WATER-RESOURCES BULLETIN 10 1968

UTAH GEOLOGICAL AND MINERALOGICAL SURVEY affiliated with THE COLLEGE OF MINES AND MINERAL INDUSTRIES University of Utah, Salt Lake City, Utah

Prepared by The United States Geological Survey in cooperation with The Utah Geological and Mineralogical Survey

Price \$2.00

BOARD OF REGENTS

Edward W. Clyde .											Chairman
Donald B. Holbrook											Vice Chairman
Reed W. Brinton :											Member
Wilford W. Clyde.											Member
Richard L. Evans .											Member
George C. Hatch .											Member
Robert H. Hinckley											Member
Carvel Mattsson .											Member
Luke G. Pappas .											Member
Calvin W. Rawlings											Member
Roy W. Simmons .											Member
Briant H. Stringham		•	•	•	•	•	•	•	•	•	Member
James C. Fletcher											President, Univ. of Utah, Ex-officio Member
Clyde L. Miller.											Secretary of State, Ex-officio Member
Joseph F. Worthen											President, Alumni Assoc., Ex-officio Member
George S. Eccles .											Treasurer
Parry D. Sorenson.											Secretary

UTAH GEOLOGICAL AND MINERALOGICAL SURVEY William P. Hewitt, Director

ADVISORY BOARD

John M. Ehrhorn, Chairman				U. S. Smelting, Refining & Mining Co.
Graham S. Campbell				Petroleum Geologist
Ballard H. Clemmons				U. S. Bureau of Mines
LaVaun Cox				Utah Petroleum Council
L. W. Folsom				Mountain Fuel Supply Co.
John K. Hayes				U. S. Steel Corporation
Lowell S. Hilpert				U. S. Geological Survey
Lehi F. Hintze				Brigham Young University
Walker Kennedy				Liberty Fuel Company
Ezra C. Knowlton				Utah Sand & Gravel Products Corp.
Kenneth J. Kutz				Texas Gulf Sulphur Corp.
James D. Moore				Vitro Chemical Co.
Howard Peterson				Utah Center of Water Resources Research
				at Utah State University
Miles P. Romney				Utah Mining Association
Raymond T. Senior				Attorney
William L. Stokes				University of Utah
Alvin J. Thuli, Jr			Ì	Kennecott Copper Corp.
J. Stewart Williams				Dean, Graduate School, Utah State Universit
William P. Hewitt.				Director, U. G. M. S., Ex-officio Member
George R. Hill				Dean, College of Mines, Ex-officio Member

DISSOLVED-MINERAL INFLOW TO GREAT SALT LAKE AND CHEMICAL CHARACTERISTICS OF THE SALT LAKE BRINE:

Summary for Water Years 1960, 1961, and 1964

by D. C. Hahl Hydraulic Engineer, U.S. Geological Survey

View of a rock outcrop, seep area, pothole, and channel at the northern end of Great Salt Lake.

UTAH GEOLOGICAL AND MINERALOGICAL SURVEY affiliated with THE COLLEGE OF MINES AND MINERAL INDUSTRIES University of Utah, Salt Lake City, Utah

WATER-RESOURCES BULLETIN 10 • PRICE \$2.00 • AUGUST, 1968

CONTENTS

	Page
Abstract	7
Introduction	7
Quality of Surface-Water Inflow to Great Salt Lake, 1964 Water Year	8
Bear River Drainage System	8
Weber River Drainage System	12
Jordan River Drainage System	12
Minor Drainage Systems	14
Davis County	14
Other Springs and Streams	14
Quality of Surface–Water Inflow to the Lake Area, 1964 Water Year	15
Bear River at Corinne	16
Weber River near Plain City	17
Jordan River at Salt Lake City	17
Comparison of Inflow to the Great Salt Lake and the Lake Area, 1960, 1961, and 1964 Water Years	19
Streamflow in the Bear and Weber Rivers	19
Inflow to the Lake and the Lake Area	20
Development of Surface-Water Inflow to Great Salt Lake	20
Effect of Upstream Reservoir Storage on the Lake Stage	22
Chemical Quality of Water Available for Development	23
A Fresh-Water Lake	26
Summary and Conclusions	27
References	28

ILLUSTRATIONS

Page

Frontispiec	e. Photograph of rock outcrop, seep area, pothole, and channel at the northern end of Great Salt Lake
Figure 1.	Map of Great Salt Lake showing the 1964 data-collection sites, the boundary of the lake area, and the lakeshore
2.	Diagram showing site-location system
3.	Map of the Bear River drainage system between Collinston and the Bear River Bridge
4.	Graph showing comparative weighted-average dissolved- constituent concentrations for selected sites in the Bear River drainage system during the 1964 water year
5.	Map of the Jordan River drainage system between Salt Lake City and Farmington Bay
6.	Photograph of a spring on the west side of Promontory Mountains
7.	Photograph of a rock outcrop at the northern end of Great Salt Lake
8.	Photograph of a pothole spring containing clear water
9.	Graph showing conductance-duration curve for the Bear River at Corinne, 1964 water year
10.	Graph showing flow-duration curve for the Bear River at Corinne, 1964 water year
11.	Graph showing mean water discharge and dissolved-solids concentration for the period indicated for the Bear River at Corinne, 1964 water year
12.	Graph showing monthly minimum, mean, and maximum temper- atures of the Bear River at Corinne, 1964 water year
13.	Graph showing flow-duration curves, Bear River near Collinston
14.	Graph showing percentage of water in the Bear River at Corinne containing dissolved-solids concentrations less than the values shown during the water years 1960, 1961, and 1964
15.	Graph showing percentage of water in the Weber River near Plain City and the Jordan River at Cudahy Lane, near Salt Lake City con- taining dissolved-solids concentrations less than the values shown during the water years 1960, 1961, and 1964
16.	Diagram for the classification of irrigation waters
17.	Map of the eastern part of Great Salt Lake showing proposed dikes

TABLES

Page

Table 1.	Summary of estimated inflow to Great Salt Lake by drainage system during the 1964 water year	•				•	10
2.	Estimated weighted-average concentrations and loads of dissolved consti- tuents entering Great Salt Lake during the 1964 water year				•	•	12
3.	Estimates of water discharges and dissolved-constituent loads for the Bear River drainage system during the 1964 water year				•	•	12
4.	Summary of estimated inflow to the lake area by surface-water unit during the 1964 water year	•	•			•	16
5.	Estimated weighted-average concentrations and loads of dissolved con- stituents in water discharged by surface-water units during the 1964 water year						16
6.	Streamflow, in thousands of acre-feet, at selected gaging stations during the water years 1934–64 and 1960, 1961, and 1964						19
7.	Summary of estimated inflow to Great Salt Lake during water years 1960, 1961, and 1964					•	20
8.	Summary of estimated dissolved-solids contributions by surface-water units to the lake area during the water years 1960, 1961, and 1964	•				•	22
9.	Percentages of total water and dissolved solids contributed to the lake area by each unit during the water years 1960, 1961, and 1964			•			23
10.	Discharge near the mouths of the Bear, Weber, and Jordan Rivers during the representative water years of high, low, and average discharge and the usable storage capacity of reservoirs in the drainage basins, in thousands of acre-feet						24
11.	Analyses that represent specific dissolved-solids concentrations are shown along with some of the drinking-water standards recommended by the U.S. Public Health Service						26
12.	Volume of water, in thousands of acre-feet, and dissolved-solids load, in thousands of tons, entering the eastern part of Great Salt Lake at the lakeshore during the water years 1960, 1961, and 1964						26
13.	Volume of water, in thousands of acre-feet, and dissolved-solids load, in thousands of tons, from selected sources entering the lake area east of Great Salt Lake during the water years 1960, 1961, and 1964						26
14.	Chemical analyses of water from the Bear River, Weber River, Jordan River, and Davis County drainage systems						29
15.	Chemical analyses of water from selected sites along the shore of Great Salt Lake		•				35

DISSOLVED-MINERAL INFLOW TO GREAT SALT LAKE AND CHEMICAL CHARACTERISTICS OF THE SALT LAKE BRINE: Summary for Water Years 1960, 1961, and 1964

by D. C. Hahl Hydraulic Engineer, U. S. Geological Survey

ABSTRACT

The investigation of dissolved-mineral inflow to Great Salt Lake during the water years 1960, 1961, and 1964 was conducted during conditions of streamflow that were representative of the lowest and the average recorded during the water years 1934-64. The study conducted during the 1960 and 1961 water years was limited to defining surface-water inflow to the lake area. During the 1964 water year more detailed data were obtained on surface-water inflow at sites close to the lakeshore, as well as at sites used in the 1960-61 study. From these comparative data, estimates of inflow at the lakeshore were made for the 1960 and 1961 water years. During the 1964 water year, when inflow to the lake was probably representative of the 31-year average, about 1,700,000 acre-feet of water containing about 3,500,000 tons of dissolved solids entered the lake. During the 1961 water year, when inflow to the lake was about the lowest recorded during the 31-year period, about 800,000 acrefeet of water containing about 2,200,000 tons of dissolved solids entered the lake.

During years of average streamflow, about 500,000 acre-feet of water which might be developed for culinary use, passes the lowest sampling sites on the Bear and Weber Rivers. Also, more than 90 percent of the flow near the mouths of the Bear, Weber, and Jordan Rivers would be suitable for irrigation.

Sources of inflow could be selected to provide a water supply for a fresh-water lake east of Antelope Island. The supply would range from 300,000 acre-feet of water containing 800 ppm (parts per million) of dissolved solids during periods of low streamflow to 1 million acrefeet containing 500 ppm during periods of average streamflow.

INTRODUCTION

This report updates the study, which was started by the U. S. Geological Survey in 1959, of the dissolvedmineral inflow contributed by surficial sources to Great Salt Lake. The early phases of the study were summarized in a basic-data report by Hahl and Mitchell (1963); and an interpretive report by Hahl and Langford (1964), which was concerned principally with data collected during the 1960 and 1961 water years. $\underline{1}/$ The fieldwork for this report was done in water year 1964 in cooperation with the Utah Geological and Mineralogical Survey. The purpose of the work was to Gfine the estimates of dissolved-mineral inflow by surficial sources to the lake made for the water years 1960 and 1961. Inflow to the lake was below average during those years. Furthermore, much of the data had been collected at sites that were several miles from the lake; consequently, Hahl and Langford (1964) restricted their discussion of inflow to the "lake area". 2/

Inflow to the lake during the 1964 water year was about average, and it was possible to collect data at sites closer to the lake. These sampling sites were used to determine the "lakeshore" as used in this report. (See fig. 1 for the lakeshore and the boundary of the lake area.) The lakeshore is marked in most places by a change in topography from drifted sand beach or boulder strewn bluff to flat mud or sand lakebed, and in some places by the outer dikes of bird refuges. Below this shoreline, surface inflow is not contained in easily defined channels and is often affected by wind and brine movement.

This report includes determination of the dissolvedmineral inflow from surficial sources that crosses both the lakeshore and the boundary of the lake area. Some of the data for the 1964 study were collected at sites used during the earlier study; thus, based on data common to both studies, it was possible to include in this report a comparison of the inflow to the lake (as marked by the lakeshore) and to the lake area for the 3 water years 1960, 1961, and 1964.

Part of the data used in this report was collected by personnel of the U. S. Geological Survey engaged in studies of the water resources of Salt Lake County and of the Bear River basin. The U. S. Bureau of Sport Fisheries and Wildlife also provided assistance in the investigation.

through September 30, and it is designated by the calendar year in which it ends. Thus, the year ending September 30, 1960, is called the 1960 water year. 2/ The "lake area" was defined by Hahland Langford (1964, p. 7) as "that area occupied by the lake body and its surrounding shores, the outer perimeter of which is marked generally by the closest sampling points to the lake on the lake's tributaries."

^{1/} The water year covers a period from October 1

Data were collected at 79 sites on tributaries and from springs around the lake. A complete list of sampling sites, along with the data collected, is given in tables 14 and 15, and the site locations are shown in figure 1.

The site-numbering system used in this report differs from that used in the basic-data report by Hahl and Mitchell (1963) even though a few of the sites sampled during the 1960-61 investigation were included in the 1964 sampling program. Therefore, only the samplingsite names can be used for cross reference. The names of only five former sampling sites, Black Slough, Blue Spring Creek, Salt Lake City sewage canal, Kennecott Drain, and Garfield Drain, were changed slightly, but these sampling sites remained at the same location.

Sampling sites listed in table 15 are located by a system based on the cadastral land-survey system of the Federal Government. By this system the State is divided into four quadrants by the Salt Lake Base and Meridian, and these quadrants are designated by the capital letters A, B, C, and D. A is the northeast guadrant, B is the northwest, C is the southwest, and D is the southeast. Numbers designating the township and range, follow the quadrant letter, and all these are enclosed in parentheses. The number after the parenthesis designates the section, and the lower case letters give the location of the well or sampling site within the section. The first letter indicates the guarter section, which is generally a tract of 160 acres, the second letter indicates the 40-acre tract, and the third letter indicates the 10-acre tract. Uncertainty of the land net in many areas bordering the lake prevents location of sites closer than the 40-acre tract. The location of a spring on the east side of the Promontory Mountains is used in figure 2 as an example of this location system.

Figure 2. — Site-location system.

QUALITY OF SURFACE-WATER INFLOW TO GREAT SALT LAKE 1964 Water Year

Water entering Great Salt Lake at the lakeshore is divided into five drainage systems for this study. Each system includes surface water that is associated with the drainage from a river basin or that crosses a particular section of the lakeshore. These drainage systems along with a summary of their estimated inflow to Great Salt Lake during the 1964 water year are listed in table 1. The concentrations and loads of dissolved constituents in the water entering Great Salt Lake are shown by drainage system in table 2. The data in table 2 are computed from the data shown in tables 14 and 15.

Bear River Drainage System

The Bear River drainage system contributed about 1,400,000 tons of dissolved solids and about 900,000 acre-feet of water during the 1964 water year to the lake via Bear River Bay (table 1). Most of the water and dissolved solids came down the Bear River; how-ever, Sulphur Creek near Corinne and the Public Shoot-ing Grounds near Penrose together contributed about 30 percent of the load and 10 percent of the water leaving this drainage system. The water entering Bear River Bay was a sodium chloride type 3/ and contained a weighted-average concentration of about 1,120 ppm (parts per million) of dissolved solids (table 2).

The downstream part of the Bear River drainage system and its relation to Great Salt Lake is shown in figure 3. Line A-A marks the gap near Collinston through which all streamflow from the upper Bear River must pass to reach Great Salt Lake. Line B-B approximates the boundary of the lake area, and the line C-C is the lakeshore. From line C-C to line D-D the surface elevation drops only a few feet, and the intervening area (designated by the letter Y in fig. 3) is a flat bay floor, almost devoid of vegetation. This bay is open to Great Salt Lake through a 600-foot trestle in an otherwise solid fill represented by line D-D.

The inflow to Great SaltLake across the lakeshore (line C-C) was calculated by measuring or estimating the inflow at sites 1-16 (fig. 1) on line B-B and adjusting the total for the effect in area Y due to evapotranspiration, ground-water inflow, and precipitation. The adjustment for the effect of area Y is shown in table 1 as the entry "Net change in shoreline marshes."

Daily data were collected for the inflow of the Bear River at Corinne, whereas monthly or less frequent data were collected at the other sites on line B-B

^{3/} Water type is determined by the cation and anion that have the greatest concentration expressed in equivalents per million. Multiple cations or anions are listed when the lesser ions have an equivalent per million value of at least three-fourths of that of the largest cation or anion value.

Figure 3. - Map of the Bear River drainage system between Collinston and the Bear River Bridge.

(table 14). During the 1964 water year the volume of water in the Bear River at Corinne was about six times greater than the combined volume of all other streams, canals, and springs that cross line B-B. The load of dissolved solids contributed by the Bear River at Corinne, however, was only about 1.5 times greater than the combined load of the other sources in the Bear River drainage system. During the period July-September 1964, the volume of water and the dissolvedsolids load of the Bear River at Corinne were equal to or less than the combined volume and load of other sources in the system.

Most of the flow crossing line B-Benters the Bear River Migratory Bird Refuge where over 65,000 acres of open water and hydrophytic vegetation account for tremendous water loss. Adjacent to the refuge, phreatophytes and mudflats cause additional water loss. As a result, area Y of figure 3 significantly affects the inflow to Great Salt Lake. This effect had to be computed because it was not possible to measure the discharge through the dozen spill boxes which discharge water from the bird refuge.

The chemical quality of the water changes significantly between line A-A and line D-D. At line A-A the water is a magnesium calcium bicarbonate type as determined from data in Hahl and Mitchell (1963) and Connor, Mitchell, and others (1958); at lines B-B and C-C a sodium chloride bicarbonate type; and at D-D a sodium chloride type. The change in water type is expressed in terms of weighted-average annual concentration in figure 4 by showing the concentration of ions on the horizontal scale and the concentration of dissolved solids on the vertical scale. For example, the four points marked "a" in figure 4 represent the weighted-

Table 1. — Summary of estimated inflow to Great Salt Lake by drainage system during the 1964 water year

Streamflow:	Estimated	unless	otherwise	indicated;	а,	daily	discl	harge	or	pumpage	record	available.
Dissolved so	lids (thou:	sands of	f tons):	Calculated	from	n data	in ta	ables	14	and 15.		

Drainage	Course	Streamflow	Dissolved solids			
system	Source	of acre-feet)	Tons per acre-foot	Thousands of tons		
Bear River	Canals crossing State Highway 83, near Corinne Bear River at Corinne Black Slough at U.S. Highway 30, near Brigham City Sulphur Creek at State Highway 83, near Corinne Public Shooting Grounds near Penrose Blue Spring Creek at Promotory Road, near Howell Miscellaneous drains and canals Net change in shoreline marshes	23 a 936 22 51 47 4 5 -175	0.78 .82 2.4 2.9 5.5 6.0 1.4	18 768 53 148 258 24 7 112		
	Subtotal	913	•	1,388		
Weber River	Weber River near Plain City	a 312 100 -14	0.38 .7 -	119 70 11		
	Subtotal	398	-	200		
Jordan River	Treated sewage from West Bountiful plant, near Woods Cross Jordan River at Cudahy Lane, near Salt Lake City	a 1 a 90 a 39 a 88 a 37 a 11 a 58 3 1 -47	3 1.31 2.9 1.38 2.3 1.5 4.9 96 9.0 -	3 118 113 121 85 16 284 288 9 35		
	Subtotal	281		1,072		
Davis County	Miscellaneous streams	50 a 13 1	0.4 1 7	20 13 7		
	Subtotal	64	-	40		
Other springs and streams	Bear River Bay. Antelope Island Tooele Valley Stansbury Island. Stansbury Island to Kelton Locomotive Springs area Locomotive Springs area to Hansel Valley. Hansel Valley Rozel Point Westside Promontory Point Storm runoff from Great Salt Lake Desert.	10 4 1 4 22 1 2 1 2 35	16 3 24 4 20 4.1 105 9 7 4 75	160 12 96 4 80 90 105 18 7 8 262		
	Subtotal	86	-	842		
Great Salt Lake	e Total (rounded)	1,700	-	3,500		

Figure 4. — Comparative weighted-average dissolved-constituent concentrations for selected sites in the Bear River drainage system during the 1964 water year.

average concentration of magnesium ions in the water at the four lines during the 1964 water year. At line A-A there were 3.6 epm (equivalents per million) of magnesium in water of about 460 ppm dissolved solids; at line B-B about 3.7 epm in about 880 ppm; at line C-C about 4.5 epm in about 1,120 ppm; and at line D-D about 2.4 epm in about 1,360 ppm. Estimates of the annual discharge and dissolved-solids load that cross the four lines in the Bear River drainage system are compared in table 3. The overall change in load shows an actual increase in sodium and chloride ions and a decrease in magnesium, calcium, and bicarbonate ions.

The slight increase in discharge across line B-B as compared to line A-A indicates that inflow to the area downstream from line A-A exceeds evapotranspiration. The major change in dissolved constituents in the area downstream from line A-A is an increase in sodium and chloride ions and an increase in dissolved solids due to inflow from saline springs and return flow from irrigated areas. The decrease in discharge across lines C-C and D-D as compared to upstream lines indicates that evapotranspiration in areas Y and Z (fig. 3) exceeds inflow to those areas. This concept is supported by the increased quantity of dissolved solids in the waters moving downstream across lines B-B, C-C, and D-D (table 3). The increase in dissolved solids in area Z, however, is accompanied by the precipitation of calcium and magnesium carbonates, which probably results from the change in environment as water flows from area Y to area A. The bird refuge, which constitutes most of area Y, contains an abundant flora and fauna that probably maintain a large amount of gas dissolved in the water. The lower bay, which constitutes most of area Z, is so flat that the water spreads in a sheet over about 75 square miles. This increases the water-air interface sogreatly over that in the refuge that the dissolved gases now equilibrate with those in the air. Thus, with the probable increase in water temperature in the lower bay, gases, including carbon dioxide, are lost from the water. This loss in carbon dioxide results in the precipitation of calcium and magnesium carbonates.

Table 2. — Estimated weighted-average concentrations and loads of dissolved constituents entering Great Salt Lake during the 1964 water year

Sodium: Includes potassium (K).

Bicarbonate: The figures shown as load are bicarbonate reported as carbonate (CO_3).

Dissolved solids: Computed or taken from table 14.

Drainage system	Calcium (Ca)	Magnesium (Mg)	Sodium (Na)	Bicarbonate (HCO ₃)	Sulfate (SO ₄)	Chloride (Cl)	Dissolved solids
Conc	entrati	on, in	parts p	er milli	on	1	
Bear River	87	55	260	387	103	404	1,120
Weber River	57	20	52	266	43	55	370
Jordan River	152	123	683	282	586	1,070	2,810
Davis County	-	-	-	-	-	-	460
Other springs and streams	-	-	-	-	-	3,840	7,200
Weighted average	-	-	-	-	-	-	1,500
L	oad, ir	h thous	ands of	tons			
Bear River	109	68	323	237	128	502	1,388
Weber River	31	11	28	71	23	30	200
Jordan River	58	47	261	54	224	409	1,072
Davis County	-	-	-	-	-	-	40
Other springs and streams	-	-	-	-	-	449	842
Total tons (rounded)	-	-	-	-	-	-	3,500

Weber River Drainage System

The Weber River drainage system contributed about 200,000 tons of dissolved solids and about 400,000 acre-feet of water to the lake during the 1964 water year (table 1). Water leaving this drainage system was a calcium sodium bicarbonate type and contained a weighted-average concentration of about 370 ppm of dissolved solids (table 2). The Weber River drainage system is one of the smallest contributors of dissolved solids to Great Salt Lake. However, it is the second largest contributor of water. Thus, if potential development of fresh-water inflow to the lake is considered, the Weber River is the most important source of inflow.

The relation of the downstream part of the Weber River drainage system to the lakeshore cannot be represented simply on a map. Water from the Weber River is diverted to areas north and west of Ogden, and most of the return flow is consumed in marshes at the southeast margin of Bear River Bay. Other water is diverted as far south as Bountiful and Woods Cross, with some return flow entering via the Jordan River drainage system. About 25 percent of the flow from the Weber River drainage system is through a diverse system of drains and sloughs which cross the lakeshore between Little Mountain and Syracuse. These drains are estimated to carry about 33 percent of the dissolved-solids load contributed to the lake by this drainage system. Evapotranspiration in the Ogden Bay Migratory Bird Refuge and Howard Slough was responsible for a loss of about 14,000 acre-feet of water and a gain of about 11,000 tons of dissolved solids in the flow from the Weber River drainage system. These values were computed from data from Christiansen (1964) and are entered as "Net change in shoreline marshes" in table 1.

Jordan River Drainage System

The Jordan River drainage system contributed about 1,000,000 tons of dissolved solids and about 300,000 acre-feet of water to the lake during the 1964 water year (table 1). Water leaving the drainage system was of a sodium chloride type and contained a weighted-average concentration of about 2,800 ppm of dissolved solids (table 2). This drainage system was the second largest contributor of dissolved-solids load and the third largest contributor of water to the lake.

Flow from the Jordan River drainage system enters the lake through diverse water courses, but data collected during the 1964 water year enabled definition of the discharge approximately along line A-A in figure 5. A summary of the data in table 14 that were used to compute surface flow across this line is shown in table 1.

The major contributors of water in this drainage system were the Jordan River and the Surplus Canal, which carried a combined flow of about 180,000 acre-feet of water and about 240,000 tons of dissolved solids (table 1). The major contributors of dissolved solids were Lee Creek and Kennecott Drain, which carried a combined flow of about 570,000 tons of dissolved solids and about 60,000 acre-feet of water.

Table 3. — Estimates of water discharges and dissolvedconstituent loads for the Bear River drainage system during the 1964 water year

Sodium: Includes potassium (K).

	1		Т	housa	nds of	tons	ons			
Site	Discharge (thousands of acre-feet)	Calcium (Ca)	Magnesium (Mg)	Sodium (Na)	Bicarbonate as carbonate (CO ₃)	Sulfate (SO ₄)	Chloride (Cl)	Dissolved solids		
Inflow crossing line A-A near Collinston	<u>1/</u> 1,032	79	63	66	250	76	73	632		
Inflow crossing line B-B	1,088	103	66	296	229	118	445	1,276		
Inflow crossing line C-C	913	109	68	323	237	128	502	1,388		
Outflow crossing line D-D at Bear River Bridge	800	54	33	446	107	113	694	1,480		

1/ Measured.

Figure 5. - Map of the Jordan River drainage system between Salt Lake City and Farmington Bay.

Between a part of line A-B-A (fig. 5) and the lakeshore at line B-B lies an area of farms, marshes, and wasteland designated by the letter Y in figure 5. The inflow to Great Salt Lake across the lakeshore (line A-B-B in fig. 5) was calculated by adjusting the flow across line A-B-A for the effect in area Y due to evapotranspiration, ground-water inflow, and precipitation. The adjustment for the effect of area Y is shown in table 1 as the entry "Net change in shoreline marshes." Evapotranspiration from the marshlands was computed from data from Harris (1964).

Minor Drainage Systems

Less than 10 percent of the surface inflow to Great Salt Lake enters via many small channels outside the three major drainage systems. This small volume of water, however, transports almost 25 percent of the dissolvedsolids load that enters the lake.

Of the load delivered by the minor drainage systems in the 1964 water year, an estimated 150,000 tons were deposited on the land surface between the shoreline and the actual lake body. This occurred because insufficient water was discharged by some of the small channels to meet the demands of evaporation and still maintain flow as far as the brine's edge. Part of the deposited load, however, was moved toward the brine by rain and snowmelt.

Davis County

The Davis County drainage system contributed about 40,000 tons of dissolved solids and about 60,000 acrefeet of surface water to the lake during the 1964 water year (table 1). This system includes all the tributaries to Great Salt Lake that drain the west slope of the Wasatch Range between the Weber and Jordan River drainages. The system could be considered as part of the Weber River drainage system because diversions into Davis County from the Weber River constituted a significant part of the total discharge.

Water leaving the system was of the calcium sodium bicarbonate type, based on data collected by Hahl and Mitchell (1963), and contained a weighted-average concentration of about 460 ppm of dissolved solids (table 2).

Other Springs and Streams

The springs and streams drainage system contributed about 840,000 tons of dissolved solids and about 86,000 acre-feet of water to the lake during the 1964 water year (table 1). The water leaving the system was predominantly of the sodium chloride type and contained a weighted-average concentration of about 7,200 ppm of dissolved solids (table 2). Shoreline reconnaissances were made in August-September 1963 and in April 1964 to determine the quantity and quality of water from springs and streams that enter the lake from the Oquirrh Mountains westward around the lake to Promontory Point. The data collected during these trips are shown in table 15. The trip of 1963 demonstrated the futility of sampling the innumerable seeps and some of the springs bordering the lake. Many springs issue over a 2-acre area with no distinct source of outflow, and the large shallow pools below some of the soggy outflow areas attest to a significant discharge that is unmeasurable by standard methods. During the 1964 trip, therefore, only the springs with a definite point of discharge were sampled.

Some springs lie at the base of alluvial fans. The dissolved-solids content of the water is usually between 1,000 and 3,000 ppm, and the discharge point is usually surrounded by dense vegetation. The density of the vegetation gradually diminishes due to an increase in the dissolved-solids content as the water flows over the lakebed. The photograph (fig. 6) shows a spring at the base of an alluvial fan at site 78 (table 15 and fig. 1). Water discharges from a large marsh area and flows across the dry lakebed into Great Salt Lake. The spring is thought to be the one mentioned by Stansbury (1853, p. 174).

Some seep areas are near or at the base of rock outcrops. Water from these seeps has a strong odor of hydrogen sulfide and usually contains more than 30,000 ppm of dissolved solids. The dark area in front of the rock outcrop in figure 7 is such a seep area. The springs at some of these outcrops yield water with temperatures exceeding 100° F.

Seven pothole springs were visited during the investigation and more are known to exist. These springs issue from holes that are 5-15 feet in diameter (fig. 7), 3-28 feet deep, and have vertical but rough walls (fig. 8). Gas rises from their depths and organic matter accumulates on the water surface. Figure 8 is a closeup view of one of the springs. Dissolved-solids concentrations of the water at the surface of these springs is from 25,000 to 90,000 ppm.

Figure 6. — A spring on the west side of Promontory Mountains. The water discharges from a large area (dark foreground) at the base of an alluvial fan and enters the brine near the center of the picture.

Many stream channels approach the lakeshore, but only a few reach the shoreline. From the appearance of vegetation and gravel in these channels, some obviously carry snowmelt runoff at least once during the year. Flow in the remainder of these channels seems to be dependent upon the pattern of summer storms in the area.

During the 1964 reconnaissance, Elmer Butler of the U. S. Geological Survey made computations of peak discharges from high-water marks, channel slopes, and apparent bed roughness during the period of flow. Although two such computations indicate peak discharges of about 50 cfs (cubic feet per second), most channels carried less than 10 cfs during their peak-flow period. The indirect measurement does not give an indication of the duration or total volume of flow.

An example of the force exhibited by inflow from the areas adjacent to the western shore of Great Salt Lake was observed later in 1964. During a cool wet spring, runoff from the mountains adjacent to the Great Salt Lake Desert filled normally moist sloughs and marshes to overflowing (Ray Piggott, oral communication, 1964). Then from June 5 to June 9, more than 1 inch of rain fell on the desert and more than 2 inches fell on the adjacent mountains. The resulting runoff was concentrated at the point of outflow from the desert to the lake and washed out a 4-foot diameter culvert in the Southern Pacific Co.'s service road west of Lakeside (point A, fig. 1). The duration of flow was about 3 weeks.

QUALITY OF SURFACE-WATER INFLOW TO THE LAKE AREA 1964 Water Year

Surface water entering the lake area is divided into six units based on source or type of inflow. The six

Figure 7. — A rock outcrop at the northern end of Great Salt Lake. Channel in foreground originates at pothole spring visible on exposed lakebed. Dark area in front of outcrop is seep area.

Figure 8. — Closeup view of pothole spring containing clear water. Note matter on water surface and the irregular vertical walls of the hole. This hole is about 28 feet deep and about 12 feet in diameter.

units are the Bear River unit, with sodium bicarbonate chloride type water; the Weber River unit, with calcium bicarbonate type water; the East Shore unit, with calcium bicarbonate type water; the Jordan River unit, with sodium calcium sulfate chloride type water; the springs around the lake unit, with sodium chloride type water; and the drains and sewage canals unit, with sodium chloride type water. Estimates of the dissolved-solids contributions by surface-water units to the lake area during the 1964 water year are summarized in table 4. Estimates of dissolved constituents are shown in table 5.

Tables 4 and 5 show that the Bear River unit contributed the greatest load of dissolved solids, and with respect to the individual constituents, it was the largest single contributor of all constituents except sulfate. The drains and sewage canals unit was the principal contributor of sulfate. The water with the greatest concentration of dissolved solids was from springs around the lake unit and that with the least concentration was from the East Shore unit. These results of the 1964 water year study are identical to those for the 1960-61

Table 4. — Summary of estimated inflow to the lake area by surface-water units during the 1964 water year

		Streamflow	Dissolve	d solids
Unit	Source	(thousands of acre-feet)	Tons per acre-foot	Thousands of tons
Bear River	Bear River at Corinne	a 936	0.82	768
	near Howell.	4	6.7	27
	Subtotal	940	pumpage re 4 and 15. Dissolve Tons per acre-foot 0.82 6.7 - .38 .7 - .41 1.44 4.1 3.4 4.6 100 85 11 10 - 1.0 2.9 4.9 11 3 -	795
Weber River	Weber River near Plain City	a 312	.38	119
	River delta	100	.7	70
	Subtotal	412	-	189
East Shore	Streams between Weber and Jordan River basins	50	.41	20
Jordan River	Jordan River plus Surplus Canal at Salt Lake City	a 199	1.44	287
Springs around the lake	Locomotive Springs area near Snowville: West Lake. Baker Springs Slough East Lake Springs at abandoned salt plant south of Snowville: Large spring Small spring Sig Spring at Timpie.	11 4 7 .7 .3 5	4.1 3.4 4.6 100 85 11	45 14 32 70 26 55
	Subtotal	43	10	202
	Satisfie from computition between	43		392
Drains and	Salt Lake City and Ogden	a 13	1.0	13
sewage canals	Lane, near Salt Lake City	a 39	2.9	113
	Carfield Drain near Magna	a oð	4.9	286
	Miscellaneous drains	15	3	45
	Subtotal	126	-	466
Lake area	Total (rounded)	1.800		2.200

water years (Hahl and Langford, 1964) except that during those years the Jordan River unit was the principal contributor of sulfate.

During the 1964 water year more than 80 percent of the surface water and about 55 percent of the dissolvedsolids load that entered the lake area passed the sites at Bear River at Corinne; Weber River near Plain City; and Jordan River at Salt Lake City. The data collected at these three sites are discussed in greater detail below.

Bear River at Corinne

The Bear River delivered the largest volume of water to the lake area during the 1964 water year. Discharge data collected at the streamflow measuring site at Bear River near Corinne were used in conjunction with daily specific conductance data collected at a site on the Bear River at Corinne to develop the conductivity-duration curve shown in figure 9. The discharge does not change between the two sites; therefore, both are considered as having been collected at Corinne, and discharge data can be applied directly to the water-quality data. Figure 9 may be used to approximate the percentage of time that water of a certain chemical quality is available at the site during a water year. For example, assume that water having a dissolved-solids concentration of 900 ppm or less is required. The insert in figure 9 shows that at 900 ppm the specific conductance of the water is about 1,600 micromhos per centimeter. The conductivity-duration curve in figure

Table 5. — Estimated weighted-average concentrations and loads of dissolved constituents in water discharged by surface-water units during the 1964 water year

Sodium: Includes potassium (K).

Bicarbonate: The figures shown as load are bicarbonate reported as carbonate (CO₃). Dissolved solids: Computed or taken from table 4.

(HCO₃) solids (Mg) (Ca) (Na) (C1) (SO4) Sicarbonate Magnesium Dissolved Calcium Unit Sodium Chloride Sulfate Concentration, in parts per million Bear River 58 35 129 324 54 176 620 Weber River 16 48 220 43 56 340 53 East Shore 53 16 26 210 34 33 290 Jordan River 115 58 167 233 337 241 1,060 140 .300 200 250 3.780 6.700 Springs around lake 90 Drains and sewage canals 174 76 702 300 560 1,010 2,700 73 37 205 282 123 298 890 Weighted average Load, in thousands of tons 74 45 165 204 69 225 795 Bear River Weber River 9 27 24 189 30 61 31 East Shore 1 2 7 2 2 20 4 Jordan River 31 16 45 31 91 65 287 Springs around lake 8 5 135 6 15 221 392 Drains and sewage canals 30 13 120 25 96 173 466 Total tons 177 89 494 334 297 717 2,200

9 shows that the conductivity of the water at the sampling site was less than 1,600 micromhos per centimeter for 71 percent of the time.

The flow-duration curve in figure 10 may then be used to determine the discharge for this particular time interval of 71 percent. It can be seen that for 71 percent of the time the discharge of the Bear River at Corinne is 400 cfs or greater. The percentages of time in figures 9 and 10 may be used interchangeably because the abscissas in figures 9 and 10 have been adjusted for the inverse relation between specific conductance and water discharge.

Figure 11 may then be used to show that the Bear River water contained more than 900 ppm of dissolved solids during the 29 percent time interval that covered the period from July to early October. During this period, the river carried only about 5 percent of the annual discharge. In other words, most of the year the river carries water of good chemical quality, but during the summer and early fall the river carries mostly seepage from ground-water aquifers and return flow from irrigation. The discharge-weighted average concentration of dissolved solids in water in the Bear River at Corinne during the 1964 water year was about 600 ppm (table 15), and the water was a sodium bicarbonate chloride type. The monthly mean temperatures and temperature ranges of the Bear River at Corinne are shown in figure 12.

Weber River near Plain City

The Weber River delivered the second largest volume of water to the lake area during the 1964 water year, and the water had one of the smallest dissolved-solids concentrations of all the inflow.

Daily chemical data are not available to construct a conductivity-duration curve for the Weber River. However, sufficient data were collected to determine that the discharge-weighted average concentration of dissolved solids during the 1964 water year was about 280 ppm (table 14), and the water was a calcium bicarbonate type.

Jordan River at Salt Lake City

The Jordan River delivered the third largest volume of water to the lake area during the 1964 water year. The flow of water in the river is regulated except for the spring runoff from the Wasatch Range and storm-sewer effluent, which enter the river and cause short periods of increased flow and an associated decrease in dissolved-solids concentration. At other times, the dissolved-solids concentration of the river is controlled mainly by return flow from irrigated land and by water discharged as industrial waste.

The discharge-weighted average concentration of dissolved solids in the Jordan River at Salt Lake City during the 1964 water year was about 1,060 ppm, and the water was a sodium calcium sulfate chloride type. The data collected during the 1960, 1961, and 1964 water years, however, indicate that during the period from May to July the dissolved-solids concentration at times goes below 900 ppm.

Figure 9. — Conductance-duration curve for the Bear River at Corinne, 1964 water year.

Figure 10. — Flow-duration curve for the Bear River at Corinne, 1964 water year.

Figure 11. — Mean water discharge and dissolvedsolids concentration for the period indicated for the Bear River at Corinne, 1964 water year.

COMPARISON OF INFLOW TO GREAT SALT LAKE AND LAKE AREA 1960, 1961, and 1964 Water Years

The study of dissolved-mineral inflow to Great Salt Lake was conducted during 3 years in which the annual surface-water inflow to the lake varied widely. The following appraisal is based on a comparison of the annual volume of inflow during the study period with the average annual volume of inflow during a long period of recorded flow.

Unfortunately, the only streamflow measuring station in operation for a long period at the mouth of a major tributary to Great Salt Lake is Weber River near Plain City. However, record for the 1934-64 water years at Bear River near Collinston is applicable to the appraisal. Data from these two stations, which represent about 50 percent of the surface-water inflow to the lake area, are used as a gauge for all surface-water inflow to the lake.

Table 6. — Streamflow, in thousands of acre-feet, at selected gaging stations during the water years 1934-64 and 1960, 1961, and 1964

Sito		1934-64	1000	1001	1004	
Site	Minimum	Average	Maximum	1960	1961	1964
Bear River near Collinston	320	824	1,682	530	364	833
Weber River near Plain City	61	345	933	124	61	312

Streamflow in the Bear and Weber Rivers

Streamflow during the 1960, 1961, and 1964 water years at Bear River near Collinston and Weber River near Plain City ranged from about the lowest recorded to about average when compared with streamflow for the 1934-64 water years. Table 6 gives the 31-year average streamflow for the Bear River near Collinston and the Weber River near Plain City, along with the maximum and minimum annual streamflow for the period (U. S. Geol. Survey, 1960, 1961, 1962, 1963a, 1963b, 1964).

Figure 13 shows the duration of flow for the Bear River near Collinston for the 31-year period and for each of the water years 1960, 1961, and 1964. These four curves emphasize the range in streamflow represented by inflow during the 3-year period of study. The upper part of the curve for 1964 would have followed the 31year curve more closely if an unusually large amount of reservoir space had not been available to store the excess spring runoff. The four curves represent streamflow ranging from the lowest recorded to about average, and it should be noted that the chemical data collected during the water years 1960, 1961, and 1964 are characteristic of the same range in streamflow.

Figure 12. — Monthly minimum, mean, and maximum temperatures of the Bear River at Corinne, 1964 water year.

Inflow to the Lake and the Lake Area

The inflow to the Great Salt Lake at the lakeshore and to the lake area $\frac{4}{2}$ are compared in tables 7 and 8 for the water years 1960, 1961, and 1964. The data for water year 1964 were taken from tables 1 and 4 of this report; the data for inflow to the lake area for water years 1960 and 1961 were adapted from Hahl and Langford (1964, p. 12); and the data for inflow at the lakeshore for water years 1960 and 1961 were estimated on the basis of the following relations:

- Comparison of inflow to the lake area with inflow at the lakeshore for the 1964 water year.
- Comparison of dissolved-solids inflow to the lake area for the water years 1960, 1961, and 1964.
- Comparison of streamflow for the water years 1960, 1961, and 1964.
- 4. Coincidence in some areas of the boundary of the lake area with the lakeshore.
- Computation of evapotranspiration from lakeshore marshlands flooded during each of the water years 1960, 1961, and 1964.
- Comparison of rainfall records applicable to lakeshore marshlands for each of the water years 1960, 1961, and 1964.

4/ Figure 1 shows the lakeshore and the boundary of the lake area.

Inflow to Great Salt Lake at the lakeshore (table 7) ranged from a low of about 810,000 acre-feet of water carrying about 2,200,000 tons of dissolved solids in water year 1961 to about 1,700,000 acre-feet of water carrying about 3,500,000 tons of dissolved solids in water year 1964. This range in water and load was for inflow to the lakeduring a 3-year period which represents conditions of runoff ranging from the lowest recorded to about a verage during the 31-year period 1934-64.

Summaries of inflow to the lake area from surface units for the water years 1960, 1961, and 1964 are shown in table 9 as percentages of the total inflow for the respective year. The entries are computed from data in table 8. The Bear River unit contributed the greatest percentage of water and dissolved solids to the lake area during the 3 years. The Weber River and Jordan River units were either second or third in the percentage of water delivered, and the units comprised of drains and sewage canals and of springs were either second or third in the percentage of dissolved solids delivered.

DEVELOPMENT OF SURFACE-WATER INFLOW TO GREAT SALT LAKE

Proposed development that will use inflow to Great Salt Lake should be based on knowledge of the availability of the water and its suitability for the intended use. Consideration should also be given to the effect the development will have on inflow reaching the lake, because the role of Great Salt Lake as a recreational and mineral resource is dependent upon inflow. The volume of inflow, rather than the dissolved-solids load, is the factor important to the existence of the lake.

Table 7. — Summary of estimated inflow to Great Salt Lake during water years 1960, 1961, and 1964

Drainage system: Weber River, Davis County, springs and streams -- data for 1960 and 1961 taken from table 8 but adjusted for net loss from lakeshore marshlands. Bear River, Jordan River -- data for 1960 and 1961 taken from table 8 but adjusted for net loss from lakeshore marshlands and include estimates of streamflow and load for additional sources of water shown in table 1. Water year 1964: Data entered from table 1.

	Water year										
	19	60	19	61	1964						
Drainage system	Streamflow (thousands of acre - feet)	Dissolved solids (thousands of tons)	Streamflow (thousands of acre - feet)	Dissolved solids (thousands of tons)	Streamflow (thousands of acre - feet)	Dissolved solids (thousands of tons)					
Bear River	626	1,294	436	1,010	913	1,388					
Weber River	188	133	80	75	398	200					
Jordan River	269	814	204	650	281	1,072					
Davis County	45	27	35	24	64	40					
Springs and streams	70	560	60	480	86	842					
Total to Great Salt Lake (rounded)	1,200	2,800	810	2,200	1,700	3,500					

Figure 13. — Flow-duration curves, Bear River near Collinston.

Table 8. — Summary of estimated dissolved-solids contributions by surface-water units to the lake area during the water years 1960, 1961, and 1964

Streamflow: Estimated unless otherwise indicated.

Dissolved solids (tons per acre-foot): Calculated from data in tables 14 and 15 or in Hahl and Mitchell (1963) Water years 1960 and 1961: Data entered from Hahl and Langford (1964, p. 12) except for revisions in entry for drains and sewage canals. Water year 1964: Data entered from table 4.

Water year 1960 196/ Streamflow Unit Dissolved solids Streamflow Streamflow Dissolved solids Source Dissolved solids (thousands (thousands thousands ousand Thousands Thousands Tons per Cons per Tons per acre-foot of tons acre-feet) acre-feet) acre-foot of tons acre-feet) acre-foot of tons Bear River at Bear River Migratory Bird 1/635 1/448 Refuge, near Brigham City. Blue Spring Creek at Promontory Road, 686 2/936 1.08 1.27 569 0.82 768 Bear River near Howell. . . . 3 6 18 2 6 12 1. 67 27 Subtotal 638 -704 450 581 940 . 795 3/124 Weber River near Plain City .47 58 3/61 .61 37 3/312 .38 119 Sloughs and drains in the lower Weber Weber River River delta. 80 61. 30 .9 .8 27 100 .7 70 Subtotal 204 . 122 91 . 64 412 180 East Shore Streams between Weber and Jordan River 30 .5 15 20 50 hacine . 6 12 41 20 Jordan River Jordan River plus Surplus Canal at Salt 3/181 3/132 Lake City. . 1.74 315 1.80 238 3/199 1.44 287 Locomotive Springs area near Snowville West Lake. 10 35 10 11 4.1 45 3.5 35 Baker Springs Slough 2.6 16 2.6 16 3.4 14 10 10 100 10 10 100 7 4.6 32 Springs around the lake of Snowville: Large spring . Small spring . 100 70 100 70 100 70 .3 85 26 . 3 85 26 3 85 26 Big Spring at Timpie 11 5 55 4 11 5 44 11 10 55 50 35 Miscellaneous springs 10 15 150 Subtotal 42 -352 38 -326 43 -392 Sewage from some communities between 3/15 3/15 4/1 $\frac{4}{1}$ Salt Lake City and Ogden 3/13 15 15 13 1.0 Salt Lake City sewage canal at Cudahy Lane, near Salt Lake City. Kennecott Drain near Magna. Drains and 3/32 3/32 3/39 sewage canals 3.0 96 3 0 2 9 113 96 4/50 4/1 4/235 <u>4/30</u> <u>4/1</u> 159 3/58 5.3 4.9 286 11 Garfield Drain near Magna 7.8 4/ 8 .8 10 30 1. 28 15 45 Miscellaneous drains 4/108 Subtotal 4/384 85 306 126 466 -Total to lake area (rounded) 4/1.200 -4/1900 . 1,500 1.800 _ 820 2.100

 $\underline{1}/$ Estimated from streamflow records for gaging station at Collinston.

2/ Measured at gaging station Bear River near Corinne.
3/ Measured at gaging station or taken from pumpage records.

4/ Revised.

During the 3-year study, volume of surficial inflow to the lake ranged from 10 to 20 percent of the estimated volume of the lake, while the dissolved-solids load was less than 0.1 percent of the estimated load in the brine.

Effect of Upstream Reservoir Storage on the Lake Stage

The volume of inflow to Great Salt Lake is affected continually by upstream reservoir operation. During years of low runoff, usable storage in reservoirs is depleted because more water is used than is produced by rain and snow. For example, during the 1961 water year usable water in storage on the Weber River was reduced by about 19,000 acre-feet and on the Bear River by about 300,000 acre-feet. During years of average runoff, usable water in storage in reservoirs is increased because less water is used than is produced by rain and snow. For example, during the 1964 water year usable water in storage on the Weber River was increased by 9,000 acre-feet and on the Bear River by about 160,000 acre-feet. The usable storage capacity of reservoirs during the 1964 water year in the Great Salt Lake basin was about 2,800,000 acre-feet. Table 10 shows data for 3 water years when high, low, and average amounts of stream-flow reached the lake area (fig. 1) in each of its three major tributaries. During years of high runoff, the volume of water in the Bear and W e ber Rivers that reaches the lake area exceeds the total storage capacity in those basins. During years of low runoff, inflow to the lake is reduced to only slightly more than the releases required to prevent stagnation in the bird refuges.

Proposed storage projects in the Bear River drainage would increase the storage capacity to about 2,000,000 acre-feet. This should be sufficient to completely regulate the flow of the Bear River for all except successive years of very high runoff.

Willard Bay Reservoir began filling in November 1964. This reservoir receives water from the Weber River and almost doubles storage in that drainage. However, several successive years of average runoff will still

Chemical Quality of Water Available for Development

Chemical quality of the inflow to Great Salt Lake that is available for development was determined from data collected at the following sites: Bear River at Corinne, Weber River near Plain City, and Jordan River at Cudahy Lane, near Salt Lake City. Three-fourths of the water reaching Great Salt Lake passes these three sites, and use downstream from them is mostly as a water supply for marshlands.

Figures 14 and 15 show the range in annual flow for certain quantities of dissolved solids during the water years 1960, 1961, and 1964 in the Bear River, the Weber River, and the Jordan River. Between about 80 and 95 percent of the water in the Bear River contained less than 900 ppm of dissolved solids (fig. 14). During 1961 none of the water contained less than 500 ppm of dissolved solids, and during 1964 about 30 percent contained less than 500 ppm. Water in the Weber River never exceeded 900 ppm of dissolved solids; and about 50 percent during 1961 to about 95 percent during 1964 contained less than 500 ppm of dissolved solids (fig. 15). The volume of discharge of the Jordan River

Figure 15. — Percentage of water in the Weber River near Plain City and the Jordan River at Cudahy Lane near Salt Lake City containing dissolved-solids concentrations less than the values shown during the water years 1960, 1961, and 1964.

1960 1961 1964 Unit Discharge Load Discharge Load Discharge Load Bear River 53 37 55 38 53 37 17 6 11 4 23 9 Weber River East Shore 2 1 3 1 3 1 17 13 Jordan River 15 16 16 11

19

20

100

4

9

100

Springs around

the lake

canals

Drains and sewage

Total to lake

area

21

20

100

5

10

100

3

7

100

18

22

100

duning	the system users 1060, 1061 and 1064
auring	the water years 1900, 1901, and 1904

Table 9. - Percentages of total water and dissolved

provide considerable quantities of water that reach the lake area.

The Great Salt Lake recedes during successive years of low runoff, and as additional upstream storage is constructed, the low stages of the lake will be lower than those previously recorded. The relation of water quality to runoff observed during the 3 years of this study will probably hold for similar amounts of inflow even though the volume of upstream storage will change.

Figure 14. — Percentage of water in the Bear River at Corinne containing dissolved-solids concentrations less than values shown during the water years 1960, 1961, and 1964.

varies little between years of low and average runoff, but the percentage of dilute water varies markedly (fig. 15). During 1961 none of the water contained less than 900 ppm of dissolved solids; however, during 1964 about 35 percent of the water contained less than 900 ppm of dissolved solids and only about 15 percent contained less than 500 ppm.

The chemical quality of the inflow to Great Salt Lake is compared in table 11 with drinking water standards recommended by the U.S. Public Health Service (1962, p. 7). The data in table 11 are for samples collected during the water years 1960, 1961, and 1964; and they represent specific water-quality conditions. The table indicates the percentage of time a dissolved-solids concentration occurred equal to or less than the concentrations shown. Water in the Bear River met the Public Health Service drinking water standards, as shown in table 11, about 12 percent of the time during the 1960, 1961, and 1964 water years. Water in the Weber River met the standards about 84 percent of the time. Water in the Jordan River, based on recorded conductivity data, met the standards about 5 percent of the time, although the analysis available represents only 3 percent of the time.

Data in tables 1 and 11 and in figures 14 and 15 suggest that about 500,000 acre-feet of water, which meets the recommended drinking-water standards passes the sites on the Bear and Weber Rivers during years of average streamflow.

Industrial water-quality requirements vary widely depending upon the use made of the water (American Water

Table 10. — Discharge near the mouths of the Bear, Weber, and Jordan Rivers during the representative water years of high, low, and average discharge and the usable storage capacity of reservoirs in the drainage basins, in thousands of acre-feet

Discharge: Measured at respective gaging stations --Bear River near Corinne (1961 estimated), Weber River near Plain City, and Jordan River at Salt Lake City (includes discharge of Surplus Canal).

Usable storage capacity: As of August 1964. From Thomas and Harbeck (1956) and U. S. Geological Survey (1964).

Designed basis		Discha	rge	
Drainage basin	1952 High	1961 Low	1964 Average	Usable storage capacity
Bear River	1,775	460	936	1,540
Weber River	933	61	312	272
Jordan River	477	132	199	980
Total (rounded)	3,200	650	1,400	2,800

Figure 16. — Classification of irrigation waters.

WorksAssoc., 1950). However, hardness is one property of water which universally receives attention. Data in table 11 indicate that most of the time water in the major tributaries to the lake is very hard and would require treatment to make the water suitable for industrial use.

The chemical quality of water is an indication of its usefulness for irrigation, but it should be considered together with soil characteristics, water management, crops to be grown, and regional climate. A system prepared by the U. S. Salinity Laboratory Staff (1954) classifies irrigation water by its salinity and sodium hazards, and the system is applicable to most soils found in semiarid regions. Data from table 11 are plotted according to this system in figure 16. Table 11 and figures 11 and 16 indicate that most water in the major tributaries near the lakeshore has a mediumto high-salinity hazard and a low-sodium hazard. Less than 10 percent of the annual flow presents a very high salinity hazard and a medium- to very high-sodium hazard; however, this 10 percent often is the only flow in the Bear and Jordan Rivers during the summer months. Most of the time water from the three rivers would present no sodium hazard but could present a salinity hazard to land and crops irrigated. However, with proper drainage and crop selection, the water is being used successfully for irrigation.

Figure 17. - Map of the eastern part of Great Salt Lake showing proposed dikes.

Table 11. — Analyses that represent specific dissolved-solids concentrations are shown along with some of the drinking-water standards recommended by the U. S. Public Health Service

[Numbers in parentheses in column headings are drinking-water standards recommended by the U.S. Public Health Service (1962)]

Percentage of time:	Indicates the	period du	ring the 3	water yea	ars, 1960,	1961,	and 1964	, in which	the concentratio	on was equal to	o or less than
that shown; e, esti	mated.										
Fluoride: Maximu	m or minimum rea	corded in	occasional	analysis	and not	determi	ned for	the specif	ic analyses shown	a; optimum cond	centration
determined by avera	ge maximum daily	y air temp	perature at	Salt Lak	e City Ai	rport.					
						F	arts per	million		Specific	

Site					Parts p	er millio	n		Specific	
Site	Date of collection	Percentage of time	Sulfate (250)	Chloride (250)	Fluoride (0.9)	Nitrate (45)	Dissolved solids (500)	Total hardness as CaCO ₃	conductance (micromhos/cm at 25°C)	Sodium- adsorption ratio
Bear River at Corinne	Nov. 23, 1959 Sept. 19-20, 1960 May 1-15, 1964	69 99.96 12	63 261 51	280 1,950 128	0.4 .3	3.9 1.8 .2	862 4,040 505	344 593 258	1,540 6,780 902	4.6 23 2.9
Weber River near Plain City	May 25, 1964 Aug. 18, 1964	1e 84e	24 36	26 98	.3 .7	2.3 17	200 500	134 286	330 842	.6 1.9
Jordan River at Cudahy Lane, near Salt Lake City	June 6, 1960 Oct. 17, 1960 June 18, 1964	12e 99e 3e	289 742 99	200 350 71	- .8 .3	.3 7.8 2.5	897 1,820 407	426 993 242	1,420 2,560 682	3.1 3.1 1.4

A Fresh-Water Lake

Almost 90 percent of the surface water entering Great Salt Lake passes through the openings represented by lines B-E-B' and C-C' in figure 17. Proposals have been made (Burns and others, no date) to separate the part of Great Salt Lake east of these lines from the main body of the lake with a system of dikes and thereby create a fresh-water lake east of the lines. The purpose of this lake would be to gain use of dilute inflow prior to its mixing with the brine.

If dikes were extended along lines A-A', B-E-B', and C-C' (fig. 17) and the natural drainage allowed to accumulate behind these dikes, the inflow to this freshwater lake probably would be represented by data shown

Table 12. — Volume of water, in thousands of acrefeet, and dissolved-solids load, in thousands of tons, entering the eastern part of Great Salt Lake at the lakeshore during the water years 1960, 1961, and 1964

Source	19	060	19	61	19	64
	Volume	Load	Volume	Load	Volume	Load
Bear River drainage	630	1,290	440	1,010	910	1,390
Weber River drainage	190	130	80	80	400	200
Davis County drainage	40	30	40	20	60	40
Jordan River drainage, east of Antelope Island	180	410	150	350	170	430
Springs, east side Antelope Island	10	80	10	80	10	80
Total	1,050	1,940	720	1,540	1,550	2,140
Weighted average dissolved-solids con- centrations, in parts per million	1,3	60	1,5	570	1,	010

[Data obtained from tables 7, 14, and 15 and Hahl and Mitchell (1963)]

in table 12. During the 1960, 1961, and 1964 water years, the volume of inflow would have been as small as 700,000 acre-feet containing about 1,600 ppm of dissolved solids to as large as 1,600,000 acre-feet containing about 1,000 ppm. This water would contain predominantly sodium and chloride ions (table 2).

In such a large shallow lake, uniform quality of water probably would never exist. Sections of the lake would reflect the quality of specific sources of inflow, and these sections would shift position in the lake as a result of storm pattern and wind direction. Water temperature of this shallow lake would tend to follow air temperature. Evaporation losses would be high, and wind-driven waves and ice could cause damage to lakeshore structures.

Table 13. — Volume of water, in thousands of acrefeet, and dissolved-solids load, in thousands of tons, from selected sources entering the lake area east of Great Salt Lake during the water years 1960, 1961, and 1964

[Data obtained from table 14 and Hahl and Mitchell (1963)]

Source	19	60	19	61	19	64
	Volume	Load	Volume	Load	Volume	Load
Bear River near Corinne	300	320	210	270	640	520
Weber River near Plain City	170	100	60	40	370	170
Miscellaneous from Davis County area	30	20	30	20	30	20
Total	500	440	300	330	1,040	710
Weighted average dis- solved-solids concen- trations, in parts per million	65	0	81	0	50	10

26

Another proposal includes the dikes along lines A-A' B-E-B', and C-C' and two additional ones, line E-E' (the route of the Syracuse Road to Antelope Island) and line D-D' (the existing dike between Little Mountain and Promontory Point augmented by a control on flow beneath the Bear River Bridge). Selective filling is proposed in order to form two lakes (R and L in fig. 17) and a peripheral canal. The areas to contain the lakes are to be dredged to increase the depth to surface-area ratio. Area R would act as a supply reservoir to area L and the peripheral canal would facilitate removal of undesired water from the system. This plan would allow water-quality control in both lakes and provide for a constant lake-surface elevation in area L.

Table 13 presents the quality of inflow to the proposed fresh-water lakes from selected sources at the boundary of the lake area (fig. 1), which had an annual average dissolved-solids concentration of 900 ppm or less. The volumes shown have been adjusted to allow for existing downstream use. During the water years 1960, 1961, and 1964 the volume of inflow ranged from 300,000 acre-feet of water containing about 800 ppm of dissolved solids in 1961 to about 1,000,000 acre-feet containing about 500 ppm in 1964. Comparison of the guality of the water at the boundary of the lake area (table 13) with water at the lakeshore (table 12) indicates a deterioration in chemical quality when water passes through the intervening marshlands. Therefore, selection of inflow at the boundary of the lake area is an important part of this two-lake proposal.

The volume and quality of water available are important considerations for any system used to supply a fresh-water lake. However, the water quality of inflow to a lake does not represent the water quality to be expected in the lake. The water quality of the lake will be determined by the interplay of climatic differences, ground-water inflow, upstream developments, and water management.

SUMMARY AND CONCLUSIONS

Inflow to Great Salt Lake is difficult to measure at its point of contact with brine in the lake because the lake stage fluctuates continually with season and wind. Also, as inflow crosses the wide band of mud and sand surrounding the lake, it is not contained in well-defined channels. Therefore, inflow reaching Great Salt Lake during the 1964 water year was defined as that flow crossing the lakeshore and discharging onto the flats surrounding the lake.

The study conducted during the 1960 and 1961 water years was limited to interpreting data collected at sites upstream from the lakeshore and, therefore, that study only defined flow reaching the lake area. More detailed data were obtained during the 1964 water year, both at sites used during the 1960-61 study and at points close to the lakeshore. The 1964 data on inflow to the lake area and to the lakeshore permitted estimates of inflow to the lake (at the lakeshore) to be made for the 1960 and 1961 water years. The volume of water reaching the lake area during the 3 years of study was about the same as that reaching the lakeshore, but the dissolved-solids content of the water reaching the lakeshore was much greater.

During the 1964 water year, which was probably representative of the average inflow conditions during the period 1934-64, about 1,800,000 acre-feet of water containing about 2,200,000 tons of dissolved solids entered the lake area and about 1,700,000 acre-feet of water containing about 3,500,000 tons of dissolved solids passed the lakeshore. During the 1961 water year, which was representative of the lowest recorded inflow conditions, about 800,000 acre-feet of water containing about 1,500,000 tons of dissolved solids entered the lake area and about 800,000 acre-feet of water containing about 2,200,000 tons of dissolved solids entered the lake area and about 800,000 acre-feet of water containing about 2,200,000 tons of dissolved solids entered the lake area and about 800,000 acre-feet of water containing about 2,200,000 tons of dissolved solids entered the lakeshore.

The Bear River drainage system contributed more than 50 percent of the water and about 40 percent of the dissolved solids that entered Great Salt Lake during the 1964 water year. The Weber River drainage system contributed the second largest volume of water, but the Jordan River drainage system and the springs and streams drainage system were, respectively, the second and third largest contributors of dissolved solids. The volume of water from the Davis County drainage system was about three-fourths as large as that from the springs and streams, but the dissolved-solids load was only about one-twentieth of their load.

With the exception of water from the Weber River and Davis County drainage systems, which was of the calcium sodium bicarbonate type, water crossing the lakeshore contained mostly sodium and chloride ions.

Much of the water entering Great Salt Lake is suitable for irrigation or meets the inorganic chemical standards recommended by the U.S. Public Health Service (1962) for drinking water. Water in the Bear River at Corinne met Public Health Service standards for drinking water supply 12 percent of the time, and water in the Weber River near Plain City met the standards 84 percent of the time. More than 90 percent of the flow during the 1964 water year at the Bear River at Corinne, Weber River at Plain City, and Jordan River at Cudahy Lane, near Salt Lake City was suitable for irrigation.

A proposed fresh-water lake east of a line between Antelope Island and Promontory Point, which would be supplied from selected sources of inflow at the boundary of the lake area, would have had an estimated 300,000 to 1,000,000 acre-feet of water available to it during the water years 1961 and 1964, respectively. This inflow would have had an estimated dissolved-solids content of 800 and 500 ppm, respectively.

In order to provide data from which a long-term estimate of loads entering the Great Salt Lake could be computed, the following additional work is needed:

1. During periods of low and average streamflow, a more detailed study should be made of the surface-water inflow from the Weber River, Davis County, and springs and streams drainage systems in order to refine the inflow estimates given in this report.

- During a period of high streamflow, a study should be made of all inflow to the lake.
- A study should be made of the ground-water inflow to the area below the lakeshore.
- 4. A study should be made of the climatology of the lake area.

REFERENCES

- Adams, T. C., 1934, Evaporation from the Great Salt Lake: Am. Meteor. Soc. Bull., v. 15, p. 35-39.
- American Water Works Association, 1950, Water quality and treatment: 2d ed., Am. Water Works Assoc. Manual, tables 3 and 4, p. 66-67.
- Burns, C. E., and others (no date), Great Salt Lake diking study: Advisory Committee to State Road Commission of Utah.
- Christiansen, J. E., 1964, Water requirements for waterfowl areas near the Great Salt Lake, Progress Report, Part 8 of Evapotranspiration studies at Howard Slough refuge and salinity measurements at all State and Federal waterfowl refuges for 1963: Utah State Univ. Engr. Expt. Sta.
- Connor, J. G., Mitchell, C. G., and others, 1958, A compilation of chemical quality data for ground and surface waters in Utah: Utah State Engineer Tech. Pub. 10.
- Dickson, D. R., and McCullom, Cornell, Jr., 1965, Evaporation from the Great Salt Lake as computed from eddy flux techniques: Utah Geol. and Mineralog. Survey Water-Resources Bull. 6, Part II.
- Feth, J. H., Rogers, S. M., and Roberson, C. E., 1964, Chemical composition of snow in the northern Sierra Nevada and other areas: U. S. Geol. Survey Water-Supply Paper 1535-J, p. 14-15, 18.
- Hahl, D. C., and Langford, R. H., 1964, Dissolvedmineral inflow to Great Salt Lake and chemical characteristics of the Salt Lake brine, Part II: Technical report: Utah Geol. and Mineralog. Survey Water-Resources Bull. 3.
- Hahl, D. C., and Mitchell, C. G., 1963, Dissolvedmineral inflow to Great Salt Lake and chemical characteristics of the Salt Lake brine, Part I: Selected hydrologic data: Utah Geol. and Mineralog. Survey Water-Resources Bull. 3.
- Harris, Karl, 1964, Water requirements of lower Jordan River, Utah: Utah State Engineer Info. Bull. 13.

- Kohler, M. A., Nordenson, T. J., and Baker, D. R., 1959, Evaporation maps for the United States: U. S. Weather Bur. Tech. Paper 37.
- Peck, E. L., and Dickson, D. R., 1965, Evaporation and ground water, Great Salt Lake: Utah Geol. and Mineralog. Survey Water-Resources Bull. 6, Part 1.
- Robinson, T. W., 1958, Phreatophytes: U.S. Geol. Survey Water-Supply Paper 1423.
- Smith, R. E., and Gates, J. S., 1963, Ground-water conditions in the southern and central parts of the East Shore area, Utah, 1953-61: Utah Geol. and Mineralog. Survey Water-Resources Bull. 2.
- Stansbury, Howard, 1853, Exploration and survey of the valley of the Great Salt Lake of Utah: House of Representatives, Washington, D. C.
- Thomas, N. O., and Harbeck, G. E., Jr., 1956, Reservoirs in the United States: U. S. Geol. Survey Water-Supply Paper 1360-A.
- U. S. Geological Survey, 1960, Compilation of records of surface waters of the United States through September 1950: U. S. Geol. Survey Water-Supply Paper 1314.
- 1961, Surface-water records of Utah, 1961: Water Resources Div.
- _____ 1962, Surface-water records of Utah, 1962: Water Resources Div.
- _____ 1963a, Surface-water records of Utah, 1963: Water Resources Div.
- 1963b, Compilation of records of surface waters of the United States, October 1950 to September 1960: U.S. Geol. Survey Water-Supply Paper 1734.
- _____ 1964, Surface-water records of Utah, 1964: Water Resources Div.
- U. S. Public Health Service, 1962, Drinking water standards: U. S. Public Health Service Pub. 956.
- U. S. Salinity Laboratory Staff, 1954, Diagnosis and improvement of saline and alkali soils: U. S. Dept. Agriculture Handb. 60.
- U. S. Weather Bureau, 1964, Climatological data, Utah: U. S. Weather Bur. Annual Summary, 1963, v. 65, no. 13.
 - 1965, Climatological data, Utah: U.S. Weather Bur. Annual Summary, 1964, v. 66, no. 13.

Table 14. — Chemical analyses of water from the Bear River, Weber River, Jordan River, and Davis County drainage systems

[Numbers in parentheses are site numbers in figure 1]

Mean discharge: e, estimated; m, discharge measured. Sodium: Concentrations reported include potassium except when a dash or a value is shown in the potassium column.

				-				Parts pe	r million					-		<u> </u>
Date of collection	Temperature (°F)	Mean discharge (cfs)	Silica (SiO ₂)	Calcium (Ca)	Magnesium (Mg)	Sodium (Na)	Potassium (K)	Bicarbonate (HCO ₃)	Sulfate (SO4)	Chloride (Cl)	Nitrate (NO ₃)	Dissolved solids (residue on evapo- ration at 180°C)	Hardness as CaCO ₃	Noncarbonate hardness as CaCO3	Specific conductance (micromhos/cm at 25°C)	Hq
						BEAF	RIVER D	RAINAGE SY	STEM							
					(1)	Corinne Ca	unal at S	tate High	83, near	Corinne					-	
Aug. 23, 1963 Nov. 18 July 17, 1964 Aug. 18 Sept. 15	71 - 75 73 -	54e 6e 55e 58e 53e	-						81 104 58 70 74	90 158 86 92 98		585 739 483 545 535	360 330 - 330 324		987 1,250 859 920 917	•••••
					(2)	Central Ca	inal at S	tate Highw	ay 83, ne	ar Corinne						_
Aug. 23, 1963 July 17, 1964 Aug. 18 Sept. 15	72 77 76 -	18e 35e 11e 10e	-			:		÷	53 66 71	- 84 90 92	•	571 459 512 508	- 322 318		966 866 883 870	
							(3) Bear	River at	Corinne							_
Oct. 1-5, 10-17, 24-31, 1963 <u>1</u> / Oct. 6-9 Oct. 18-23	59 64 60	682 325 679	16 - -	56 - -	44 - -	163 731 189	16	368 396 368	67 100 78	250 1,120 240	0.6 - -	788 2,220 746	322 420 310	20 95 8	1,380 3,840 1,290	8.0 7.7 7.9
Nov. 1-10 Nov. 11-24 Nov. 25-30	50 48 41	1,200 1,320 1,170	:		:	134 188 267		360 388 392	80 92 110	165 245 365	:	620 778 990	320 350 370	25 32 48	1,060 1,380 1,750	7.7 7.9 7.8
Dec. 1-3 Dec. 4-8 Dec. 9 Dec. 10-16	37 38 36 33	654 1,110 236 921				317 148 358 182		416 348 416 400	109 90 97 79	450 180 515 245		1,170 608 1,260 762	400 310 390 360	59 25 49 32	2,050 1,160 2,210 1,350	7.9 8.1 7.9 8.0
Dec. 17-22 Dec. 23, 1963- Mar. 10, 19642/	34 32 36	1,270 976	- 16	- 85	33	130 99 159	9.7	380 372 <u>3</u> / ₃₇₂	80 54 59	155 155 218	- 2.0	586 630 745	330 348 328	18 43 23	1,060 1,070 1,280	7.9 8.2 8.3
Apr. 1-3 Apr. 4-30 May 1-15 May 16-31	45 49 53 64	1,990 3,170 3,020 2,940	•		• • •	167 106 106 57	-	393 312 310 257	60 49 51 27	225 145 128 76		784 587 505 358	340 280 258 222	18 24 4 11	1,330 1,000 902 639	8.2 8.0 7.5 7.7
June 1 June 2-3 June 4-30	66 66 64	2,500 1,380 3,160	10 11 11	54 54 55	19 27 22	54 111 62		246 276 268	33 36 35	68 158 75	.3 .2 .3	356 547 398	215 246 228	13 20 8	610 963 704	7.8 7.8 7.8
July 1-4 July 5-6 July 7-8 July 9 July 10-31	72 74 76 77 78	1,030 315 118 133 86.1	•			128 301 515 743 1,090		300 316 322 332 370	35 56 65 86 102	176 455 782 1,140 1,670		567 1,050 1,540 2,260 2,960	252 306 314 354 395	6 47 50 82 92	1,020 1,880 2,720 3,920 5,140	7.8 7.8 7.9 7.9 7.9
Aug. 1-31 Sept. 1-23 Sept. 24-25 Sept. 26-30	73 60 57 53	79.6 93.1 257 220	:			900 741 565 394		380 395 400 388	128 94 97 83	1,370 1,130 845 585		2,780 2,310 1,820 1,350	420 405 392 374	108 81 64 56	4,790 4,030 3,180 2,400	7.8 8.0 7.9 7.9
Weighted average 1964 water year4/	-	1,290	-	58	35	123		324	53	168	-	604	288	24	1,050	-
				(4) Blac	k Slough a	t U.S. H	lighway 30,	near Bri	gh a m City						
Aug. 23, 1963 Nov. 18 Dec. 12 Jan. 31, 1964	71 38 39 39	- 34.1m 16.3m 14.9m	-		••••		-	:	109 88 93 77	156 928 870 610	2	796 1,900 1,920 1,420	360 386 488 444		1,320 3,340 3,300 2,450	:
Feb. 21 Mar. 20 Apr. 10 May 8	40 34 51 52	15.0m 14.1m 75.1m 73.9m			-	•	-	:	83 62 58 94	960 595 790 1,580		2,040 1,420 1,560 2,770	480 412 300 400		3,520 2,420 2,790 4,870	:
June 11 July 16 Aug. 18 Sept. 15	72 77 79 -	42.6m 15.5m 1.9m 9.1m	10 - - -	52 - -	49 - -	615 - - -	-	264 - -	59 50 52 32	985 - 65 40	0 - - -	1,920 1,390 449 309	330 - 310 240	113 - - -	3,320 2,520 743 534	7.9
Weighted average 1964 water year <u>4</u> /	-	30e		-	-	-	-	-	75	886	-	1,780	365	160	3,120	
				(5) Brigh	am City tr	eated se	wage efflu	ent at Br	igham City		E20	244		901	
Aug. 23, 1963 Mar. 20, 1964 Aug. 18	50 71	1.5e 2.6 1.9	-		-	102 115	12 9.2	:		100 125 83	57 35	539 542 428	-	-	903 795	-

Table 14. — continued

								Parts pe	r million						0	
Date of collection	Temperature (°F)	Mean discharge (cfs)	Silica (SiO ₂)	Calcium (Ca)	Magnesium (Mg)	Sodium (Na)	Potassium (K)	Bicarbonate (HCO ₃)	Sulfate (S04)	Chloride (Cl)	Nitrate (NO ₃)	Dissolved solids (residue on evapo- ration at 180°C)	Hardness as CaCO ₃	Noncarbonate hardness as CaCO3	Specific conductance (micromhos/cm at 25°C)	Hq
						BEAR RIVE	ER DRAINA	GE SYSTEM-	-Continue	ed						
				(6)	Hammond	West Bran	nch Canal	at U.S. H	lighway 30), near Cor	inne					
Aug. 23, 1963	72	20e	-	-	-	-	-	-	-	-	7	558	-	-	945	-
					(/) Su	lphur Cree	ek at Sta	te Highway	7 83, near	Corinne			-	-		
Aug. 23, 1963 Oct. 17 Nov. 15 Dec. 12	75 52 56 33	18e 165m 117m 114m	-			-		-	158 114 205 202	1,050 815 855 990		2,300 1,860 2,080 2,350	465 428 510 580		3,990 3,260 3,460 3,920	
Jan. 31, 1964 Feb. 21 Mar. 19 Apr. 10	31 32 49 54	32.1m 25.7m 27.7m 27.4m	-	•			•		164 206 208 403	980 1,140 1,230 1,250		2,280 2,580 2,720 2,910	600 595 575 480		3,830 4,320 4,470 4,700	
May 8 June 11 July 17 Aug. 18 Sept. 15	49 66 74 78 -	28.3m 97.8m 46.7m 66.5m 81.7m	21 - -	- 88 - -	- 60 - -	- 643 - -	• • • •	462	444 204 178 147 134	1,250 900 950 745 790	- 2.3 - -	3,030 2,170 2,150 1,800 1,890	500 465 400 416 438	- 86 - -	4,930 3,670 3,720 3,070 3,210	8.0
Weighted average 1964 water year4/	-	70e	-			-	-	-	195	926		2,180	485		3,680	-
				1	(8) H	ull Lake i	in Public	Shooting	Grounds,	near Penros	se					
Nov. 15, 1963 Dec. 12 Apr. 10, 1964 May 7 June 11 Sept. 15	48 35 51 56 66 -	35e 30e 75e 20e 250e (5)							514 764 615 621 437 576	2,850 4,200 1,780 2,550 1,450 3,070		5,550 8,530 3,930 5,040 3,170 6,300	630 977 520 620 420 690		9,140 13,400 6,320 8,330 5,270 10,200	
Weighted average 1964 water year4/	-	40e					-	- 2	530	2,100		4,400	540		7,100	-
				(9) Pint	ail Lake i	n Public	Shooting	Grounds,	near Penros	se					
Nov. 15, 1963	-	15e	-	-	-	-	-	-	145	1,000	-	2,200	520	-	3,740	-
Dec. 12 Apr. 10, 1964 May 7 June 11	35 52 54 66	10e 15e 15e 15e							291 286 365 165	1,540 1,480 1,820 1,400	-	3,330 2,920 3,670 2,760	710 515 610 450	-	5,490 4,940 6,010 4,700	
Aug. 18 Sept. 15	77	(5) (5)	:	1	1	-	:	1	399 459	3,270 2,930	2	6,220 6,000	444 808	:	10,200 9,610	1
Weighted average 1964 water year <u>4</u> /	-	10e	-	-	-	-	-		250	1,400	-	2,900	580	-	4,900	-
				(10) Widge	on Lake ir	Public	Shooting (rounds, n	ear Penrose	2			-		
Nov. 15, 1963 Dec. 12 Apr. 10, 1964 May 7 June 11	48 34 53 56 66	20e 15e 20e 20e 20e							267 586 540 494 401	1,310 2,750 1,650 1,850 1,380		2,840 5,710 3,440 3,820 3,040	910 540 550 420	-	4,780 9,010 5,590 6,190 5,070	
Aug. 18 Sept. 15	1	(5) (5)	-	1	-	-	:	2	1,390 1,010	6,250 5,330	1	12,300 10,800	844 1,100	:	18,800 16,500	1
Weighted average 1964 water year <u>4</u> /	-	15e	-	-	-		-	-	460	1,900	-	4,000	630	-	6,400	-
					(11)	Drainage	ditch, (B-10-4)7cc	la, near I	Penrose		1			0 (20	_
Nov. 15, 1963 Apr. 10, 1964 May 7 June 11	44 43 51 64	0.5e .5e .1e 1.5e							95 117 164 63	645 - - 104	-	1,550 2,160 2,480 522	528 - - 310		2,630 3,690 4,150 887	
_		-			(12)	Drainage	ditch, (B-10-4)7cd	b, near P	enrose						
Apr. 10, 1964 May 7 Aug. 18 Sept. 15	45 50 70 -	0.5e .5e 4.0e 1.0e							175 139 94 115	- - 175 220		1,980 1,810 791 862	- 408 432		3,290 3,020 1,310 1,460	
					(13)	Drainage	ditch, (B-10-5)12d	ad, near	Penrose						
Nov. 15, 1963 Apr. 10, 1964 May 7 Aug. 18 Sept. 15	44 45 73 75 -	2.5e 2.0e .5e 1.0e 1.0e							85 116 214 66 73	200 - - 112 128		794 1,620 2,250 572 -	368 - - 352 342		1,350 2,800 3,740 980 1,010	
					(14)	Drainage	ditch, (B-10-5)12d	ac, near	Penrose						
Nov. 15, 1963 May 7, 1964	45 52	2.0e .1e	-	-	-	-	1	1	73 250	148 -	-	646 3,720	328	1	1,070 5,930	-

Table 14. — continued

								Parts pe	r million	1						Τ
Date of collection	Temperature (°F)	Mean discharge (cfs)	Silica (SiO ₂)	Calcium (Ca)	Magnesium (Mg)	Sodium (Na)	Potassium (K)	Bicarbonate (HCO3)	Sulfate (SO4)	Chloride (C1)	Nitrate (NO3)	Dissolved solids (residue on evapo- ration at 180°C)	Hardness as CaCO3	Noncarbonate hardness as CaCO3	Specific conductance (micromhos/cm at 25°C)	Hď
						BEAR RIVE	ER DRAINA	AGE SYSTEM	Continue	ed						
					(15) Drainage	ditch,	(B-10-5)1	2 cad, near	r Penrose						
Nov. 15, 1963 Dec. 12 Mar. 19, 1964 Apr. 10 May 7	50 33 49 48 53	1.0e 1.0e 1.5e 1.5e	•••••						79 79 81 72 82	1,340 1,290 1,220 -		2,830 2,570 2,480 2,520 2,470	610 570 600 - -	• • • •	4,430 4,230 4,060 4,080 4,070	
June 11 Aug. 18 Sept. 15	62 75 -	6.0e 2.0e 1.0e	:	:	-	÷	-	-	51 69 67	316 742 570	-	802 1,540 1,270	310 478 438	:	1,410 2,770 2,280	:
Weighted average 1964 water year4/	-	1.5e	-	+	-	4.	-	21	60	610	-	1,500	410		2,600	-
					(16) B1	ue Spring	Creek at	Promonto	ry Road, n	near Howell			L	-	L.,	-
Oct. 16, 1963 Mar. 19, 1964	59 32	4.2m 10e	1	1	-		-	1	350 434	2,200	:	4,220	510 595	:	7,170	:
Apr. 10 Apr. 24 May 7	45 45 45	11.0m 9.0m 17.8m	:	-		-	-	:	354 400 362	1,950 2,300 1,900	-	3,850 4,670 3,820	510 600 430	-	6,400 7,550 6,400	:
June 11 Sept. 15	56 -	2.5m .1e	26 -	136 -	96 -	2,330	-	628 -	612 395	3,290 2,440	4.7	6,740 4,920	735 454	220	10,800 8,140	8.1
Weighted average 1964 water year <u>4</u> /	-	5e	1	4	-	-	-	-	448	2,430	-	4,940	580	-	8,050	-
					(17) Be	ar River a	at Bear F	liver Brid	ge, near V	Vest Warren	-					
Oct. 25, 1963 Nov. 14 Dec. 5 Mar. 19, 1964 Apr. 9	49 45 33 32 48	250e 1,000e 500e 800e 3,500e							377 275 174 188 74	2,400 2,100 855 1,220 380	8.1 - -	4,790 3,810 1,880 2,600 852	750 560 418 500 232		8,040 6,550 3,290 4,300 1,570	
June 12 July 15 <u>7</u> /	63 78	3,500e 150e	13	20	34	221		<u>6</u> /176	56 10,100	330 74,300	.2	779 139,000	188	44	1,380 132,000	8.5
Weighted average 1964 water year4/	-	1,100e	-	4	-	-	-	-	104	638	-	1,360	280	-	2,360	-
					-	WEBE	R RIVER	DRAINAGE	SYSTEM				_			
Nov. 15. 19638/	51	147	10	74	24	(18) We	7.3	306	43	92	8.1	477	283	32	812	7.4
Dec. 17 Jan. 31, 1964 Feb. 21 Mar. 20	40 40 40 39	211 283 290 372	- - 7.4 -	58	18	49 38 38 47		262 178 242 258	36 86 27 35	65 51 50 60	3.3 3.4 3.2 2.9	376 356 332 350	240 228 216 232	25 82 18 20	642 574 544 616	8.1 7.7 7.5 7.7
Apr. 10 May 8 May 25 <u>9</u> / June 12 July 17	45 47 56 54 75	732 1,140 1,200 2,280 40	- 8.3 8.8 -	- 38 51	- 9.2 13 -	30 - 16 24 86	2.1	202 146 202 327	31 37 24 26 44	36 43 26 27 112	1.4 3.1 2.3 1.5 14	268 290 200 234 541	184 184 134 180 296	18 - 14 14 28	450 479 330 408 927	7.7 - 7.5 7.8 7.5
Aug. 18 Sept. 16	69	65 63	:	-	1	74 75		314 318	36 44	98 113	17	500 558	286 302	28 41	842 915	7.6 7.7
Weighted average 1964 water year4/	-	430	-	52	15	32		208	32	41	2.9	283	190	20	478	-
						DAVIS	COUNTY	DRAINAGE	SYSTEM							
				(19) North	Davis Cou	nty trea	ted sewag	e effluent	at Syracu	se					
Mar. 20, 1964 Aug. 18	47 71	13.8 15.5	-	-	1	214 117	25 12	2	1	200 105	32 31	948 552	-	1	1,500 997	1
				(20) C	entral	Davis Coun	ty treat	ed sewage	effluent	near Farmi	ngton					
Mar. 20, 1964 Aug. 18	46 66	2.3 2.8	-	:	-	121 112	24 14	:	:	110 75	39 34	688 536	:	-	1,120 945	:
				(21) S	outh Da	vis County	treated	sewage e	ffluent at	West Boun	tiful					
Mar. 20, 1964 Aug. 18	49 69	4.6e 5.1e	2	-	:	171 136	10 7.9	-	1	230 111	56 50	844 560	-		1,350 994	-
			(22)	Jordan	River a	JORDA	e City (includes	SYSTEM	unal at Sal	t Lake Cit	ty)		-	_	
Nov. 5, 1963	53	198	18	152	75	209		10,184	515	320	6.1	1,430	690	539	2,100	6.8
Dec. 12 Jan. 15, 1964 Feb. 20 Mar. 20 Apr. 18	42 36 45 50 49	183 169 175 187 205	20 22 21 23 17	143 150 139 143 120	76 80 66 77 56	204 199 197 209 179		244 248 294 304 262	458 477 381 413 320	305 305 285 310 260	8.6 6.6 11 11 7.6	1,400 1,410 1,300 1,380 1,100	670 702 620 672 530	470 499 379 423 315	2,010 2,030 1,860 2,050 1,630	8.5 7.5 7.5 7.6 7.5

Table 14. - continued

								Parts pe	r million							<u> </u>
Date of collection	Temperature (°F)	Mean discharge (cfs)	Silica (SiO ₂)	Calcium (Ca)	Magnesium (Mg)	Sodium (Na)	Potassium (K)	Bicarbonate (HCO ₃)	Sulfate (SO4)	Chloride (C1)	Nitrate (NO ₃)	Dissolved solids (residue on evapo- ration at 180°C)	Hardness as CaCO3	Noncarbonate hardness as CaCO3	Specific conductance (micromhos/cm at 25°C)	Hq
						JORDAN RIV	TER DRAIN	AGE SYSTEM	Continu	ed						
		(:	22) Jord	an Rive	r at Sa	lt Lake Ci	lty (incl	udes Surpl	us Canal	at Salt La	ke City)	Continued				
June 18, 1964 July 14 Aug. 17 Aug. 28	52 62 64 60	717 201 341 303	11 18 20 18	64 127 124 141	31 65 64 72	88 197 216 220		165 285 296 302	166 361 380 395	117 278 285 326	4.2 11 6.4 10	567 1,260 1,270 1,420	286 582 575 648	151 348 332 400	921 1,870 1,890 2,100	7.4 7.5 7.8 8.2
Weighted average 1964 water year <u>4</u> /	-	275	17	115	58	167		233	337	241	7.2	1,060	526	334	1,630	-
				(23) No	rth Poi	nt Consoli	idated Ca	nal below	Goss Flum	e, at Salt	Lake Cit	y		1		
Sept. 11, 1964	64	51	13	122	69	221	1 (284	389	300	8.8	1,320	586	353	1,930	8.2
Oct 14 1963	59	160			(24) 50	rpius Cana	al at Con	en Flume,	near Salt	Lake City					2 030	<u> </u>
Nov. 19 Dec. 13 Jan. 15, 1964 Feb. 20	45 38 33 36	181 98 69 47					:	-				:			2,130 2,090 2,140 1,990	
Mar. 5	40	44	-	-	-	-	:		-	:	-	-	-	-	2,030	:
Mar. 25 Apr. 17 May 19	45 56 55	53 82 335	-	-	-	-	-	-	-	-	-	-	:	-	2,030 1,990 893	-
May 26	55	380	-	-	-	-	-		-	-	-	-	-	-	603	-
June 22 June 25 July 16 July 23	52 63 76 74	331 214 105 151	10	63 - -	25	- - -	:		-		3.8		260	134	854 887 1,870 1,950	7.6
July 29	74	98	-	-	-	-	-	-	-		-	-	-	-	1,940	-
Aug. 17 Aug. 24 Sept. 23	69 74 60	113 51 137	- 5.1	- - 92	- - 75	- - 208	-	200	- - 385	- - 302	- - .6	- - 1,180	- - 540	- - 376	1,900 1,920 1,830	7.6
Weighted average 1964 water year4/	-	122	-	-	-	-	-	-	-	-	-	-	-	-	1,590	-
	-		(2	5) Salt	Lake C	ity sewage	e effluen	t at Cudah	y Lane, n	ear Salt L	ake City					
Jan. 15, 1964 Feb. 20 Mar. 20 June 22 July 23 Aug. 17	50 52 58 65 76 76	44.5 49.7 55.4 66.6 65.7 54.9	- - 16 - 22	- 134 - 112	- - 64 - 41	- 551 548 - 290	- 25	402	- - 497 - 217	- - 765 668 - 480	- 5.3 2.5 - 1.9	- 2,000 2,020 - 1,470	- - 600 - 450	- 270 - 273	2,680 4,620 3,370 3,210 2,650 2,460	- - 7.4 - 7.3
Weighted average	-	53.4	16	134	64	548		402	497	668	2.5	2,130	600	270	3,210	
					(26) Jo	rdan River	at Cuda	hy Lane, m	ear Salt	Lake City		,		-	,	-
Oct. 14, 1963	58	87	-	-	-	-	-	-	-	- 205	-	-	-	-	1,700	-
Nov. 27 Dec. 13 Jan. 15, 1964	38 36	71 97 103	21 21 20	- 147 141	- 70 78	- 215 196	-	229 226	- 455 491	- 320 280	- 13 8.5	1,380 1,380	- 656 672	- 468 487	2,100 2,050 2,010	- 7.2 7.8
Feb. 20	40	117	21	135	69	182		286	362	280	10	1,260	618	383	1,900	7.6
Mar. 11 Mar. 17 Mar. 20 Mar. 24	43 47 48 46	128 134 104 138	21	136	- 69 -	- 202 -	-	301	372	- 300 -	- 8.0 -	1,310	- 624 -	377	1,900 1,960 1,920	7.4
Apr. 16 Apr. 17 Apr. 23 Apr. 30 May 6 <u>11</u> /	56 52 50 58 48	117 119 119 157 173	- 17 - 12	- 112 - - 89	- 50 - 34	- 153 - 75	- - 6.2	252 - 242	- 293 - 146	- 210 - - 120	11 - 3.8	- 998 - - 649	- 484 - - 362	- 277 - 164	1,740 1,490 1,660 1,500 1,020	7.4
May 21 May 28 June 4 June 18 June 30	51 49 57 55 67	285 216 196 206 156	- - 9.5 -	- - 61 -	- - 22 -	- - 50 -	-	179	- - 99		- - 2.5	- - 407 -	- - 242 -	- - 95 -	464 444 730 682 773	7.6
July 23 July 27 July 30 Aug. 7 Aug. 17	77 69 74 72 72	98 107 82 96 90	18 - - 19	109 - - 112	61 - - 61	186 - - 192	-	268 - - 287	332 - - 349	250 - - - 242	12 - - 7.8	1,130 - - 1,130	522 - - 530	302 - - 295	1,680 1,660 1,700 1,640 1,730	7.4
Aug. 26 Sept. 9 Sept. 14 Sept. 22 Sept. 24	69 66 68 58 58	86 123 120 125 132	- 17 -	- 119 -	- 69 -	- - 194 -	:	- 276 -	- - 355 - -	- - 282 - -	- 10 -	1,250	- - 580 - -	- 354 -	1,640 1,710 1,850 1,880 1,870	8.1
Weighted average 1964 water year4/	-	124	16	109	53	149	-	240	296	213	7.2	961	490	293	1,510	-

Table 14. — continued

-								Parts pe	er million						1	T
Date of collection	Temperature (°F)	Mean discharge (cfs)	Silica (SiO ₂)	Calcium (Ca)	Magnesium (Mg)	Sodium (Na)	Potassium (K)	Bicarbonate (HCO ₃)	Sulfate (SO4)	Chloride (Cl)	Nitrate (NO ₃)	Dissolved solids (residue on evapo- ration at 180°C)	Hardness as CaCO3	Noncarbonate hardness as CaCO3	Specific conductance (micromhos/cm at 25°C)	Hd
						JORDAN RIV	VER DRAIN	AGE SYSTE	MContinu	ued						
				(27) \$	South Da	vis County	y treated	sewage e	ffluent ne	ear Woods C	ross					
Aug. 19, 1964 Mar. 20	64 56	1.5e 2.0	:	-	:	573 659	17 20	1	-	870 970	35 100	1,880 2,160	2	-	3,270 3,680	-
						(28)	Goggin D	rain near	Magna							
Oct. 14, 1963 Nov. 20 Dec. 13 Feb. 18, 1964 Apr. 9	64 37 32 33 46	4.0 1.4 .6 .5 1.5	- 6.9 11 2.4 -	128 194 143	- 272 561 356 -	3,080 6,110 4,540	-	416 627 387	1,460 2,730 1,810	4,450 9,010 6,720	- 4.8 5.2 2.7 -	9,790 19,100 14,200	- 1,440 2,790 1,820 -	- 1,100 2,280 1,500 -	5,320 14,600 27,100 20,800 26,900	- 7.4 7.9 7.8 -
Apr. 17 May 5 June 11 June 24 July 13	59 54 55 61 74	5.8 56 262 316 9.3	14 - 9.8 -	140 - 75 -	158 - 36 -	1,600 	-	361 	920 - 210 -	2,280 - 190 -	10 - 3.6 -	5,340 - 766 - -	1,000 - 336 -	704 - 184 -	8,280 3,300 1,230 1,010 4,980	7.4
July 23 Aug. 17 Aug. 24 Sept. 10 Sept. 11 Sept. 26	79 68 66 59 61 54	2.6 142 104 28 12 7.9	- 19 - 6.5 -	130 - 124	- 66 - - 136 -	- 258 - 971 -	-	300 300	- 402 - 660 -	345 - 1,450	- 4.8 - 2.8 -	1,380 - 3,650	- 595 - - 870 -	- 349 - 624 -	8,970 2,090 1,900 2,990 5,570 5,550	7.9
Weighted average 1964 water year <u>4</u> /	-	51.3	10	120	74	360		260	500	480	3.0	1,680	604	390	2,800	
					-	(29) Lee Cr	eek near N	Magna							-
Oct. 14, 1963 Nov. 19 Dec. 13 Jan. 15, 1964 Feb. 20	69 47 36 24 38	4.0m 3.6m 1.0m -										- 137,000 -			45,500 11,600 139,000 106,000 37,300	
Mar. 19 Mar. 20 Apr. 9 Apr. 17 May 14	42 43 61 64 53	29m 29m 1.7m 1.4m 2.1m	•		•••••										28,800 19,900 103,000 113,000 136,000	
June 22 July 23 Aug. 17 Sept. 11	57 85 76 68	20m 4.2m 14m 3.2m	9.6 - - 18	189 - 114	1,930 - - 4,400	28,500 - 22,300	÷	208 - - 385	4,890 - - 9,780	46,100 - - 39,900	32 - 12	86,100 - - 84,300	8,430 - - 18,400	8,260 - 18,000	96,000 158,000 163,000 85,300	8.2 - 7.8
	_					(30) K	lennecott	Drain nea	ar Magna							
Oct. 14, 1963 Nov. 19 Dec. 13 Jan. 15, 1964 Feb. 20	62 49 41 38 42	108 76 71 53 77	- 72 31 48 32	277 265 299 285	- 109 92 119 117	923 883 1,070 836	-	142 270 67 152	- 736 701 807 797	- 1,600 1,420 1,880 1,450	- 7.4 7.4 14 11	4,080 3,820 4,830 4,100	- 1,140 1,040 1,240 1,190	1,020 819 1,180 1,070	4,730 6,190 5,540 6,940 5,770	6.5 8.0 6.6 7.7
Mar. 11 Mar. 19 Mar. 19 Mar. 19 Mar. 20	48 39 43 43 45	75 213m 204m 204m 141m	20 - 23 -	339 - 339 -	- 107 - 118 -	1,040 1,370 1,420	-	56 151 - 127 -	1,040 859 - 907 -	1,790 2,300 - 2,380 -	- 5.3 - 5.3 -	4,810 5,490 - 5,670 -	1,400 1,280 - 1,330	1,350 1,160 - 1,230	6,810 8,020 8,190 8,250 16,000	6.0 7.1 6.6
Mar. 20 Mar. 21 Mar. 24 Apr. 9 Apr. 16 Apr. 18	47 43 46 35 52 55	156m 101 97 70 65 53	15 - 42 - 57	335 	202 - 102 - 107	2,320 5,980 1,800 930 - 1,140	-	138 123 73 45 - (12)	932 1,550 838 731 - 793	3,980 10,000 3,020 1,620 - 1,860	4.7 - 11 10	8,400 19,600 6,630 4,380 - 4,400	1,660 2,820 1,280 1,070 - 970	1,550 2,720 1,220 1,030 -	12,400 27,700 9,850 6,470 6,330 6,610	7.1 6.7 6.6 6.0 - 4.4
May 19 June 18 July 23 Aug. 3 Aug. 17	73 62 76 78 71	40 147 77 74 96	23 26 - 22	240 216 -	- 77 117 - 96	- 889 902 - 711	-	142 301 304	- 612 605 - 507	1,480 1,490 - 1,120	- 7.6 4.3 - 4.7	3,630 3,710 - 2,880	915 1,020 - 815	- 799 773 - 566	7,330 5,510 5,550 4,690 4,440	6.9 7.7 - 8.0
Aug. 25 Sept. 10 Sept. 11 Sept. 22	66 61 63 60	78 97 108 111	17	136	- 97 -	- - 496 -	-	304	- - 471 -	- - 762 -	- - 3.6 -	- 2,250 -	- 740 -	- 491 -	3,990 3,670 3,390 8,680	7.8
Weighted average 1964 water year <u>4</u> /	-	80.2	40	230	100	950		170	700	1,500	10	3,610	985	846	5,800	-

Table 14. - continued

							_	Parts per	million						a ()	
Date of collection	Temperature (°F)	Mean discharge (cfs)	(char bar char bar char bar char bar char char char char char char char ch	Nitrate (NO ₃)	Dissolved solids (residue on evapo- ration at 180°C)	Hardness as CaCO3	Noncarbonate hardness as CaCO3	Specific conductanc (micromhos/cm at 25°	Hq							
			1.1			ORDAN RIV	ER DRAIN	AGE SYSTEM	1Continu	ed						
						(31) G	arfield 1	Drain nea:	Magna							
Oct. 14, 1963	71	0.6	-	-	-	-	-	-	-	-	-	÷	-	-	25,500	-
Nov. 5	67	1.9	71	277	97	1,330	1.00.12	(13)	2,760	2,430	16	6,360	1,090	-	18,200	1.7
Nov. 19	61	.7	-	-	-	-	-	-	-	-	-	-	-	-	19,300	-
Dec. 13	58	1.0	-	-	-	-	-	-	-	-	-	-	-	-	18,600	1.7
Jan. 15, 1964	52	1.1	-	-	-	-	-		-	-	-	-	-	-	19,300	1.7
Feb. 20	59	.8	-	-		-	-	-	1	-	-	-	-	-	18,400	1.8
Mar. 20	75	11	-	-	-	-	-	-	-	-	-	-	-	-	7,360	3.7
Apr. 18	61	.7	-	-	-	-	-	-	-	-	-	-	-	-	19,800	-
May 6	66	1.0	-	-	-	-	-	-	-		-	-	-	-	17,700	-
May 29	65	2.2	-	-	-	-	-	-	-	-	-	-	-	-	10,400	-
June 18	81	2e	36	427	94	1.340		(14)	1,800	2,250	3.0	5,600	1,450	-	11,100	2.0
July 23	83	.4	-	-	-	-	-	-	-	-	-	-	-	-	9,170	7.2
Aug. 17	80	.6	-	-	-	-	-	-	-	-	-	-	-	-	8,960	8.2
Sept. 11	90	12	16	232	100	1,440		236	441	2,450	7.4	5,260	990	796	7,950	7.6

1/ Analysis includes 0.13 ppm boron and 0.4 ppm fluoride. 2/ Analysis includes 0.13 ppm boron and 0.3 ppm fluoride. 3/ Includes 6 ppm carbonate. 4/ Chemical data estimated for periods of missing record; represents 100 percent of streamflow. 5/ No discharge from lake. 6/ Includes 8 ppm carbonate. 7/ High stage of Great Salt Lake caused brine to reach sampling site; not included in chemical weighted averages. 8/ Analysis includes 0.15 ppm boron, 0.7 ppm fluoride, and 0.00 ppm manganese. 9/ Analysis includes 0.3 ppm boron and 0.3 ppm fluoride. 10/ Includes 13 ppm carbonate. 11/ Analysis includes 0.15 ppm boron, 0.3 ppm fluoride. 10/ Includes 13 ppm carbonate. 11/ Analysis includes 0.15 ppm boron, 0.3 ppm fluoride. 12/ Hydrogen ion (H⁺) concentration 1 ppm; note pH. 13/ Hydrogen ion (H⁺) concentration 14 ppm; note pH. 14/ Hydrogen ion (H⁺) concentration 14 ppm; note pH.

Table 15. - Chemical analyses of water from selected sites along the shore of Great Salt Lake

Location: In order starting at Promontory Point and moving clockwise around Great Salt Lake. Discharge: Measurements based on cross sectional area and surface-velocity measurements or on computation of flow over weirs; a, no measureable flow; b, current-meter measurement; e, estimated.

	Location and sampling site		Date of collection	Discharge (cfs)	Parts per million					-	
Site number in figure l					Sulfate (SO4)	Chloride (Cl)	Dissolved solids (residue on evaporation at 180°C)	Hardness as CaCO3 (calcium, magnesium)	Specific conductance (micromhos/ cm at 25°C)	Density (grams/ml at 20°C)	Tem- per- ature (°F)
		BOX ELDER COUNTY			· · · · · · · · · · · ·						
32 33 34	(B-7-5)22ca 22cd 22bd	Spring	10-16-63 10-16-63 10-16-63	0.1 (a) .1	:	10,200	2,390 18,900 3,900	2,680	4,170 27,500 6,650	- 1.008 -	62 67 64
35 36	22ba 22ba	Stream below confluence of discharge from two springs	10-16-63 10-16-63	.6 (a)	1	5,890	11,600 5,050	1,460 1,480	17,500 8,600	1.003	70 65
38 39 40	15cc 15cb 15cb	Outlet to manmade pool east of road . Pothole spring, 3 feet deep Spring,	10-16-63 10-16-63 10-16-63	.2 .7 .1	-	2,200 13,000	3,860 24,600 2,110	700 3,110	6,770 34,400 3,700	1.011	65 77 62
41 42 43 44	15cb 15bb 15bb (B-9-5)32bc	Largest of five springs in seep area. Spring	10-16-63 10-16-63 10-16-63 10-16-63	(a) .le .le .l		4,180 610 - 1,640	7,890 1,320 1,230 3,140	874 345 - 400	12,800 2,350 2,140 5,490	1.001 - - -	55 60 60 69
		DAVIS COUNTY									
45 46	(B-3-3)27bb (B-4-3)32ba	Spring	4-20-64 4-20-64	.1 1.5	-	260 650	628 1,380		1,130 2,260	-	67 65
		TOOELE COUNTY									
47 48 49 50	(C-2-5)1bb (C-1-6)26ba (B-1-6)13ad 13aa	Sixmile Creek near Grantsville Surface runoff near Solar Salt Plant. Seep area	4-22-64 9-24-63 9-24-63 9-24-63	7.4b .4 (a) (a)		10,000 11,800 -	18,800 22,600 3,240 2,360	2,490	26,800 32,300 5,570 4,110	1.009 1.011 -	- 62 66 67
51 52	12aa lac	Seep area	9-24-63 9-24-63	(a) (a)	÷	1,100 1,520	2,200 2,890	380 460	3,770 4,960	1	69 74
53	(B-2-6)25ca	Northernmost in series of four pools at seep area	9-24-63	(a)	-	1,690	4,140	625	5,820	1.000	78
55	(C-1-7)25ad	at seep area	9-24-63	(a)	-	-	13,300	1,400	20,400	1.004	86
56 57 58	25ac 15ac 15ba	springs	9-11-63 9-11-63 9-11-63 9-11-63	.9 .4 .1e 1.0		8,680 - 6,780	15,900 14,800 11,800 12,900	1,240 - 1,020	24,500 22,800 18,800 20,200	1.006 1.006 1.003 1.004	80 76 87 78
59	9cb	Big Spring at U.S. Highway 40 Timpie Springs Waterfowl Management Area:	9-11-63	6.0		4,420	8,510	684	13,800	1.001	70
60 61 62 63	9ab 10bb 3bc (B-2-9)25ca	West part upper lake East part upper lake Lower lake Pool inside cave	9-11-63 9-11-63 9-11-63 8-26-63	2 1.5 .7 (a)	- 930 -	4,970 5,490 12,200 356	9,000 9.860 21,900 940	718 718 1,380 270	14,700 16,000 31,400 1,680	1.002 1.002 1.012 -	76 72 73 57
	0.0	BOX ELDER COUNTY									
64 65	(B-11-11)6cd (B-14-8)2ccd	Stream at abandoned Western Pacific Railroad bridge fed by springs Deep Creek at U.S. Highway 30S, near	4-23-64	.1	-	15,200	26,600		37,100	1.015	46
		Snowville	8-27-63	5	-	218	746	322	1,290		67
66 67	(B-11-10) 10cb (B-12-10) 35dc	West lake at south dike	8-27-63 4-24-64	23	108	2,150	2,950	550	6,120 4,740	-	43
68	(B-11-10)13ba	dam	8-27-63 4-24-64 8-27-63	12 1 9	- 103 138	1,220 1,400 2,100	2,480 2,590 3,480	520 570 540	4,050 4,140 5,950	-	72 44 75
69 70	(B-11-9)2cc	Pothole spring, 28 feet deep	4-24-64 8-27-63	11 .2	126	1,700 43,700	3,310 79,500	580 5,730	5,300 94,100	1.050	47
71	10aa	14, and 6 feet deep	8-27-63 8-27-63	.9 .1		28,100	89,200 50,900	4,130	103,000 66,200	1.058 1.030	64
72 73 74 75 76 77 78 79	(B-11-8)2cb 12ca 12dc (B-9-7)2ac (B-9-6)32dd (B-8-6)4ccc-1 21ca 21ca	Stream about 5 miles downstream from spring. Stream, middle distributary. Flowing well. At ranch. Flowing well. Stream below large spring area. Stream below small spring area.	4-24-64 4-24-64 8-28-63 8-28-63 8-28-63 8-28-63 8-28-63	1.0 1.5 1.5 .4 1.5 .3 .3 .1	442 182 222 - - - - -	14,300 4,230 4,690 88 1,410 625 730	26,100 7,860 8,430 371 2,620 1,290 1,490 1,590	2,020 680 660 208 620 230 250	35,800 12,700 13,700 667 4,700 2,390 2,760 2,860	1.012 1.000 1.001 - - -	49 47 47 - - -

Figure 1. — Map of Great Salt Lake showing the 1964 data-collection sites, the boundary of the lake area and the lakeshore.

UTAH GEOLOGICAL AND MINERALOGICAL SURVEY

103 Utah Geological Survey Building University of Utah Salt Lake City, Utah 84112

THE UTAH GEOLOGICAL AND MINERALOGICAL SURVEY since 1949 has been affiliated with the College of Mines and Mineral Industries at the University of Utah. It operates under a director with the advice and counsel of an Advisory Board appointed by the Board of Regents of the University of Utah from organizations and categories specified by law.

The survey is enjoined to cooperate with all existing agencies to the end that the geological and mineralogical resources of the state may be most advantageously investigated and publicized for the good of the state. The Utah Code, Annotated, 1953 Replacement Volume 5, Chapter 36, 53-36-2, describes the Survey's functions.

Official maps, bulletins, and circulars about Utah's resources are published. (Write to the Utah Geological and Mineralogical Survey for the latest list of publications available).

THE LIBRARY OF SAMPLES FOR GEOLOGIC RESEARCH. A modern library for stratigraphic sections, drill cores, well cuttings, and miscellaneous samples of geologic significance has been established by the Survey at the University of Utah. It was initiated by the Utah Geological and Mineralogical Survey in cooperation with the Departments of Geology of the universities in the state, the Utah Geological Society, and the Intermountain Association of Petroleum Geologists. This library was made possible in 1951 by a grant from the University of Utah Research Fund and by the donation of collections from various oil companies operating in Utah.

The objective is to collect, catalog, and systematically file geologically significant specimens for library reference, comparison, and research, particularly cuttings from all important wells driven in Utah, and from strategic wells in adjacent states, the formations, faunas, and structures of which have a direct bearing on the possibility of finding oil, gas, salines or other economically or geologically significant deposits in this state. For catalogs, facilities, hours, and service fees, contact the office of the Utah Geological and Mineralogical Survey.

THE SURVEY'S BASIC PHILOSOPHY is that of the U. S. Geological Survey, i.e., our employees shall have no interest in Utah lands. For permanent employees this restriction is lifted after a 2-year absence; for consultants employed on special problems, there is a similar time period which can be modified only after publication of the data or after the data have been acted upon. For consultants, there are no restrictions beyond the field of the problem, except where they are working on a broad area of the state and, here, as for all employees, we rely on their inherent integrity.

DIRECTORS:

William P. Hewitt, 1961-Arthur L. Crawford, 1949-1961