about 11 Ma (Cougar Point Tuff XIII) (Perkins and others, 1998; Clark and others, 2012); underly-
ing basalt from Muskrat Canyon area is 12.1 Ma (K-Ar age) (Moore and McKee, 1983); may overlap in age with unit 
QTaf; Rigby (1958) reported on conglomerate composition in South Willow Canyon, but did not map the formation; 
Slentz (1955) measured sections in South Willow and Davenport Canyons; exposed (incomplete) thickness as much 
as 3500 feet (1065 m).

Salt Lake Formation, divided into two lithosomes in western Salt Lake Valley.
Tslf Salt Lake Formation, fine-grained lithosome (Pliocene? to upper Miocene) – White to light-gray tuffaceous marl-

stone and micrite, lesser claystone, sandstone, unwelded rhyolitic tuff (volcanic ash), and minor limestone; appears 
to interfinger laterally with unit Tslg; typically poorly exposed with local exposures in cuts and pits near the Hark-
ers Canyon-Clay Hollow area; previously called part of the Jordan Narrows unit (see Slentz, 1955; Biek and others, 
2007; Solomon and others, 2007); new tephrochronology data indicate deposits contain Blacktail Creek ash (6.62 
Ma), Walcott ash (6.4 Ma), and Wolverine Creek ash (5.6 Ma?) (UGS and others, 2015); yielded anomalously young 
fission-track age of 4.4 ± 1.0 Ma for a rhyolitic tuff from the reclaimed Pioneer pit (Bryant and others, 1989); exposed 
(incomplete) unit thickness is about 300 to 500 feet (90–150 m) (Biek and others, 2007; Solomon and others, 2007).

Tslg Salt Lake Formation, gravel lithosome (Pliocene? to upper Miocene) – Poorly sorted, unconsolidated gravel with 
sand, silt, and clay that locally contains unwelded rhyolitic tuff (volcanic ash); clasts are locally sourced from sedi-
mentary and volcanic rocks; appears to interfinger laterally with unit Tslf; occurs as piedmont gravel that is deeply 
dissected and capped by an erosional surface along western Salt Lake Valley; previously called part of the Harkers 
fanglomerate (Slentz, 1955), and previously mapped as unit QTaf (oldest alluvial-fan deposits) (Biek and others, 
2007; Solomon and others, 2007); new tephrochronology data indicate the deposits contain Blacktail Creek ash (6.62 
Ma) (UGS and others, 2015); exposed (incomplete) thickness as much as 350 feet (100 m) (Biek and others, 2007; 
Solomon and others, 2007).

Tso Older Tertiary strata, undivided (Oligocene? to Paleocene?) – Antelope Island, conglomeratic strata on eastern 
Antelope Island where relationship to units Tnf or Tw? is unclear; pale-gray conglomerate with primarily carbonate 
and quartzite clasts that are very poorly sorted and range from pebble to boulder size (see unit 3, measured section 
S4, Willis and Jensen, 2000); exposed northwest of large gravel pit; Doelling and others (1990) previously mapped as 
part of lower member of unnamed conglomeratic unit; unconformably overlies the Farmington Canyon Complex and 
underlies the Salt Lake Formation; complete thickness about 190 feet (60 m) (Doelling and others, 1990); northern 
Oquirrh Mountains have three exposures of conglomerate with subangular to subrounded pebbles to boulders of 
quartzite, sandstone, some black chert, and rare limestone, with silica cement; U-Pb detrital zircon maximum deposi-
tional age of 40 Ma from Harkers Canyon (unpublished data, 2015, GeoSep Services), and regionally the unit could 
extend into the Oligocene; unconformably overlies Permian and Pennsylvanian rock units; thickness about 30 to 500 
feet (10–150 m) (Tooker and Roberts, 1971a; Biek and others, 2007; Solomon and others, 2007); northern Stansbury 
Mountains, outcrops near Davenport Canyon of pale-reddish-orange conglomerate with primarily subrounded lime-
stone and dolomite clasts and lesser sandstone and quartzite clasts; clasts typically less than 4 inches (10 cm) in a gritty, 
calcareous matrix; poorly bedded and exposed; previously called North Horn? Formation (Rigby, 1958); no direct age 
data, but underlies volcanic rocks (unit Tvs, 39–42 Ma); thickness as much as 400 feet (120 m) (Rigby, 1958).
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Tnf Norwood Formation and Fowkes Formation, undivided (Oligocene? to Eocene) – Gray conglomerate with vol-
canic, metamorphic, carbonate, quartzite, and chert clasts (pebbles to boulders) with sandy, gritty matrix and calcite 
cement, and interbedded purple and gray bentonitic mudstone; overlies unit Tw? within large gravel pit of eastern An-
telope Island; yielded K-Ar ages of 42.9 Ma (claystone/bentonite), and 38.8 and 49.2 Ma on recycled volcanic clasts 
(Doelling and others, 1990), and regionally the unit could extend into the Oligocene; thickness is about 300 feet (90 
m) (measured sections S1, S2, Willis and Jensen, 2000).

Tw? Wasatch Formation? (Eocene? to Paleocene?) – Grayish-red to dark-reddish-brown conglomerate and breccia; con-
tains angular clasts of local metamorphic rocks (pebbles to boulders) in a gritty, densely cemented matrix; present 
within and adjacent to large gravel pit at Antelope Island; unconformably overlies the Farmington Canyon Complex; 
queried since no direct age control, but lacks volcanic clasts; thickness is about 135 feet (40 m) (see lower parts of 
measured sections S1, S2, Willis and Jensen, 2000).

Volcanic Rocks of the Northern Stansbury Mountains and Northern Cedar Mountains
Tb Trachybasalt (Miocene?) – Dark-gray, locally vesicular, aphanitic, potassic trachybasaltic lava flows; locally vesicu-

lar; forms ledges and cliffs in northern Cedar Mountains (Hastings Canyon), northern Stansbury Mountains (Muskrat 
Canyon), and Salt Mountain area; Hogg (1972) provided some geochemical data, and new data were obtained; prior 
K-Ar ages (whole rock) of 12.1 ± 0.3 Ma (northern Stansbury Mountains) and 13.8 ± 0.4 Ma (northern Cedar Moun-
tains) (Moore and McKee, 1983), but Nevada Isotope Geochronology Laboratory reports that the groundmass on a 
sample we submitted is too altered for a reliable 40Ar/39Ar age (northern Stansbury Mountains); thickness from 0 to 
115 feet (0–35 m) (Davis, 1959; Maurer, 1970).

Ts Shoshonite (Miocene? or Oligocene?) – Moderate-gray aphanitic, shoshonitic lava flows; forms cliffs, ledges, and 
slopes in Mack Canyon-Miners Canyon area; Hogg (1972) provided some geochemical data, and we obtained some 
new data; previously called basalt (Rigby, 1958; Davis, 1959); prior K-Ar age of 12.7 ± 0.2 Ma (Moore and McKee, 
1983), but Nevada Isotope Geochronology Laboratory reports that the groundmass on a sample we submitted is too 
altered for a reliable 40Ar/39Ar age; thickness from 0 to about 125 feet (0–40 m) (Rigby, 1958).

Tvs, Tvls              
Rhyolitic to andesitic volcanic rocks of Stansbury Mountains (Eocene) – Interlayered extrusive volcanic and 
volcanosedimentary rocks in eastern Stansbury Mountains and Salt Mountain area; includes gray to red to brown 
lava flows, tuffs, lahars, debris avalanches, and tuffaceous sandstone; lahars and debris avalanches contain clasts of 
intermediate volcanic rocks; previously called latite volcanic series (Rigby, 1958) and andesites and associated rocks 
(Davis, 1959); in Davenport Canyon within unit Tvs is a pod of lacustrine limestone (unit Tvls), up to about 200 feet 
(60 m) thick, that was previously mapped as Great Blue Limestone (Rigby, 1958); unit Tvs and Tvls form slopes, 
ledges, and cliffs; new geochemical data show compositional range from rhyolite to dacite, trachydacite, and andesite 
(UGS, 2015, unpublished data); prior K-Ar ages of 39.4 ± 0.5, 40.6 ± 1.7, and 41.8 ± 0.5 Ma (Moore and McKee, 
1983), and new 40Ar/39Ar plateau ages on biotite of 39.68 ± 0.50 and 41.30 ± 0.60 Ma (Nevada Isotope Geochronology 
Laboratory, 2015, unpublished data); thickness of unit Tvs is 740 feet (225 m) (Salt Mountain) and 1630 feet (500 m) 
(eastern Stansbury Mountains) (Rigby, 1958; Davis, 1959).

Tirs Rhyolite and trachydacite porphyry intrusions of Stansbury Mountains (Eocene) – Light-gray to light-green-
ish-gray porphyritic rhyolite and trachydacite plugs, dikes, and sills; phenocrysts include plagioclase, hornblende, 
and biotite; present along axis of Deseret anticline and near North Willow and Mack Canyons; new geochemical data 
were obtained; mapped as monzonite porphyry (Rigby, 1958) and andesite and trachyandesite porphyry (Davis, 1959); 
Rigby’s small monzonite? plug was not located; K-Ar ages of 39.0 ± 0.6 and 40.3 ± 0.5 Ma (Moore and McKee, 1983).

Volcanic Rocks of the Northern and Central Oquirrh Mountains
Volcanic rocks in the Bingham mining district were divided into four informal compositional suites by Waite (1996) and 
Waite and others (1997):  (1) younger volcanic suite, (2) older volcanic suite, (3) nepheline minette-shoshonite suite (within 
the older volcanic suite), and (4) Bingham intrusive suite. Biek and others (2005) and Biek (2006a) informally referred to the 
younger suite as the “volcanic and intrusive rocks of the west Traverse Mountains,” and combined the latter three suites as the 
“volcanic and intrusive rocks of the Bingham Canyon suite.” We also group the igneous rocks into younger and older suites, and 
further separate the suites into extrusive and sedimentary rocks, and intrusive rocks. The terminology for the intrusive rocks of 
the Bingham district (after Lanier and others, 1978) is based on historical usage at Bingham mine (for the purpose of separating 
similar rock units); it is entrenched and does not necessarily reflect geochemical composition and newer geochemistry-based rock 
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classifications. Information on Bingham area geology and ore genesis is provided in numerous publications, including Moore 
(1973), Bray and Wilson (1975), Economic Geology (1978), Black and Babcock (1991), Chesley and Ruiz (1997), John and Bal-
lantyne (1997), Gruen and others (2010), Kloppenburg and others (2010), Landtwing and others (2010), Redmond and Einaudi 
(2010), Porter and others (2013), and Pankow and others (2014).  For geochemical and age data see Moore and others (1968), 
Moore and Lanphere (1971), Moore (1973), Warnaars and others (1978), Moore and McKee (1983), Waite (1996), Deino and 
Keith (1997), Waite and others (1997), Pulsifer (2000), Maughan (2001), Parry and others (2001), Biek and others (2005), Biek 
(2006b), NMGRL & UGS (2006), and von Quadt and others (2011). Key geologic maps are indicated in the mapping sources.

Tbx Breccia pipes and bodies (lower Oligocene? to upper Eocene?) – Unit includes the Kilkinny breccia, located on west 
side of the Bear Gulch porphyry, and Dalton breccia at Bingham Canyon mine (Smith, 1975; Swensen and Kennecott 
staff, 1991; KUCC, 2009); Kilkinny breccia is composed of intrusive and sedimentary fragments and is locally cut by 
latite porphyry dikes; Bear Gulch breccia has an intrusive matrix with small quartzite fragments; Dalton breccia ap-
pears as a hole filled with coarse crushed sedimentary fragments with no matrix (Smith, 1975); uncertain age of pipes 
and bodies, but likely post-mineralization (post ~37 Ma) (K.A. Krahulec, UGS, verbal communication to D.L. Clark, 
June 10, 2014); highly variable in diameter and depth.

Tvu Volcanic rocks, undivided (upper? to middle Eocene) – Combined unit of various volcanic rocks located under the 
mine dumps on east side of Bingham mine, where prior mapping does not match existing schemes of KUCC (2009) 
or Biek and others (2007); map unit also includes small intrusion northwest of Copperton (unit Tiu of Biek and oth-
ers, 2007) and volcanic boulder lag (latite) overlying unit Tw? near Harkers Canyon; probably associated with older 
volcanic and intrusive suite rocks at Bingham (see below).

Younger Volcanic and Intrusive Suite (early Oligocene to late Eocene, ~30–37 Ma) – Younger volcanic and intrusive rocks are 
present in the western Traverse Mountains (Biek and others, 2005; Clark and others, 2012, in preparation).

Younger Intrusive Rocks
Tir Rhyolitic intrusion (late Eocene) – Shaggy Peak plug or dome is light- to medium-gray porphyritic rhyolite that 

contains a border phase with abundant plagioclase, quartz, and biotite phenocrysts and generally near-vertical flow 
foliations, and an interior phase with slightly larger phenocrysts and little or no flow foliation (Biek, 2006a); present at 
the southern map boundary in the Butterfield-Rose Canyon area; 40Ar/39Ar age of 35.49 ± 0.13 Ma (Biek and others, 
2005). Other rhyolitic intrusions are present south of the map area in Tickville Gulch, Dry Mountain-Ophir, and Eagle 
Hill-Mercur (Laes and others, 1997; Clark and others, 2012, in preparation).

Older Volcanic and Intrusive Suite (upper to middle Eocene, ~37–41 Ma) – The older suite rocks are largely comagmatic with 
the Bingham intrusive complex (Waite and others, 1997) and contain significantly higher chromium and barium concentrations 
and more magnetic minerals than the younger suite (Pulsifer, 2000).

Older Extrusive and Sedimentary Rocks
Tvfou Older intermediate lava flows (middle Eocene) – Dark-gray lava flows of intermediate composition derived from the 

Bingham intrusive complex; interlayered with and difficult to differentiate from the older lahars and debris avalanches 
(unit Tvlo); present along the east flank of the Oquirrh Mountains; 40Ar/39Ar age of 38.17 ± 0.09 Ma from recycled 
volcanic clast (Deino and Keith, 1997), and interlayered with Eocene lacustrine strata near Butterfield Canyon, south of 
map area (Biek and others, 2005); exposed thickness likely exceeds 1000 feet (300 m) (Biek and others, 2007).

Tvlo Older lahars and debris avalanches (middle Eocene) – Pebbles to boulders of intermediate-composition volcanic 
rocks in a matrix of lithic and crystal fragments; locally contains mostly mafic clasts; contains some thin discontinu-
ous lava flows of intermediate composition (Pulsifer, 2000; Maughan, 2001; Biek and others, 2005); generally forms 
rubbly slopes along east flank of Oquirrh Mountains; Bingham area 40Ar/39Ar ages of 38.68 ± 0.13 Ma from waterlain 
tuff near top of unit (Maughan, 2001) and 39.18 ± 0.11 Ma from a volcanic clast near base of unit (Deino and Keith, 
1997); also interlayered with Eocene lacustrine strata near Butterfield Canyon, south of map area (Biek and others, 
2005); thickness may exceed 4000 feet (1200 m) (Biek and others, 2007).

Older Intrusive Rocks
Tipqm Porphyritic quartz monzonite intrusions (late to middle Eocene) – Intrusion at the former Lark townsite and the 

Ohio Copper dike in Bingham mine. Lark intrusion (plug) is light- to medium-gray dacite porphyry with abundant 
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phenocrysts of plagioclase and biotite and lesser hornblende in a fine-grained groundmass; typically weathers to 
grussy or clayey soils; present near mouth of Butterfield Canyon near former Lark townsite (Laes and others, 1997; 
Biek and others, 2005; Biek and others, 2007); K-Ar ages from Bingham tunnel portal of 36.9 ± 0.9 Ma (hornblende) 
and 36.9 ± 1.0 Ma (biotite) (Moore and others, 1968). Ohio Copper dike (east of Bingham stock) is medium-gray to 
greenish-gray, porphyritic amphibole-biotite quartz monzonite with orthoclase and plagioclase phenocrysts in a pha-
neritic groundmass; a distinct late phase of Bingham and Last Chance (quartz) monzonite (KUCC, 2009); no direct 
age data, but probably between 37 and 38.5 Ma (K. Krahulec, UGS, verbal communication, July 2015); other similar 
intrusions are present in the Porphyry Hill/Knob area north of Mercur, Oquirrh Mountains (Laes and others, 1997).

Tiqmp Quartz monzonite porphyry intrusion (middle Eocene) – Forms western part of the Bingham stock at Bingham 
mine; light-gray, amphibole-biotite quartz monzonite porphyry; amphibole is altered to phlogopite and quartz, and 
plagioclase is altered to sericite and clay; there are no exposures of unaltered rock; inferred source of Bingham miner-
alizing fluids (KUCC, 2009); southwestern part of unit Tiqmp is referred to as hybrid quartz monzonite porphyry by 
Kennecott (KUCC, 2009); U-Pb zircon age of 37.94 ± 0.08 Ma (von Quadt and others, 2011).

Tim Monzonite intrusions (middle Eocene) – Forms Bingham and Last Chance stocks and associated intrusions at Bingham 
mine; medium- to dark-gray, augite-actinolite-phlogopite (quartz) monzonite; where altered, augite is replaced by actino-
lite, chlorite, phlogopite, and quartz, and some plagioclase is replaced by orthoclase; contains pyrite, chalcopyrite, born-
ite, and molybdenite mineralization; original magnetite is replaced by sulfide minerals; main Bingham ore host (KUCC, 
2009); Last Chance stock has a U-Pb zircon age of 38.55 ± 0.19 Ma, and 40Ar/39Ar age of 38.40 ± 0.16 Ma (Parry and 
others, 2001); similar monzonite intrusions occur south of the map area in the Spring Gulch and Calumet mine area (near 
Stockton), Soldier Canyon, and near axis of Long Ridge anticline (Lufkin, 1965; Laes and others, 1997; Krahulec, 2005).

Tilp Latite to dacite porphyry (middle Eocene) – Light- to dark-gray, latite to dacite porphyry (hornblende-augite-biotite 
quartz latite porphyry) with abundant phenocrysts of plagioclase and hornblende and lesser biotite; at Bingham mine 
includes the Fortuna sill, Main Hill, and Starless dikes, Bear Gulch porphyry, and apophyses (Laes and others, 1997; 
Biek and others, 2005; KUCC, 2009); 40Ar/39Ar age of 38.84 ± 0.19 Ma (Deino and Keith, 1997), and U-Pb zircon age 
of 37.94 ± 0.13 Ma (von Quadt and others, 2011).

Tiqlp Quartz latite porphyry dikes and sills (late to middle Eocene) – Medium-brown and light-greenish-gray, horn-
blende-biotite quartz latite porphyry; hornblende is altered to phlogopite and/or chlorite within the pit area; distin-
guished from other latitic dikes and sills by the presence of relatively large quartz phenocrysts and higher percentage 
of aphanitic groundmass; groundmass usually contains considerable hornblende (KUCC, 2009); includes Raddatz 
porphyry dikes with large K-feldspar phenocrysts (Settlement Canyon area) (see Krahulec, 2005; new geochemical 
data obtained), and the Andy Dike and apophyses at Bingham mine (KUCC, 2009); 40Ar/39Ar ages of 37.66 ± 0.08 and 
37.72 ± 0.09 Ma (Deino and Keith, 1997), and U-Pb zircon age of 37.97 ± 0.11 Ma (von Quadt and others, 2011); also 
forms some small dikes (unmapped) east of Pass Canyon and near North Oquirrh thrust (Swensen and Kennecott staff, 
1991) with K-Ar age of 36.5 ± 1.1 Ma (Moore, 1973); Raddatz dike has 40Ar/39Ar age of 39.4 ± 0.34 Ma (Kennecott, 
unpublished age in Krahulec, 2005).

TERTIARY (PALEOGENE)-CRETACEOUS ROCK UNIT

TKs Tertiary-Cretaceous strata (lower Eocene? to Upper Cretaceous?) – Predominantly moderate-reddish-orange mudstone 
with lesser red and gray conglomerate, sandstone, and siltstone; conglomerate clasts include sandstone, limestone and 
chert (likely derived from Permian formations) as much as 18 inches (46 cm) in diameter; bedding is laminated to very 
thick; crops out as slopes and few ledges in western foothills between Hastings Canyon and Quincy Spring, northern 
Cedar Mountains; present in footwall of the Cedar thrust fault near Quincy Spring; gastropod fossils include Gyrau-
lus sp. and other fauna, reportedly late Paleocene or Eocene (LaRoque in Maurer, 1970), but no detrital zircon age 
analyses yet; previously called the North Horn? Formation (Maurer, 1970); thickness from 0 to 1100+ feet (0–335+ 
m) (Maurer, 1970; this study).

TRIASSIC TO NEOPROTEROZOIC ROCK UNITS

^d Dinwoody Formation (Lower Triassic) – Moderate-brown limestone and lesser light-brown shale; laminated to 
thinly bedded forming slopes and ledges; mapped in two small outcrops located 2 miles (3 km) west-southwest of 
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Hastings Pass, northern Cedar Mountains; not recognized by Maurer (1970); no age data obtained; disconformably 
overlies unit Pgp; incomplete thickness is about 100 feet (30 m) or less.

Pgp Gerster Formation and Plympton Formation? (Middle Permian, Guadalupian) – Light-brown and light-gray lime-
stone, cherty limestone, and dolomite; locally common chert nodules (gray, tan, pink) (Maurer, 1970); Wardlaw and 
others (1979) reported different lithologies [they provided no details on measured section and fossil locations]; locally 
fossiliferous with brachiopods, pelecypods, gastropods (Maurer, 1970); bedding is medium and thin forming steep, 
rough slopes; crops out near the crest of the northern Cedar Mountains and south of Hastings Pass; Maurer (1970) 
considered the unit all Gerster Formation, while Wardlaw and others (1979) indicated the top part is Gerster Lime-
stone (Kuvelousia biostratigraphic zone) and underlying part is the Plympton Formation (Thamnosia biostratigraphic 
zone, but no fossil data there) [note that the Permian time scale has changed over time]; we do not apply the Park City 
Group nomenclature of Wardlaw and others (1979) pending further study; the Gerster is considered correlative to the 
upper Franson Member of the Park City Formation (east), while the Plympton is considered correlative to the Murdock 
Mountain Formation (west) and Rex Chert and lower Franson Member (east) (Wardlaw and others, 1979); complete 
thickness is about 1000 feet (305 m) (this study), whereas Maurer (1970) and Wardlaw and others (1979) [note incor-
rect scale bar] reported incomplete thicknesses of 511 to 870 feet (156–265 m).

Tooker and Roberts (1970) divided Permian, Pennsylvanian, and Mississippian rocks in the Oquirrh Mountains into three se-
quences (from north to south: Rogers Canyon, Curry Peak, and Bingham, each interpreted to belong to a separate thrust sheet), 
and Tooker and Roberts (1998) and Tooker (1999) provided different formation nomenclature per thrust nappe. Conversely, 
Welsh (1976, 1983, 1998) and Welsh and James (1998) argued that there were no major lithologic facies changes between 
structural blocks of the Oquirrh Mountains, and applied Bingham area stratigraphic nomenclature to the northern Oquirrh 
Mountains. The Bingham sequence nomenclature was modified by Kennecott geologists to include Lower Permian formations 
(Swensen, 1975; Swensen and Kennecott staff, 1991; Laes and others, 1997). We apply these updated Oquirrh Group and as-
sociated formation names from Bingham across a larger area based on similar lithofacies and age relations throughout this part 
of Utah (figure 3; see Constenius and others, 2011; Clark and others, 2012, 2016). Clark and others (2016) revised the Oquirrh 
Group stratigraphy in the Cedar Mountains from that of Maurer (1970). The Oquirrh Group facies and nomenclature changes 
from the Cedar Mountains to the Grassy Mountains.

We do not use the term Kessler Canyon Formation in this map area. The Kessler Canyon Formation was included as the upper 
part of the Oquirrh Group of the Rogers Canyon sequence in the northern Oquirrh Mountains (Tooker and Roberts, 1970). How-
ever, Swensen (1975) and Welsh (1998) noted that east of the Garfield fault (located near Kessler Canyon) this unit is roughly 
equivalent to several formations (Diamond Creek-Kirkman, Freeman Peak, and Curry Peak?) and therefore omitted it from the 
Oquirrh Group. We herein reassign strata formerly mapped as the Kessler Canyon Formation south of the Arthur fault (located 
near Little Valley Wash) to Permian strata, undivided (Pu), while west of the Garfield fault and north of the Arthur fault we 
reinterpret most of the former Kessler Canyon Formation as the Oquirrh Group, Bingham Mine Formation.

Tooker and Roberts (1970) divided the Bingham Mine Formation of the Bingham sequence into the Markham Peak and Clip-
per Ridge Members, and later Kennecott maps (Swensen and others, 1991; Laes and others, 1997; KUCC, 2009) also used the 
names Markham and Clipper Members. However, Swensen (1975) reported the type section of Tooker and Roberts (1970) is 
invalid, as it is inappropriately located (faulted), and used informal upper and lower members. The informal members are not 
mapped outside of the Bingham district due to map scale considerations.

Ppp Park City Formation and Phosphoria Formation, undivided (Middle to Lower Permian, Guadalupian to 
Leonardian) – Contains the Franson and Grandeur Members of the Park City Formation separated by the Meade 
Peak Member of the Phosphoria Formation (Biek in Solomon and others, 2007); upper part (Franson) contains gray 
dolomite and tan quartzite (261+ feet [80+ m] thick); middle part (Meade Peak) includes platy, shaley dolomite, 
quartzite, sandstone, shale, chert, and phosphorite (284 feet [87 m] thick); lower part (Grandeur) consists of gray to 
light-brown limestone that is bioclastic, sandy, and cherty (215 feet [65 m] thick) (Tooker and Roberts, 1970; Solo-
mon and others, 2007); overall, unit is thin to thick bedded; present in the northeastern Oquirrh Mountains, Little 
Valley area southward to near Barneys Canyon; entire unit previously called Park City Formation, undivided (Welsh 
and James, 1961; Gunter, 1991; Laes and others, 1997), and Grandeur Member of Park City Formation (Tooker and 
Roberts, 1970, 1971a; Swensen, 1975); may be conformable or unconformable with underlying unit Pu (see Tooker 
and Roberts, 1970); limestone from the Meade Peak part recently yielded conodont Neostreptognathodus sulcopli-
catus of late Leonardian (Kungurian) age (S.M. Ritter, BYU, written communication to D.L. Clark, Dec. 3, 2014); 
several fossils from the lowermost limestone (Grandeur) indicate a Leonardian to possible Wordian? age (Gordan 
and Duncan in Tooker and Roberts, 1970), and this limestone recently yielded conodont Neostreptognathodus sp. of 
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Leonardian age (S.M. Ritter, Brigham Young University, written communication to D.L. Clark, Dec. 3, 2014); top 
eroded, but incomplete thickness of 760 feet (230 m) was measured by Tooker and Roberts (1970) at Coon Canyon, 
and Kennecott cross section at Barneys Canyon (Gunter, 1991 and plate 4) indicates incomplete thickness of about 
350 feet (110 m).

Ppm Phosphoria Formation, Meade Peak Member (Lower Permian, Leonardian) – Black and gray shaley phos-
phatic rock with interbedded chert and dolomite; contains oolitic phosphatic layers, and layers rich in brachiopods, 
vertebrate teeth, and skeletal fragments; forms covered slopes and few ledges at northern Cedar Mountains; con-
tains fossil Helicoprion sp. (shark-like fish) and lingulid brachiopod molds (Maurer, 1970); Wardlaw and others 
(1979) included Meade Peak strata in their Penicularis (brachiopod) biostratigraphic zone; thickness is 75 to 141 
feet (23–43 m) (Maurer, 1970; Wardlaw and others, 1979).

Ppg Park City Formation, Grandeur Member (Lower Permian, Leonardian) – Moderate-gray and light-brownish-
gray limestone, dolomitic limestone, and dolomite that is finely crystalline and bioclastic; light-brown and gray 
chert is locally abundant and minor amounts occur throughout the member; can form two cliffs separated by a thin 
slope-forming unit; crops out south of Hastings Pass, northern Cedar Mountains; Maurer (1970) stated that bra-
chiopod fossils suggest a Leonardian age, while Wardlaw and others (1979) reported Quadrochonetes, Echinauris, 
and Peniculauris (brachiopods) of the Penicularis biostratigraphic zone; we do not apply the Park City Group no-
menclature of Wardlaw and others (1979) pending further study; thickness is 419 to 575 feet (128–175 m) (Maurer, 
1970; Wardlaw and others, 1979).

Psl Sandstone, limestone and dolomite (Lower Permian, Leonardian) – Gray to light-brown sandstone, limestone, 
and lesser dolomite; sandstone is fine to medium grained with calcareous cement and tabular cross beds; carbonate 
rocks are finely crystalline, locally with chert and calcite nodules, and locally with brachiopods and gastropods; 
medium to thick bedded forming steep, ledgey slopes at northern Cedar Mountains; base of formation yielded 
fusulinids Parafusulina of Leonardian age (Clark and others, 2016); previously mapped as “Permian unnamed 
formation” (Maurer, 1970); may correlate with the Pequop Formation (west) and Diamond Creek Sandstone (east); 
complete thickness is 3953 feet (1205 m) (Maurer, 1970).

Pu Permian strata, undivided (Lower Permian, Leonardian? to Wolfcampian?) – Combined unit at northern Oquirrh 
Mountains due to structural disturbance, limited age control, and poor exposure that includes units Pdk, Pofp, 
Pocp?; present below unit Ppp in a fault-bounded structural block containing a series of NE-trending folds; unit 
contains interbedded light-brown to reddish-brown and light-gray quartzite, sandstone (calcareous, ferruginous, 
dolomitic), limestone, dolomite, dolomite breccia, and some thin chert beds; bedding is thin to medium; worm trails 
in ferruginous sandstone are common (Tooker and Roberts, 1970; Swensen, 1975); present east of the Garfield fault 
from near Harkers Canyon northward to the Arthur fault where it is poorly exposed and typically forms slopes and 
some ledges; fossil age data are very limited (see Tooker and Roberts, 1970); thickness is uncertain due to structural 
complications.

Pdk Diamond Creek Sandstone and Kirkman Formation, undivided (Lower Permian, Leonardian? to Wolfcam-
pian?) – Combined unit due to structural disturbance that extends across the northern Oquirrh Mountains from Flood 
and Pass Canyons (west) to near Barneys Canyon (east); stratigraphically higher beds in Flood and Pass Canyons 
consist of interbedded light-gray sandstone, quartzitic sandstone, and local beds of light-brownish-gray dolomite or 
dolomitic limestone that are typically contorted, lenticular, and discontinuous; lower part is light-gray to tan, calcare-
ous sandstone breccia; lenses and slump blocks of limestone and dolomite occur within the unit; lower part of unit in 
upper Dry Fork consists of light-gray to tan, calcareous sandstone that is locally brecciated, cross-bedded, and ripple 
marked and is underlain by dark-gray, weathering to light- to medium-bluish-gray limestone and arenaceous limestone 
that is thinly laminated and commonly contorted and brecciated (Welsh and James, 1961; Swensen, 1975); typically 
forms slopes; unit underwent both soft-sediment and tectonic deformation (Welsh and James, 1961; Schurer, 1979a, 
1979b); Welsh (1998) reported the Diamond Creek Sandstone beds are in part brecciated because of collapse over the 
dissolution of anhydrite in the underlying Kirkman Formation in the Oquirrh Mountains and Wasatch Range; the unit 
has been structurally deformed between the North Oquirrh thrust fault (located near Nelson Peak) and Midas thrust 
(located in Bingham mine) and Bear fault (located west of Freeman Peak), and also south of the Arthur fault where 
included as unit Pu; contact with underlying Freeman Peak Formation is locally faulted, but is otherwise conformable 
(Schurer, 1979a; Gunter, 1991; Gunter and Austin, 1997); limited age control in Oquirrh Mountains (Swensen, 1975); 
thickness is uncertain due to structural complexity, but Swensen (1975) estimated about 2000 feet (600 m).
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P*o Oquirrh Group, undivided (Lower Permian to Lower Pennsylvanian) – Three isolated outcrops of possible 
Oquirrh Group rocks in Tooele Valley (Tooele Army Depot) that Tooker (1980) mapped as the Bingham Mine Formation, 
Markham Peak Member, but stratigraphic context is difficult to determine; exposed thickness roughly 1100 feet (340 m).

Pofc Oquirrh Group, Freeman Peak Formation and Curry Peak Formation, undivided (Lower Permian, Wolf-
campian) – Combined unit in the northern Cedar Mountains and southern Lakeside Mountains; medium- to dark-
gray, weathering to yellowish-gray, calcareous, fine-grained sandstone and siltstone with lesser interbedded very pale 
orange, medium-gray and pale-red quartz sandstone and orthoquartzite (particularly in upper part) and uncommon 
gray sandy limestone; laminated to thick-bedded unit typically breaks into chips and plates forming rounded hills and 
slopes with occasional ledges; “worm trail” markings common on bedding planes in lower part of unit; fusulinids 
reported by Maurer (1970) and Clark and others (2016); appears to be conformable with underlying Bingham Mine 
Formation; corresponds to most of Maurer’s (1970) Oquirrh Formation Unit 4 and Unit 5, and Young (1953) mapped 
as Oquirrh Formation, undivided; Clark and others (2016) reported 3500 feet (1065 m) in Cedar Mountains; incom-
plete thickness in southern Lakeside Mountains possibly 2600 feet (790 m).

Pofp Oquirrh Group, Freeman Peak Formation (Lower Permian, Wolfcampian) – Light-gray to tan to brownish-tan 
calcareous quartzite that is thick bedded and interbedded with some thin, calcareous sandstone and platy, argillaceous 
siltstone and shale (rarely exposed except in roadcuts or prospect tunnels); lacks worm tracks found in the Curry 
Peak Formation and fine banding of the Bingham Mine Formation; forms jointed blocks and distinctive talus-covered 
slopes; present along the nose of the Copperton anticline from Bingham Canyon north and west around to Freeman 
Peak and also to the west near Pass and Bates Canyons, northern Oquirrh Mountains (Welsh and James, 1961; Sw-
ensen, 1975); previously referred to as the Clinker formation (Welsh and James, 1961); unconformable with underly-
ing Curry Peak Formation; fusulinids Schwagerina and Pseudoschwagerina indicate a Wolfcampian age (Welsh and 
James, 1961); thickness is 2400 feet (730 m) at Freeman Peak, central Oquirrh Mountains (Swensen, 1975).

Pocp Oquirrh Group, Curry Peak Formation (Lower Permian, Wolfcampian) – Dark-gray, weathering to light-gray and 
tan, very fine grained, calcareous sandstone and siltstone that is thin bedded (poorly), and includes some minor quartz-
ite and limestone; sandstone and siltstone locally weather with a darker brown, punky rind; sparsely fossiliferous, but 
worm tracks and trails are abundant on bedding planes; quartzite lacks fine color banding of Bingham Mine Formation 
(Welsh and James, 1961; Swensen, 1975); generally forms chippy slopes with few ledges; present on flanks of Cop-
perton anticline north of the Midas thrust and west in the Markham Peak-Pole Canyon area, northern Oquirrh Moun-
tains; previously referred to as Curry formation (Welsh and James, 1961); unconformable on underlying Bingham 
Mine Formation (Welsh and James, 1961), but not observed south or west of the map area (Clark and others, 2012, 
2016); uppermost part of formation yielded fusulinids (Triticites, Schwagerina, Pseudoschwagerina) of Wolfcampian 
age (Welsh and James, 1961); thickness is 2450 feet (750 m) in section on south flank of Curry Peak, central Oquirrh 
Mountains (Swensen, 1975).

*o Oquirrh Group, Pennsylvanian formations, undivided (Pennsylvanian) – Combined unit likely of Bingham Mine 
Formation?, Butterfield Peaks Formation, and West Canyon Limestone where backthrusted and structurally deformed 
along the east side of the northern Cedar Mountains; locally may include small outcrops of Manning Canyon Forma-
tion; also mapped in the Cedar thrust sheet (west side) where there is no biostratigraphic control, but Clark and others 
(2016) assumed the Cedar Mountains Oquirrh Group stratigraphy remained valid there based on lithofacies; largely 
corresponds to Maurer’s (1970) Oquirrh Formation Units 1, 2, and 3.

*obm Oquirrh Group, Bingham Mine Formation (Upper Pennsylvanian, Virgilian-Missourian) – Brown-weathering, 
fine-grained quartzitic sandstone, quartzite, and calcareous sandstone with lesser interbeds of medium- to dark-gray, 
fine-grained, sandy and cherty limestone; light-brown to pale-red sandstone is very fine grained, feldspathic, and 
cross-laminated; bedding is medium to thick, but can be poor; forms talus-covered slopes with some intervening ledg-
es; Commercial and Jordan Limestone marker beds present at base of formation only in the central Oquirrh Mountains; 
previously mapped as the Kessler Canyon Formation of the northern Oquirrh Mountains (Tooker and Roberts, 1970); 
fossil age data from the northern Oquirrh Mountains exposures are limited (Tooker and Roberts, 1970; Welsh, 1998), 
but recently yielded conodont Streptognathodus pawkuskaensis of Virgilian (Gzhelian) age (S.M. Ritter, BYU, written 
communication to D.L. Clark, Dec. 3, 2014); fusulinids reported from Cedar Mountains by Maurer (1970) and Clark 
and others (2016), and southern Lakeside Mountains yielded Triticites sp. (S.M. Ritter, BYU, written communication 
to D.L. Clark, July 1, 2016); corresponds to upper part of Maurer’s (1970) Unit 3 and lower part of Unit 4; in northern 
Oquirrh Mountains, west of Garfield fault, incomplete lower part of formation is about 1000 to 2000 feet (300–600 m) 
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thick (Tooker and Roberts, 1970, 1971a), and incomplete section between Garfield and Arthur faults is about 3400 feet 
(1040 m) thick (this study); complete thickness is 2700 feet (825 m) in Cedar Mountains (Clark and others, 2016), and 
possibly that thick in southern Lakeside Mountains.

*obmu              
Oquirrh Group, Bingham Mine Formation, upper member (Upper Pennsylvanian, Virgilian-Missourian) – 
Light-gray to tan, thinly color-banded and locally cross-bedded quartzite with interbedded thin, light- to medium-gray, 
calcareous, fine-grained sandstone, limestone, and siltstone; several of the thin calcareous units are locally important 
as marker beds; upper-lower member contact is placed at base of the Manefay limestone marker bed; unit is very 
similar to the lower member above the Commercial Limestone (Swensen, 1975); Virgilian and Missourian fusulinids 
(Triticites) are reported from the Markham Peak section (R.C. Douglass in Tooker and Roberts, 1970), and Welsh and 
James (1961) reported a Virgilian and Missourian age for the entire formation; 2200 feet (670 m) thick at the Bingham 
district (Swensen, 1975).

*obml              
Oquirrh Group, Bingham Mine Formation, lower member (Upper Pennsylvanian, Missourian) – Most of the 
unit consists of light-gray to tan, color-banded quartzite with thin, interbedded, light- to medium-gray, calcareous, 
fine-grained sandstone, limestone, siltstone, and minor shale; unit includes several limestone marker beds includ-
ing the Commercial and basal Jordan Limestone beds (important Bingham ore hosts, but not mapped separately 
here due to scale limitations); the Commercial (100 feet [30 m] thick) consists of dark-gray to black, argillaceous, 
thin bedded, silty and cherty limestone, whereas the Jordan (308 feet [94 m] thick) is thin-bedded, dark-gray, ar-
gillaceous and silty, cherty limestone and arenaceous limestone (Swensen, 1975); Missourian-age conodont fauna 
were recovered from the Jordan Limestone east of Tooele (S.R. Ritter, Brigham Young University, written commu-
nication to D.L. Clark, October 27, 2009) and Missourian fusulinids were also reported from this member (Welsh 
and James, 1961; R.C. Douglass in Tooker and Roberts, 1970); thickness is about 3100 feet (945 m) near Middle 
Canyon, Bingham district (Swensen, 1975).

*obw Oquirrh Group, Butterfield Peaks Formation and West Canyon Limestone, undivided (Middle to Lower 
Pennsylvanian) – Mapped as combined unit in eastern Stansbury Mountains and southern Lakeside Mountains, where 
unclear separation of formations due to sandy intervals in West Canyon Limestone; limited conodont data indicated 
Pennsylvanian age in southern Lakeside Mountains (S.R. Ritter, Brigham Young University, written communication 
to D.L. Clark, March 1, 2016); incomplete thickness about 550 feet (170 m) in northern Stansbury Mountains, and 
possibly 4000 feet (1220 m) thick in southern Lakeside Mountains.

*obp Oquirrh Group, Butterfield Peaks Formation (Middle to Lower Pennsylvanian, Desmoinesian-Atokan-Morrowan) 
– Generally characterized by cyclically interbedded limestone and clastic intervals; limestone is medium gray and lo-
cally fossiliferous, arenaceous, cherty, and argillaceous in thin to thick beds and contains locally abundant brachiopod, 
bryozoan, coral, and fusulinid fauna; diagnostic black chert weathers brown and locally occurs as spherical nodules and 
laterally linked masses; light-brown quartzite and calcareous sandstone are thin to medium bedded and locally cross-
bedded; includes some poorly exposed light-gray siltstone and mudstone interbeds; overall, limestone predominates 
over quartzite and sandstone, and clastic percentages increase upsection; unit forms ledges and cliffs with regularly 
intervening slopes; subdivided in the Bingham district into upper and lower members (Swensen, 1975; Laes and oth-
ers, 1997) but not differentiated here; includes the Erda Formation of the northern Oquirrh Mountains based on similar 
lithofacies and age relations (see Welsh, 1976, 1983, 1998); in Cedar Mountains corresponds to Maurer’s (1970) Oquirrh 
Formation Unit 2 and most of Unit 3; fossil age data in Welsh and James (1961), Maurer (1970), Tooker and Roberts 
(1970), Douglass and others (1974), Swensen (1975), Davis and others (1989, 1994), Welsh (1998), Konopka (1999), 
Clark and others (2016); conodont data in the northern Oquirrh Mountains indicate the base of unit *obp is Atokan, 
but in the southern Oquirrh Mountains the base is Morrowan (Davis and others, 1994); complete thickness is 9072 feet 
(2766 m) at Butterfield Peaks, central Oquirrh Mountains (Tooker and Roberts, 1970), and 3606 feet (1099 m) measured 
by Tooker and Roberts (1970; their Erda Formation), and 3690 feet (1125 m) measured by Konopka (1999) near Rogers 
Canyon, northern Oquirrh Mountains; 4150 feet (1265 m) thick in Cedar Mountains (Clark and others, 2016).

*Mwm              
Oquirrh Group, West Canyon Limestone and Manning Canyon Formation, undivided (Lower Pennsylvanian, 
Morrowan to Upper Mississippian, Chesterian) – Combined unit along the North Oquirrh thrust fault where separation 
of formations is difficult due to poor exposure and map scale.
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*owc Oquirrh Group, West Canyon Limestone (Lower Pennsylvanian, Morrowan) – Light- to medium-gray limestone, 
fossiliferous limestone, arenaceous limestone, with subordinate light-brown to light-gray calcareous sandstone and 
quartzite and minor dark-gray carbonaceous shale; limestone is medium to very thick bedded, and locally very fos-
siliferous, cherty, arenaceous, bioclastic, or bioturbated; fossils include crinoids, bryozoans, brachiopods, trilobites, 
foraminifera, corals, gastropods, sponges, calcareous algae, and pellets (Tooker and Roberts, 1970; Swensen, 1975; 
Davis and others, 1989); present in ledgy and cliffy exposures in the Kessler anticline, in the core of unnamed anticline 
near Lake Point, along North Oquirrh thrust (Bates Canyon-Nelson Peak area), and in a few small exposures south of 
Henry Spring, northern Cedar Mountains; includes the upper two-thirds of the Lake Point Limestone of Tooker and 
Roberts (1970) in the northern Oquirrh Mountains based on lithofacies and age relations; there are uncertainties about 
picking consistent lithologic and fossil datum associated with the formation contacts (see Davis and others, 1989, 
1994); microfossil and macrofossil data from northern and southern Oquirrh Mountains are available from Gordon 
and Duncan in Tooker and Roberts (1970), Welsh (1976), Davis and others (1989, 1994); complete thickness of 1050 
feet (320 m) (Green Ravine area, measured section units 109 to 10, northern Oquirrh Mountains, Davis and others, 
1989, 1994); type and reference sections south of map area range from 1456 to 1007 feet (444–307 m) (Nygreen, 1958; 
Tooker and Roberts, 1970; Davis and others, 1994).

Mmc Manning Canyon Formation (Upper Mississippian, Chesterian) – Northern Stansbury Mountains includes dark-
gray to light-brown and pale-red shale and dark-gray carbonaceous limestone, and lesser sandstone and quartzite; bed-
ding is very thinly laminated to medium; forms slopes and ledges on east flank from Broad to West Canyons; no fossil 
age data; thickness is about 1000 feet (305 m), greater than mapped by Rigby (1958). Northern Oquirrh Mountains 
includes light-gray to dark-gray limestone, sandy limestone, fossiliferous limestone and some thin shaley partings; 
limestone is thin to thick bedded with local black chert nodules, wispy sand layers, and intraformational conglomerate; 
macrofossils include brachiopods, crinoids, bryozoans, gastropods, corals, and trilobites (Tooker and Roberts, 1970; 
Davis and others, 1989); forms slopes and ledges on flanks of the Kessler anticline; includes the lower one-third of the 
Lakepoint Limestone of Tooker and Roberts (1970), which has similar age relations, but differing lithofacies compared 
to the typical Manning Canyon; upper contact placed at top of the prominent double-cliff limestone unit (units 9 and 
8 of measured section by Davis and others, 1989, 1994; see also Tooker and Roberts, 1970, figure 8; Welsh, 1976); 
conodont and macrofossil data indicate a Chesterian age (Davis and others, 1989, 1994; Gordon and Duncan in Tooker 
and Roberts, 1970); thickness in northern Oquirrh Mountains is 477 feet (145 m) (units 9 through 1 of measured section 
by Davis and others, 1989, 1994); the Manning Canyon Formation is an interval of regional decollement, commonly 
exhibiting substantial deformation, so regional thicknesses can vary, but more reliable thicknesses of the formation are 
1140 to 1559 feet (320–475 m) at Soldier Canyon, Oquirrh Mountains (Gilluly, 1932; Moyle, 1959) and 1176 feet (359 
m) at the Lake Mountains (Biek and others, 2009). Southern Lakeside Mountains and Northern Cedar Mountains 
include few exposures west of the Lakeside fault and associated with thrust faults in the Hastings Pass and Henry Spring 
areas; incomplete thickness as much as 500 feet (150 m) (Young, 1953; Doelling, 1964; Maurer, 1970).

Mgb Great Blue Limestone (Upper Mississippian) – Primarily limestone with minor shale and sandstone; bluish-gray to 
medium- and dark-gray limestone is locally fossiliferous, cherty, and argillaceous; bedding is medium to very thick; 
locally black chert occurs as nodules, particularly near the top; macrofossils include brachiopods, corals, bryozoans, 
and crinoids (see Davis, 1956; M.K. Elias in Arnold, 1956; Gordon and Douglas in Tooker and Roberts, 1970); dark-
gray to olive-gray shale occurs in middle part of section just south of the map area and in the lower part of the north-
ern Oquirrh Mountains section; uncommon yellowish-brown sandstone beds locally occur; forms ledgey and cliffy 
exposures; in northern Oquirrh Mountains previously mapped as the Green Ravine Formation of Tooker and Roberts 
(1970); complete thickness is from 650 to 1000 feet (200–305 m) at eastern Stansbury Mountains (Arnold, 1956; 
Rigby, 1958; this study), incomplete thickness at northern Oquirrh Mountains is about 1400 feet (430 m) (Tooker and 
Roberts, 1970), and incomplete thickness at southern Lakeside Mountains is 1537 feet (469 m) (Young, 1953).

Mh Humbug Formation (Upper Mississippian) – Light-brown and medium-blue-gray interbedded sandstone, quartz-
ite, fossiliferous limestone, and sandy limestone; bedding is thin to thick; fossils include bryozoans, corals, bra-
chiopods, crinoid columnals (Davis, 1956; Rigby, 1958); forms slopes and ledges; thickness is 950 to 1300 feet 
(290–400 m) at northern Stansbury Mountains (Rigby, 1958; this study), 850 feet (260 m) in southern Lakeside 
Mountains (this study), and Palmer (1970) reported 350 feet (105 m) (where incomplete and structurally disturbed) 
at Stansbury Island, near Cedar Canyon.

Mdf Deseret Limestone, Gardison Limestone, Fitchville Formation?, undivided (Upper to Lower Mississippian) – 
Combined unit in northern Stansbury Mountains and west side of Stansbury Island where difficult to separate forma-
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tions at this map scale as Delle Phosphatic Member of Deseret is poorly exposed or thin (attenuated?) and because the 
contact of Gardison and Fitchville? is unclear; see descriptions for units Md and Mgf; in Stansbury Mountains locally 
silicified near major unconformity; unit may conformably overlie Stansbury Formation; lower part of unit contains 
late Kinderhookian conodonts (Sandberg and Gutschick, 1979; Nichols and others, 1992; Stamm in Silberling and 
Nichols, 1992a; Trexler, 1992); thickness is from 800 to 2200 feet (245–670 m).

Md Deseret Limestone (Upper and Lower Mississippian) – Mapped as separate unit in eastern Stansbury Island (where 
folded) and in isolated exposures near Skull Valley; medium- to dark-gray cherty limestone, limestone, fossiliferous 
limestone, cherty dolomite, minor medial light-olive-gray, weathering to light-brown, quartz sandstone; lower Delle 
Phosphatic Member includes dark phosphatic shale (poorly exposed) and medial cherty limestone (Delle not mapped 
separately, see Sandberg and Gutschick, 1984); bedding is thin to very thick; forms ledges and slopes; fossils locally 
include rugose corals, spiriferid brachiopods, and crinoids (Rigby, 1958), and Petersen (1969) reported ammonoids of 
early Meramecian age from the Delle Member in the northern Stansbury Mountains; Deseret was previously mapped 
as the upper part of the Pine Canyon Formation in Stansbury Mountains (Rigby, 1958); thickness of 1150 feet (350 m) 
reported by Palmer (1970), may be excessive due to folding.

Mw Woodman Formation (Upper? and Lower Mississippian) – Upper part is pale-red, light-brown, moderate-gray do-
lomitic calcareous siltstone and fine-grained sandstone; lower part (Delle Phosphatic Member) is gray, black, and 
pale-red, phosphatic and cherty siltstone and mudstone with lesser nodular limestone and cherty limestone; formation 
is laminated to thinly bedded forming slopes with few ledges in southern Lakeside Mountains (Sandberg and Gutsch-
ick, 1984; Poole and Sandberg, 1991; Silberling and Nichols, 1992a, 1992b); yielded Osagean fossil data (Sandberg 
and Gutschick, 1984; Poole and Sandberg, 1991; Silberling and Nichols, 1992b); previously mapped as part of the 
Humbug Formation and Deseret Limestone (Young, 1953); correlates to the Deseret Limestone to the east (Poole and 
Sandberg, 1991); thickness is 445 feet (135 m) (Silberling and Nichols, 1992b).

MDgp Gardison Limestone, Fitchville Formation?, Pinyon Peak Limestone (Lower Mississippian, Osagean to Upper 
Devonian, Famennian) – Combined unit in the southern Lakeside Mountains following Silberling and Nichols (1992a); 
upper part (Gardison) is moderate- to dark-gray silty limestone and limestone that is commonly cherty and fossilifer-
ous; middle part (Fitchville?) is moderate- to dark-gray limestone that is locally fossiliferous and cherty; lower part 
(Pinyon Peak) is greenish-gray nodular silty limestone that is poorly exposed; bedding is thin to very thick forming 
ledges, cliffs, and few slopes; megafossils include corals, gastropods, brachiopods, bryozoa, crinoid columnals, while 
conodonts from upper part (Gardison) range from Osagean to late Kinderhookian, and from the lower part (Pinyon 
Peak) are late Fammenian; unconformably overlies Devonian dolomite; previously mapped as the Madison Limestone 
and part of the Deseret Limestone (Young, 1953); 640 to 1000 feet (195–305 m) thick in the southern Lakeside Moun-
tains (Silberling, Nichols, 1992a; this study).

Mgf Gardison Limestone and Fitchville Formation? (Lower Mississippian, Osagean? to Kinderhookian) – Combined 
unit where difficult to separate formations and presence of Fitchville is unclear; upper part is light- to dark-gray lime-
stone and minor dolomite that is locally cherty and fossiliferous; bedding is thin to thick; fossils include brachiopods, 
gastropods, and corals (Arnold, 1956; Rigby, 1958; Palmer, 1970); lower part is medium-gray dolomite and cherty 
dolomite with thin limestone interval at base; thin to very thick bedded; fossils locally include corals and brachiopods 
(Arnold, 1956; Rigby, 1958; Palmer, 1970; Howell, 1978); combined unit forms ledges, cliffs and slopes; Chapusa 
(1969), Palmer (1970), and Howell (1978) called lower part Fitchville Formation, however, an interval in lower part 
contains possible Osagean brachiopods (Howell, 1978) suggesting it is Gardison; in Broad Canyon, Stansbury Island, 
lower limestone contains upper Kinderhookian conodonts (Howell, 1978; Sandberg and Gutschick, 1979); lowermost 
shale interval of Howell (1978) and Sandberg and Gutschick (1979) placed in unit Dst herein; unit may conformably 
overlie Stansbury Formation; previously mapped/studied at Stansbury Island as the Gardison/Madison Limestone and 
Fitchville Formation (Chapusa, 1969; Palmer, 1970; Howell, 1978), but Sandberg and Gutschick (1979) used different 
nomenclature; the Fitchville was previously mapped as the lower part of the Gardner Dolomite (Rigby, 1958); queried 
in isolated exposures; thickness is 1000 to 1200 feet (305–365 m) in eastern Stansbury Island and western Stansbury 
Mountains (Chapusa, 1969; Palmer, 1970; Howell, 1978; this study).

Dst Stansbury Formation (Lower Mississippian, Kinderhookian to Upper Devonian, Famennian) – Enigmatic rock unit 
with complicated lithofacies relationships due to the Stansbury uplift (see Arnold, 1956; Stokes and Arnold, 1958; 
Rigby, 1958; Rigby, 1959; Nichols and others, 1992; Trexler, 1992). Our mapping follows Trexler (1992) and the up-
permost part (commonly covered) likely includes strata equivalent to the Pinyon Peak Limestone, and possibly other 
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units (see Howell, 1978; Sandberg and Gutschick, 1979). In northern Stansbury Mountains (type section at Flux), the 
formation includes conglomerate with lesser sandstone (quartz-arenite) or quartzite, dolomite, limestone, and shale; the 
distinctive conglomerate is gray dolomite-clast type in a dolomite matrix, and varies from matrix to clast supported; 
clasts are subrounded to subangular and up to 5 feet (2 m) in diameter; light-colored sandstone/quartzite has small-scale 
cross-lamination and can be laterally discontinuous; some dolomite and limestone is present near the lower and upper 
contacts, is locally fossiliferous, and may contain carbonate rock fragments; Stansbury Island section is different from 
the type section—it does not have conglomerate and it has roughly four times as much sandstone/quartz-arenite com-
pared to Flux (Trexler, 1992); yellowish-orange and pale-red shale was observed at the top of the section at Stansbury 
Island (Howell, 1978; Sandberg and Gutschick, 1979; Clark, this study); bedding is thin to very thick, forming mostly 
ledges and slopes; unit Dst also includes three large slide blocks of Laketown-Ely Springs Dolomite, unit Dst(SOu), 
near Flux and Miners Canyon, Stansbury Mountains (Stokes and Arnold, 1958; Rigby, 1958; Trexler, 1992); major 
unconformity at base of formation (Rigby, 1958, 1959; Trexler, 1992); various fossil data indicate the formation ranges 
from early Kinderhookian to late Famennian in age (Sandberg and Gutschick, 1979; Nichols and others, 1992; Stamm 
in Silberling and Nichols, 1992a; Mamet in Trexler, 1992; Silberling? in Trexler, 1992); fossil brachiopod Paurorhyn-
cha endlichi reported by Arnold (1956) and Rigby (1958) from the formation; Hollis (2015) reported U-Pb detrital zir-
con provenance data, but no maximum depositional age; upper part was previously mapped as Pinyon Peak Limestone 
in Stansbury Mountains by Rigby (1958); the formation is limited in lateral extent (Trexler, 1992); thickness from 0 to 
1770 feet (0–540 m) at northern Stansbury Mountains and 925 feet (282 m) at Stansbury Island (Trexler, 1992).

Dgs Guilmette Formation and Simonson Dolomite, undivided (Middle Devonian) – Combined unit in the southern 
Lakeside Mountains where not readily separable for mapping purposes; predominantly gray color-banded dolomite 
and minor light-brown sandstone (Doelling, 1964); mapped as Jefferson Dolomite by Young (1953); complete thick-
ness is 1469 to 1850 feet (448–565 m) (Young, 1953; this study).

Dss Simonson Dolomite and Sevy Dolomite, undivided (Middle to Lower Devonian) – Combined unit of dark- and 
light-gray dolomite that is medium to coarsely crystalline (Simonson) and light-gray dolomite that is finely crystalline 
with laminated surface appearance (Sevy); bedding is thin to very thick; occurs as ledges and slopes at Salt Mountain; 
no fossils or other age data; unconformable on unit SOu; combined unit thickness is 375 feet (115 m) at Salt Moun-
tain, but removed elsewhere by Devonian unconformity (Rigby, 1958, 1959).

Dsy Sevy Dolomite (Lower Devonian) – Light- to moderate-gray dolomite that is finely to coarsely crystalline with lami-
nated surface appearance; bedding is medium to thick; lighter colored and less resistant than surrounding formations; 
contains fossil fish fragments (Young, 1953); mapped separately in the southern Lakeside Mountains; previously 
called the Water Canyon Dolomite (Young, 1953; Doelling, 1964); complete thickness is 220 to 242 feet (67–74 m) 
(Young, 1953; Petersen, 1956).

SOu Laketown Dolomite, Ely Springs Dolomite, Eureka Quartzite, undivided (Silurian to Upper Ordovician) – 
Combined unit of medium- to light-gray dolomite that is medium to coarsely crystalline (Laketown) and underly-
ing banded dark- and medium-gray dolomite that is fine to medium crystalline (Ely Springs); in southern Lakeside 
Mountains also includes thin interval of Eureka Quartzite at base 15 to 35 feet (5–10 m) thick; bedding is medium to 
very thick; primarily forms ledges and cliffs; fossils include primarily brachiopods and corals (Rigby, 1958; Young, 
1953; Doelling, 1964); three slide blocks of SOu are included in unit Dst near Flux and Miners Canyon, Stansbury 
Mountains; at Stansbury Island, dark- to light-gray dolomite (likely Ely Springs) was previously mapped as Laketown 
(Chapusa, 1969) and Fish Haven (Palmer, 1970); in the Stansbury Mountains, Ely Springs previously mapped as Fish 
Haven Dolomite (Rigby, 1958); in the Lakeside Mountains was previously mapped as Laketown Dolomite, Fish Haven 
Dolomite, and upper unit of Swan Peak Formation (Young, 1953; Doelling, 1964); complete thickness is 1075 feet 
(328 m) in southern Lakeside Mountains (Young, 1953), 925 feet (280 m) at Salt Mountain and northern Stansbury 
Mountains (Rigby, 1958), and 425 feet (130 m) at Stansbury Island where it is locally unconformable with overlying 
Stansbury Formation and younger rocks and with the underlying Pogonip Group (Chapusa, 1969; Palmer, 1970).

Op Pogonip Group (Middle to Lower Ordovician) – Medium-gray limestone and lesser dolomite (variably sandy and 
cherty) with yellowish-orange argillaceous partings and laminae interbedded with siltstone, shale, and intraforma-
tional pebble conglomerate; bedding is thin to medium, and soft-sediment deformation exists as wavy bedding, slump 
folds, and intraformational breccia; forms ledges and slopes; fossils include trilobites, brachiopods, cephalopods, grap-
tolites, echinoderms, ostracodes, bryozoans, and algae (Young, 1953; Arnold, 1956; Rigby, 1958; Doelling, 1964); the 
thin upper formation (Kanosh Shale) is only locally present at Salt Mountain and southern Lakeside Mountains, but 
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elsewhere the upper Pogonip Group (including the Kanosh) was removed on the Ordovician unconformity (Tooele 
arch) (Rigby, 1958; Hintze, 1959); previously mapped as the Kanosh Shale and Garden City Formation (Rigby, 1958; 
Chapusa, 1969; Palmer, 1970; Helm, 1994, 1995), and Swan Peak Formation (lower unit) and Garden City Limestone/
Formation (Young, 1953; Doelling, 1964); thickness as much as 1900 feet (580 m) at Stansbury Island (this study), 
1200 feet (365 m) at northern Stansbury Mountains and Salt Mountain (Rigby, 1958), and 1037 to 1186 feet (315–360 
m) at southern Lakeside Mountains (Young, 1953; Doelling, 1964).

Opk Pogonip Group, Kanosh Shale (Middle Ordovician) – Local marker unit that is an upper formation of the Pogonip 
Group; olive-green and black shale with minor argillaceous sandstone, limestone, and dolomite; forms slopes in Salt 
Mountain area; present but not mapped separately in southern Lakeside Mountains; fossils include graptolites and 
brachiopods (Rigby, 1958); thickness from 0 to about 100 feet (0–30 m) near Salt Mountain (Rigby, 1958; this study).

Cambrian stratigraphic nomenclature for the Stansbury Mountains was revised by Clark and Kirby (2009) from that of Rigby 
(1958) and Teichert (1959). These strata correspond to the thicker, deeper water/passive margin facies (western Utah section), 
not the correlative thinner, eastern/cratonic facies (East Tintic section). Due to the map scale, some formations are combined, 
similar to the map units in Millard County (see Hintze and Davis, 2003). This Cambrian nomenclature was also applicable in 
the southern Lakeside Mountains (see revisions to Young, 1953, 1955; Doelling, 1964).

_um Upper and Middle Cambrian strata, undivided (lowermost Ordovician, Upper to Middle Cambrian) – Combined 
unit at Stansbury Island. Subdivision of Cambrian formations at Stansbury Island could not be readily accomplished 
due to access and time restrictions, and structural complications. Locally the Cambrian section there is dolomitized, 
which apparently led to some prior confusion about nomenclature.

_np Notch Peak Formation (lowermost Ordovician? to Upper Cambrian) – Dark-gray dolomite locally with very light 
gray intervals, bands and mottling; common chert nodules and stringers, Girvanella (microbial oncolites), pisolites, 
and calcite rods; medium to very thick bedded forming ledges and cliffs; contains rare trilobite fossils (Arnold, 1956); 
previously mapped as the Ajax Dolomite/Limestone (Rigby, 1958), part of the Lynch Dolomite (Young, 1953), and 
part of the Nounan–St. Charles Formations (Doelling, 1964); complete thickness is 750 to 900 feet (230–275 m) in 
northern Stansbury Mountains (Rigby, 1958; this study), and 1375 feet (420 m) at southern Lakeside Mountains, and 
incomplete in southernmost Stansbury Island.

_o Orr Formation (Upper Cambrian) – Upper part is light- to moderate-gray silty dolomitic limestone with rust-colored 
silty laminae and local rip-up clasts (possibly the Sneakover and Johns Wash Limestone Members), and intervening 
olive-green to pale-red shale (Corset Spring Shale Member) that includes trilobite Housia varro (Rigby, 1958); in 
southern Lakeside Mountains, upper part includes gray silty dolomite, dolomite, limestone, moderate-brown sand-
stone, and light-brown weathering dolomite; lower part is light- and dark-gray dolomite (Big Horse Member) with 
calcite rods and blebs, pisolites, oolites, and Girvanella; bedding is typically medium to very thick bedded; formation 
forms ledges, slopes, cliffs; previously mapped as the Dunderberg Shale and Opex Formation in Stansbury Mountains 
(Rigby, 1958), part of the Lynch Dolomite (Young, 1953), and part of the Nounan–St. Charles Formations (Doelling, 
1964); thickness is 450 feet (135 m) at northern Stansbury Mountains, and 935 feet (285 m) at southern Lakeside 
Mountains.

_lt Lamb Dolomite and Trippe Limestone, undivided (Upper and Middle Cambrian) – Combined unit in northern 
Stansbury Mountains; Lamb includes thin upper part of moderate-gray silty limestone with rust-colored silty lami-
nae and some oolites, and thicker lower part of light- and dark-gray dolomite; bedding is thin to thick; Trippe, top 
part includes thin silty and shaley limestone and olive-green to pale-red shale (Fish Springs Member), underlying 
moderate-gray limestone and lesser silty and shaley limestone; locally includes rip-up clasts/flat pebble conglomer-
ate in limestone; fossils include inarticulate brachiopods and agnostid trilobite fragments (Rigby, 1958); bedding is 
thinly laminated to medium. Combined map unit forms ledges, slopes and cliffs; Lamb previously mapped as the Cole 
Canyon and Bluebird Dolomites, and Trippe previously mapped as the Bowman Limestone and Herkimer Limestone 
(Rigby, 1958); thickness is 1200 feet (365 m).

_l Lamb Dolomite (Upper and Middle Cambrian) – Mapped as separate formation in southern Lakeside Mountains; see 
description for unit _lt above; complete thickness is 1075 feet (325 m).
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_tp Trippe Limestone and Pierson Cove Formation (Middle Cambrian) – Combined unit in southern Lakeside Moun-
tains; Trippe, upper part is olive-green shale and shaley nodular limestone (Fish Springs Member, the upper nodular 
limestone unit of Doelling, 1964) and lower part is moderate-dark-gray silty limestone, limestone, dolomite that forms 
ledges; upper shale contains brachiopods (Doelling, 1964); Pierson Cove, moderate-gray limestone (locally silty) and 
dolomite with calcite rods and local oolites; more resistant and poorly bedded (medium to thick) forming rounded 
ledges and cliffs; previously mapped as the Bowman and Hartmann Limestones (Young, 1953), and Marjum Forma-
tion (Doelling, 1964); complete thickness is 975 feet (300 m) (Doelling, 1964).

_pc Pierson Cove Formation (Middle Cambrian) – Mapped as separate formation in northern Stansbury Mountains; 
upper few beds of white and mottled dolomite (light and dark gray, called tiger-striped by Rigby [1958], and zebra-
banding by Cohenour [1959]) underlain by light- and dark-gray silty limestone (silty laminae are tan, pale orange, and 
moderate to dark gray); locally dolomitized intervals are moderate gray to mottled gray dolomite that is more resistant 
and with some calcite rods; bedding is thin to very thick; forms ledges, cliffs, slopes; previously mapped as part of the 
Dagmar Dolomite? and Teutonic Limestone (Rigby, 1958); thickness is 575 feet (175 m).

_ww Wheeler Formation, Swasey Limestone, Whirlwind Formation, undivided (Middle Cambrian) – Combined unit 
in northern Stansbury Mountains; Wheeler, upper part is olive-green shale and minor moderate-gray silty limestone in-
terbeds with tan silty laminae, middle part is silty limestone, lower part is shale and some silty limestone and limey shale; 
bedding is thinly laminated to very thick; contains Peronopsis (agnostid trilobite) (Rigby, 1958); Swasey is moderate- to 
dark-gray limestone and silty limestone with some small oncolites; locally dolomitized; bedding is medium to thick; 
Rigby (1958) reported some fragments of Elrathia (trilobite); Whirlwind is pale-red and tan shale, and moderate-gray 
silty limestone; poorly exposed; fossils include Ehmaniella and Ehmania (trilobites) (Rigby, 1958); bedding is thinly 
laminated to medium. Combined unit forms slopes, ledges, and few cliffs; previously mapped as middle and lower part 
of the Teutonic Limestone and Ophir Group, Condor Formation (Rigby, 1958); thickness is 950 feet (290 m).

_wh Wheeler Formation (Middle Cambrian) – Mapped as separate formation in southern Lakeside Mountains; gray silty 
limestone interbedded with olive-green and grayish-green shale; bedding is laminated to thin forming slopes; no fossil 
data; complete thickness is 441 feet (135 m) (Doelling, 1964).

_sw Swasey Limestone (Middle Cambrian) – Mapped as separate formation in southern Lakeside Mountains; gray lime-
stone and lesser silty limestone; bedding is thick to very thick; unit forms cliffs between less resistant formations; 
sparse fossils include brachiopods and trilobites; complete thickness is 606 feet (185 m) (Doelling, 1964).

_wl Whirlwind Formation (Middle Cambrian) – Mapped as separate formation in southern Lakeside Mountains; moder-
ate-gray silty limestone with light-brown silty laminae interbedded with gray and green shale; bedding is laminated to 
medium; forms slopes with few ledges; fossils include trilobite debris; incomplete thickness is about 300 feet (90 m) 
(Doelling, 1964).

_dh Dome Limestone, Chisholm Formation, Howell Limestone, undivided (Middle Cambrian) – Dome is moderate- 
to dark-gray silty limestone with tan and red silty laminae; bedding is thin to medium; in the southern Lakeside Moun-
tains, it is orange-brown-weathering, medium-gray dolomite that is coarsely crystalline; Chisholm is olive-green shale 
(weathers brown), and lesser moderate-gray silty limestone and limestone with tan and orange silty laminae; bedding 
is thinly laminated to medium; contains uncommon Glossopleura (trilobite) (Rigby, 1958); Howell is moderate-gray 
silty limestone with orange silty laminae; bedding is thin to medium. Unit forms ledges and slopes; previously mapped 
as part of the Ophir Group-Dome, Burnt Canyon, Burrows equivalents, and Millard Limestone (Rigby, 1958), and as 
the Hartmann Limestone and Ophir Shale (Young, 1953); complete thickness is 750 feet (230 m) at northern Stansbury 
Mountains, and an incomplete section in the southern Lakeside Mountains is 695 feet (210 m).

_p Pioche Formation (Middle and Lower Cambrian) – Dark-greenish-gray and dark-reddish-gray (typically weather-
ing to reddish brown or brown gray) quartzite, greywacke sandstone, phyllitic shale, calcareous sandstone, and sandy 
and silty limestone; bedding is thin to medium; unit forms slopes and some ledges; previously mapped as the lower 
Ophir Group including the Busby Quartzite and Pioche Shale (Rigby, 1958), and as part of the Tintic Quartzite (Young, 
1953); complete thickness is 310 to 450 feet (95–135 m) at northern Stansbury Mountains (Rigby, 1958; this study), 
and about 500 feet (150 m) at Stansbury Island, north of Corral Canyon (Chapusa, 1969); about 545 feet (165 m) thick 
in the southern Lakeside Mountains.
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_pm Prospect Mountain Quartzite (Lower Cambrian and Neoproterozoic?) – Light-brown, grayish-olive, and white 
quartzite with scattered iron specks that is medium to coarse grained with cross-beds; bedding is medium to very thick; 
thin, uncommon conglomerate lenses occur with pebbles less than 1 inch (3 cm) diameter of quartzite and chert; thin 
green shale beds occur near the top; forms ledges, slopes and cliffs; detrital zircon data have not constrained the age for 
the formation (Yonkee and others, 2014); previously mapped as the Tintic Quartzite by Young (1953), Rigby (1958), 
Palmer (1970), Doelling (1964); top of unit is conformable and base is not exposed; incomplete thickness is about 
1150 to 2500 feet (350–760 m) at Stansbury Island (Chapusa, 1969; Palmer, 1970), and 4200 feet (1280 m) (nearly 
complete?) in the Stansbury Mountains (Rigby, 1958); incomplete, 665 feet (200 m) in southern Lakeside Mountains.

Northern Stansbury Island was previously mapped as the Big Cottonwood series and Formation (Chapusa, 1969; Palmer, 
1970). We map this section of rock as the Mutual Formation, Inkom Formation, and Caddy Canyon Quartzite, which are faulted 
against Cambrian rocks.

Zm Mutual Formation (Neoproterozoic) – Light-brown to light-gray quartzite and quartzite conglomerate that weathers 
to moderate brown; conglomerate with rounded quartzite and chert pebbles in lenses and beds; common cross-bedding 
and some liesegang banding; thin to thick bedded; forms ledges and cliffs; detrital zircon analyses have not constrained 
the age of the formation (Yonkee and others, 2014); top part may not be exposed; incomplete thickness is about 1200 
feet (365 m) at northern Stansbury Island.

Zi Inkom Formation (Neoproterozoic) – Grayish-green and maroon phyllitic shale and argillite, and minor quartzite 
and sandstone; thinly laminated to medium bedded; typically weathers to chips, and largely covered by surficial depos-
its forming a poorly exposed strike valley; DZ maximum depositional age for the formation has not been constrained 
(Yonkee and others, 2014); complete thickness is about 200 to 300 feet (60–90 m) at northern Stansbury Island.

Zcc Caddy Canyon Quartzite (Neoproterozoic) – Very pale orange to white quartzite with orange and red liesegang 
banding; cross-bedding and local pebble conglomerate lenses; bedding is medium to very thick; forms ledges and 
cliffs; DZ maximum depositional age for the formation has not been constrained (Yonkee and others, 2014); only top 
part of formation is exposed; incomplete thickness as much as 500 feet (150 m) at northern Stansbury Island.

Zpc Perry Canyon Formation (Neoproterozoic) – Dark-brown and light-gray quartzite that is part of slate and quartzite 
member (see Balgord and others, 2013; Yonkee and others, 2014; Yonkee and others, in preparation); one small expo-
sure in map area at the southernmost part of Carrington Island; DZ data from Carrington Island are not yet available, 
but DZ data from Little Mountain (NE of Fremont Island) indicate a maximum depositional age of 683 Ma (Balgord 
and others, 2013); exposed (incomplete) thickness in map area is less than 100 feet (30 m).

CRETACEOUS TO PALEOPROTEROZOIC ROCK UNITS OF ANTELOPE ISLAND

KXa Altered and deformed rocks (Cretaceous, Paleoproterozoic) – Older rocks (Farmington Canyon Complex) that were 
altered in the Cretaceous to dark-green to greenish-black chloritic to dark-reddish-brown hematitic gneiss, mylonite, 
and phyllonite (see Yonkee and Lowe, 2004; Willis and others, 2010;); locally silicified and cut by quartz veins and 
pods (includes Kq unit of Doelling and others, 1990); found along shear zones, including a major shear zone in the 
central part of Antelope Island and near the contact with the overlying sedimentary cover; retrograde alteration and 
deformation of Farmington Canyon Complex protoliths is mostly Cretaceous in age (Willis and others, 2010), how-
ever, Bryant (1988) indicated some quartz veins and pods may be related to Precambrian alteration; in chloritic gneiss 
the original minerals are altered to sericite, fine-grained chlorite, biotite, stilpnomelane, epidote, and albite; phyllonite 
and mylonite contain sericite (6–35%), chlorite (21–31%), quartz (29–51%), and feldspar (0–30%) (Yonkee and oth-
ers, 2000a); previously mapped as units XWfg and XWfs by Doelling and others (1990); unit KXa thickness is highly 
variable, and quartz veins and pods are <10 feet (3 m) to 400 feet (120 m) across (Doelling and others, 1990; Yonkee 
and others, 2000a).

_t Tintic Quartzite (Middle? to Lower? Cambrian) – Tan to pale-gray to greenish-gray metaquartzite with interbeds of 
quartz pebble conglomerate; quartzite (60%) is dense, fine to medium grained; pebbly quartzite (20%) and conglom-
erate (20%) contain moderately well sorted clasts of tan, white and red polycrystalline quartz from 0.5 to 4 inches 
(1–10 cm) in diameter; bedding is medium to thick, and the unit commonly forms ledgey slopes and small blocky 
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cliffs; quartzite is variably deformed with locally well-developed cleavage (stretched pebbles and micaceous partings), 
quartz-filled veins, and minor folds; unconformably overlies unit Zsd (Doelling and others, 1990; Yonkee and others, 
2000b); detrital zircon data have not constrained the maximum depositional age (Yonkee and others, 2014); incomplete 
thickness is at least 800 feet (245 m), and top is not exposed (Doelling and others, 1990; Yonkee and others, 2000b).

Zsm Slate and dolomite unit and Mineral Fork Formation, undivided (Neoproterozoic) – Combined unit in small 
exposures due to map scale.

Zsd Slate and dolomite (Neoproterozoic) – Consists of an upper slate member and thin lower dolomite member (Christie-
Blick, 1983; Doelling and others, 1990; Yonkee and others, 2000b); the slate member consists of purple, greenish-gray, 
and reddish-brown slate, argillite, silty dolomite, and fine-grained metaquartzite that is thin bedded; the upper half 
consists mostly of purplish to reddish slate and fine-grained metaquartzite, and the lower half consists of multi-colored 
slate with interbedded calcareous slate and silty dolomite; commonly forms smooth, covered slopes, but is locally well 
exposed; generally displays well-developed slaty cleavage, widespread minor folds, and locally complex quartz-filled 
veins developed during Mesozoic thrusting; slate grades downward to underlying light-gray to pink dolomite; the 
dolomite is finely crystalline to marbleized; bedding is finely laminated to thick bedded, partly reflecting recrystalliza-
tion; the dolomite forms resistant cliffs; dolomite is generally weakly deformed and from 20 to 30 feet (6-10 m) thick; 
unit Zsd unconformably overlies the Mineral Fork Formation; previously called Kelley Canyon Formation (Doelling 
and others, 1990; Yonkee and others, 2000b; Willis and others, 2010), but the strata on Antelope Island may not be 
correlative with the Kelley Canyon Formation (W.A. Yonkee, Weber State University, written communication to D.L. 
Clark, February 24, 2014; Yonkee and others, 2014) and the nomenclature may not be appropriate for the eastern thrust 
system (cratonic) rock units; detrital zircon data were obtained from the unit on Antelope Island, but the maximum 
depositional age and correlation are unclear (Yonkee and others, 2014); unit thickness is variable from 70 to 280 feet 
(20–85 m) due to structural deformation (Doelling and others, 1990; Yonkee and others, 2000b).

Zmf Mineral Fork Formation (Neoproterozoic) – Dark-brownish-black, very poorly sorted, matrix-supported diamictite 
with minor interbedded argillite, metaquartzite, and conglomerate locally present near the top of the unit; clasts com-
pose 20 to 60% of the diamictite and lie within a micaceous, gritty matrix; clast size is highly variable from pebbles to 
boulders 7 feet (2 m) across, but cobble-sized clasts are abundant; clasts vary from angular to rounded, but many were 
altered and flattened during Mesozoic deformation; clast types include quartzo-feldspathic gneiss and granite, meta-
quartzite (including rare, but distinctive, chrome-green quartzite), schist, and amphibolite, with relative abundances 
varying between outcrops; diamictite has a well-developed cleavage formed during Mesozoic thrusting and is defined 
by subparallel partings in the matrix and flattened clasts; unit generally forms slopes, but cliffs are locally present; 
usually not bedded; locally chloritized and structurally deformed; unconformably overlies the Farmington Canyon 
Complex (Doelling and others, 1990; Yonkee and others, 2000b); a detrital zircon maximum depositional age of 700 
Ma is given for the formation in the southern Wasatch Range (Yonkee and others, 2014) where it overlies the Big Cot-
tonwood Formation (<766 Ma) (Dehler and others, 2010); unit Zmf (eastern thrust system/cratonic) is correlative to 
part of Perry Canyon Formation (western thrust system/passive margin) in the northern Wasatch Range (Yonkee and 
others, 2014); thickness is 0 to 200 feet (0–60 m) (Christie-Blick, 1983; Doelling and others, 1990; Yonkee and others, 
2000b; Willis and others, 2010).

Farmington Canyon Complex, divided into eight informal units after Yonkee and others (2000a); also see Willis and others 
(2010). Considered Paleoproterozoic in age from about 1.6 to 1.7 Ga (Nelson and others, 2011, and references therein; also 
see Willis and others, 2010), although debate remains whether it is older (W.A. Yonkee, Weber State University, verbal com-
munication to D.L. Clark, October 22, 2015). Correlation with units of the Wasatch Range is presently unclear (Bryant, 1988; 
Yonkee and Lowe, 2004; Coogan and King, 2016). Map unit descriptions are modified from Yonkee and others (2000a) and 
Willis and others (2010).

Xfcp Granite and pegmatite (Paleoproterozoic) – Mostly weakly to non-foliated, coarse-grained granite and pegmatite; 
only larger bodies mapped separately; unit includes pegmatitic granite that forms large bodies on the eastern part of 
the island, garnet-muscovite-bearing granite in small pods within and near layered gneiss, red granite that forms small 
plutons on the southern end of the island, and pegmatite in widespread dikes and pods within other units; larger out-
crops of granite and pegmatite are generally white to gray to pink, variably fractured, and have a knobby appearance; 
contains quartz (25–40%), plagioclase (20–35%), K-feldspar (30–50%) with minor muscovite, garnet, biotite, and 
accessory minerals, and is compositionally granite based on mineral modes; grain sizes variable from <1 to 10 mm in 
granite and locally >1 cm in pegmatite.
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Xfcgr, Xfcg             
Granitic gneiss (Paleoproterozoic) – Light- to pinkish-gray, weakly to strongly foliated, hornblende-bearing, quartz-
feldspar gneiss with lenses of hornblende-plagioclase gneiss; intruded by widespread pegmatite dikes; unit includes a 
central body of weakly to moderately foliated, red granitic gneiss (unit Xfcgr) and a surrounding body of moderately 
to strongly foliated migmatitic granitic gneiss (Xfcg) that are mineralogically indistinguishable (Yonkee and others, 
2000a); widely spaced, generally planar fractures produce a blocky appearance in most outcrops; exposed in a large 
elliptical area on the west-central part of the island and in a smaller area to the northeast; contains quartz (31–36%), 
plagioclase (18–32%), K-feldspar (27–39%), hornblende and rare pyroxene (4–8%), and accessory minerals, and has 
granitic compositions based on mineral modes; grain sizes from 0.1 to 10 mm.

Xfcb Banded gneiss (Paleoproterozoic) – Light- to pinkish-gray, strongly foliated and banded, locally migmatitic, horn-
blende-bearing, quartz-feldspar gneiss with lenses of hornblende-plagioclase gneiss; intruded by widespread pegma-
tite dikes; dominant rock type within the central and eastern parts of the island and surrounds the granitic gneiss unit; 
contains quartz (31–34%), plagioclase (28–38%), K-feldspar (16–27%), hornblende (6–12%), possible pyroxene and 
biotite, accessory minerals, and is granitic to granodioritic in composition based on mineral modes; grain sizes from 
0.1 to 3 mm.

Xfch Hornblende-plagioclase gneiss (Paleoproterozoic) – Dark-gray to black elongate pods of hornblende-plagioclase 
gneiss incorporated into granitic gneiss and banded gneiss, and light-gray to black plagioclase- to hornblende-rich 
gneiss that forms a large mafic body in the central part of the island; intruded by pegmatite dikes; contains hornblende 
(20–60%), plagioclase (30–60%), quartz (0–15%), minor pyroxene, accessory minerals, and varies compositionally 
from gabbro to diorite to tonalite based on mineral modes; grain sizes from 0.1 to 4 mm.

Xfcu Metamorphosed ultramafic rock (Paleoproterozoic) – Dark-green to black meta-ultramafic rock with amphibole, 
pyroxene, and rare olivine that are variably altered to chlorite, serpentine, and talc, and commonly with some sur-
rounding hornblende-rich gneiss; forms small isolated pods within layered gneiss at the southern end of the island; 
contains anthophyllite and tremolite (~30%), orthopyroxene and clinopyroxene (15%), minor olivine, alteration min-
erals, and accessory minerals; grain size up to 3 mm.

Xfcq Quartz-rich gneiss (Paleoproterozoic) – White to pale-gray, quartz-plagioclase gneiss with minor layered gneiss and 
biotite schist; forms concordant lenses from 3 to 100 feet (1–30 m) wide within the layered gneiss; weathers to form 
vitreous, milky to greenish-gray, fractured and resistant outcrops; consists dominantly of quartz (79–94%), with lesser 
amounts of plagioclase (5–12%), biotite, muscovite, and accessory minerals; grain sizes from 0.2–5 mm.

Xfcl Layered gneiss (Paleoproterozoic) – Light- to dark-gray outcrops of biotite- and garnet-bearing, migmatitic, quartz-
feldspar gneiss with well-developed compositional layering (quartzo-feldspathic, biotite-rich, quartz-rich, amphibolite 
layers from 0.2 to 6 feet [0.05–2 m] thick); contains lenses of biotite schist and quartz-rich gneiss and rare pods of 
metamorphosed ultramafic and mafic rock; cut by widespread amphibolitic dikes; intruded by pegmatite dikes and 
granitic pods; forms heterogeneous, gray to brown to pink outcrops of variable erosional resistance in elongate regions 
within the southern and central parts of the island; layered gneiss mineral abundances are variable and contain quartz 
(18–46%), plagioclase (27–43%), K-feldspar (3–16%), biotite (4–32%), locally garnet, sillimanite, cordierite, and 
accessory minerals; grain sizes from 0.1–5 mm; U-Pb zircon age of 1691 ± 26 Ma from layered gneiss in southern 
Antelope Island (Nelson and others, 2011); biotite schist forms lenses up to 6 feet (2 m) wide; present locally with in-
tercalated thin layers and pods of granitic material; relatively non-resistant, weathering to form brown slopes and sub-
dued ledges; schist consists of biotite (38–55%), quartz (1–16%), coarser-grained muscovite (4–7%), garnet (1–4%), 
and lesser sillimanite and highly altered cordierite?, alteration to sericite (33%); grain sizes from 0.1–5 mm.
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Contact 

High-angle normal fault – Dashed where 
approximately located, dotted where concealed; 
bar and ball on downthrown side

Normal fault, geophysical – Located from shallow 
seismic reflection data for Great Salt Lake fault 
zone; heavier line for main faults and lighter line 
for subsidiary faults; dotted where concealed; bar 
and ball on downthrown side; colors indicate 
relative age of sediments affected by faulting: red 
for lake bottom displacement, green for 
Holocene, blue for pre-Holocene

Strike-slip or oblique-slip fault – Dashed where 
approximately located, dotted where concealed; 
arrows and bar and ball indicate relative 
displacement

Fault of unknown geometry – Dashed where 
approximately located, dotted where concealed

Thrust fault – Dashed where approximately located, 
dotted where concealed; teeth on hanging wall

Reverse fault – Dashed where approximately 
located; teeth on hanging wall

Attenuation fault – Dotted where concealed; boxes 
on hanging wall

Low-angle normal fault – Dotted where concealed; 
boxes on hanging wall

Lineament – From aerial photo interpretation

Extent of mine dumps

Quartz vein

Igneous dike or sill

Axial trace of anticline – Dashed where 
approximately located, dotted where concealed; 
arrow shows plunge

Axial trace of overturned anticline − Dashed where 
approximately located, dotted where concealed; 
arrow shows plunge

Axial trace of syncline – Dashed where 
approximately located, dotted where concealed; 
arrow shows plunge

Axial trace of overturned syncline − Dashed where 
approximately located, dotted where concealed; 
arrow shows plunge

Axial trace of monocline – Dotted where concealed

Lake Bonneville Shorelines –

Bonneville shoreline

Provo shoreline

Stansbury shoreline

Great Salt Lake shoreline (historic average 4200 
feet [1280 m])

Glacial cirque headwall

Nivation hollow headwall

Landslide scarp – Hachures on down-dropped side

Pit/Open pit mine extent – SE Antelope Island 
gravel pit, Bingham Canyon, Barneys Canyon, 
Melco mines

Ditches and disturbed areas in lake bed below 
Great Salt Lake shoreline (4200 ft)

Sedimentary bedding attitude – 

Inclined 

   Inclined approximate   

   Vertical

   Overturned

Volcanic and metamorphic foliation attitude –

   Inclined

   Vertical

Spring

Mine or quarry

Adit

Shaft

Sand and gravel pit

Drill hole – Oil/Gas exploration

Sediment core – Great Salt Lake and vicinity

Ground water monitoring well

Geochronology sample

Geochemical sample

Tephrochronology sample

Fossil sample

Paleoseismic trench

Shear zone – Hatched area where part of unit KXa

GEOLOGIC SYMBOLS
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x x x x
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