
WATER-RESOURCES BULLETIN 12 1969

UTAH GEOLOGICAL AND MINERALOGICAL SURVEY affiliated with THE COLLEGE OF MINES AND MINERAL INDUSTRIES University of Utah, Salt Lake City, Utah

GREAT SALT LAKE, UTAH:

Chemical and Physical Variations of the Brine, 1963-1966

Prepared by The United States Geological Survey in cooperation with The Utah Geological and Mineralogical Survey

Price \$2.00

UNIVERSITY OF UTAH James C. Fletcher, President

INSTITUTIONAL COUNCIL

Edward W. Clyde						•		Chairman
Joseph E. Bernolfo, Ju	· .							Vice Chairman
Burtis R. Evans								Alumni President
Linn C. Baker							•	Member
Reed W. Brinton		•	•	•			•	Member
Robert H. Hinckley.			•				•	Member
Fullmer H. Latter		•	•		•	•	•	Member
Calvin W. Rawlings			•				•	Member
Dorothy Watkiss		•		•	•	•	•	Member

UTAH GEOLOGICAL AND MINERALOGICAL SURVEY

William P. Hewitt, Director

ADVISORY BOARD

John M. Ehrhorn, Chairman	 U.S. Smelting, Refining, & Mining Co.
Graham S. Campbell	Intermountain Association of Geologists
LaVaun Cox	Utah Petroleum Council
John K. Hayes	U.S. Steel Corporation
Lehi F. Hintze	Brigham Young University
Lowell S. Hilpert	U.S. Geological Survey
Ezra C. Knowlton	Utah Sand & Gravel Products Corporation
Kurt O. Linn	Texas Gulf Sulphur Corporation
James D. Moore	The Anaconda Company
W.J. O'Connor, Sr	Independent Coal and Coke Company
Howard Peterson	Utah State University
Paul S. Rattle	Utah Mining Association
Joe B. Rosenbaum	U.S. Bureau of Mines
Raymond T. Senior	Attorney
William L. Stokes	
Alvin J. Thuli, Jr	 Kennecott Copper Corporation
J. Stewart Williams	Utah State University
William P. Hewitt	 Director, U.G.M.S., Ex-officio Member
George R. Hill	D Giller of Minor Fre officia Mamba

Photography and uncontrolled mosaic by Intermountain Aerial Surveys. Photographed during November 1965 and March 1966.

EAT SALT LAKE, UTAH: 1700

Chemical and Physical Variations of the Brine, 1963-1966

by D. C. Hahl and A. H. Handy U.S. Geological Survey

THE COLLECT OF MINERALOGICAL SURVEY of filmted with THE COLLECT OF MINES AND MINERAL INDUSTRIES University of Utah, Salt Lake City, Utah

CONTENTS

	Page
ABSTRACT	5
INTRODUCTION	5
DESCRIPTION OF GREAT SALT LAKE	7
Physical Description	7
Inflow and Evaporation	8 11
CHEMICAL AND PHYSICAL	
CHARACTERISTICS OF THE BRINE	13
Chemical Characteristics	13
General Discussion	13 15
Chemical Characteristics South of the Causeway	18
The Shallow Zone	18
The Deep Zone	19
Physical Characteristics	21
Temperature	21 25
CONCLUSIONS	25
REFERENCES	26
	20
APPENDIX	27
Sampling Equipment	29
Orthometric Adjustment	29
Salt Gage	29

ILLUSTRATIONS

Tuentie									
Frontis	piec	Aerial photographic mosaic of Great Salt Lake, Utah	•	•	•	•	•	•	1
Figure	1.	Map showing locations of sampling sites, concentrations of dissolved solids, and inferred direction of currents in Great Salt Lake during October 1965 and May 1966, and diagrammatic longitudinal section of Great Salt Lake indicating locations of the four brines	•		•		•		6
	2.	Map showing location of Great Salt Lake and its major tributaries and isohyetal lines showing distribution of normal annual precipi- tation in northern Utah					•		After 8
	3.	Aerial photograph of features in a part of Great Salt Lake, 3 miles east of Lakeside			•				9
	4.	Graph showing relations among surface altitude, surface area, and volume of Great Salt Lake prior to 1957							10
	5.	Graph showing fluctuations in surface altitude of Great Salt Lake, 1851–1966							11

Illustrations (continued)

Figure	6.	Diagrammatic cross section of railroad causeway showing observed directions of brine movement through the culverts	12
	7.	Graph showing surface altitude of Great Salt Lake at Salt Lake County Boat Harbor and at Little Valley Harbor and representative concentra- tions of dissolved solids in the brine in the shallow zone 0-16 feet below the lake surface, 1963-66	13
	8.	Graph showing relation of concentration of dissolved solids to surface altitude in the southern part of Great Salt Lake before and after com- pletion of the causeway in 1957	15
	9.	Graph showing seasonal variations of the relation of concentration of dissolved solids to density in the brines of Great Salt Lake	16
	10.	Graph showing concentrations of dissolved solids in brine in the shal- low zone in the southern part of Great Salt Lake	19
	11.	Graph showing variations with depth of concentration of dissolved solids and constituent ions at high and low lake stages during the 1966 water year at sites 10 and 15	20
	12.	Graph showing variations with depth of concentration of dissolved solids and constituent ions at high and low lake stages during the 1966 water year at sites 15, 25, and 28	22
	13.	Graph showing relation of concentrations of magnesium, chloride, and sodium to density of the brine, October 1965	23
	14.	Graph showing relation of lithium concentration to density of the brine, October 1965 and December 1964 to May 1966	24
	15.	Sketch of sampling equipment	28
	16.	Sketch showing construction of salt gage	29

Page

TABLES

Table	1.	Composition in percentage (by weight) of dissolved solids in Great Salt Lake brine
	2.	Analysis of samples obtained on selected dates from site 7 at a depth of 5 feet
	3.	Analysis of the salt crust sampled near Rozel Point, 1964
	4.	Salt accumulation or loss near Rozel Point, 1964-66
	5.	Mean and standard deviation of concentrations of dissolved solids in different parts of the lake
	6.	Analyses of samples obtained on selected dates from site 15 at a depth of 5 feet
	7.	Chemical analyses of brine from Great Salt Lake

GREAT SALT LAKE, UTAH:

Chemical and Physical Variations of the Brine, 1963-1966 by D. C. Hahl and A. H. Handy

U.S. Geological Survey

ABSTRACT

Great Salt Lake is a shallow, closed-basin lake in northern Utah. Its surface area and concentration of dissolved solids vary in response to both annual and long-term climatic changes. The lake gains water mainly as streamflow from mountains to the east and loses water through evaporation. In 1965, at a lakesurface altitude of 4,194 feet, the surface area was about 1,000 square miles, and the maximum measured depth was 27 feet.

Studies to define the variations in chemical and physical characteristics of the brine began in 1963, and detailed sampling of the lake at 29 sites was made in October 1965 and May 1966. Data resulting from concurrent sampling of the 29 sites indicated that four types of brine coexist in the lake.

The concentration of dissolved solids in the Great Salt Lake brine has always varied from place to place and with depth. Inflow, evaporation, currents, wind, and density differences resulted in brine stratification in the deep parts and brine concentration in the shallow, isolated parts of the lake.

Completion of a railroad causeway by the Southern Pacific Co. in 1957 divided the lake into two parts and altered the movement of brine. The northwestern part of the lake was essentially cut off from direct fresh-water inflow by the causeway, and as a result it was saturated and well mixed from 1963 to 1966. During the main evaporation season (June-October), a layer of salt crust was precipitated on the lakebed north of the causeway. Near Rozel Point the salt crust contained 99.6 percent sodium chloride.

The southern two-thirds of the lake receives over 90 percent of the surface inflow and since 1957 has rarely reached saturation. The southern part of the lake is not well mixed, and three types of brine have been identified by their location, concentrations of specific ions, and concentrations of dissolved solids. These brines are located (1) in a zone from the surface to a depth of about 16 feet, (2) in the zone below 16 feet south of the causeway, and (3) in the zone below 16 feet in the south end of the lake 1/2.

The shallow zone of brine in the southern part of the lake varies in concentration of dissolved solids from

season to season because of the interplay between inflow and evaporation, Brine in this zone is usually the most dilute of any brine in the lake.

The two deep brines in the southern part of the lake contain almost the same concentration of dissolved solids, which is greater than that of brine in the shallow zone but not quite as great as that of brine north of the causeway. The concentrations of dissolved solids of the deep brines also vary seasonally.

Brine in the deep zone near the south side of the causeway is maintained by a density current that flows at depth from the northern part of the lake through the causeway.

Brine in the deep zone at the south end of the lake is distinguished from the three other brines in the lake by its high concentration of sodium ion and its low concentration of sulfate ion. This brine might result from the inflow of ground water through a zone of sulfate reduction at the lakebed.

Brine north of the causeway is reddish-brown and visibility of an object placed in it is limited to about 2 feet, whereas brine south of the causeway is green and bottom features 15 feet below the surface can often be clearly seen.

Studies describing the relations among the interchange of brine through the causeway, the thickness of the salt crust, the concentrations of dissolved solids in the brine, and identifying the source of deep brine at the south end would provide information needed for future lake management.

INTRODUCTION

This report gives the results of an investigation of the chemical and physical characteristics of the brine in Great Salt Lake, Utah, by the U.S. Geological Survey in cooperation with the Utah Geological and Mineralogical Survey from 1963 through 1966. The purpose of the investigation was to determine the seasonal and annual variations in the characteristics of the brine and the variations from place to place and at various depths in the lake. Such variations in the characteristics of the brine had been noted in prior studies under the same cooperative program. (See Hahl and Mitchell, 1963, and Hahl and Langford, 1964.)

None of the previous studies of the lake provided much information on the chemistry of the brine. Investigations of the chemical and physical characteristics of

Data collected by the Utah Geological and Mineralogical Survey during 1967 and 1968 indicate that the more dense brines occurred at depths of about 20 feet or more.

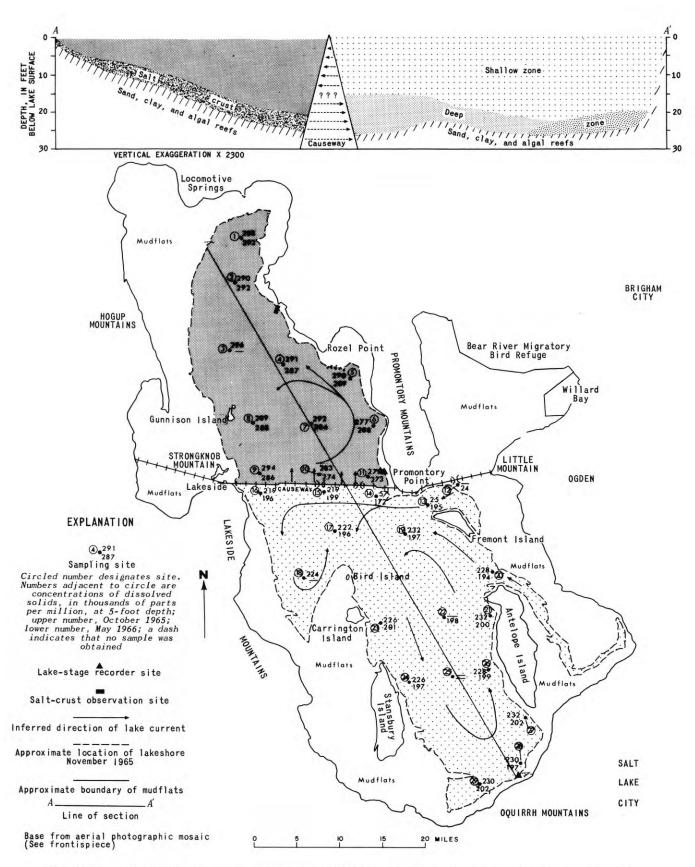


Figure 1. — Locations of sampling sites, concentrations of dissolved solids, and inferred direction of currents in Great Salt Lake during October 1965 and May 1966, and diagrammatic longitudinal section of Great Salt Lake indicating locations of the four brines (stippled patterns).

the brine were made as early as 1845 when John C. Fremont (Miller, 1966, p. 8) determined that the evaporation of 5 gallons of brine yielded 14 pints of salt. Subsequent information on the chemistry of the brine was limited by the small amount of miscellaneous sampling, which, from 1845 to 1962, was apparently only at the surface and near the shore of the lake. Numerous publications on Great Salt Lake are listed in Woolley and Marsell (1946), and subsequent pertinent studies are cited in this report.

During 1963 and 1964 the study of the variations in the chemistry of Great Salt Lake was greatly facilitated by the Southern Pacific Co. Geological Survey personnel were permitted access to the railroad causeway and taken on the lake in the company's tugboats. Data were obtained from surface and bottom points in the deeper parts of the lake. The data obtained indicated that the concentrations of dissolved solids increased with depth and that chemical characteristics varied from place to place. These data were useful in designing the sampling program that was carried out during 1965 and 1966.

During 1965 and 1966, 29 sites (fig. 1) were sampled using a boat owned by the Utah Geological and Mineralogical Survey. Sampling trips were made in October 1965 and May 1966, and during each trip the sites were sampled in less than 4 days to obtain concurrent data. At most sites samples were taken at the surface and at the bottom and at intervening 5-foot intervals. The accuracy of the measurement of the sampling depth was ± 0.5 foot.

The samples were collected in the 2-liter sampling device described in the appendix of this report. The device was specially built because most commercial depth-sampling devices contain too many metal parts to permit trouble-free sampling of brine. Two samples were collected at each sampling point. The first sample was used to determine the water temperature and to rinse the sampling bottle, the second sample was poured into a 1-liter polyethylene bottle for eventual analysis. Sampling always proceeded from surface to bottom at each sampling site to avoid agitation of the unsampled brine.

The dissolved ions in the brine samples were determined using an adaptation of chemical methods used in the analysis of fresh water (Rainwater and Thatcher, 1960). The headings in table 7 in the appendix of this report list the ions determined. A few analyses of strontium, bromide, and iodide and some spectrographic analyses also were made. Brine analysis is not as precise as fresh-water analysis because of the necessity to dilute the brine prior to analysis. Dilution alone may introduce as much as a 2 percent error in the quantitative determination.

Data collected between December 1963 and June 1966 are given in table 7. However, data collected infrequently since 1930 were used in an attempt to relate observations made about the brine during 1965-66 to brine conditions in other periods. The available data for the period March 1930 through November 1961 are reported in Hahl and Mitchell (1963, p. 38-40).

The authors were assisted in data interpretation by B. F. Jones of the Geological Survey, who suggested the probable sequence of chemical reactions that occur in the south end of Great Salt Lake.

During the period of investigation of Great Salt Lake, aerial photographs were made for control in planned topographic mapping, for experimental purposes, and for delineation of the shoreline. Study of the photographs, which include panchromatic, infrared, color, and infrared-sensitive color, vielded information that was useful to the authors in the interpretive phase of this investigation. The frontispiece in this report is a copy of an uncontrolled mosaic compiled from about 1,000 photographs. The photographs were matched without controlling lineal distances in order to avoid prohibitive expense, but the positions of all features shown on the mosaic are virtually correct. Comparison of the distances between points shown on the Brigham City and Tooele Army Map Service maps, scale 1:250,000, with the distances between the same points on the mosaic, indicate less than 5 percent deviation in scale. On the plane of the page, the deviation is about the same in all directions.

Supplementary information on the physical characteristics of Great Salt Lake were obtained from salt gages and two water-stage recorders, the latter maintained in cooperation with the Utah State Engineer. A set of three salt gages was installed near Rozel Point (fig. 1) to measure variations in the thickness of precipitated salt on the lake bottom and shore. A water-stage recorder was installed at Little Valley Harbor on the west side of the Promontory Mountains (fig. 1) to provide data on the lake level in the northwestern part of Great Salt Lake. Data collected at this site, when compared with data which have been obtained from the recorder at the south end of the lake at the Salt Lake County Boat Harbor since 1938, provides information on differences in lake-surface altitude between the two parts of Great Salt Lake.

DESCRIPTION OF GREAT SALT LAKE

Physical Description

Great Salt Lake, in northern Utah (fig. 2) and in the northeastern part of the Great Basin, is the largest lake in the Western Hemisphere which does not drain to an ocean. In 1965, it covered about 1,000 square miles and had a maximum measured depth of 27 feet. Great Salt Lake is a remnant of Lake Bonneville, a Pleistocene lake which had an area of about 20,000 square miles at its highest stage during late Pleistocene time, and which reached a depth of 1,000 feet before overflowing its basin.

The axis of Great Salt Lake trends northwestward. Mountains that form islands and peninsulas in the lake trend northward and form bays, mainly at the mouths of tributary valleys. At a stage of 4,194 feet above mean sea level (about the mean stage during 1965-66), the lake was about 70 miles long and from 8 to 24 miles wide. The maximum depth measured during 1965-66 was 27 feet at site 15 (fig. 1), where the altitude of the lakebed is 4,167 feet. This point is midway between Promontory Point and Lakeside. The lake as a whole is saucer-shaped in cross section and has appreciable areas of very shallow water bordered by broad mudflats.

The bottom of Great Salt Lake is covered with oolitic sand, mud and clay, salt crust, and algal reef (Eardley, 1938, p. 1311). Figure 3 is an aerial photograph taken late in 1965 from an altitude of 6,000 feet above the lake surface about 3 miles east of Lakeside. Except for the causeway and the markings at A, all the features shown are under water. The feature at A is wavegenerated froth on the surface of the brine. The bottom at B is salt crust that apparently covered most of the lake bottom north of the causeway during the investigation. The bottom at C consists of oolitic sand and at D of algal reefs. The reefs at D are mound shaped, and they extend as such almost to E where they are more elongated and are almost covered with sand.

The stage (lake-surface altitude) and surface area of Great Salt Lake are never constant and change cyclically in response to climatic factors. Because of the gently sloping bottom in the near-shore areas, a relatively small change in stage results in a large change in area and a significant change in volume of brine in the lake. Figure 4 is a graphic compilation of stagearea-volume relations for the period prior to 1957.

The aerial photographs used for the frontispiece were taken when the lake surface was at about 4,194 feet, and the area of the lake, planimetered from the mosaic, was 1,060 square miles. From figure 4, the surface area of the lake at a stage of 4,194 feet is about 1,050 square miles (670,000 acres). Thus the relation shown in figure 4 is fairly accurate for the altitude of 4,194 feet.

Volume relations, however, are not accurate for the period since 1957. The inaccuracies are due largely to changes in the northern part of the lake where precipitated salt seems to have partially filled the lake. Altitudes of the lakebed north of the causeway determined during this investigation differed by more than 5 feet from the altitudes determined from soundings made by the Salt Lake County Yacht Club, Howard Stansbury, and others (Ostermeier, 1947). At two locations the apparent difference is as much as 16 feet, but such large differences may be due to errors in location.

South of the railroad causeway, lakebed altitudes determined during this investigation did not differ more than 3 feet from those reported by Ostermeier (1947). Errors in site location could account for the small differences observed.

The Southern Pacific Co. causeway divides the lake into two different hydrologic environments. The railroad first spanned the lake between Promontory Point and Lakeside in 1903 by means of a trestle between short lengths of causeway extending from each shore. (See frontispiece.) In 1957, a continuous fill was completed that paralleled the trestle.

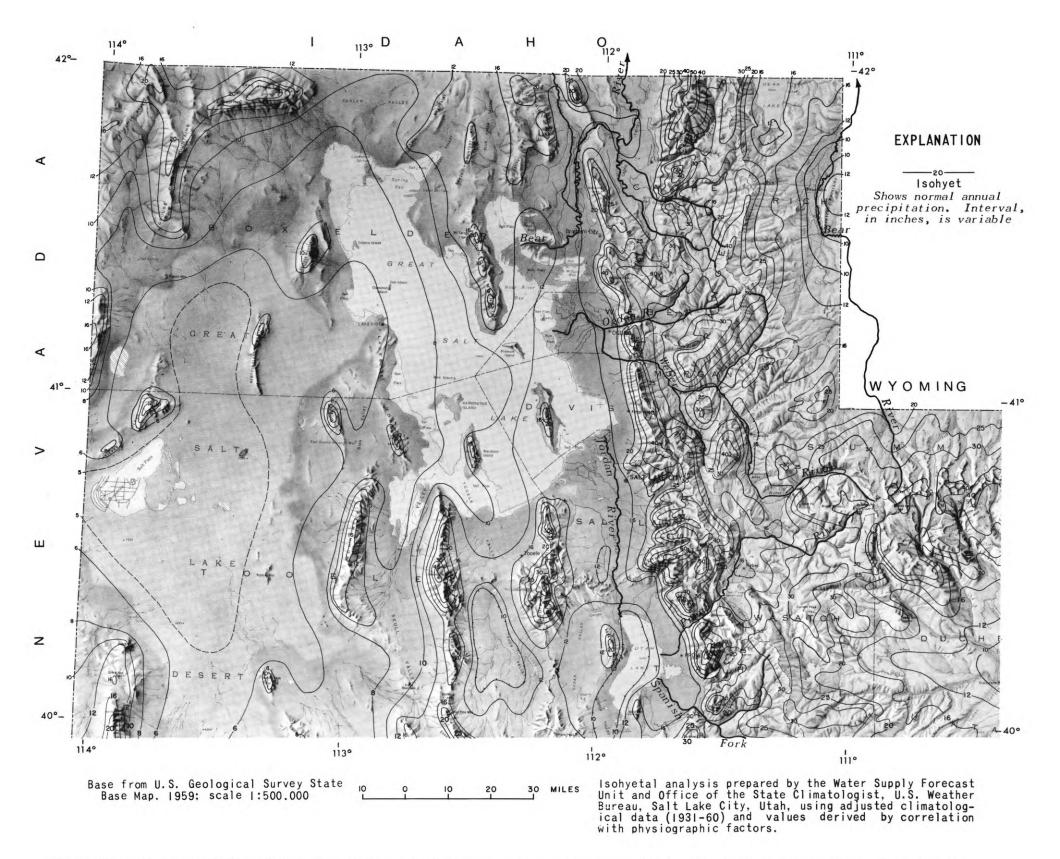
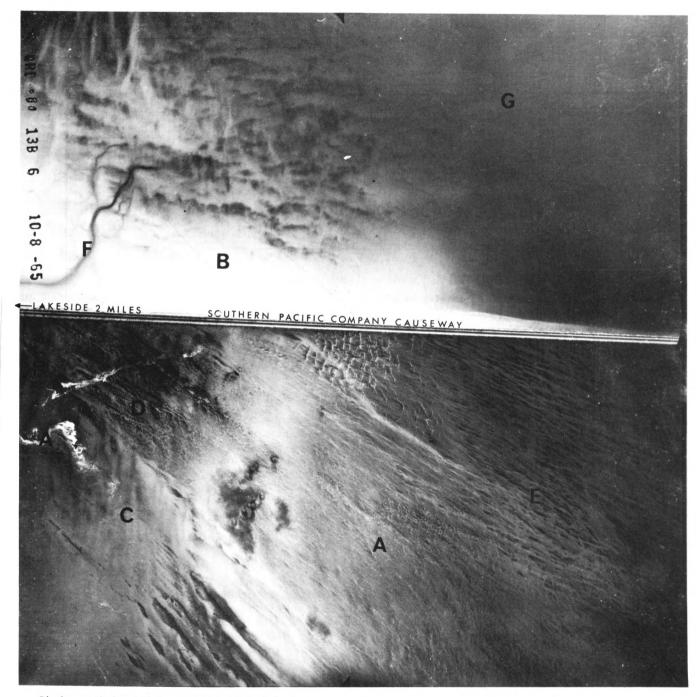
The two parts of the lake are not entirely independent, because the causeway was constructed of permeable fill and is cut by two culverts. Investigations prior to construction shows that much of the causeway is underlain by a bed of Glauber's salt (mirabilite) (Na_2SO_4 . 10H₂O). The bed (Eardley, 1962, p. 5) begins abruptly 6 miles west of Promontory Point where it is more than 50 feet thick. It thins westward and disappears 8 miles east of Lakeside. During construction, the lake sediments were dredged from atop the Glauber's salt bed and the trench backfilled with sand and gravel. Quarry-run limestone and quartzite from the Promontory and Lakeside Mountains were piled on the gravel to a level above the lake surface. This rock material is estimated to be as much as 150 feet wide at the top of the gravel-filled trench and about 50 feet wide at the top of the causeway. Two culverts were installed with their bases about 15 feet above the natural lake bottom. Each has an opening about 15 feet wide and about 20 feet deep. The permeability of the sand and gravel in the trench probably has been reduced by compaction, by movement of the dredged material into the trench, and by precipitation of salt. The causeway fill and the culverts still allow interchange of brine between the two parts of the lake, although a retarding effect is evident. Data from the two lake-stage recorders, after orthometric adjustment (described in appendix), show that the lake surface on the north side of the causeway generally is about 0.3 foot lower than that on the south side.

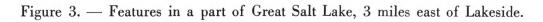
Inflow and Evaporation

Great Salt Lake changes volume continuously in response to the difference between the volume of water gained from inflow and the volume of water lost through evaporation.

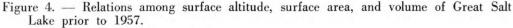
Inflow is mainly from three surface tributaries, the Bear, Weber, and Jordan Rivers, but some water also enters the lake from springs, small streams, drains, and sewage canals, as precipitation on the lake surface, and as discharge from ground-water aquifers. Accurate measurements are not available for the volumes of inflow derived from precipitation or groundwater aquifers.

The inflow from the Bear, Weber, and Jordan Rivers and those associated canals and drains that enter the lake through the embayments east of Promontory Point and Antelope Island delivers about 1.5 million acre-feet of water during a year of average streamflow, such as 1964. This water contains about 2.0 million tons of dissolved solids (Hahl, 1967). These amounts are about 90 percent of the water and about 75 percent of


Figure 2. — Location of Great Salt Lake and its major tributaries and isohyetal lines showing distribution of normal annual precipitation, in inches, in northern Utah. (Shoreline of lake shown at altitude 4,200 feet above mean sea level.)




Photograph by Intermountain Aerial Surveys.

EXPLANATION

- A Froth on lake surface
- **B** Salt crust
- **C** Oolitic sand
- **D** Algal reef
- E Sand partly covering algal reefs F Solution channel in salt crust G Bottom obscured

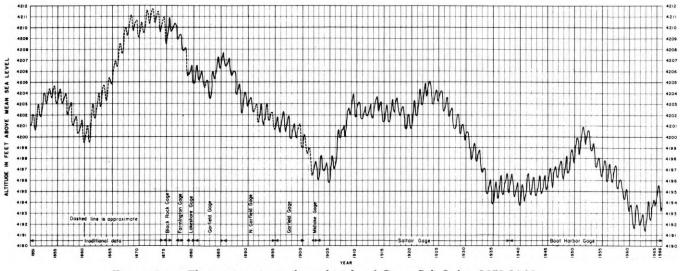


Figure 5. - Fluctuations in surface altitude of Great Salt Lake, 1851-1966.

the dissolved-solids load that enter the lake annually from surficial sources.

Springs, drains, and small streams that discharge into the lake west of Promontory Point and Antelope Island contribute annually the remaining 10 percent of the water and almost 25 percent of the dissolved-solids load from surficial sources.

The volume of water that entered the lake from surficial sources during 1964 was about 17 percent of the volume of brine in the lake, but the dissolved-solids load that entered the lake was less than 0.1 percent of the dissolved-solids content of the brine. Annual inflow thus does not appreciably influence the total amount of salts in solution in the brine but acts mainly as a diluent of the brine. In 1964 spring runoff alone increased the lake stage by about 2 feet and the volume by about 1.5 million acre-feet. (See fig. 7.)

Water leaves the lake primarily by evaporation, and dissolved solids either remain in solution or are precipitated to form lake sediments. Wind action removes some water, dissolved solids, and precipitated solids from the lake, but many of the windborne solids are redeposited within the lake basin and ultimately washed back into the lake.

The three major factors that influence evaporation rates from Great Salt Lake are (1) concentration of dissolved solids in the brine, (2) relative humidity and movement of the air mass over the lake, and (3) temperature of the brine. Other factors being equal, brine with a high concentration of dissolved solids evaporates more slowly than one with lower concentrations. Dry, strong winds carry away more water than calm humid air. For a given concentration, a warm brine evaporates more quickly than a cool one.

The northern part of Great Salt Lake is subject to drying winds (Dickson and McCullom, 1965, p. 17-18); the brine there is saturated and the observed temperature is slightly higher than that in the southern part of the lake. The southern part of the lake, on the other hand, is subject to less drying action from winds, contains brine which generally is not saturated and which, during part of the year, is overlain by a surface layer of fresher water derived from surficial inflow.

Figure 5 shows yearly maximum and minimum surface altitudes of Great Salt Lake for the period 1851–1966. The annual fluctuations result from the constantly varying difference between inflow and evaporation. Periods of low evaporation in winter and high inflow in spring alternate with periods of low inflow and high rates of evaporation in summer and fall. Figure 5 also indicates long-term fluctuations of the lake surface due to variations in climate.

Brine Movement

The brine in Great Salt Lake is in constant motion that is the resultant of several forces: (1) Inertial acceleration of the brine due to the earth's spin (Coriolis effect), (2) inflow, (3) wind, (4) evaporation, and (5) density currents. No detailed study of brine movement was made; qualitative information is available, however, from notes taken by the authors during trips on the lake and from analysis of the chemical data collected during October 1965 and May 1966. The inferred directions of currents are shown in figure 1.

In the Northern Hemisphere, the Coriolis effect produces a counterclockwise circulation in large lakes (Hutchinson, 1957, p. 260-262). In the northern part of Great Salt Lake, eastward movement of brine was observed along the railroad causeway, thus indicating a counterclockwise circulation at the time of observation. South of the causeway, chemical data indicate a westward movement of brine along the causeway. The inferred general counterclockwise circulation is further supported by the location of spits along the edges of the lake. The most prominent of these are west of Carrington Island and east and southeast of Stansbury Island. (See frontispiece.)

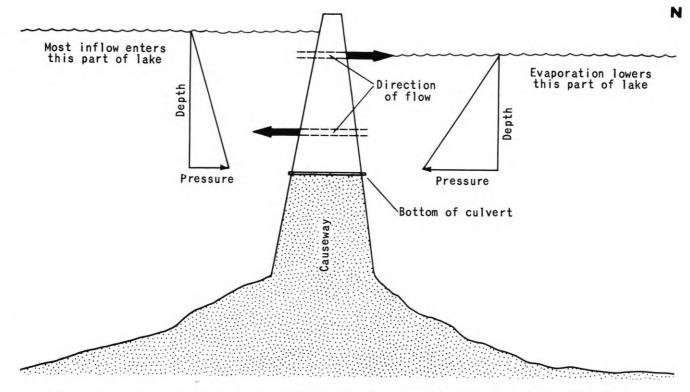


Figure 6. — Diagrammatic cross section of the railroad causeway showing observed directions of brine movement through the culverts.

The Coriolis effect apparently is reinforced by tangential entry of surface inflow south of Promontory Point. Water from the Bear and Weber Rivers is directed toward the west as it flows through the gap between Fremont Island and Promontory Point. The fresh water does not readily mix with the brine, and when sampled during October 1965, there was little evidence of dilution at 5 feet or greater depths at site 13 (fig. 1 and table 7). A surficial layer of diluted brine was traced approximately 27 miles westward toward Lakeside and thence southward along the west shore as far as site 18 near Bird Island.

Superimposed on the general circulation pattern are effects due to the wind. Winds produce wave action and seiches that may temporarily shift or interrupt the direction of shallow currents. Storm winds follow the general alinement of the lake, and the stage of the lake temporarily is affected by wind action which pushes the brine up on the downwind shore. The downwind rise in lake stage averages 1.5 feet above the mean lake stage. With cessation or reversal of the wind, the brine drains back into the lake and causes a small wave (seiche) that surges rhythmically from one end of the lake to the other. The viscosity of the brine damps the seiche. In the undivided lake, prior to 1957, the period of a seiche was about 9 hours; since 1957, the period of a seiche in the southern part of the lake is about 6 hours. Chemical data indicate that the upper 16 feet of the brine usually is well mixed by wave action and seiches, and that mixing extends deeper only during severe storms.

Density currents resulting from evaporation of the brine creates a convection-like movement in the brine. During the generally calm summer, brine in bays and in the large shallow areas of the lake becomes concentrated more rapidly than brine in the open lake. The more concentrated brine in the shallow areas moves downward along the gently sloping bottom to deeper parts of the lake and is replaced by brine from the open lake.

The same type of exchange occurs on a much larger scale between the northern and southern parts of the lake because most of the inflow to the lake enters the southern part, whereas the northern part receives little direct inflow from adjacent uplands.

During the season of maximum inflow, the lake stage south of the causeway rises rapidly, but the stage north of the causeway responds more slowly. The head difference is due to the retarding effect of the causeway, and it results in an observable flow through the causeway fill and culverts from the southern part to the northern part through most of the year. High waves and seiches only occasionally reverse the head difference and thereby reverse the flow. Evaporation in the northern part of the lake concentrates the brines that flow from the southern part, and a part of the concentrated brine returns to the southern part as a density current through the lower parts of the causeway fill and culverts. It is inferred to occur along the entire length of the causeway because the causeway is permeable and flow has been observed through it at the lake surface.

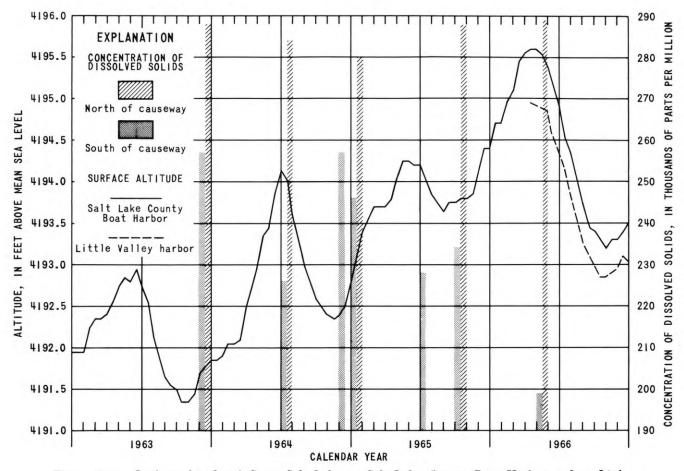


Figure 7. — Surface altitude of Great Salt Lake at Salt Lake County Boat Harbor and at Little Valley Harbor and representative concentrations of dissolved solids of the brine in the shallow zone 0-16 feet below the lake surface, 1963-66.

Thus, the upper few feet of brine move northward through the causeway fill and culverts due to head differences and the lower few feet move southward due to density differences. (See fig. 6.) This two-way flow through the causeway was observed in the culverts during the summer and fall of 1963 and 1964.

CHEMICAL AND PHYSICAL CHARACTERISTICS OF THE BRINE

Chemical Characteristics

General Discussion

The completion of the causeway in 1957 had a profound effect on the chemical characteristics of the lake water. Prior to completion of the causeway, inflow directly affected the entire lake, and the concentration of dissolved solids varied in inverse relation to lake stage. Evaporation caused brine to become saturated in many bays around the lake, and sodium chloride precipitated freely in these bays.

Since completion of the causeway, the northern part of the lake receives little fresh water and evaporation maintains the brine at saturation. By contrast, freshwater inflow dilutes the southern part of the lake to such an extent that the brine approaches saturation only during years of low inflow such as 1963. Figure 7 illustrates the difference between variation in lake stage and concentration of dissolved solids in the shallow zone of the two parts of the lake. Throughout the period 1963-66, despite marked changes in lake stage 1/, the concentration of dissolved solids in brine in the northern part varied only from about 29 to 28 percent. During the same period, the concentration of dissolved solids in brine in the southern part varied from almost 26 to about 20 percent.

The effect of the causeway on the relation between lake stage and concentration of dissolved solids in the southern part of the lake is further illustrated in figure 8. For a given stage, the concentration of dissolved solids after 1957 has been lower than it was before 1957. For example, at a stage of 4,195 feet the concentration of dissolved solids is about 20 percent (by weight), whereas before 1957 it was almost 30 percent.

Although fluctuations of the stage in the northern part have only been observed since April 1966, the record since then, as shown in figure 7, indicates that the stages in the two parts fluctuate in the same general way.

Table 1. - Composition, in percentage (by weight), of the dissolved solids in Great Salt Lake brine, 1850-1966.

Computed from data reported by Richardson (1906, p. 34) for the samples obtained in 1850 and August 1892; by Clarke (1924, p. 157) for the samples obtained in 1869 and October 1913; and by Hahl and Mitchell (1963 p. 38) for the samples obtained in March 1930, April 1960, and November 1961. Data for 1963-66 are averages for all samples obtained at depths of 5 feet below lake surface.

The percentages are the ratio of the concentration of the indicated constituent to the sum of the concentrations for all constituents determined. The percentages for 1850-1892 are not altogether comparable to the percentages for 1913-66 because different combinations of constituents were determined.

					_				North of causeway							
Constituent	1850	1869	August 1892	October 1913	March 1930	Apri1 1960	November 1961	December 1963	July 1964	July 1965	October 1965	May 1966	December 1963	July 1964	October 1965	May 1966
Silica, SiO ₂	-	-	-	-	-	0.002	0.003	0.001	0.002	0.002	0.002	0.003	0.001	0.004	-	-
Calcium, Ca ⁺⁺	-	0.17	1.05	0.16	0.17	.12	.10	.09	.10	.12	.13	.09	.09	.07	0.08	0.05
Magnesium, Mg^{++}	0.27	2.52	1.23	2.76	2.75	2.91	3.49	3.29	3.32	3.31	3.61	3.80	4.66	4.35	4.52	4.38
Sodium, Na ⁺	38.29	33.15	33.22	33.17	32.90	32.71	31.55	31.02	32.25	32.58	30.90	30.56	29.08	28.58	29.22	29.67
Potassium, K ⁺	-	1.60	1.71	1.66	1.61	1.71	1.95	1.86	2.12	2.06	2.22	2.22	2.75	2.61	2.79	2.61
Lithium, Li ⁺	-	-	-	-	-	-	-	-	.02	.02	.02	.02	-	.02	.02	.02
Bicarbonate as carbonate, CO3 ⁼	-	-	-	.09	.05	.06	.07	.07	.08	.09	.09	.10	.09	.09	.09	.09
Sulfate, SO4 ⁼	5.57	6.57	6.57	6.68	5.47	6.60	8.21	9.02	7.29	7.67	7.94	7.99	7.28	8.45	9.27	8.58
Chloride, Cl ⁻	55.87	55.99	56.22	55.48	57.05	55.88	54.63	54.64	54.81	54.14	55.08	55.21	56.04	55.81	53.99	54.59
Fluoride, F	-	-	-	-	-	-	-	-	-	.002	.002	.003	-	-	-	.002
Boron, B	-	-	-	-	-	.01	-	.01	.01	.01	.01	.01	.01	.02	.02	.01
Total percent	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Concentration of dissolved solids, in percentage (by weight) of the brine	22.3	15.0	2 3. 8	20.3	21.0	24.7	26.9	27.3	22.1	22.2	21.4	18.9	27.5	26.9	27.4	26.9

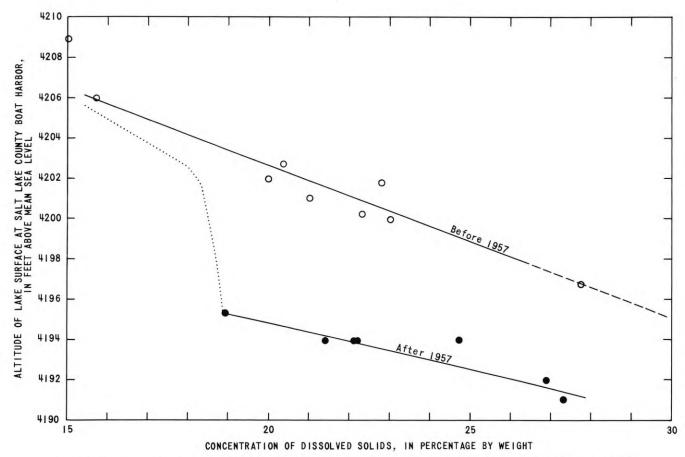


Figure 8. — Relation of concentration of dissolved solids to surface altitude in the southern part of Great Salt Lake before and after completion of the causeway in 1957.

Despite the variations in dissolved-solids concentration of the lake brine, sodium and chloride have since 1850 made up about 88 percent of all dissolved solids. Similarly sulfate made up about 7 percent, magnesium about 3 percent, and potassium about 2 percent of the dissolved solids. Completion of the causeway has, however, resulted in a slight lowering of the percentage of sodium and chloride and an increase in the percentage of magnesium and potassium in the dissolved solids of both parts of the lake.

The slight decrease in the percentage of sodium and chloride in the dissolved solids is probably due to precipitation of salt (sodium chloride) north of the causeway. There, the precipitated salt is in equilibrium with the brine and either accumulates or dissolves as the concentration of dissolved solids in the brine changes. Under climatic conditions existent during the period 1963-66, the brine north of the causeway has remained saturated with respect to sodium and chloride. If the total annual inflow to the lake increases in the future, however, brine containing fewer dissolved solids than now contained in the northwestern part of the lake would enter and some of the salt layer north of the causeway would dissolve. In this event, part of the salt dissolved in the northwestern part of the lake would return to the southern part of the lake, and the relation between lake stage and

concentration of dissolved solids for the southern part of the lake would approach the relation shown in figure 8 for the period before 1957.

Great Salt Lake contained at least four different coexistent brines during the period 1963-66 (fig. 1). The brines were identified on the basis of similarity in chemical characteristics. One type of brine is north of the causeway and the other three are south of it.

Chemical Characteristics North of the Causeway

The brine north of the causeway is well mixed, and the concentration of dissolved solids remains relatively constant from season to season. (See fig. 9.) The chemical characteristics of the brine changed little even though the stage of the lake rose about 4 feet from December 1963 to May 1966 and fluctuated as much as 2.3 feet annually. For example, the mean concentration of dissolved solids for the period was 285,000 ppm (parts per million), and the standard deviation was 7,500 ppm (2.6 percent of the mean). This lack of change may have resulted from an equilibrium that existed between the saturated brine and the salt (principally NaCl) on the lakebed, and equilibrium between inflow and evaporation, or a combination of both.

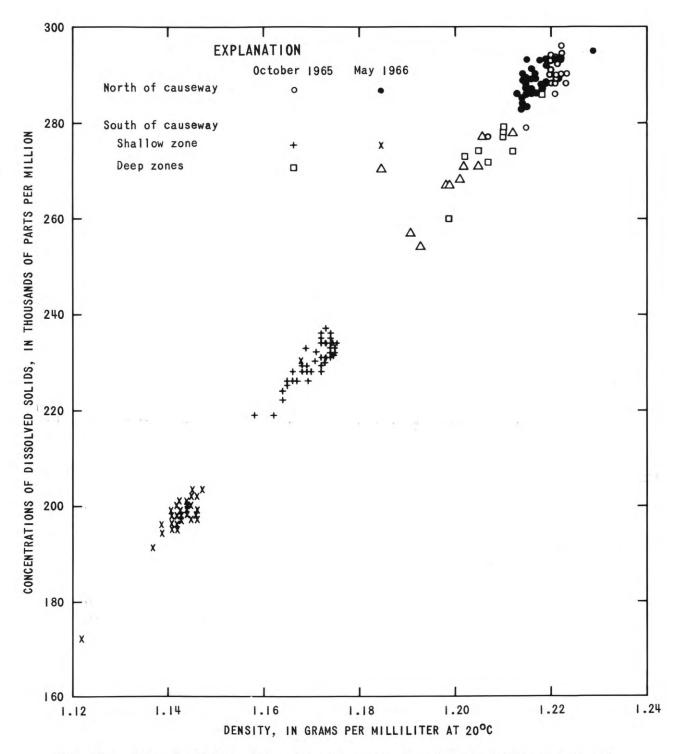


Figure 9. — Seasonal variations of the relation of concentration of dissolved solids to density of the brines of Great Salt Lake.

Table 2. — Analysis of samples obtained on selected dates from site 7 at depth of 5 feet. (Dissolved constituents and dissolved solids in parts per million.)

Item	December 1963 <u>1</u> /	July 1964	October 1965	May 1966
Temperature (°F)	35	81	62	66
Calcium (Ca)	256	198	213	148
Magnesium (Mg)	12,800	11,700	12,400	11,800
Sodium (Na)	79,900	76,800	80,100	79,900
Potassium (K)	7,570	7,000	7,640	7,040
Lithium (Li)	-	42	62	52
Bicarbonate (HCO ₃)	497	464	513	484
Sulfate (SO ₄)	20,000	22,700	24,400	23,100
Chloride (Cl)	154,000	150,000	148,000	147,000
Boron (B)	29	41	49	37
Dissolved solids	288,000	284,000	288,000	289,000
Density, grams/ml	1.220	1.214	1.221	1.215

1/Sample collected at 1-foot depth.

Analyses for samples from sites 5, 6, and 11 and to a lesser extent from sites 1, 2, and 4 (table 7) show a dilution at the surface from snowmelt in January 1965. A slight dilution at site 10 in May 1966 probably was caused by flow from the southern part of the lake through the causeway and culverts. Sites 9, 10, and 11, near the north side of the causeway, otherwise show little effect of dilution by brine from south of the causeway.

Despite relative uniformity of the concentration of dissolved solids, small differences in space and time occur in the concentrations of individual ions. The differences are indicated in table 2 by the data from a depth of 5 feet at site 7, which site and sampling depth were selected as being representative of the northern part of the lake. The December 1963 sample was collected after a hot, dry period about a month after the lowest lake stage of record (October 1963). These data may be contrasted with the analysis for a sample that was collected in October 1965 after a wet, cool period, but also shortly after the low lake stage during 1965. The July 1964 and May 1966 samples were collected near the peak lake stage for each year. The peak for May 1966 was approximately 1.5 feet higher than the peak for July 1964.

As shown in table 2, magnesium, potassium, dissolved solids, and density values were about the same for all conditions observed. Sodium concentrations remained approximately the same, probably because sodium is involved in the deposition and solution of sodium chloride during one season and Glauber's salt during another season. Chloride concentrations decreased only slightly throughout the period. Sulfate concentrations varied throughout the year because of the annual cycle of precipitation and re-solution of Glauber's salt due mainly to temperature changes. In December 1963, after a period of deposition, the concentration was 20,000 ppm; whereas in October 1965, before deposition began, the concentration was 25,400 ppm. The calcium and bicarbonate concentrations also tended to vary. These variations might be explained by the uptake of calcium by algae that live in the lake (Kevern, 1964, p. 1445-1446); and as a result of precipitation of calcium carbonate by algae at times of rapid photosynthesis (Quinn, 1966, p. 31). The variations in the concentrations of lithium and boron and other trace elements are not understood. However, the variations are probably due to combination of a variety of causes such as the biologic environment, the presence of trace ions as colloids, and possible sulfate entrapment due to ion association or sorption. The erratic nature of ionic concentrations can be observed in the analyses of samples from both parts of the lake.

Solid salt (sodium chloride) forms an appreciable part of the minerals in the northern part of Great Salt Lake. During the main evaporation season (June through October) small clusters of salt crystals accumulate on the lake surface and a layer of salt is precipitated on the lake bottom. Near Rozel Point (fig. 1) the precipitated salt is 99.6 percent sodium chloride. (See table 3.)

Table 3. — Analysis of the salt crust sampled near Rozel Point, 1964.

	Composition
Constituent	(percentage by weight)
Calcium (Ca)	0.0
Magnesium (Mg)	.0
Sodium (Na)	39.9
Potassium (K)	.1
Sulfate (SO ₄)	.3
Chloride (Cl)	59.7
	100.0

Observations that began in 1963 indicate that a permanent salt crust of undetermined thickness probably covers most of the northern lake bottom. A residual crust was found on the part of the lakeshore that annually is inundated. Near Rozel Point, the crust on the shore was about 1 mile wide and gradually thickened lakeward to about 8 inches at the brine's edge.

Rain in the spring of 1964 dissolved almost half of the crust on the shore and left well-defined drainage patterns in the remaining crust. (See F in fig. 3.) During the summer of 1965 only a few hundred feet of crust bordered the lake, except at the northernmost extremity which had no residual salt crust at all.

Three salt-accumulation gages were installed near Rozel Point during July 1964. The gages were constructed over the salt crust at the following locations: (1) At the beach formed by the lowest recorded lake stage, (2) just lakeward from the high-water mark of 1964, and (3) land ward from the high-water mark of 1964. Table 4 indicates the salt accumulation or loss at these gages. The method of construction of the salt gages is described in the appendix.

Table 4. — Salt accumulation or loss near Rozel Point, 1964-66.

	Accumulation (+) or loss (-) (inches)							
Time period	Gage 1	Gage 2	Gage 3					
July 17, 1964 -								
Oct. 15, 1964	+3.5	+0.5	-0.8					
Oct. 15, 1964 -								
July 1965	-4.5	+ .5	2					
July 1965 -								
Oct. 6, 1965	+1.3	+ .8	-1.0					
Oct. 6, 1965 -								
May 25, 1966	(1/)	-7.3	-2.2					

1/ Gage destroyed by storm.

At gage 1, salt was deposited during the July to October periods and redissolved during the October to July period. Most of the salt crust probably was deposited as a result of evaporation and removed as a result of the inflow of slightly fresher brine from the southern part of the lake. At gage 2, salt accumulated uniformly from July 1964 to October 1965 but was redissolved rapidly from October 1965 to May 1966. This gage was under water each spring and early summer, and each successive period of evaporation during the summer and early fall lowered the lake stage below the gage and left a new layer of salt at the gage. During the winter and spring of 1965-66, however, rapid inflow of brine inundated the gage and dissolved the salt crust. At gage 3, salt dissolved at varying rates for the entire period from July 1964 to May 1966. This gage was above the water until May 1966. The solution of salt crust at this gage probably was dependent only on the amount of rainfall in the area until the gage was inundated during the spring of 1966.

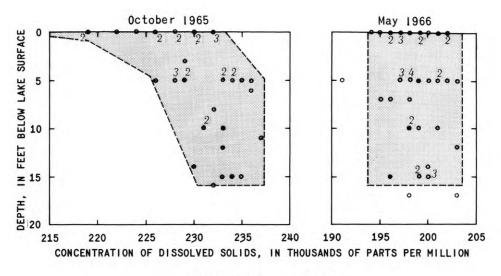
Chemical Characteristics South of the Causeway

The brine south of the causeway is not well mixed except during the short periods immediately following severe regional storms. During most of the year the brine is stratified, and the near-surface zone is the least uniform from one season to the next. (See fig. 9.) The main cause of variation in the concentration of dissolved solids in the brine is dilution by seasonal surface inflow.

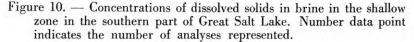
To contrast the nonuniformity of the brine in the southern part of the lake with the uniformity of that in the northern part, the mean and the standard deviations

Table 5. — Mean and standard deviation in the concentrations of dissolved solids in different parts of the lake. (Based on data collected during October 1965 and May 1966.)

	Northern part	Entire southern part	Southern part 0-16 ft.	Southern part below 16 ft.
Mean (x)	285,000	231,000	228,000	268,000
Standard deviation (s)	7,500	85,100	22,000	15,000
s as a percent- age variation from x	2.6	36.8	9.7	5.6


in concentrations of dissolved solids in the two parts of the lake are calculated. (See table 5.) If the concentrations of dissolved solids in the southern part of the lake as a whole are used, the standard deviation indicates a nonuniform mass with deviations of almost 37 percent from the mean. If the same data are divided into groups representing shallow (brine from the surface to a depth of 16 feet) and deep (brine below 16 feet) zones, the deviation is reduced to less than 10 percent. The random effects indicated by the 9.7 percent deviation in data from the shallow zone results mainly from the fluctuation of concentration caused by seasonal inflow. The deviation of 5.6 percent in data from the deep zone is more nearly comparable to the 2.6 percent deviation in data from north of the causeway, but the greater deviation suggests that even the deep zone south of the causeway is diluted by surface inflow.

The Shallow Zone


The chemical characteristics of brine in the shallow zone (from the surface to a depth of 16 feet) appear to be uniform even though the concentration of dissolved solids varies slightly with depth and somewhat more from season to season. The variation with depth is due to the lag in the mixing of surface inflow with brine. Fresher water tends to override the brine rather than mixing with it. The variation with time is due to the difference in volume of inflow from year to year, to the relative sequence of periods of cyclic inflow and evaporation, and to the precipitation of Glauber's salt during the winter.

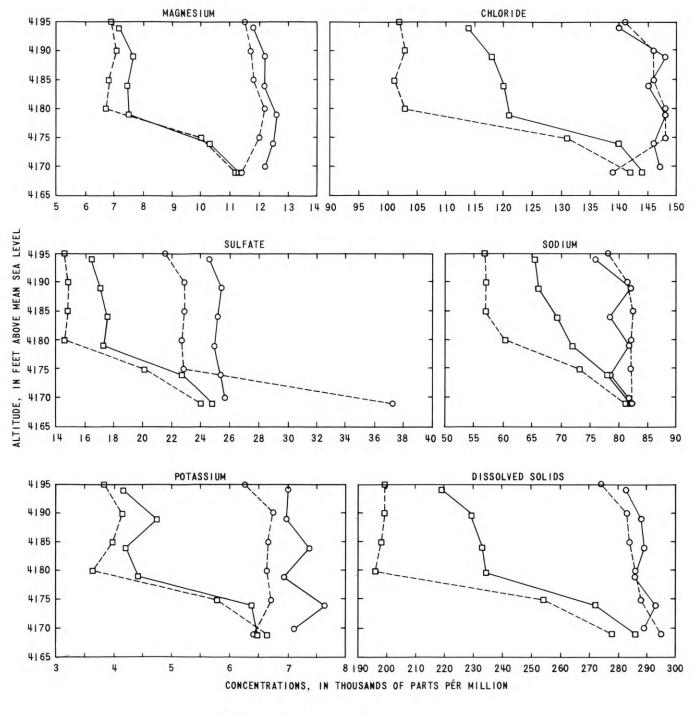
The concentrations of dissolved solids in samples collected at site15 (fig. 1) at a depth of 5 feet approximate the average concentration of dissolved solids found in the shallow zone. (See fig. 10.) Consequently, as a means of convenience, data from site 15 at a depth of 5 feet are used as the basis for the following discussion of the chemical characteristics of the shallow zone.

Data collected at site 15 during the period December 1963-May 1966 are shown in table 6. The December 1963 data represent the effect on the brine of a series of dry years, whereas the October 1965 data represent

o Site 13-29 • Site 15

the effect of 2 years of increased inflow. The concentration of each ion except calcium and bicarbonate during December 1963 is significantly greater than the concentration of that ion during October 1965. The July 1964, July 1965, and May 1966 data represent peak lake stages for the respective years. The amount of inflow to the lake in 1964 and 1965 was about the same and resulted in ionic concentrations of about equal magnitude. The May 1966 data show the effect of greatly increased inflow on concentration; the ionic concentrations, except bicarbonate and fluoride, are significantly less than those during July of the previous 2 years. The variation in ionic concentrations, as shown in table 6, demonstrates the effect of inflow on the concentrations and indicates that the lake south of the causeway is not at saturation with respect to sodium chloride and has rarely approached saturation since 1957. The concentrations of calcium, bicarbonate, lithium, boron, and the trace ions probably are affected by the biologic environment and other factors much as they are north of the causeway.

The Deep Zone


Brine in the deep zone (below 16 feet) has a higher concentration of dissolved solids than the brine in the shallow zone throughout the southern part of the lake. Two distinct brines coexist within the deep zone in the southern part of the lake; one is near the causeway and one is in the southern part of the lake. These brines are derived from two sources, each of which yields a distinct brine with chemical characteristics different from each other. The two brines apparently merge in the center of the southern part near site 22 (fig. 1) where data from a depth of 23 feet indicate some mixing between the two deep layers.

Near the causeway, the brine below 16 feet is derived from the northern part of the lake. Figure 11 compares the variations of concentrations of dissolved solids and constituent ions with depth at maximum and minimum lake stages during the 1966 water year at sites north and south of the causeway. The figure shows that for all the chemical parameters, the brine in the deep zone at site 15, south of the causeway, is similar to the brine at site 10, north of the causeway. This relation, together with the known southward flow of brine through the causeway, demonstrates the source of the brine in the deep zone near the causeway. The zone of mixing between the brine in the shallow zone and the brine in the deep zone is represented in figure 11 by the sloping curve below a depth of 15 feet (4,180 feet above msl) at site 15.

Table 6. — Analyses of samples obtained on selected dates from site 15 at a depth of 5 feet. (Dissolved constituents and dissolved solids in parts per million.)

Constituent	December 19631/	July 1964	July 1965	October 1965	May 1966
Temperature (^O F)	49	81	77	61	64
Calcium (Ca)	255	224	264	274	176
Magnesium (Mg)	8,960	7,340	7,340	7,740	7,080
Sodium (Na)	84,600	71,200	72,200	66,200	57,000
Potassium (K)	5,080	4,690	4,570	4,750	4,140
Lithium (Li)	-	37	35	36	33
Bicarbonate (HCO ₃)	395	369	384	392	389
Sulfate (SO ₄)	24,600	16,100	17,000	17,000	14,900
Chloride (Cl)	149,000	121,000	120,000	118,000	103,000
Boron (B)	39	22	23	24	16
Dissolved Solids	257,000	226,000	228,000	229,000	199,000
Density, grams/ml	1.196	1.165	1.168	1.169	1.141

1/ Depth not determined but in the vicinity of 5 feet.

DSite 15 OSite 10 ----- October 1965 ----- May 1966

Figure 11. — Variations with depth of concentrations of dissolved solids and constituent ions at high and low lake stages during the 1966 water year at sites 10 and 15.

A different deep brine was identified in the south end of Great Salt Lake. The brine below 16 feet at site 28 is representative of the deep brine there; and figure 12 compares concentrations of dissolved solids and constituent ions for sites 15, 25, and 28. Data from site 25 are used to supplement those at site 28, because the characteristic brine of the deep zone did not exist at site 28 during both sampling periods. The data in figure 12 indicate that although the concentration of dissolved solids and constituent ions at sites 15 and 28 vary in a generally similar manner according to depth and season, significant differences of concentrations exist between the two sites.

The two deep brines also may be differentiated by plotting ionic concentrations against density (Handy, 1967). Figures 13 and 14A show that the relation of sodium, chloride, lithium, and magnesium to density in the brine in the deep zone in the southern part of the lake is different from those relations for brine in the rest of Great Salt Lake. Only data for October 1965 were used in figures 13 and 14A. Figure 14B shows the lithium-density relation using data for all sampling dates during the investigation. Relations shift, owing to the effect of dilution, and the resulting scatter of points obscures any otherwise obvious differences. Thus, types of brine are best distinguished with this method by using data collected during a short period of time.

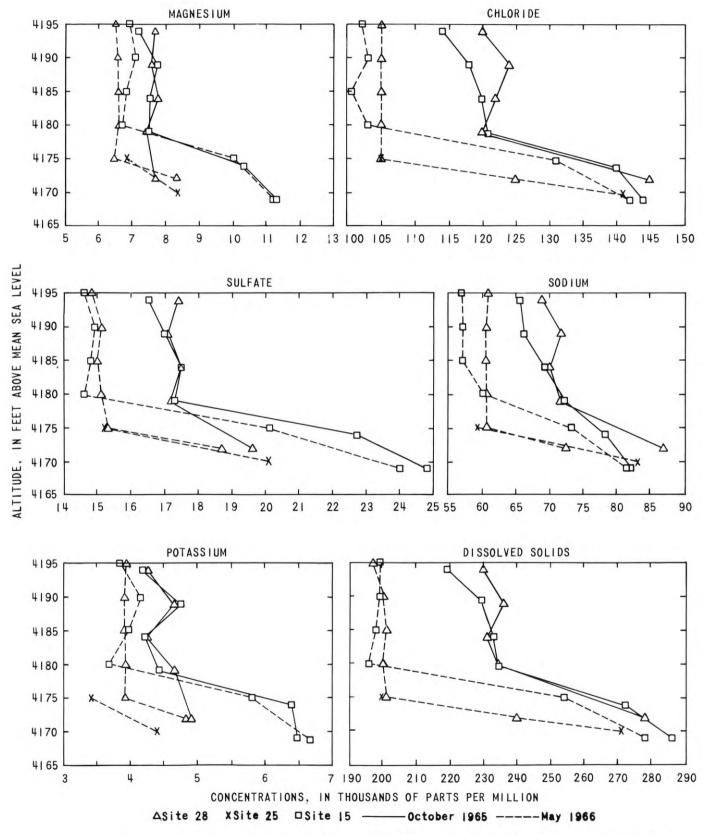
The source of the brine in the deep zone in the south end of the lake is not known. However, only three sources of constituent ions apparently are available for the generation of this brine--one is the shallow zone in the lake, another is the sediments that form the lakebed, and the third is ground water that discharges upward through the bed of the lake.

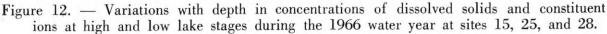
The brine in the shallow zone alone cannot be the source of the brine in the deep zone. Brine from the shallow zone, after concentration by evaporation would be similar in chemical character to the brine in the deep zone south of the causeway at site 15. It would not be enriched in sodium ions and depleted in sulfate ions as is the brine in the deep zone in the southern part of the lake.

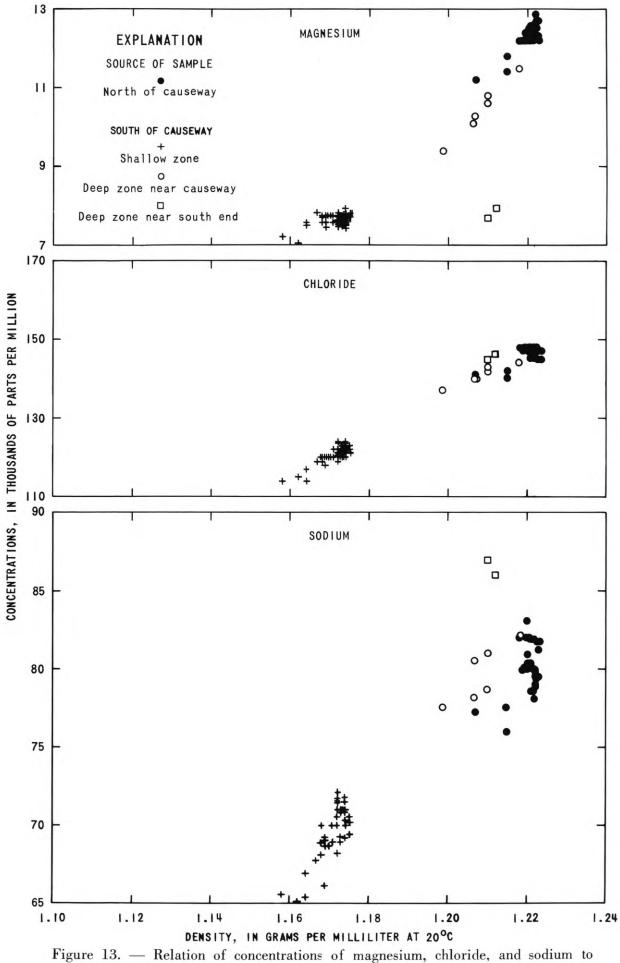
The other two possible sources--the lake sediment and ground water--may interact to form the brine in the deep zone. The mechanism for the occurrence of this deep brine is not understood, but probably is related to the following factors: (1) The Oquirrh Mountains, which adjoin the south end of Great Salt Lake, in part receive more than 40 inches of precipitation annually, but relatively little water runs off in surface streams (W. V. Iorns, oral commun., 1965). The rocks in the Oquirrh Mountains are intensely faulted and fractured, thus providing ample opportunity for subsurface drainage. Wells tapping gravel deposits at the north end of the mountains have yields exceeding 3,000 gpm (gallons per minute), and some of the wells have specific capacities exceeding 100 gpm per foot of drawdown (Marine and Price, 1963, p. 14). It is suggested, therefore, that appreciable quantities of

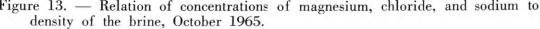
ground water move from the rocks of the Oquirrh Mountains toward the lake through unconsolidated aquifers at the north end of the mountains. (2) Much of the water pumped from wells at the north end of the Oquirrh Mountains contains several thousand parts per million of sodium and chloride ions in solution but less than 250 ppm of sulfate ions (Marine and Price, 1963, p. 27). (3) Beds of Glauber's salt ($Na_2SO_4 \cdot 10H_2O$) have been found beneath lake deposits along the south shore of the lake (Cohenour, 1966, p. 155). If beds of Glauber's salt also underlie the lake, the ground water moving through these beds would gain large quantities of sodium and sulfate ions. (4) Fetid lake sediments beneath the lake bottom provide a highly reducing, saline environment that favors decay reactions such as:

$$2CH_2O + Ca^{++} + SO_4^{--} CaCO_3 + H_2S + CO_2 + H_2O$$


The authors believe that the origin and mechanism of formation of the deep south-end brine is an important area of study. The many chemical reactions that could take place, the possibility that a large volume of ground water may be involved, and the possibility that interstitial brine may be recirculating provide the necessary interest to initiate studies of the mechanisms which seem to be important to the hydrology of the land and to the utilization of the resources contained therein.


Physical Characteristics


Temperature


Observations of the temperature of the brine in Great Salt Lake can be summarized as follows: The temperature of brine 5 feet below the surface of the lake is 1-14 degrees (F) greater than the monthly average air temperature at Brigham City for the month preceding that in which samples were collected (U. S. Weather Bur., 1964, 1965a, and 1966). During the period 1951-60, the highest monthly average maximum temperature at Brigham City was 96.4° F during July 1960, and the lowest monthly average maximum temperature was 29.0° F during January 1955 (U.S. Weather Bur., 1965b). The recorded temperatures of brine at the bottom of the lake were as much as 20 degrees cooler than the temperatures at 5 feet during July 1964 and July 1965. As winter approached, the brine near the surface cooled more rapidly than the brine near the bottom. During October 1965, the temperatures of the brine near the bottom at some sites were as much as 10 degrees warmer than the temperatures of the brine near the lake surface. During winter, however, storms and temperature inversion appeared to mix the brine sufficiently to produce relatively uniform vertical temperatures.

As the brine cools in the winter, Glauber's salt (sodium sulfate) precipitates on the lake bottom and along the shore. Precipitation is more pronounced as the concentration of dissolved solids of the brine increases. The solubility of Glauber's salt decreases about tenfold with a temperature change from 90° to

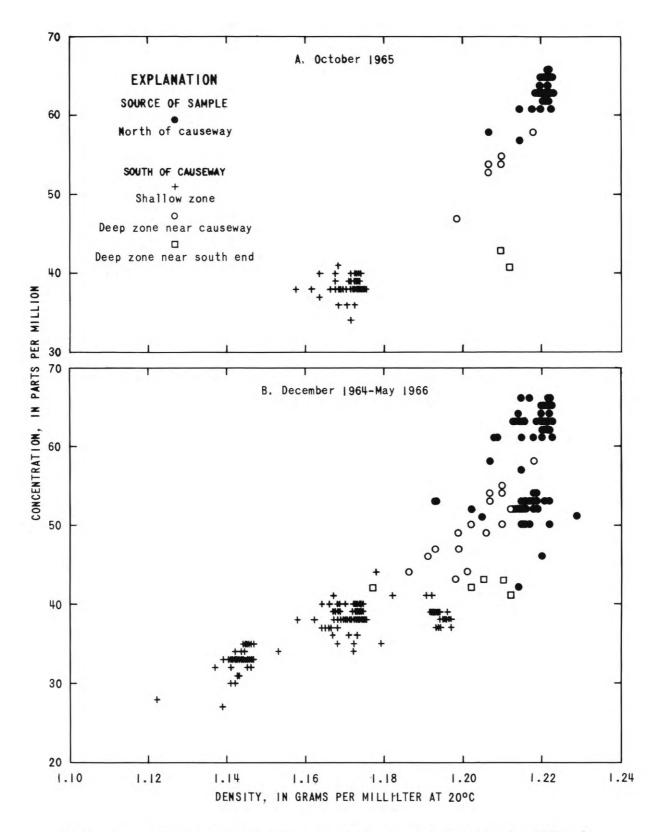


Figure 14. — Relation of lithium concentration to density of the brine, October 1965 and December 1964-May 1966.

 20° F. The resulting crystals of Glauber's salt that form along the shores are rolled into rectangular and cylindrical pellets by wave action and are deposited in a white reef a few yards offshore. During January 1964, the reef was from 30 to 50 feet wide and about 3 feet thick and almost encircled the northern arm of the lake. The precipitation of Glauber's salt resulted in the decreased concentrations of sulfate and sodium ions noted in the analyses of samples obtained in January 1965. The reef is redissolved in the spring as the lake warms and rains fall.

Visual Characteristics

Brine in the northern part of Great Salt Lake is reddish-brown. The color is apparently due to algae (Quinn, 1966, p. 30), which abound in the saturated brine. These algae seem so numerous that visibility through the brine is limited to about 2 feet. The reddish-brown color also appears during late summer in the shallow areas of the southern part of the lake when the concentration approaches saturation.

Brine in the southern part of the lake is green. However, the intensity of the green does not affect visibility through the brine. Brine shrimp and detrital material or weather conditions may reduce visibility to as little as 5 feet locally; but bottom features that are 10-15 feet below the surface generally are clearly discernible.

Figure 3 illustrates the difference in clarity between the two parts of the lake. The algal reefs and sand on the bottom are clearly visible through 4 feet of brine at E, south of the causeway, while the salt crust cannot be seen through 3 feet of brine at G, north of the causeway.

During the winter, visibility through the brine on both sides of the causeway is poor, due in part to minute particles of precipitated sodium sulfate.

CONCLUSIONS

Great Salt Lake is not a homogeneous body of brine. In the undivided lake, prior to 1957, the entire lake was directly diluted by inflow during the spring and subsequently concentrated by evaporation during the summer and fall. Based on the data from this investigation, it is inferred that parts of the undivided lake contained brines of different densities. During the main evaporation period, salt was precipitated in most of the shallow bays around the edges of the lake. Density currents would have moved saturated brine from the bays toward deeper parts of the lake. The mixing effects of other currents and winds would have maintained a shallow well-mixed zone in the open lake.

The construction of a railroad causeway across Great Salt Lake in 1957 radically changed the hydrology and the chemical environment of the lake. Although the causeway does not prevent interchange of brine between the northern and southern parts of the lake that it created, the causeway does retard interchange to the extent that brine in the northern part remained saturated during 1963-66. The southern part of the lake was more dilute than at comparable lake stages prior to causeway construction.

The interchange of brine through the causeway only slightly affects the brine in the northern part of the lake by local seasonal dilution. The northward inflow of dilute brine and the southward outflow of concentrated brine, however, controls the thickness of the salt crust in the northern part. If the causeway were not permeable, the crust would continually accumulate, and the northern part of the lake would continually diminish as an effective brine storage area. The relations among inflow, outflow, and crust thickness in the northern part of the lake are important factors in the chemical hydrology of the lake as a whole and need additional study. Such study would provide valuable information for future lake management.

The interchange of brine through the causeway directly affects the chemical character of the southern part of the lake. Concentrated brine from the northern part is the source of one of the three types of brine identified in the southern part. A concentrated brine in the deep zone in the southern end of the lake may result from ground water discharging upward through the bottom of the lake. The character of the brine in the deep zone in the southern part of the lake and the mode of generation require further, more precise study, because future manipulation of Great Salt Lake as a source of minerals and for recreation will be affected by the area in which the brine is generated.

The studies during 1963-66 incidentally demonstrated the intricate interrelation and effects of wind, inflow, and lake currents on both mixing and distribution of the brines in the southern part of Great Salt Lake. Studies specifically designed to describe the mutual relations are needed.

The conclusions reached in this report are based on data collected during a period when the lake fluctuated through a range of about $4\frac{1}{2}$ feet. Monitoring of variations in lake chemistry are needed during different lake stages to verify the conclusions drawn.

REFERENCES

- Clarke, F. W., 1924, The data of geochemistry: U.S. Geol. Survey Bull. 770.
- Cohenour, R. E., 1966, Industrial development and potential of Great Salt Lake, with notes on engineering geology and operational problems, <u>in</u> The Great Salt Lake: Utah Geol. Soc. Guidebook to the Geology of Utah, no. 20, p. 153-164.
- Dickson, D. R., and McCullom, Cornell, Jr., 1965, Evaporation from the Great Salt Lake as computed from eddy flux measurements, <u>in</u> Evaporation studies, Great Salt Lake: Utah Geol. and Mineralog. Survey Water-Resources Bull. 6, p. 15-25.
- Eardley, A. J., 1938, Sediments of Great Salt Lake, Utah: Am. Assoc. Petroleum Geologists Bull., v. 22, no. 10, p. 1305-1411.
 - 1962, Glauber's salt bed west of Promontory Point, Great Salt Lake, Utah: Utah Geol. and Mineralog. Survey Special Studies 1.
- Hahl, D. C., 1967, Dissolved-mineral inflow to Great Salt Lake and chemical characteristics of the salt lake brine, Part III, Summary 1960, 1961, and 1964: Utah Geol. and Mineralog. Survey Water-Resources Bull. 10.
- Hahl, D. C., and Langford, R. H., 1964, Dissolvedmineral inflow to Great Salt Lake and chemical characteristics of the salt lake brine, Part II, Technical report: Utah Geol. and Mineralog. Survey Water-Resources Bull. 3.
- Hahl, D. C., and Mitchell, C. G., 1963, Dissolvedmineral inflow to Great Salt Lake and chemical characteristics of the salt lake brine, Part I, Selected hydrologic data: Utah Geol. and Mineralog. Survey Water-Resources Bull. 3.
- Handy, A. H., 1967, Distinctive brines in Great Salt Lake, Utah: U. S. Geol. Survey Prof. Paper 575-B, p. 225-227.
- Handy, A. H., and Hahl, D. C., 1966, Great Salt Lake, Chemistry of the water, <u>in</u> The Great Salt Lake: Utah Geol. Soc. Guidebook to the Geology of Utah, no. 20, p. 135-151.
- Hutchinson, G. E., 1957, A treatise on limnology, Volume I, Geography, physics, and chemistry: New York, John Wiley and Son, Inc.
- Kevern, N. R., 1964, Strontium and calcium uptake by the green alga, <u>Ocystis</u> eremosphaeria: Science, v. 145, p. 1445–1446.

- Marine, I. W., and Price, Don, 1963, Selected hydrologic data, Jordan Valley, Salt Lake County, Utah: U. S. Geol. Survey open-file rept. (duplicated as Utah Basic-Data Rept. 4).
- Miller, D. E., 1966, Great Salt Lake, An historical sketch, <u>in</u> The Great Salt Lake: Utah Geol. Soc. Guidebook to the Geology of Utah, no. 20, p. 3-24.
- Ostermeier, S. L., 1947, Great Salt Lake, Utah, Navigation chart: Organized Naval Reserve, Salt Lake City, Utah.
- Peck, E. L., and Richardson, E. A., 1966, Hydrology and climatology of Great Salt Lake, <u>in</u> The Great Salt Lake: Utah Geol. Soc. Guidebook to the Geology of Utah, no. 20, p. 121–134.
- Quinn, B. G., 1966, Biology of the Great Salt Lake, <u>in</u> The Great Salt Lake: Utah Geol. Soc. Guidebook to the Geology of Utah, no. 20, p. 25-34.
- Rainwater, F. H., and Thatcher, L. L., 1960, Methods for collection and analysis of water samples: U. S. Geol. Survey Water-Supply Paper 1454.
- Richardson, G. B., 1906, Underground water in the valleys of Utah Lake and Jordan River, Utah: U. S. Geol. Survey Water-Supply Paper 157.
- Tooker, E. W., and Roberts, R. J., 1961, Structural geology of the north end of the Oquirrh Mountains, Utah, <u>in</u> Geology of the Bingham Mining District and northern Oquirrh Mountains: Utah Geol. Soc. Guidebook to the Geology of Utah, no. 16, p. 36-48.
- U. S. Weather Bureau, 1963, Normal annual precipitation (1931-60) for the State of Utah: Map of Utah, scale 1:500,000.
 - _____1964, Climatological data, Utah: U.S. Weather Bur., v. 66, nos. 6 and 7.
 - 1965a, Climatological data, Utah: U. S. Weather Bur., v. 67, nos. 6, 7, 9, and 10.
 - 1965b, Climatic summary of the United States, supplement for 1951 through 1960, Utah: U. S. Weather Bur., no. 86-37.
- 1966, Climatological data, Utah: U.S. Weather Bur., v. 68, nos. 4 and 5.
- Woolley, R. R., and Marsell, R. E., 1946, Great Salt Lake, A selected bibliography with annotations: Am. Geophys. Union Trans., v. 27, no. 1.

APPENDIX

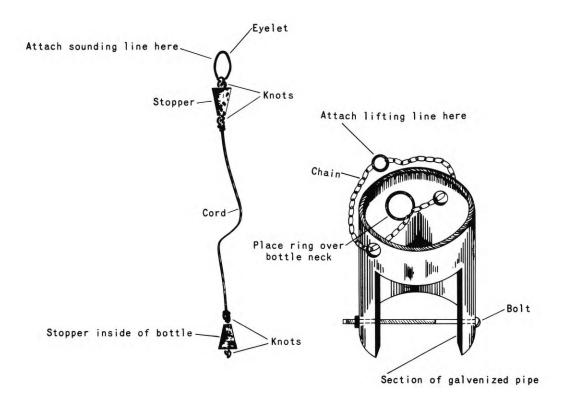


Figure 15. — Sampler.

APPENDIX

SAMPLING EQUIPMENT

The sampler consisted of a 2-liter polyethylene bottle fitted with two stoppers that were placed so that the bottoms of the stoppers were facing. The stoppers were attached with a cord as shown in figure 15. An eyelet was made from the cord at one stopper. The stopper with the eyelet was selected to fit the bottle securely; the other stopper was one size smaller. The smaller stopper was forced into the bottle. A sounding line attached to the eyelet indicated the depth of the bottle mouth and served as the bottle opener and closer. Thus, the bottle could be lowered and raised and a sample taken at the desired depth. The bottle was placed inside a closefitting, short section of pipe closed at the bottom with a thin bolt. Two holes were drilled in the top of the pipe and fitted with a chain in which were placed two metal rings. One ring kept the bottle in place, the other ring was used for attaching the hoisting line.

ORTHOMETRIC ADJUSTMENT

At any latitude north or south of the equator, the surface of a free body of water at any altitude above sea level does not lie parallel to mean sea level in a northsouth direction, but rather is distorted and conforms to the resultant of gravitational and centrifugal forces. Water surfaces above sea level converge toward sea level as they approach the poles. Therefore, to project orthometrically a lake-surface altitude from the south end of Great Salt Lake north to the causeway, the altitude must be reduced by 0.19 foot. The correction is taken from a nomogram in topographic instructions issued by the U.S. Geological Survey (written commun., 1956).

SALT GAGE

Measurement of the position of the surface of the salt crust was made from a reference constructed as shown in figure 16. Before each measurement was made, the wire was leveled to determine if the post had heaved. No heaving was observed. The plumb bob was then lowered from one of the sinkers on the line to determine the distance from the line to the surface of the salt crust.

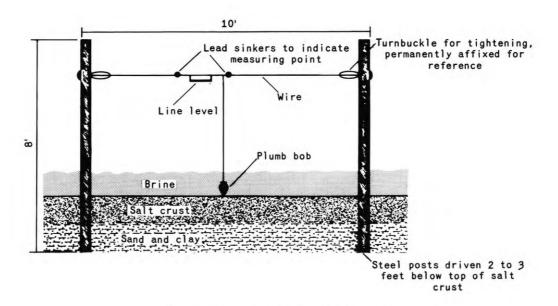


Figure 16. — Construction of salt gage.

Table 7. - Chemical analyses of brine from Great Salt Lake.

Altitude of water surface: Left blank if data not available to compute an accurate altitude. Depth: N, depth not obtained; S, sample taken less than 6 inches below the surface; T, samples were depth integrated over total depth. All other depths indicated are 0.5 foot.

					Parts per million														
alls guildupe	Date of collection	Altitude of water surface (feet)	Depth (feet)	Temperature (°F)	Silica (SiO ₂)	Calcium (C1)	Magnesium (Mg)	Sodium (Na)	Potassium (K)	Lithium (Li)	Bicarbonate (HCO3)	Sulfate (SO4)	Chloride (C1)	Fluoride (F)	Boron (B)	Dissolved solids (Residue at 180°C)	Hardness as CaCO3	Density (gms/ml at 20°C)	Hd
	1-27-65 10- 6-65 10- 6-65 5-25-66 5-25-66	4,194.7 4,194.7	T S 4 S 6	34 64 66 69 65	3.5 3.8 4.2 -	232 262 213 197 164	12,400 12,700 12,600 11,700 11,800	76,100 81,400 80,100 81,800 82,900	7,010 7,070 7,180 7,070 7,070	61 65 65 53 53	505 523 521 494 493	16,600 25,700 25,900 22,900 23,000	149,000 145,000 147,000 148,000 148,000	5.3 5.9 6.0 6.9 9.1	47 40 40 43 42	273,000 288,000 292,000 293,000 293,000	51,400 52,700 52,400 48,500 48,900	1.209 1.223 1.221 1.222 1.221	
	1-27-65 10- 6-65 10- 6-65 5-25-66 5-25-66	4,194.7 4,194.7	T S 6 S 9	34 64 62 69 65	2.7	199 279 230 197 197	12,500 12,500 12,400 12,000 12,000	73,900 78,100 80,000 82,000 78,900	7,210 7,450 7,630 6,900 6,970	61 64 64 53 53	505 506 516 489 486	17,700 25,400 25,200 22,500 22,700	151,000 145,000 148,000 150,000 148,000	5.7 - 11 10	46 45 48 40 40	276,000 290,000 293,000 292,000 293,000	52,000 52,000 51,600 49,600 49,700	1.208 1.222 1.220 1.219 1.218	
	10- 6-65 10- 6-65		S 4	63 61	:	230 230	12,500 12,900	79,500 78,800	7,620 7,740	66 66	516 522	25,900 26,100	147,000 147,000	:	52 45	296,000 294,000	52,200 53,600	1.222	
•	1-27-65 10- 6-65 10- 6-65 10- 6-65 5-25-66 5-25-66 5-25-66	4,194.7 4,194.7 4,194.7	T 5 10 5 14	36 62 61 61 69 65 63	3.4 4.0 3.8 3.7 -	214 263 214 312 197 148 148	13,300 12,200 12,200 12,200 12,000 12,000 12,000	78,700 83,200 82,000 82,000 81,100 80,400 80,500	7,210 6,880 6,970 7,210 6,970 6,980 6,970	66 65 61 52 52 52	506 505 503 486 490 484	20,400 25,100 25,100 25,100 23,100 22,900 22,900	155,000 148,000 148,000 148,000 148,000 148,000 149,000	5.4 5.2 5.7 5.0 8.4 10 8.3	46 41 37 41 39 39 41	276,000 291,000 290,000 291,000 287,000 289,000 293,000	55,100 50,700 50,800 49,700 49,800 49,600	1.217 1.220 1.220 1.220 1.218 1.216 1.219	and the second second second
	1-13-65 1-13-65 1-14-65 10- 6-65 10- 6-65 5-24-66 5-24-66	4,194.7 4,194.7	S 5 S 7 5 6	- 36 35 68 62 69 64	3.4 3.2 3.5 3.6 -	- 264 190 295 279 165 182	- 13,100 9,300 12,200 12,300 11,800 11,900	79,200 78,400 63,200 81,800 81,800 79,700 80,200	- 7,300 5,650 6,960 6,770 6,860 6,860	60 63 47 61 63 52 52	- 505 384 502 500 483 486	21,500 15,700 25,000 24,900 22,700 22,800	- 155,000 121,000 147,000 145,000 146,000 147,000	5.8 4.1 5.2 5.4 8.9 7.8	- 34 39 42 42 39	282,000 278,000 219,000 290,000 290,000 289,000 290,000	- 54,300 38,700 50,700 51,100 48,800 49,400	1.214 1.215 1.162 1.223 1.223 1.214 1.214	and a second second
	$12-16-63 \\ 1-14-65 \\ 10-6-65 \\ 10-6-65 \\ 10-6-65 \\ 5-24-66 \\ 5-26-66 \\ 5-2$	4,194.7 4,194.7 4,194.7	1 S 5 17 S 5 16	37 36 66 62 70 66 61	3.6	- 218 266 230 279 214 198 181	10,900 11,200 12,200 12,400 11,900 11,700 11,700	- 74,000 77,300 79,900 79,400 80,100 79,700 77,700	6,390 6,830 7,180 7,640 6,950 6,960 6,350	- 53 58 63 62 52 52 52	451 477 499 504 482 488 481	18,200 23,500 24,800 25,300 22,600 22,400 22,600	142,000 141,000 147,000 147,000 146,000 147,000 145,000	4.9 - 6.1 6.6 6.5	- 40 37 41 40 41 38 37	284,000 252,000 277,000 288,000 289,000 288,000 285,000 286,000	45,300 46,800 50,700 51,600 49,400 48,600 48,800	1.222 1.193 1.207 1.219 1.222 1.215 1.214 1.215	
	12-16-63 12-16-63 7-13-64 7-13-64 10- 6-65		1 20 5 22 S	35 38 81 60 66	3.9 1.6 1.1 2.4	256 - 198 164 246	12,800 - 11,700 12,200 12,200	79,900 - 76,800 79,300 79,800	7,570 - 7,000 6,780 7,640	- 66 42 46 62	497 	20,000 20,500 22,700 27,400 25,400	154,000 153,000 150,000 148,000 147,000	12	29 - 41 42 47	288,000 293,000 284,000 289,000 292,000	53,400 58,400 48,600 50,400 50,800	1.220 1.215 1.214 1.220 1.221	
	10- 6-65 10- 6-65 5-25-66 5-25-66	4,194.7 4,194.7	5 22 S 5	62 61 67 66		213 180 165 148	12,400 12,300 11,700 11,800	80,100 79,000 79,500 79,900	7,640 7,640 6,950 7,040	62 65 52 52	513 507 484 484	25,400 25,300 23,100 23,100	148,000 146,000 145,000 147,000	- 9.0 7.1	49 50 37 37	288,000 289,000 286,000 289,000	51,600 51,100 48,500 48,800	1.221 1.222 1.216 1.215	
	5-25-66 5-25-66 5-25-66 5-25-66	4,194.7 4,194.7 4,194.7 4,194.7 4,194.7	10 15 20 23	61 61 58 53		182 148 165 164	11,500 11,800 11,600 11,500	80,100 80,000 80,100 79,800	7,050 6,960 7,040 7,050	52 52 50 50	483 484 483 475	22,500 22,500 24,900 27,800	145,000 146,000 147,000 144,000	12 7.1 5.9 8.5	38 37 35 35	286,000 285,000 290,000 293,000	47,600 49,000 48,300 47,900	1.213 1.214 1.217 1.222	
	12- 2-63 10- 6-65 10- 6-65 5-25-66 5-25-66 5-25-66	4,194.7 4,194.7 4,194.7	1 9 5 12	39 62 61 66 64 64		- 262 197 181 132 165	12,500 12,500 11,700 11,600 12,200	80,000 80,100 80,300 77,400 78,000	- 7,640 7,640 7,280 7,120 6,940	- 65 63 50 50 50	- 512 509 486 487 494	25,700 25,600 22,800 22,700 22,900	- 148,000 148,000 149,000 147,000 148,000	- 8.9 5.3 6.0	- 50 52 37 37 40	292,000 289,000 290,000 288,000 291,000 293,000	52,200 51,800 48,600 47,900 50,600	1.220 1.222 1.221 1.215 1.216 1.215	
	12- 2-63 10- 6-65 10- 6-65 5-24-66 5-24-66 5-24-66	4,194.7 4,194.7 4,194.7	6 S 9 S 5 11	38 61 60 70 61 61		- 230 197 165 205 214	12,400 12,700 11,500 11,800 11,900	- 81,000 79,400 80,700 80,700 80,500	- 7,650 7,630 6,730 6,740 6,870	- 63 53 53 53 54	- 518 512 487 487 489	26,000 26,100 22,800 23,300 22,900	- 149,000 147,000 146,000 147,000 147,000	- 8.4 7.9 9.4	49 47 41 39 40	289,000 294,000 290,000 286,000 287,000 288,000	51,600 52,500 47,700 49,000 49,600	1.218 1.220 1.223 1.216 1.215 1.219	
	1-27-65 1-27-65 1-27-65 1-27-65 1-27-65		S 5 10 15 20	36 36 36 36 36	3.4	- 198 - 215 -	- 13,300 13,300	82,600 80,600 80,100 73,800 83,300	7,210	63 63 64 63 66	505 507 507 512 514	20,400 20,500 20,300 21,000 20,700	148,000 153,000 144,000 147,000 151,000	5.0 4.8	46 - 45 -	279,000 280,000 281,000 284,000 281,000	50,800 55,100 50,600 55,200 53,800	1.213 1.216 1.214 1.214 1.215	
	1-27-65 10- 6-65 10- 6-65 10- 6-65 10- 6-65		24 S 5 10 15	36 62 63 63 62	3.7 3.4 3.5	198 231 230 263 230	13,500 11,800 12,200 12,200 12,600	73,700 76,000 82,100 78,600 81,900	7,250 7,010 6,990 7,370 6,940	63 61 61 62 63	508 495 496 508 506	21,200 24,600 25,400 25,200 25,000	149,000 140,000 148,000 145,000 148,000	5.7 5.0 5.1	47 37 40 43 41	281,000 283,000 288,000 289,000 286,000	55,900 49,200 50,900 50,800 52,400	1.216 1.215 1.218 1.221 1.221	
	10- 6-65 10- 6-65 5-24-66 5-24-66 5-24-66	4,194.7 4,194.7 4,194.7	20 24 5 10	60 60 69 62 61	3.6 4.0 3.4 3.6	295 230 196 185 172	12,500 12,200 11,500 11,700 11,800	78,600 81,900 78,300 81,500 82,400	7,640 7,110 6,270 6,770 6,670	65 63 51 53 53	514 513 471 473 476	25,400 25,700 21,700 22,900 22,900	146,000 147,000 141,000 146,000 146,000	5.3 8.1 12 10	41 39 37 40 40	293,000 289,000 274,000 283,000 284,000	52,000 50,800 47,700 48,600 48,800	1.221 1.221 1.205 1.214 1.214	

Table 7. — Continued

						Parts per million											Γ		
Sampling site	Date of collection	Altitude of water surface (feet)	Depth (feet)	Temperature (°F)	Silica (SiO ₂)	Calcium (C1)	Magnesium (Mg)	Sod ium (Na)	Potassium (K)	Lithium (Li)	Bicarbonate (HCO3)	Sulfate (SO4)	Chloride (Cl)	Fluoride (F)	Boron (B)	Dissolved solids (Residue at 180°C)	Hardness as CaCO3	Density (gms/ml at 20°C)	Hq
)	5-24-66 5-24-66 5-24-66	4,194.7 4,194.7 4,194.7	15 20 26	61 60 51	3.4 3.4 2.9	175 204 173	12,200 12,000 11,400	82,200 82,100 82,400	6,650 6,720 6,420	53 54 51	486 488 456	22,700 22,800 37,300	148,000 148,000 139,000	9.0 6.9 13	39 41 38	286,000 288,000 295,000	50,800 49,700 47,200	1.217 1.218 1.229	7 7 7
1	12- 4-63 1-14-65 10- 6-65 10- 6-65		N S S 5	43 36 60 64	3.5	- 185 264 214	11,100 11,400 12,200	- 73,000 77,600 80,000	- 6,390 6,910 7,410	- 53 57 63	444 495 498	17,800 23,600 25,200	- 141,000 142,000 147,000	4.2 -	- 38 35 37	290,000 250,000 279,000 288,000	- 46,100 47,700 50,600	1.219 1.193 1.215 1.220	7 7 7 7
	10- 6-65 5-24-66 5-24-66 5-24-66	4,194.7 4,194.7 4,194.7	19 S 5 17	61 74 64 60		214 200 132 165	12,400 11,200 12,000 12,000	80,300 78,500 82,300 81,600	7,550 6,200 6,610 7,310	63 50 52 52	508 471 479 490	25,700 21,400 22,900 22,800	148,000 141,000 147,000 148,000	- 10 9.6 8.9	37 36 37 39	290,000 273,000 287,000 287,000	51,600 46,600 49,800 49,800	1.220 1.202 1.215 1.216	7 7 7 7
2	5-24-66	4,195.4	т	50	-	93	784	6,690	581	2.7	272	1,700	11,800	1.3	2.2	23,600	3,460	1.013	8
3	12- 3-63 10- 4-65 10- 4-65 10- 4-65 5-24-66 5-24-66 5-24-66	4,191.7 4,193.8 4,193.8 4,193.8 4,195.4 4,195.4 4,195.4	N 5 11 5 14	43 65 63 64 67 64 63	11 4.4 4.3 -	62 257 239 221 210 193	- 805 7,830 7,730 7,330 6,990 7,000	7,330 71,700 71,000 57,800 57,400 58,800	- 616 4,860 4,730 4,000 3,910 3,990	- 0 34 36 32 34 35	1/330 392 390 386 385 388	1,400 17,600 17,400 14,400 14,400 15,200	12,900 124,000 121,000 103,000 103,000 105,000	.6 4.6 3.9 6.1 5.3 4.9	- 0 23 19 15 16 17	271,000 25,200 235,000 237,000 195,000 198,000 200,000	3,460 32,800 32,400 30,700 29,300 29,300	1.208 1.011 1.172 1.173 1.141 1.144 1.144	8 7 7 7 7 7 7
4	12- 4-66 12-17-63 1-27-65 1-27-65 7-22-65	4,191.7 4,191.8 4,193.3 4,193.3 4,193.3 4,194.0	N N N S	48 35 - 38 79	3.8	- - - 309	- - - 7,520	- 67,500 74,300 68,900		- 44 34 35 39	- 378 389 380	19,300 12,900 14,800 16,900	- 149,000 116,000 126,000 116,000	8.0	• • • • •	265,000 275,000 212,000 233,000 230,000	40,500 30,600 32,000 31,700	1.200 1.206 1.153 1.172 1.167	7 7 7
	7-22-65 7-22-65 10- 7-65 10- 7-65 10- 7-65	4,194.0 4,194.0 4,193.8 4,193.8 4,193.8	5 17 S 5 23	78 78 55 62 69		240 325 213 309 265	7,450 7,290 1,750 7,570 10,600	69,800 70,600 18,100 68,900 81,000	- 1,200 4,600 4,440	39 40 6.9 39 55	382 381 368 394 450	16,900 16,900 3,920 17,400 23,300	117,000 118,000 31,400 120,000 143,000		- 1.2 21 34	231,000 230,000 56,600 228,000 279,000	31,200 30,800 7,740 31,900 44,400	1.168 1.170 1.034 1.168 1.210	7 7 8 7 7
	5-24-66 5-24-66 5-24-66 5-24-66	4,195.4 4,195.4 4,195.4 4,195.4	S 5 15 20	67 63 62 56	:	196 229 210 191	6,280 6,600 6,890 10,500	52,200 53,600 55,500 72,200	3,500 3,850 3,990 5,550	28 32 34 49	374 382 386 449	12,900 14,300 14,900 21,400	91,400 99,800 103,000 137,000	4.9 5.0 5.6 6.6	14 16 17 34	172,000 191,000 199,000 267,000	26,300 27,700 28,800 43,600	1.122 1.137 1.144 1.199	7777
	12- 3-63 7-13-64 7-13-64 7-22-65 7-22-65	4,191.7 4,194.0 4,194.0 4,194.0 4,194.0 4,194.0	N 5 25 S 5	49 81 58 78 77	2.9 4.3 3.1 -	255 224 198 309 264	8,960 7,340 10,400 7,270 7,340	84,600 71,200 79,300 71,400 72,200	5,080 4,690 6,150 - 4,570	- 37 42 40 35	395 369 433 389 384	24,600 16,100 24,800 17,100 17,000	149,000 121,000 145,000 119,000 120,000	4.1	39 22 37 - 23	257,000 226,000 280,000 228,000 228,000	37,500 30,700 43,200 30,700 30,800	1.196 1.165 1.214 1.166 1.168	7 7 7 7 7 7
	7-22-65 10- 4-65 10- 4-65 10- 4-65 10- 4-65	4,194.0 4,193.8 4,193.8 4,193.8 4,193.8 4,193.8	27 S 5 10 15	60 63 61 62 63	3.1 5.0 4.0	258 260 274 291 291	10,800 7,190 7,740 7,520 7,500	79,600 65,600 66,200 69,300 72,200	6,110 4,170 4,750 4,210 4,420	54 38 36 41 39	443 396 392 399 410	23,900 16,500 17,000 17,500 17,300	142,000 114,000 118,000 120,000 121,000	5.3 3.9 4.4	32 31 24 31 25	276,000 219,000 229,000 233,000 234,000	45,000 30,200 32,500 31,700 31,600	1.210 1.158 1.169 1.169 1.172	777777777777
	10- 4-65 10- 4-65 5-24-66 5-24-66 5-24-66	4,193.8 4,193.8 4,195.4 4,195.4 4,195.4 4,195.4	20 25 5 10	74 66 70 64 64	2.8 4.8 4.9 4.9	332 214 186 176 176	10,300 11,300 6,910 7,080 6,810	78,200 82,100 56,900 57,000 57,000	6,390 6,480 3,830 4,140 3,980	54 58 33 33 33	446 473 387 389 387	22,700 24,800 14,600 14,900 14,800	140,000 144,000 102,000 103,000 101,000	5.0 4.9 4.9 5.1	32 40 16 16 17	272,000 286,000 199,000 199,000 198,000	43,300 46,800 28,900 29,500 28,500	1.207 1.218 1.143 1.141 1.142	77777777777
	5-24-66 5-24-66 5-24-66	4,195.4 4,195.4 4,195.4	15 20 26	64 61 53	4.9 3.9 2.7	239 175 172	6,710 10,000 11,200	60,300 73,300 81,300	3,630 5,800 6,660	34 47 52	385 441 460	14,600 20,100 24,000	103,000 131,000 142,000	4.5 8.1 7.6	21 33 37	196,000 254,000 278,000	28,200 41,600 46,600	1.142 1.193 1.212	1
	1-27-65 10- 4-65 10- 4-65 5-24-66 5-24-66	4,193.3 4,193.8 4,193.8 4,195.4 4,195.4	T S 3 S 7	39 65 67 63 63		- 293 275 204 176	7,100 7,750 6,820 6,750	78,000 65,100 68,100 61,200 61,100	- 4,190 4,170 3,570 3,560	41 38 40 33 33	406 389 394 388 377	14,900 16,400 17,200 14,600 14,600	134,000 113,000 119,000 103,000 103,000	- 8.9 7.1	- 46 22 23 22	246,000 219,000 229,000 196,000 195,000	35,300 29,900 32,500 28,500 28,200	1.182 1.162 1.168 1.139 1.142	100000
	10- 1-65 10- 1-65 10- 1-65 5-24-66	4,193.8 4,193.8 4,193.8 4,193.8 4,195.4	S 5 21 S	59 61 70 62	:	276 308 232 221	7,510 7,650 10,800 6,740	65,300 68,300 78,700 61,100	4,180 4,390 6,700 3,780	40 40 54 33	393 389 435 375	17,100 17,400 23,200 14,800	114,000 119,000 142,000 103,000	- - 6.3	22 23 33 22	222,000 228,000 277,000 196,000	31,600 32,200 45,000 28,200	1.164 1.172 1.210 1.141	7777
	5-24-66 5-24-66 5-24-66 5-24-66	4,195.4 4,195.4 4,195.4 4,195.4	5 15 20 27	63 62 58 54	:	176 193 185 149	6,710 7,320 9,770 11,200	61,100 61,100 70,600 78,300	3,780 3,780 5,560 6,330	33 33 46 49	380 391 432 456	14,700 14,900 20,200 22,800	102,000 104,000 132,000 140,000	5.0 7.6 8.9 9.3	22 22 33 37	198,000 200,000 257,000 277,000	28,000 30,600 40,600 46,300	1.142 1.142 1.191 1.206	8 7 7 7
	10- 1-65 10- 1-65 10- 1-65	4,193.8 4,193.8 4,193.8	S 5 11	60 62 63	:	276 309 274	7,560 7,460 7,670	66,900 69,100 69,600	4,380 4,440 4,430	37 38 38	393 390 394	16,800 17,100 17,600	117,000 120,000 121,000	:	26 25 27	224,000 228,000 231,000	31,800 31,400 32,200	1.164 1.169 1.172	7777
	7-22-65 7-22-65 7-22-65 10- 4-65 10- 4-65 10- 4-65	4,194.0 4,194.0 4,194.0 4,193.8 4,193.8 4,193.8	S 5 20 S 5 10	78 79 77 64 63 63	5.1 3.8 4.2	275 213 270 308 205 273	7,330 7,410 8,610 7,760 7,650 7,560	71,300 71,900 76,100 70,000 70,900 71,000	4,550 5,020 4,430 4,590 4,710	40 37 44 38 39 38	382 387 401 400 387 399	16,900 17,100 19,600 17,500 17,000 17,600	119,000 120,000 130,000 122,000 121,000 123,000	4.4 4.8 4.4	- 23 27 29 24 34	228,000 228,000 251,000 232,000 234,000 231,000	30,800 31,000 36,100 32,700 32,000 31,800	1.168 1.168 1.186 1.171 1.173 1.173	

Table 7. — Continued

	Date of collection			Parts per million															
Sampling site		Altitude of water surface (feet)	Depth (feet)	Temperature (°F)	Silica (SiO2)	Calcium (C1)	Magnesium (Mg)	Sodium (Na)	Potassium (K)	Lithium (Li)	Bicarbonate (HCO3)	Sulfate (SO4)	Chloride (Cl)	Fluoride (F)	Boron (B)	Dissolved solids (Residue at 180°C)	Hardness as CaCO3	Density (gms/ml at 20°C)	Hq
9	10- 4-65 10- 4-65 5-24-66 5-24-66 5-24-66	4,193.8 4,193.8 4,195.4 4,195.4 4,195.4 4,195.4	15 22 S 5 10	63 70 65 64 63	4.2 2.4	239 166 140 158 175	7,520 10,100 6,960 7,390 6,890	70,800 80,600 59,000 59,000 56,400	4,670 5,840 3,700 3,700 3,900	39 53 33 33 33	397 429 388 387 385	17,300 21,800 14,900 14,900 14,700	124,000 140,000 104,000 106,000 103,000	4.3 4.7 9.3 9.2 6.8	23 33 19 21 18	233,000 272,000 197,000 197,000 198,000	31,500 41,800 29,000 30,800 28,800	1.174 1.207 1.143 1.143 1.143	7 7 7 7 7 7
	5-24-66 5-24-66 5-24-66	4,195.4 4,195.4 4,195.4	15 20 23	63 61 54		158 137 133	7,100 8,140 9,280	56,400 69,500 83,300	3,750 4,720 5,730	33 39 44	385 406 415	14,800 18,100 20,900	102,000 118,000 139,000	7.0 9.1 7.6	19 23 25	199,000 230,000 268,000	29,600 33,800 38,500	1.143 1.168 1.201	
С	7-22-65 7-22-65 10- 4-65 10- 4-65 5-23-66 5-23-66	4,194.0 4,194.0 4,193.8 4,193.8 4,195.4 4,195.4	S 7 5 6 5 7	80 81 64 64 65 62	5.1 4.8 4.2 4.1	241 247 275 239 169 158	7,290 7,280 7,750 7,730 6,900 6,870	72,100 72,000 69,400 71,500 54,500 54,400	4,500 4,490 4,580 4,740 3,840 3,840	37 37 38 39 27 30	385 377 394 402 386 387	16,700 17,200 16,600 17,400 14,600 14,900	120,000 120,000 120,000 122,000 101,000 101,000	4.2 4.2 3.8 4.0 3.6 6.0	25 25 23 25 18 19	225,000 226,000 228,000 236,000 194,000 198,000	30,600 30,500 32,500 32,400 28,800 28,700	1.165 1.166 1.168 1.174 1.139 1.141	
1	10- 4-65 10- 4-65 5-23-66 5-23-66 5-23-66	4,193.8 4,193.8 4,195.4 4,195.4 4,195.4 4,195.4	S 8 5 10	62 62 64 62 63		290 256 158 193 165	7,490 7,560 7,060 7,110 7,040	70,000 71,800 54,400 60,300 60,300	4,330 4,330 4,040 3,710 3,710	38 38 30 33 33	394 392 384 386 383	17,600 17,500 15,000 15,000 15,100	121,000 124,000 101,000 105,000 105,000	4.0 4.1 7.6	29 26 18 20 21	232,000 232,000 200,000 198,000 199,000	31,500 31,700 29,400 29,700 29,400	1.174 1.174 1.142 1.144 1.144	
2	5-23-66 5-23-66 5-23-66 5-23-66 5-23-66	4,195.4 4,195.4 4,195.4 4,195.4 4,195.4 4,195.4	S 5 15 20 23	64 63 62 58 53		168 151 182 153 200	7,210 6,490 6,520 8,330 8,580	60,300 60,200 60,300 70,400 82,700	3,710 3,700 3,710 4,650 4,640	33 33 33 44 42	385 384 392 402 384	15,200 15,200 15,200 18,800 20,000	105,000 105,000 103,000 127,000 144,000	5.0 4.8 3.6 3.7 4.9	19 21 21 27 27	198,000 197,000 200,000 240,000 271,000	30,100 27,100 27,300 34,600 35,800	1.144 1.145 1.144 1.178 1.202	
3	12-14-64 12-14-64 12-14-64 12-14-64 10- 4-65	4,192.5 4,192.5 4,192.5 4,192.5 4,192.5 4,193.8	S 5 10 15 S	38 38 38 39 61		274	- - 7,320	79,800 81,900 79,300 83,400 69,400	- - 4,350	38 41 38 39 38	406 - 399 399	17,700 18,100 17,100	138,000 		- - - 24	257,000 257,000 258,000 260,000 226,000	35,400 35,400 30,800	1.196 1.191 1.194 1.193 1.169	
	10 4-65 10- 4-65 5-23-66 5-23-66 5-23-66	4,193.8 4,193.8 4,195.4 4,195.4 4,195.4 4,195.4	5 20 S 5 21	63 67 64 62 55		308 234 182 196 134	7,490 9,390 6,700 6,580 8,650	70,500 77,600 58,400 58,400 80,500	4,340 5,510 3,520 3,520 4,580	38 47 31 31 43	399 414 388 385 401	17,300 20,700 15,100 15,200 20,300	122,000 137,000 103,000 103,000 136,000	4.5 3.5 5.0	22 31 22 22 27	229,000 260,000 201,000 201,000 267,000	31,600 39,200 28,000 27,600 35,900	1.172 1.199 1.143 1.143 1.198	
4	12-14-64 12-14-64 12-14-64 10- 7-65 10- 7-65	4,192.5 4,192.5 4,192.5 4,193.8 4,193.8	S 5 15 S 5	38 38 38 62 62		- 326 326	- - 7,830 7,710	79,900 82,600 81,700 67,800 68,700	- - 4,260 4,250	38 39 39 38 38	405 409 394 397	18,000 16,800 17,000 17,000	139,000 139,000 119,000 120,000		- - 29 30	259,000 258,000 259,000 226,000 226,000	35,500 36,200 33,000 32,500	1.195 1.194 1.192 1.167 1.169	
	10- 7-65 5-23-66 5-23-66 5-23-66	4,193.8 4,195.4 4,195.4 4,195.4 4,195.4	14 S 5 17	64 63 62 62		273 182 147 168	7,510 6,680 7,130 6,820	69,300 59,300 59,300 59,300	4,240 3,420 3,430 3,420	38 33 32 32	399 384 388 382	17,300 14,800 15,000 14,900	120,000 105,000 103,000 105,000	3.2 3.6 3.5	24 20 18 18	230,000 197,000 197,000 198,000	31,500 27,900 29,700 28,400	1.173 1.146 1.145 1.146	
5	5-23-66 5-23-66	4,195.4 4,195.4	20 25	62 52	Ę	175 183	6,830 8,370	59,300 83,000	3,420 4,410	33 43	384 392	15,200 20,100	105,000 141,000	4.5 4.8	20 26	199,000 271,000	28,500 34,900	1.146 1.205	
5	12- 8-64 12- 8-64 12- 8-64 10- 4-65 10- 4-65	4,192.5 4,192.5 4,192.5 4,193.8 4,193.8	S 5 14 S 5	39 40 42 59 62		- - 325 273	- - 7,750 7,910	78,400 83,900 85,200 68,700 69,200	- 4,250 4,310	37 39 39 38 38	406 401 393 409	19,100 19,200 17,200 17,500	- 140,000 142,000 120,000 121,000		- 23 20	256,000 256,000 259,000 228,000 233,000	35,200 35,500 32,700 33,200	1.193 1.192 1.196 1.170 1.174	
	10- 4-65 5-23-66 5-23-66 5-23-66	4,193.8 4,195.4 4,195.4 4,195.4	S 5	64 63		380 192 164 150	7,950 6,670 6,690 6,800	86,100 59,300 59,300 59,200	4,760 3,390 3,390 3,390 3,390	41 35 35 35	371 387 384 387	19,900 15,000 15,000 15,200	146,000 103,000 105,000 105,000	3.4 5.3 3.5	34 20 20 21	274,000 199,000 202,000 203,000	33,600 27,900 27,900 28,300	1.212 1.146 1.146 1.147	
7	12- 8-64 12- 8-64 12- 8-64 10- 4-65 10- 4-65	4,192.5 4,192.5 4,192.5 4,193.8 4,193.8	S 5 14 S 5	39 44 44 61 61		- - 324 324	- - 7,770 7,770	79,900 84,000 84,400 69,400 70,700	- - 4,230 4,230	38 39 37 38 38	- 399 399 391 393	19,400 19,100 17,500 17,500	140,000 141,000 121,000 123,000		- - 31 29	258,000 259,000 260,000 232,000 233,000	35,400 35,500 32,800 32,800	1.195 1.192 1.194 1.175 1.175	
	10- 4-65 5-23-66 5-23-66 5-23-66	4,193.8 4,195.4 4,195.4 4,195.4	16 S 5 13			307 175 175 210	7,730 6,730 6,820 6,350	70,200 59,300 59,400 60,700	4,370 3,400 3,400 3,910	38 35 35 33	398 386 385 388	17,600 15,200 15,100 15,000	122,000 103,000 105,000 105,000	- 4.4 4.7 4.4	30 19 19 20	232,000 202,000 201,000 200,000	32,600 28,100 28,500 26,600	1.175 1.145 1.144 1.145	
8	12- 8-64 12- 8-64 12- 8-64 12- 8-64 12- 8-64 1-27-65	4,192.5 4,192.5 4,192.5 4,192.5 4,192.5 4,192.5 4,193.3	15	39 39 42 42 44 36	4.2 4.1 4.3	235 - 268 - 136	9,230 9,190 7,960	82,700 82,100 84,600 81,900 85,700 71,900	5,040 5,190 4,870	39 39 38 38 38 37 35	402 399 403 405 406 397	19,100 19,200 19,300 19,500 19,600 15,600	138,000 144,000 140,000 143,000 142,000 132,000	4.1 4.1 5.8	31 29 29	255,000 256,000 259,000 260,000 261,000 246,000	35,000 38,500 34,000 38,500 34,800 33,100	1.193 1.194 1.195 1.196 1.197 1.179	
	10- 7-65 10- 7-65 10- 7-65 10- 7-65 10- 7-65	4,193.8 4,193.8 4,193.8 4,193.8 4,193.8 4,193.8	15	64 63 63 64 68	4.2 4.1 3.3	342 274 324 256 265	7,670 7,560 7,780 7,460 7,680	68,900 71,700 70,100 71,500 86,900	4,240 4,660 4,230 4,650 4,910	40 39 40 39 43	389 392 395 395 395 382	17,400 17,100 17,500 17,200 19,600	120,000 124,000 122,000 120,000 145,000	4.0 4.3 4.2	35 26 31 25 29	230,000 236,000 231,000 235,000 278,000	32,400 31,800 32,800 31,300 32,200	1.173 1.172 1.174 1.174 1.174 1.210	

Table 7. - Continued

					Parts per million														
Sampling site	Date of collection	Altitude of water surface (feet)	Depth (feet)	Temperature (°F)	Silica (Si02)	Calcium (C1)	Magnesium (Mg)	Sodium (Na)	Potassium (K)	Lithium (Li)	Bicarbonate (HCO3)	Sulfate (SO4)	Chloride (31)	Fluoride (F)	Boron (B)	Dissolved solids (Residue a: 130°C)	Hardness as CaCO3	Density (gms/ml at 20°C)	ΡΗ
8	<u>3</u> /5-23-66 5-23-66 5-23-66 5-23-66 5-23-66 5-23-66 5-23-66	4,195.4 4,195.4 4,195.4 4,195.4 4,195.4 4,195.4 4,195.4	S 5 10 15 20 23	62 63 63 62 63 60		193 175 175 175 175 175 119	6,490 6,580 6,590 6,590 6,480 8,300	60,900 60,700 60,700 60,700 60,700 72,400	3,930 3,910 3,920 3,920 3,910 4,820	33 33 33 33 33 33 42	380 386 388 390 383 394	14,800 15,100 15,000 15,100 15,300 18,700	105,000 105,000 105,000 105,000 105,000 125,000	9.9 8.2 5.1 4.4 6.1 7.1	20 20 19 18 21 24	197,000 200,000 201,000 200,000 201,000 240,000	27,200 27,500 27,500 27,500 27,100 34,400	1.141 1.145 1.144 1.144 1.145 1.177	8. 7. 7. 7. 7. 7.
9	12-14-64 12-14-64 12-14-64 10- 1-65 10- 1-65	4,192.5 4,192.5 4,192.5 4,193.8 4,193.8	S 5 12 S 5	34 38 39 58 60		- 325 324	- 7,590 7,780	78,900 83,300 80,800 69,000 70,100	- - 4,240 4,200	37 39 41 36 40	406 403 391 390	16,800 11,400 17,300 17,600	141,000 141,000 120,000 122,000		- - 28 30	254,000 257,000 256,000 230,000 234,000	35,600 35,400 32,000 32,800	1.194 1.192 1.192 1.171 1.174	7 7 7 7
	10- 1-65 5-23-66 5-23-66 5-23-66	4,193.8 4,195.4 4,195.4 4,195.4 4,195.4	12 S 5 12	60 61 62 62		324 193 158 193	7,570 6,680 6,600 6,470	70,400 60,700 60,700 60,700	4,200 4,040 4,040 4,040	40 33 33 33	395 390 386 383	17,400 15,200 15,200 15,100	122,000 105,000 105,000 105,000	7.6 5.6 7.3	29 20 20 20	233,000 202,000 203,000 203,000	31,900 27,900 27,500 27,100	1.174 1.145 1.145 1.145 1.145	7777777

Includes 14 ppm carbonate (CO3).
Depth of 20-foot sample is uncertain.
Location of 5-23-66 samples is uncertain.

UTAH GEOLOGICAL AND MINERALOGICAL SURVEY

103 Utah Geological Survey Building University of Utah Salt Lake City, Utah 84112

THE UTAH GEOLOGICAL AND MINERALOGICAL SURVEY since 1949 has been affiliated with the College of Mines and Mineral Industries at the University of Utah. It operates under a director with the advice and counsel of an Advisory Board appointed by the Board of Regents of the University of Utah from organizations and categories specified by law.

The survey is enjoined to cooperate with all existing agencies to the end that the geological and mineralogical resources of the state may be most advantageously investigated and publicized for the good of the state. The *Utah Code*, *Annotated*, 1953 Replacement Volume 5, Chapter 36, 53-36-2, describes the Survey's functions.

Official maps, bulletins, and circulars about Utah's resources are published. (Write to the Utah Geological and Mineralogical Survey for the latest list of publications available).

THE LIBRARY OF SAMPLES FOR GEOLOGIC RESEARCH. A modern library for stratigraphic sections, drill cores, well cuttings, and miscellaneous samples of geologic significance has been established by the Survey at the University of Utah. It was initiated by the Utah Geological and Mineralogical Survey in cooperation with the Departments of Geology of the universities in the state, the Utah Geological Society, and the Intermountain Association of Petroleum Geologists. This library was made possible in 1951 by a grant from the University of Utah Research Fund and by the donation of collections from various oil companies operating in Utah.

The objective is to collect, catalog, and systematically file geologically significant specimens for library reference, comparison, and research, particularly cuttings from all important wells driven in Utah, and from strategic wells in adjacent states, the formations, faunas, and structures of which have a direct bearing on the possibility of finding oil, gas, salines or other economically or geologically significant deposits in this state. For catalogs, facilities, hours, and service fees, contact the office of the Utah Geological and Mineralogical Survey.

THE SURVEY'S BASIC PHILOSOPHY is that of the U. S. Geological Survey, i.e., our employees shall have no interest in Utah lands. For permanent employees this restriction is lifted after a 2-year absence; for consultants employed on special problems, there is a similar time period which can be modified only after publication of the data or after the data have been acted upon. For consultants, there are no restrictions beyond the field of the problem, except where they are working on a broad area of the state and, here, as for all employees, we rely on their inherent integrity.

DIRECTORS:

William P. Hewitt, 1961-Arthur L. Crawford, 1949-1961