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CORRELATION OF MAP UNITS

[This map is one of a series of surficial geologic maps of the Wasatch fault zone, central and northern Utah. Colored map units in the correlation

appear on this map; uncolored map units are included to aid correlation with other maps in this series)

from horizontal to original dips of as much as 10° to 15°. Deposited
in beaches, bars, spits, and small deltas. Mapped between the
Provo and Bonneuville shorelines (1,475-1,585 m; 4,840-5,200
ft); commonly covered by hillslope colluvium (chs), but typically
forms wave-built bench at the highest (Bonneville) shoreline, and

BEDROCK DEPOSITS

| Tertiary deposits—Consists of sedimentary rocks of the Salt Lake
Formation (Pliocene and Miocene) and Wasatch(?) Formation in
the northern Wellsvile Mountains, and the Norwood Tuff (Olig-
ocene and upper Eocene), Wasatch Formation (Eocene and

from a trench excavated across the scarp at Bowden Canyon (BC1) show 3 or 4
faulting events since deposition of these deposits (Personius and Gill, 1987).
Total offset on late Quaternary scarps appears to gradually decrease north of
Brigham City. Deposits of Provo-shoreline-equivalent alluvium (afp) are offset
about 11.5 m on the north side of Baker Canyon and about 4 m east-northeast of
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Lacustrine deposits . Alluvial dep°5’;5 Glac’?l Eolian Colluvial deposits Bl deposits several less well developed intermediate shorelines in the map Paleocene), and Evanston Formation (Paleocene and Upper Honeyville (6 and 15 km north of Brigham City, respectively). Excavations in a
afl:,ﬁfnm alluotm deposits  deposits area; commonly well cemented with calcium carbonate, especially Cretaceous) in the Wasatch Range gravel pit 1 km northeast of Calls Fort (12 km north of Brigham City) exposed rem-
/ — g 5y e - O upper - along the shorelines. Water-smoothed bedrock commonly present PIPr Lower Permian to Pennsylvanian sedimentary rocks—Consists of nants of a fault zone in lacustrine gravels with two faulted wedges of fault scarp
all FEAE di i e o S it ? Holocene \} on resistant bedrock outcrops along the shorelines. Exposed thick- Oquirrh Formation (Lower Permian to Lower Pennsylvanian), and colluvium; these relations indicate at least three earthquake surface-faulting events
ly laly |—— aly - ] s Py middle and - Holocene ness <10 m in the Wellsville Mountains locally includes the West Canyon of undetermined size. Because the Calls Fort gravel pit exposure is located
al2 Lr'ed2’ R PRI lower ‘ Ibm Lacustrine silt and clay related to Bonneville shorelines (upper Limestone (Lower Pennsylvanian) (Oviatt, 1986a) downslope from the Provo shoreline and the fault scarp colluvium has not been
Tispe Chs crf | cﬂ:lsnp‘-‘ oy { Holocene < Pleistocene)—Predominantly silt deposits, with minor amounts of MEr Mississippian to Cambrian sedimentary rocks—Consists of sedi- subjected to lacustrine reworking, these earthquake surface-events must postdate
Bonneville Provo (regressional) phase § Ipd/ Ipg / lps /Ipm i oo 1 0 alp b et ,qév|§ v upper . QUATERNARY clay and fine sand; usually thick bedded to massive; deposited in mentary rocks of Mississippian through Cambrian age, including formation of the Provo shoreline. Schwartz and Coppersmith (1984) based their
lake cycle | g o ille (transgressive) phase < | Ibd /Ibg /Ibs /lbm e alb B A Pleistocene quiet water environments, either in sheltered bays between head- the Middle and Lower Cambrian Tintic Quartzite and the Lower Ogden-Collinston segment boundary (fig. 1) on the northernmost extent of
_ b ! 55 /- Pleistocene lands (Pleasant View salient) or in lagoons behind barrier bars Cambrian Geertsen Canyon Quartzite, which are commonly Holocene faulting on the Wasatch fault zone. Although total offset decreases to the
Er o middle | (Flatbottom Canyon, Perry Basin, Pleasant View salient). Usually included in the Brigham Group (Crittenden and Sorensen, north, evidence indicates that the northern boundary of the Brigham City segment
Mbine Pleistocene 1 overlie coarse-grained transgressive shoreline deposits, implying 1985a) (this study) extends apparent Holocene faulting well beyond Schwartz and Cop-

[ty a0 ) ) ) deposition in increasingly deeper, quieter water. Shorelines Zb Lower part of Brigham Group (Late Proterozoic)—Includes meta- persmith’s Ogden-Collinston segment boundary.
UNCONFORMITY generally not developed. Exposed thickness <5 m sedimentary rocks of the Browns Hole Formation, the Mutual For- East of Honeyville, the Brigham City segment changes trend from northwest to
Bedrock depasits Undivided Bonneville-Lake-Cycle Deposits mat.ion, the Inkom Formation, and the Caddy Canyon Quartzite northeast and the fault zone is coincident with the steep, talus-covered mountain
: } O Ibpg Lacustrine sand and gravel related to Provo and Bonneville ZXpf Form.atlon of Perry Cany?n (Late Proterozoic) and Facer Forma- front. The trace of the fault zone is visible only at the mouth of Two Jump Canyon,
, » shorelines (upper Pleistocene)—Sand and clast-supported peb- tion (Early Proterozoic)—Consists of low- to high-grade meta- where it offsets a pre-Bonneville-lake-cycle alluvial-fan deposit (af5) about 28 m;
UNCONFORMITY ble gravel in a matrix of sand and silt, deposited during the Bon- morphic and metasedimentary rocks. Both formations are very 0.5 km to the northeast, the fault zone appears to terminate in the mountain block.
T LOWER PERMIAN TO PENNSYLVANIAN neville lake cycle; mapped downslope from Provo shoreline susceptible to landsliding The fault reappears to the north in the reentrant at the mouths of Jim May and
deposits (Ipg), where deposits cannot be directly correlated with XAfc Farmington Canyon Complex (Early Proterozoic to Archean)— Coldwater Canyons; here the fault zone trends northwest and forms a graben in
MCr MISSISSIPPIAN TO CAMBRIAN Provo deltaic deposits or regressional shorelines. Usually consists Consists of high-grade metamorphic rocks similar pre-Bonneville-lake-cycle alluvium (af5). Net offset across this graben is
of a thin, discontinuous veneer of Provo regressional deposits, about 12 m. These changes in fault trend and offset of similar-aged deposits (28 m
Zb LATE PROTEROZOIC overlying Bonneville transgressional deposits. Numerous shore- as compared with 12 m) probably mark the location of the Brigham City-Collinston

ZXpf lines developed on these deposits usually cannot be identified as Contact—Dashed where approximately located segme.nt boundary. )
: EARLY PROTEROZOIC either transgressional or regressional. Exposed thickness <5 m . ' Directly north of the Jim May-Coldwater Canyon graben, the Wasatch fault
ARCHEAN Ibps Lacustrine sand related to Provo and Bonneville shorelines (upper ?-I— Normal fault—Bar and solid ball on downdropped side along Wasatch zone is coincident with the Bonneville shoreline, and is difficult to trace.
Pleistocene)—Sand and minor silt deposits of the Bonneville lake 8(5.5) pgcy fault Zone bar and hollow ball along other faults. Dashed Wh?fe However, about 0.5 km north of Coldwater Canyon, a 2-km-long fault scarp in
cycle; mapped downslope from alluvial fans near the Pleasant approxm'n.ately 1003t‘3d,.d0ﬁe<.1 where concealed, and queried Provo-shoreline-equivalent alluvium (afp) and Bonneville-lake-cycle lacustrine
. _ . View salient and on the Weber segment of the Wasatch fault zone. where origin is uncertain. Height of fault scarp and amount of deposits (Ibg) is apparent on low-sun-angle photographs. This is the northernmost
DESCRIPTION OF MAP UNITS i g . younger deposits downslope from the Bonneville shoreline and Thickniess unknowsi geomorphic surface offset (in parentheses) shown in meters. post-Provo-shoreline fault scarp recognized along the Wasatch fault zone. The
[ A Youngersiream alluvium, undivided (Holocenetoiippermast Plels: probably underlie much of the map area. Typical soil profile, A- ; : : : Trench locations shown with cross bar and abbreviated trench 2-km-long scarp probably represents some extension of tectonic activity across the
J tocene)—Undivided post-Provo-regression flood-plain and Bt(moderate). BK (stage ILIIT)-Cox-Cn. Exposed thickness <5 m lbpm | Lacustrine silt and clay related to Provo and Bonneville shorelines " BC1. Bricham Ci h: PP1. Pole Patch h ; A ; yrep! _ _

ge P ickne name: , Brigham City trench; , Pole Patch trenc Brigham City-Collinston segment boundary, because the Collinston segment is

ALLUVIAL DEPOSITS
[Consist of variable amounts of gravel, sand, silt, and minor clay, deposited by perennial and
intermittent streams. Map units are separated into five deposits of stream (flood-plain and
terrace) alluvium and eight alluvial-fan deposits. Stream deposits are mapped on flood plains
and as thin strath terrace deposits along perennial streams; gravels in these deposits generally
are more rounded and better sorted than those in the alluvial-fan deposits. Stream deposits
are differentiated by their positions relative to levels of the Bonneville lake cycle and modern
stream level. Alluvial-fan deposits occur on the piedmont at the mouths of most canyons along
the mountain front. Fan deposits are differentiated using the following criteria: (1) their rela-
tion to lacustrine deposits and shorelines of known age; (2) their relation to modern stream
level; and (3) differences in soil development. The Holocene fan deposits (af1, af2) are dif-
ferentiated by soil properties as outlined by Shroba (1982, 1984); soil horizon designations
follow those of Birkeland (1984). Fan deposits are thickest near the mountain front, on the
downthrown side of the Wasatch fault zone]
Deposits of Stream Alluvium
all Stream alluvium (upper Holocene)—Clast-supported pebble and
cobble gravel, in a matrix of sand, silt, and minor clay; contains thin
sand lenses; moderately sorted; clasts subangular to rounded; thin
to medium bedded. Deposited by perennial streams (Box Elder,
Threemile, and Willard Creeks) on the modern flood plain and in
low terraces less than 5 m above modern stream level. May include
minor sheetwash and slump deposits overlying alluvium along
steep stream embankments. Deposits along Box Elder, Threemile,
and Willard Creeks grade downslope into large Holocene alluvial
fans (af1, afy). Exposed thickness <5 m
al2 Stream alluvium (middle Holocene to uppermost Pleistocene)—
Clast-supported pebble and cobble gravel, in a matrix of sand, silt,
and minor clay; contains thin sand lenses; moderately sorted; clasts
subangular to rounded; thin to medium bedded. Deposited by
perennial streams (Box Elder Creek and Ogden River); forms
terraces more than 5 m above modern stream level, usually inset
into Bonneville-lake-cycle lacustrine gravels. Grades downslope
into large alluvial fan (af2) at the mouth of Box Elder Canyon.
Exposed thickness <5 m
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terrace sands and gravels. Mapped along the Bear and Malad
- Rivers, and Salt Creek. Thickness unknown
’ alp Stream alluvium (uppermost Pleistocene)—Clast-supported pebble
= and cobble gravel, in a matrix of sand, silt, and minor clay; contains
thin sand lenses; poor to moderately sorted, clasts subangular to
rounded; thin to medium bedded. Deposited as topset beds on
Provo-shoreline-equivalent deltaic deposits (Ipd) at the mouths of
Box Elder, Perry (Threemile), and Willard Canyons. Shorelines
may be preserved on the surfaces of alp deposits. Exposed thick-
- ness <5 m
[ al3 Stream alluvium (upper Pleistocene)—Sands and gravels related to
S streams graded to Provo or Bonneville levels of the Bonneville lake
cycle. Forms high terrace on south side of Willard Canyon. Thick-
ness unknown

— Alluvial-Fan Deposits
af1 Fan alluvium (upper Holocene)—Clast-supported pebble and cobble
gravel, locally bouldery, in a matrix of sand, silt, and minor clay;
poorly sorted; clasts angular to subrounded, with very rare well-
rounded, recycled Bonneville-lake-cycle gravel clasts; medium to
thick bedded to massive. Deposited by intermittent streams, debris
flows, and debris floods graded to modern stream level; forms
small discrete fans on the surface of larger fans of unit af2 north of
Willard, and large fans that bury deposits of unit af2 elsewhere in
map area. May contain small deposits of units cd1 and af2. No
lacustrine shorelines occur on surfaces. Locally grades downslope
into unit Ibpm. Typical soil profiles range from A-Cn to A-Bw-Cox-
PO— Cn. Exposed thickness <5 m
[ af2 Fan alluvium (middle Holocene to uppermost Pleistocene)—Clast-
== supported pebble and cobble gravel, locally bouldery and matrix
supported, in a matrix of sand, silt, and minor clay; poorly sorted,
clasts angular to subrounded, with rare well-rounded, recycled
Bonneville-lake-cycle gravel clasts; medium to thick bedded to
massive. Deposited by perennial and intermittent streams, debris
flows, and debris floods, graded approximately to modern stream
level; forms large fans inset into the Provo shoreline at the mouths
of major canyons along the mountain front; fans at Perry
(Threemile) and Box Elder Canyons contain much higher propor-
tion (20-70 percent) of recycled lacustrine gravels, and probably
represent post-Provo-shoreline fan deltas graded to about modern
lake level. Also preserved downslope from distal portions of large
fans of unit af1. No lacustrine shorelines occur on the surfaces.
May contain small deposits of units af1 and cd1, and usually
grades downslope into unit Ibpm. Typical soil profiles range from
A-Bw-Cox-Cn to A-Bt(v. weak)-Cox-Cn. Exposed thickness <10 m
Younger fan alluvium, undivided (Holocene to uppermost Pleis-
tocene)—Undivided post-Provo-regression fan alluvium. Mapped
in areas where units af1 and af2 are mixed or are too small to map
separately, or in areas where the age of Holocene fan deposits has
not been determined. Thickness unknown
afp Fan alluvium related to Provo shorelines (uppermost Pleistocene)—
— Clast-supported pebble and cobble gravel, locally bouldery, in a
matrix of sand, silt, and minor clay; poor to moderately sorted;
clasts angular to well rounded, usually with 10-50 percent well-
rounded recycled Bonneville-lake-cycle gravel clasts; medium to
thick bedded to massive. Deposited by streams associated with the
Provo stillstand; forms fans graded to the Provo shoreline, or
graded from the Provo shoreline to phantom lake levels above the
modern flood plain; may in part be stream-reworked deltaic or fan-
delta deposits. Regressional shorelines may be preserved on the
surfaces of fans graded from the Provo shoreline. Preserved mostly
as remnants; units af1 and af2 inset into afp deposits. Typical soil
profiles range from A-Bw-Cox-Cn to A-Bt(v. weak)-Cox-Cn.
Exposed thickness <10 m
Fan alluvium related to Bonneville shorelines (upper Pleistocene)—
Clast-supported pebble and cobble gravel, locally bouldery, in a
matrix of sand, silt, and minor clay; poorly sorted; clasts angular to
subangular; medium to thick bedded to massive. Deposited by
streams graded to the Bonneville shoreline; forms fans graded to
Bonneville shoreline. Unit in Flat Bottom Canyon (east of Brigham
City) deposited when sediments were ponded behind a barrier bar

[

Fan alluvium (middle Pleistocene; pre-Bonneville lake cycle)—
Clast-supported pebble, cobble, and boulder gravel, in a matrix of
sand, silt, and minor clay; poorly sorted; clasts angular to subroun-
ded, with no recycled lacustrine gravels; medium to thick bedded
to massive. Forms high fan remnants and deposits that lack fan
morphology near Two Jump and Jim May Canyons northeast of
Honeyville, and on the Pleasant View salient. Cut by Bonneville
shoreline; correlative deposits downslope from the Bonneville
shoreline are buried by younger deposits and are not exposed in
the map area. Typical soil profile near Jim May Canyon, A-
Bt(strong)-K(stage I1I)-Cox-Cn. Exposed thickness <20 m

afo Older fan alluvium, undivided (middle Pleistocene; pre-Bonneville

lake cycle)—Undivided pre-Bonneville-lake-cycle fan alluvium;
mapped where old fan deposits cannot be differentiated near the
Pleasant View salient and on the Weber segment of the Wasatch
fault zone. Thickness unknown

LACUSTRINE DEPOSITS

[Consist of gravel, sand, silt, and clay deposited in the fluctuating waters of Lake Bonneville
(Bonneville lake cycle) and Great Salt Lake. Lacustrine deposits in the map area are divided
into four groups: (1) deposits that post-date the Bonneville lake cycle; (2) deposits associated
with the Provo shoreline and the regressional phase of the lake cycle; (3) deposits associated
with the Bonneville shoreline and the transgressional phase of the lake cycle; and (4)
undivided Bonneville-lake-cycle sediments deposited topographically below the Provo
shoreline that cannot be assigned to either phase of the Bonneville lake cycle. Sediments
deposited near the mountain front are mostly gravel and sand; silt and clay were deposited in
quieter, deeper water on the valley (lake) bottom, in sheltered bays betwet .. headlands, and
less commonly in lagoons behind barrier bars]

Post-Bonneville-Lake-Cycle Deposits

ly Marsh and lacustrine deposits (Holocene to uppermost Pleisto-

cene)—Post-Provo-regressionssilt, clay, and minorsand, deposited
in shallow-water lakes, marshes, slow-moving streams and oxbow
lakes, and in sag ponds resulting from faulting or incipient lateral-
spread failures. Commonly organic rich; locally may contain peat
deposits. Occur in areas of standing water or where the water table
is or has recently been at the surface. Include sediment in mud flats
or playas exposed by fluctuations of Great Salt Lake, and less com-
monly, eolian deposits associated with them. Commonly grade
into and may contain small deposits of unit Ibpm. Thickness
unknown

laly Lacustrine, marsh, and alluvial deposits (Holocene to uppermost

Pleistocene)—Undivided post-Provo-regression sand, silt, and
clay in areas of mixed fluvial, lacustrine, and paludal deposition.
Mapped along the lower reaches of the Bear River, and on the
valley bottom west of the Pleasant View salient. Thickness
unknown

Provo (Regressional) Phase Deposits

Ipd Deltaic deposits related to Provo shoreline (uppermost Pleisto-

cene)—Clast-supported pebble and cobble gravel, in a matrix of
sand and minor silt; interbedded with thin sand beds; moderate to
well sorted within beds; clasts subround to round, with weak car-
bonate cementation common; deposited as forset beds with
original dips of 30° to 35°. Commonly capped with <5 m thick top-
set beds of less well sorted, silty to sandy, pebble and cobble alluvial
gravel (alp). Mapped at the mouths of Box Elder, Perry (Three-
mile), and Willard Canyons; other deltaic deposits that existed in
the map area have been reworked by subsequent stream action.
‘ Exposed thickness <20 m
Ipg ‘ Lacustrine sands and gravels related to Provo shorelines (upper-
most Pleistocene)—Clast-supported pebble and cobble gravel, in
a matrix of sand and silt; commonly interbedded (sometimes
rhythmically) with thin sand beds; good sorting within beds; clasts
subround to round; may be carbonate cemented, especially along
shorelines; thin to thick bedded; bedding ranges from horizontal to
original dips of as much as 10° to 15°. Deposited in beaches, bars,
spits, as well as deltas that no longer retain distinctive morphology;
mapped at Provo shoreline (1,470-1,475 m (4,820-4,840 ft) in
map area), and below; grades downslope into deposits of unit Ibpg;
contact with unit Ibpg is mapped where deposits can no longer be
correlated with Provo-shoreline-equivalent deltaic deposits or
regressional shorelines. Exposed thickness <5 m

(upper Pleistocene)—Clay, silt, and minor fine sand deposits of
the Bonneville lake cycle; deposited in deep and (or) quiet water
on the basin floor. Also mapped as scattered Gilbert-stage sandy
shoreline deposits in the flood plain of the Bear River (Oviatt,
19864a). Indistinct shorelines preserved where not destroyed by
cultivation. Usually in gradational contact with distal portions of
units af1 and af2 upslope and unit ly downslope, and may contain
small deposits of these units. Thickness unknown

COLLUVIAL DEPOSITS
[Consist of poorly sorted to unsorted, gravity-generated deposits; composition of clasts
generally reflects deposits from which they were derived. Debris flow deposits (cd 1, cd2) dif-
ferentiated by surface morphology, and relations to present stream level and alluvial deposits
of similar age]

Debris flows (upper Holocene)—Clast- and matrix-supported cobble

and boulder gravel, in a matrix of silt, sand, and minor pebbles;
usually unsorted and unstratified. Surfaces very rubbly; commonly
have levees and channels preserved which grade from present
stream level. Usually deposited on surfaces of units af1 and af2
and at the mouths of canyons; some deposited as recently as 1983.
Usually grade downslope into units af1 or af2. Thickness <10 m

Debris flows (middle Holocene to uppermost Pleistocene)—Clast-
and matrix-supported cobble and boulder gravel, in a matrix of silt,
sand, and minor pebbles; usually unsorted and unstratified.
Mapped in one location as a single large flow at the mouth of
Holmes Canyon, although other deposits too small to map are
included in unit af2. Levees and central channel preserved on the
Holmes Canyon flow which was deposited directly on Bonneville-
lake-cycle lacustrine gravels (lbpg) before any post-Provo-
shoreline alluvium was deposited. Thickness <10 m

chs Hillslope colluvium (Holocene to upper Pleistocene)—Pebble, cob-

ble, and boulder gravel, usually clast supported, in a matrix of sand,

silt, and clay; usually unsorted, unstratified; clasts usually angular
to subangular, but may contain recycled Bonneville-lake-cycle
lacustrine gravels. Includes small debris-flow and landslide
deposits too small to map and talus cones; deposited by slope wash
and mass-wasting processes on steep slopes along the mountain

front and along steep stream cuts. Exposed thickness <5 m

. clsp, Lateral spread deposits (Holocene to upper Pleistocene)—Pebble

' ’ gravel, sand, and silt of the Bonneville lake cycle, redeposited by

lateral spreading as a result of liquifaction, probably during major

earthquakes. Bedding usually contorted or the deposit is unstrat-
ified. Two lateral-spread failures near Honeyville and a third 4 km
north of Deweyville were probably emplaced into the receding
waters of Lake Bonneville (post-Provo shoreline) as evidenced by
change in orientation of lacustrine shorelines on these slides at an
altitude of 1,347-1,353 m (4,420-4,440 ft); lake is believed to
have been at this altitude about 12 ka (Scott and others, 1983).

Thickness varies
Landslide deposits (Holocene to middle Pleistocene)—Unsorted,

unstratified deposits ranging in size from sand and silt to boulder-
rich gravels and bedrock blocks; usually deposited as slides and
slump-earthflows on relatively steep slopes. Large slide east of
Brigham City probably has undergone multiple movements; latest
movement on lower portion of the slide postdates deposition of the
Provo-shoreline-equivalent delta (Ipd) at the mouth of Box Elder
Canyon. Small slump blocks along the main fault scarp east of
Brigham City appear to be a result of oversteepened slopes and
springs along fault zone. Large slide near Facer Creek composed
of displaced bedrock from Facer and Perry Canyon Formations;
large areas of landslide deposits underlain by these formations in
mountains northeast of Willard attest to the susceptibility of these
metamorphic rocks to movement. The Facer Creek slide has
undergone several movements, both before and after Bonneville-
lake-cycle deposition; although both the Provo and Bonneville
shorelines are distorted, they can be traced with difficulty through
the Facer Creek slide. Fault scarps are difficult to trace through
cls deposits. Exposed thickness varies

Colluvium and alluvium, undivided (Holocene to middle Pleisto-

", 90 i ‘

—A— 4 Thrust fault— Sawteeth indicate overriding plate or block (mapped in
bedrock only); dashed where approximately located, and dotted
where concealed

Major shorelines related to levels of the Bonneville lake cycle—
May coincide with geologic contacts

———B-—-  Highest shoreline of the Bonneville level

———b-—= Other shorelines of the Bonneville level —Mostly transgressive
———P-—-  Highest shoreline of the Provo level

———p-—~ Other shorelines of the Provo level—Mostly regressive
———G-—- Highest shoreline of the Gilbert level
———x———Undesignated shorelines of the Bonneville lake cycle

wiiunun, Topographic escarpment—Escarpments along stream channels, ter-
races, and deltas; formed primarily by fluvial processes; may coin-
cide with geologic ccntacts

—tL— 1l Jandslide escarpment—Major headscarps and fissures in landslides
and lateral spread deposits; may coincide with geologic contacts

= == = Paleostream channels—Preserved as abandoned channels and debris
flow levees
— Tilted geomorphic surface—Arrow points in general direction of

downward tilt

DISCUSSION

INTRODUCTION

This map, the first in a series of maps of the Wasatch fault zone, shows the surfi-
cial deposits and the faults that offset them along the Brigham City segment and
adjacent parts of the Weber and Collinston segments of the Wasatch fault zone in
northern Utah. This discussion begins with a summary of the methods used in this
study which is followed with a description of the Quaternary deposits found along
the Brigham City and adjacent parts of the Weber and Collinston segments, and
concludes with a description of the segment boundaries, and the age, size, and dis-
tribution of fault scarps found along these segments. Together, this information can
be used to begin to describe the paleoseismic history of the mapped segments and
to identify key sites for further detailed studies.

Most major normal and strike-slip fault zones are thought to be composed of
several seismically independent pieces or segments. Initial work on segmentation of
the Wasatch fault zone, summarized in Schwartz and Coppersmith (1984), iden-
tified six discrete fault segments, but recent work by the U.S. Geological Survey has
identified ten to twelve segments (Machette and others, 1986; Machette and others,
1987). The concept of fault segmentation is critically important to paleoseismic
analysis of active fault zones because during a major earthquake, surface faulting
usually is restricted to a single segment of the fault. In northern Utah, the Ogden and
Collinston segments of Schwartz and Coppersmith (1984) have been separated
into three new segments (fig. 1); northward from Salt Lake City, the Weber,
Brigham City, and Collinston segments have been delineated (Machette and
others, 1986; Personius, 1986; Machette and others, 1987). The size and distribu-
tion of fault scarps along the Brigham City and adjacent parts of the Weber and
Collinston segments of the Wasatch fault zone are shown on the map; the age of
offset surficial deposits and the size of fault scarps can be used to calculate slip rates
and average recurrence intervals at various places along this part of the Wasatch
fault zone.

Previously published geologic and soils maps exist at various scales for most of
the map area (Erickson and Wilson, 1968; Cluff and others, 1970, 1974; Chadwick
and others, 1975; Miller, 1980: Crittenden and Sorenson, 1985a,b; Davis, 1985;
Dover, 1985; Oviatt, 1986a). However, | remapped most of the surficial geology
along the mountain front because existing maps either were not detailed enough or
used outdated stratigraphic terminology. I simplified the surficial geology of the
northern end of the Weber segment from unpublished mapping by A.R. Nelson
(1986). Most of my mapping was done in the field on 1:12,000-scale low-sun-angle
air photos flown for the Utah Geological and Mineral Survey in 1970; these
photographs were particularly helpful in identifying fault scarps in surficial deposits.
In addition, | used photography from the U.S. Soil Conservation Service flown in
the 1950’s at scales of 1:10,000 and 1:20,000. The bedrock geology of the uplifted

characterized by lack of evidence of post-Provo-shoreline faulting for the remain-
der of its length. This situation may be analogous to the distribution of surface fault-
ing formed during the 1983 Borah Peak, Idaho, earthquake, where surface faulting
appears to have jumped across the segment boundary between the reactivated
Thousand Springs segment into the southern portion of the Warm Springs segment
of the Lost River fault zone (Crone and Machette, 1984; Scott and others, 1985;
Crone and others, 1987).

The Madsen spur (Gilbert, 1928), a bedrock outlier 2 km north of Honeyville, is
adjacent to the Brigham City-Collinston segment boundary and shares several
characteristics with the Pleasant View salient and the Brigham City-Weber segment
boundary. Two east-northeast-trending fault scarps form a graben on the western
flank of the Madsen spur; these faults offset Bonneville-lake-cycle gravels (Ibpg),
trend at nearly right angles to the main fault zone, and appear to extend through
Crystal (hot) Springs. Sandstone outcrops of Lower Pennsylvanian to Lower Per-
mian Oquirrh Formation (Oviatt, 1986a) occur at the surface just south of these
scarps, whereas thick Bonneville-lake-cycle gravels (Ibpg) are present just to the
north. This relationship suggests that an escarpment probably existed prior to the
Bonneville lake cycle and the faults appear to be relatively long-lived features. The
faults probably continue eastward toward the mountain front, but are masked by
lateral spread headscarps. Oviatt (1985, 1986a) interprets the Madsen spurto bea
large landslide mass that slid out of the Jim May-Coldwater Canyon reentrant in late
Tertiary time along two northeast-trending tear faults in the mountain block; the
Wasatch fault zone subsequently stepped eastward, parallel to these tear faults.

. The therma! waters of Crystal (hot) Springs may travel upward along the inter-
section of the east-northeast-trending faults and an older buried trace of the
Wasatch fault zone (Davis, 1985) that forms the west flank of the Madsen spur.
Although it may be coincidental, the only two thermal springs present along the
Brigham City segment (Mundorff, 1970) are on the segment boundaries. The ther-
mal springs appear to be manifestations of the intersections of transverse structures
(cross faults) and the Wasatch fault zone. Such intersections are commonly
associated with other segment boundaries of the Wasatch fault zone (Schwartz and
Coppersmith, 1984). Many other transverse structures are present in the footwall of
the Brigham City segment, but the Madsen spur and Pleasant View salient faults are
the only transverse structures in either the footwall or the hanging wall that show
evidence of post-Provo-shoreline faulting.

Shorelines on the two lateral-spread deposits (clsp) near Honeyville, and on
another lateral-spread deposit 4 km north of Deweyville, may give a clue to the
timing of at least one earthquake surface-faulting event in the region; all these
deposits appear to have slid into the receding waters of Lake Bonneville when the
surface of the lake stood at an altitude of 1,347-1,353 m (4,420-4,440 ft).
Shorelines and reworked lateral-spread deposits are preserved at and below this
altitude, but not above. The lake is known to have been at the Provo shoreline
(1,470-1,475 m; 4,820-4,840 ft) 13-14 ka, and had retreated to the level of mod-
ern Great Salt Lake (1,283 m; 4,210 ft) by about 11 ka (Scott and others, 1983).
These dated lake levels bracket the altitude of the lateral-spread shorelines, and
thus constrain the age of lake occupation at 1,347-1353 m (4,420-4,440 ft) at
about 12 ka. Oviatt (1986a,b) noticed similar relations for these lateral-spread
deposits near Honeyville and several others north of Deweyville. In a study of his-
toric earthquake-induced landslides, Keefer (1984) found that lateral-spread
failures required earthquakes of minimum magnitude 5.0 (M; ) and predominant
minimum intensity of VII (MMI). Although it may be coincidental, this evidence sug-
gests that at least one large-magnitude earthquake triggered several lateral-spread
failures near the Brigham City-Collinston segment boundary about 12 ka.

Average offset for individual earthquake surface-faulting events on the the
northern Wasatch fault zone is 2 m or less (Schwartz and Coppersmith, 1984); con-
sequently, the 4 m of offset in alluvial-fan deposits graded to the Provo shoreline
(afp) 1 km east-northeast of Honeyville is probably the result of at least two earth-
quake surface-faulting events. Evidence for post-lateral-spread surface faulting (the
12 ka event) is apparent on the Madsen spur faults; these fault scarps offset several
shorelines, including the lateral-spread shorelines that mark the 12 ka lake level.
Therefore, evidence for at least two post-Provo-shoreline surface-faulting events is
preserved at the extreme northern end of the Brigham City segment. The 2-km-
long scarp on the southern end of the Collinston segment is probably an extension
of faulting across the segment boundary from one or more of these post-Provo-
shoreline earthquake surface-faulting events. My photo reconnaissance of the
Wasatch fault zone northward to the Idaho border revealed no evidence of post-
Provo faulting beyond this short fault scarp, despite the abundance of Bonneville-
lake-cycle deposits along the mountain front.

CONCLUSION
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Figure 2.—Detailed surficial geologic map of an area of complex faulting near Brigham City, Utah. Outline of figure shown on geologic map. Geologic units
described in Description of Map Units; dotted and dashed lines represent contacts between geomorphic features in a map unit.
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origin. The only features on the valley floor that | have positively identified as faults
are those located in a gravel pit 2.5 km northwest of Willard; remnants of these
faults offset Bonneville-lake-cycle gravels (Ibpg) 0.1-1 m. The areal extent of these

mouth of Box Elder canyon splits into a 0.5 km-wide zone of small, back-tilted fault
blocks (fig. 2). The complexity of these back-tilted blocks suggests that they may be
controlled in part by slumping. However, total vertical offset across this zone is
approximately equal to offset on the single scarp on the south side of the delta.
Northward, the fault offsets middle Holocene alluvial-fan deposits about 5-6 m at
the mouths of Bott, Bowden, Waterfall, and Kotter Canyons; preliminary results
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