Model for Evaluating the Effects of Dikes on the Water and Salt Balance of Great Salt Lake, Utah

by

K. M. Waddell and F. K. Fields

Prepared by The United States Geological Survey in cooperation with The Utah Geological and Mineral Survey

UTAH GEOLOGICAL AND MINERAL SURVEY a division of the UTAH DEPARTMENT OF NATURAL RESOURCES

WATER-RESOURCES BULLETIN 21 JANUARY 1977 PRICE \$2.50

STATE OF UTAH Scott M. Matheson, Governor

DEPARTMENT OF NATURAL RESOURCES Gordon E. Harmston, Executive Director

UTAH GEOLOGICAL AND MINERAL SURVEY Donald T. McMillan, Director

Governing Board

Paul M. Dougan, Chairman	Equity Oil Company
Robert W. Bernick, Vice Chairman	Walker Bank and Trust Company
Benton Boyd	U. V. Industries
Mrs. Philip A. Mallinckrodt	Public at Large
William E. Mead	Dames and Moore
Ned F. Parson Jack	B. Parson Construction Company
Kenneth R. Poulson	Brush Wellman, Incorporated

Gordon E. Harmston . . Executive Director, Department of Natural Resources, ex officio member Charles Hansen Director, Division of State Lands, ex officio member

Model for Evaluating the Effects of Dikes on the Water and Salt Balance of Great Salt Lake, Utah

by

K. M. Waddell and F. K. Fields

Prepared by The United States Geological Survey in cooperation with The Utah Geological and Mineral Survey

UTAH GEOLOGICAL AND MINERAL SURVEY a division of the UTAH DEPARTMENT OF NATURAL RESOURCES

WATER-RESOURCES BULLETIN 21 JANUARY 1977 PRICE \$2.50

CONTENTS

Page

English-to-Metric Conversion Factors	. v
Abstract	.1
Introduction	.1
Hydrology of the Lake	. 3
Water Budget	.4
Precipitation	.6
Evaporation	.7
Surface Inflow	11
Bear River	11
Weber River	14
Jordan River Basin	14
Miscellaneous Inflow	20
Ground-Water Inflow	20
Calibration of the Model	22
Diking Options	24
Salt Balance	24
Example of Model Simulation	26
Recommendations for Future Study	27
Conclusions	27
Selected References	28
Appendix	29
Glossary	29
Altitude, Area, and Volume	
Relationships of the Lake	30
Tables 9-18	54

ILLUSTRATIONS

Figure

1. Hydrograph of Great Salt Lake, 1931-732
2. Graph showing variation of load of
dissolved solids in Great Salt Lake, 1964-74
3. Map showing average annual precipitation
on Great Salt Lake, 1931-73
4. Graph showing average monthly
distribution of precipitation and
evaporation on Great Salt Lake, 1951-60
5. Map showing average annual freshwater-lake
evaporation for Great Salt Lake, 1931-70
6. Map showing location of gaging sites
used for estimating surface inflow
to Great Salt Lake 10
7. Graph showing net change of flow from
State Highway 83 to the dike of the
Bear River Migratory Bird Refuge
8. Schematic diagram snowing relation of
nows in lower Jordan Kiver Basin

P	age
9. Graph showing comparison of	
observed and computed lake altitudes	
during calibration of the model	-17
10. Graph showing annual inflow to	
Great Salt Lake from all sources, 1931-73	. 21
11. Schematic diagram showing salt balance	
for proposed diking option	. 22
12. Graph showing lake altitude and concentration	
of dissolved solids for diking option 20	. 23
Table	
1. Average annual precipitation and	
freshwater evaporation for various	
lake altitudes and diked areas	6
2. Average annual precipitation and	
freshwater evaporation from Willard	
Reservoir and wetland areas between	
long-term surface-inflow stations and	
the 4,200-foot shoreline of Great Salt Lake	9
3. Compilation of evaporation data	
for brines and freshwater	. 11
4. Compilation of data showing net change of flow	
from State Highway 83 to the dike of	1.2
the Bear River Migratory Bird Refuge	. 13
5. Net change of flow between the Jordan River	
and the outlets from duck clubs and	
Farmington Bay Waterfowl Management Area	. 14
6. Bar chart of gaging-site records, 1931-73	.18
7. Statistical summary of estimates of	
monthly surface inflow to Great Salt Lake	. 19
8. Estimates of ground-water	
inflow to Great Salt Lake	. 20
9. Altitude, area, and volume relationships	
for various diking options and the north	
and south parts of Great Salt Lake	-33
10. Annual distribution of precipitation ratios	
during 1931-73	-33
11. Monthly distribution of precipitation	
during 1951-60	-35
12. Compilation of data for estimating annual	
treshwater evaporation, 1931-70	-37
13. Surface flow from Bear River basin across	
State Highway 83, 1972-74 water years	. 38
14. Discharge and specific-conductance data for	
outflow from the Bear River Migratory	
Bird Refuge near Brigham City	39
15. Discharge and specific-conductance data for	
outflow from the Farmington Bay Waterfowl	
Management Area, duck clubs,	20
and Sait Lake City Sewage Canal	. 39
to Court Self Lake 1021.72	
17 Total astimated surface relation 17	-44
inflow to Croat Salt Lake 1021 72	1-
18 Computer program to simulate the water and	43
salt balance for selected diking antions	54
10 Example of computer program output	-34
17. Example of computer-program output	. 21

English-to-Metric Conversion Factors

Most numbers are given in this report in English units followed by metric units. The conversion factors used are shown to four significant figures. In the text, however, the metric equivalents are shown only to the number of significant figures consistent with the accuracy of the number in English units.

En	glish		Metric			
Units (multiply)	Units nultiply) Abbreviation (by)		Units (to obtain)	Abbreviation		
Acre-feet	acre-ft	0.001233	Cubic hectometres	hm ³		
Cubic feet per second	ft ³ /s	.02832	Cubic metres per second	m³/s		
Feet	ft	.3048	Metres	m		
Inches	in	25.40	Millimetres	mm		
Miles	mi	1.609	Kilometres	km		
Tons		.9072	Metric tons	t		

Water temperature is given in degrees Celsius (°C), which can be converted to degrees Fahrenheit (°F) by the following equation:

°F = 1.8 (°C) + 32

MODEL FOR EVALUATING THE EFFECTS OF DIKES ON THE WATER AND SALT BALANCE OF GREAT SALT LAKE, UTAH

by

K. M. Waddell¹ and F. K. Fields¹

ABSTRACT

A model was developed for predicting the water and salt budget for various diking options in Great Salt Lake.

The water budget was computed for 1-month intervals during a base period of 1931-73. The storage change (ΔS) during each month of the base period was computed from a budget of surface inflow (Is), ground-water inflow (Ig), precipitation on the lake surface (Ip), and outflow from evaporation (Oe), where $\Delta S = Is + Ip$ -Oe.

By knowing the changes in storage, a prediction of altitude can be made from known altitude-volume relationships.

The total annual inflow to Great Salt Lake ranged from about 1.5 to 5 million acre-feet (1,849.5 to 6,165.0 cubic hectometres). The Bear River contributes the largest percentage of the measured surface inflow.

The total annual outflow from the lake (evaporation) ranged from about 2.2 to 4.0 million acre-feet (2,712.6 to 4,932.0 cubic hectometres) during 1931-73. The average annual evaporation was 2.98 million acre-feet (3,674.3 cubic hectometres) or 45 inches (1,143 millimetres) per year.

The model provides for nine diking options. These include combinations of eight areas east of a line joining Antelope Island, Fremont Island, and the Promontory Mountains. Another option includes the part of Great Salt Lake that lies north of the Southern Pacific Transportation Co. causeway, which divides the main body of the lake into north and south parts.

The model treats the salt balance of the diked areas from the standpoint of an inflow-outflow balance with complete mixing, and no allowances are made for any stratification or chemical changes due to interaction with the sediments or solution of entrapped brines or residual salts. Because the degree of inaccuracy created by these assumptions is not known, the concentrations predicted by the model should be regarded not as absolute but as relative indexes by which to compare various diking alternatives.

INTRODUCTION

The concept of diking parts of Great Salt Lake, Utah, has long been considered as a means of controlling the salinity of the lake for more efficient salt production, of providing freshwater for recreation and other uses, and of controlling the annual fluctuation of lake levels in order to prevent flooding and inundation of evaporation ponds adjacent to the lake. The State of Utah has considered alternatives for the development of the resources of Great Salt Lake, and diking was one of the alternatives considered. The purpose of this study was to develop a digitalcomputer model which could be used to evaluate various diking proposals for their effect on the water and salt balance of Great Salt Lake.

Evaluation of diking proposals for the lake required a knowledge of the parameters controlling the lake hydrology as well as the tool (the model) to facilitate the computations necessary for relating these parameters to the lake dynamics. During 1971, the U. S. Geological Survey in cooperation with the Division of Water Resources, Utah Department of Natural Resources, began a 7-year study to monitor the principal parameters controlling the water balance, these parameters being surface inflow (quantity and quality) and evaporation.

A model study was originally planned as the last stage of the 7-year study, but the urgent needs of State planners indicated a requirement for earlier development of a working model. Thus in 1973, a second study was initiated to develop a model of the water and salt balance of the lake, with provisions for determining the effects of diking off various combinations of the three major inflowing streams. This model study, which was carried out in cooperation with the Utah Geological and Mineral Survey, was begun with the knowledge that the results would be preliminary until such time as sufficient data were available to provide a satisfactory data base.

The model uses a simple water- and salt-budget approach for a closed lake. The monthly inflow and outflow (evaporation) of water and of salt load to Great Salt Lake were estimated for a base period of 1931-73. After calibration of the model with existing data, provisions were made in the model to evaluate the effects that diking of various combinations of bay

¹ Hydrologist, U. S. Geological Survey.

Figure 1. Hydrograph of Great Salt Lake, 1931-73.

N

areas would have on the water and salt balance existing during the 1931-73 base period.

Hydrology of the Lake

An understanding of prior changes in the water and salt balance of Great Salt Lake is important for an understanding of the current hydrology of the lake and of the model. Madison (1970, p. 9-19) described the hydrology of the lake through the 1969 water year and Waddell and Bolke (1973, p. 2-6) described changes during 1970-72. The synopsis that follows is taken from these previous reports, updated for trends since 1972.

The hydrologic characteristics of Great Salt Lake are typical of a closed lake. The water surface rises and falls in response to the balance between evaporation and the amount of water contributed to the lake by surface runoff, ground-water inflow, and precipitation on the surface. The annual peak water-surface altitude generally is in the late spring, and the minimum watersurface altitude generally is in the early fall. Also, the general trend of the water-surface altitude may rise or fall for several years (fig. 1) as part of a long-term cycle. The causeway was constructed in 1957-59 by the Southern Pacific Transportation Co. for its railroad track across Great Salt Lake. It extends between Promontory Point and Lakeside, where the lake is about 18 mi (29 km) wide (fig. 5), and it divides the lake into north and south parts. A little more than one-third of the lake lies north of the causeway. The causeway is permeable and is breached by two open culverts, each 15 ft (4.6 m) wide. Although few data are available to substantiate the chemical characteristics of the lake prior to construction of the causeway, the restricted circulation effected by the causeway resulted in significant changes in the salt balance during the following years. According to Madison (1970, p. 7):

"Prior to construction of the causeway, the dissolved-solids content and the chemical composition of the lake brine were controlled primarily by volume changes resulting from inflow and evaporation. The causeway created two separate but interconnected lakes with different water-surface elevations and densities. As a result, brine flows in both directions through the causeway, with less dense brine from the south part moving northward through the upper part of the causeway and more dense brine from the north

Figure 2. Graph showing variation of load of dissolved solids in Great Salt Lake, 1964-74.

part moving southward through the lower part of the causeway. The chemistry of the lake is now controlled by the interchange of dissolved-solids load through the causeway, as well as by changes in the salt crust and by volume changes."

In 1963, shortly after construction of the causeway, when the lake declined to its lowest recorded stage, both the north and south parts were probably saturated with respect to sodium chloride and a salt crust probably formed on the lakebed north and south of the causeway (Madison, 1970, p. 12). As the lake rose during the following years, the south part began to freshen with the increasing lake volume and because of dissolved-load loss to the north part. The net dissolved-load movement to the north part, which probably was already saturated due to the low lake altitude, may have resulted in additional deposits of sodium chloride in the north part. The concentration of dissolved solids in the north part remained at or near saturation (355 grams per litre) through 1973.

The dissolved-load loss from the south to the north part continued until about 1972, when the loss was only about 0.01 billion tons (0.009 billion t). Waddell and Bolke (1973, p. 2) indicated that the salt balance between the two parts of the lake was near equilibrium for inflow conditions like those of 1972. During 1973-74, inflow conditions were similar to those of 1972, and dissolved-load computations based on water-quality data confirmed that dissolved-load losses to the north had ceased. This is indicated by the graph shown for the south part in figure 2.

The dissolved load in the north part continued a general trend upward in 1972, even though the south part showed little or no change. This indicates that the salt crust in the north part was dissolving as the volume of the north part increased and freshened as the lake rose. In October 1974, the total dissolved load in the north and south parts was about 4.5 billion tons (4.1 billion t), representing a net increase of about 0.5 billion tons (0.45 billion t) since the low point near the end of 1971.

During the fall of 1970 and 1972, the Utah Geological and Mineral Survey cored the bottom of the north part of the lake, and J. H. Goodwin (written commun., 1973) estimated the salt crust at 1.14 and 1.33 billion tons (1.03 and 1.21 billion t), respectively. Also, the dissolved-solids load in the fall of 1972 was about 4.2 billion tons (3.8 billion t). On the basis of the 1972 estimates, the total dissolved plus precipitated salt load for the entire lake would be about 5.5 billion tons (4.99 billion t) remained in the north part in October 1974.

In 1965, a lower layer of brine was observed in the south part of the lake (Hahl and Handy, 1969, fig. 1). This lower layer had chemical characteristics similar to the brine in the north part. Madison (1970, p. 12) and Waddell and Bolke (1973, p. 35) also observed this layer and stated that its volume remained relatively constant. Additional data collected by the U.S. Geological Survey and the Utah Geological and Mineral Survey during 1973-74 indicated that the volume of this lower layer and the altitude of the interface with the overlying brine was essentially unchanged, even though the lake altitude had increased by several feet. Madison (1970, p. 12) surmised that the apparent stability of the volume of the lower layer was due to equilibrium between the amount of brine moving south through the causeway and the amount of mixing taking place at the interface. Data prior to 1957 are insufficient to indicate whether density stratification was prevalent in the lake prior to construction of the causeway.

WATER BUDGET

The water budget for Great Salt Lake can be expressed in the following equation:

$$\Delta S = Is + Ig + Ip - Oe$$
(1)

where ΔS is change of storage, Is is surface inflow, Ig is ground-water inflow, Ip is precipitation directly on the lake surface, and Oe is evaporation from the lake surface.

Now, let V(t-1) represent the volume at the beginning of time step (t) and V(t) represent the volume after the time step. Then

$$V(t) = V(t-1) + \Delta S.$$
 (2)

Altitude, area, and volume relationships are known for the lake (see appendix); therefore, volume (V) and area (A) can be expressed as functions of altitude (Al). Thus, by knowing the volume or changes in volume with time, a prediction of altitude can be made. Equations (1) and (2) are the basic equations used in the model in this study for computing the water budget for separate parts of the lake. This budget or mass balance technique is simple, but it requires knowledge of all parameters in the budget equation.

In order to predict the effects of various diking proposals on the water and salt budget of Great Salt Lake, it is necessary to have a data base for the parameters in the budget through a pre-selected base period. A base period is necessary in order to observe the response of the lake to climatic changes that affect

Figure 3. Map showing average annual precipitation on Great Salt Lake, 1931-73.

the parameters in the water budget. By adopting a period from the past for which the parameters can be estimated, a data base was developed for use in the model.

A data base for 1931-73 was developed for the model. This was the longest period for which adequate

data were available upon which to estimate the parameters within the budget equation. The period also covers two long-term cycles in which the water surface either rose or fell for several years (fig. 1). A time period (T) of 1 month was adopted, which means that all parameters in the water budget had to be estimated for each month of the period 1931-73.

Area (figs. 3 and 5)	Altitude above mean sea level (ft)	Precipitation (Pa) (in)	Evaporation (in)
South part	4,205	12.98	55.98
bouur pure	4,199	13.46	56.25
	4,196	13.70	56.39
	4,195	13.74	56.41
7	4,205	10.66	62.72
	4,199	10.80	62.09
	4,196	11.08	61.48
	4,195	11.13	61.32
1	4,205	13.09	52.56
	4,199	12.93	52.56
	4,196	12.95	54.18
2	4,205	12.89	54.42
	4,199	12.89	54.35
	4,196	12.89	54.47
4	4,205	13.42	52.88
	4,199	13.38	53.26
	4,196	13.34	53.44
5	4,205	13.86	51.42
	4,199	13.81	51.50
	4,196	13.71	51.94
2+4+8	4,205	13.34	53.36
	4,199	13.81	53.52
	4,196	13.71	53.84
Average for diked areas		13.33	53.25

Table 1. Average annual precipitation and freshwater evaporation for various lake altitudes and diked areas.

Precipitation

The inflow to Great Salt Lake from precipitation on the water surface (Ip) was calculated in the following manner. The average annual precipitation (Pa) during 1931-73 was computed for 68 sites in a large area surrounding the lake. A multiple-regression analysis of the data was made to derive an equation describing mean annual precipitation as a function of latitude, longitude, and altitude. Using the equation, lines of equal average annual precipitation during 1931-73 were drawn for the area around the lake for a water-surface altitude of 4,200 ft (1,280.2 m) (fig. 3).

The surface area of the lake varies with watersurface altitude, and because precipitation varies areally across the lake, the average precipitation on any part of the lake is dependent upon the area inundated at a given water-surface altitude. Thus the lake was separated into seven different areas—the north and south parts separated by the Southern Pacific Transportation Co. causeway and the bay areas east of a line joining the Promontory Mountains, Fremont Island, and Antelope Island (fig. 3). Average precipitation values were computed for inundated areas at watersurface altitudes of 4,195, 4,196, 4,199, and 4,205 ft (1,278.6, 1,278.9, 1,279.8, and 1,281.7 m) (table 1). Thus, by knowing Pa for various altitudes, the average precipitation for any lake altitude can be interpolated. For example, if the lake altitude of concern is 4,200 ft (1,280.2 m), then average annual precipitation would be

$Pa_{4200} = [(4200 - 4199)/(4205 - 4199)] \cdot (Pa_{4205} - Pa_{4199}) + Pa_{4199}$

The ratio of annual precipitation for individual years to the 1931-73 average (Pa) ranges from 0.67 to 1.43 (Aj) (table 10).¹ To compensate for this variation, the 1931-73 average was adjusted by the factor Aj. So, the adjusted annual precipitation is now Pad = (Pa)(Aj), where Aj is the annual correction factor for any year, j.

The next step was to compute the monthly distribution of precipitation for each month of each

¹The ratio Aj was determined by obtaining the ratio of annual precipitation of 10 stations near Great Salt Lake to the 1931-73 average for the same 10 stations.

7

Figure 4. Graph showing average monthly distribution of precipitation and evaporation on Great Salt Lake, 1951-60.

year during 1931-73. This monthly distribution was computed as a percentage (Pmi)(100) of the annual total. The monthly distribution had only a small variation from year to year during a selected test period (1951-60) for 11 sites in the vicinity of Great Salt Lake. So an average monthly distribution was computed for the test period and assumed to be the same for each year of 1931-73 (fig. 4 and table 11). Thus, the average monthly precipitation for a given lake altitude becomes

Pm = (Pad) (Pmi)

The average annual inflow from precipitation on the lake surface during 1931-73 was estimated to be 966,000 acre-ft (1,190 hm³) per year and ranged from 680,000 to 1,260,000 acre-ft (840 to 1,550 hm³) per year.

In addition to precipitation on the surface of Great Salt Lake, precipitation on the wetland areas between long-term surface-inflow stations (fig. 6) and the shoreline of the lake was computed. This was done in order to extrapolate surface-inflow data observed at the long-term stations downstream to those applicable at the shoreline at an altitude of 4,200 ft (1,280.2 m) (table 2). The variance of precipitation (and evaporation) for these areas was small, so a mean value of 13.81 in (351 mm) per year was used for all areas. The annual distribution factor (Aj) and monthly distribution factor (Pmi) computed for Great Salt Lake were also used for the wetland areas.

Evaporation

Evaporation from Great Salt Lake (Oe) was developed as a function of latitude, longitude, watersurface altitude, pan coefficients, and salt content. To do this several intermediate steps were necessary.

The first step involved the extension of shortterm class A pan records at 49 sites to the period 1931-70.¹ Most of the stations have records only during June-September, so the June-September evaporation data for all the short-term stations were extended to 1931-70 ($Est_{1931-70}$). This was done by using the ratio of the short-term data (Est) to the concurrent record at a long-term site (Elt), as a factor times the 1931-70 data at the long-term site ($Elt_{1931-70}$) (table 12).

$Est_{June-Sept. 1931-70} = (Est/Elt) (Elt_{1931-70})$

The record at Utah Lake Lehi is complete for 1931-70 and was used as the long-term site.

The second step involved the extension of the June-September data to the entire year. The ratio of June-September data to that for the entire year was computed for those few sites where complete annual records were available. It was found that these ratios varied as a function of latitude. Using the multipleregression technique, an equation describing the annual correction factor (Acf) as a function of latitude was developed. This equation was then used to extend the June-September evaporation data to the entire year for the complete data set (table 12). Very little evaporation occurs from November to February; thus, the extension of June-September evaporation to January-December evaporation essentially adds the months of March, April, May, and October. For each site, therefore, the January-December evaporation (EstJan.-Dec. 1931-70) is obtained by dividing the June-September estimates (Est June-Sept. 1931-70) by the annual correction factor (Acf) associated with a particular latitude (table 12):

 $E = E_{Jan.-Dec. 1931-70} = E_{June-Sept. 1931-70/Acf}$

¹ The period 1931-70 was used because the records for 1971-73 were not yet available. The small annual variance during this period indicated that a 1931-70 base period for evaporation would be adequate even though 1931-73 was the base period for the model.

Figure 5. Map showing average annual freshwater-lake evaporation for Great Salt Lake, 1931-70.

The third step was to compute the pan coefficients in order to convert pan evaporation to freshwater-lake evaporation. The pan coefficients (Pcf) shown in table 12 were interpolated from the U.S. Department of Commerce (1959, pl. 3). The annual freshwater-lake evaporation (Efw) was then computed for each station as follows (table 12):

Efw = (E)(Pcf)

The fourth step was to develop an equation describing freshwater-lake evaporation (Efw) as a function of latitude, longitude, and water-surface altitude. This equation was developed by multiple-regression technique using the data input from the 49 sites in table 12. Then, lines of equal freshwater-lake evaporation were drawn for Great Salt Lake using data generated by the equation (fig. 5).

Like precipitation, the mean evaporation is variable over the lake surface; and because the lakesurface area varies with the lake altitude, it was necessary to compute mean values for different areas inundated at various altitudes for the several proposed areas of the lake. The lake surface was broken down in the same way as described for precipitation and the mean evaporation values were computed for areas inundated at water-surface altitudes of 4,205, 4,199, 4,196, and 4,195 ft (1,281.7, 1,279.8, 1,278.9, and 1,278.6 m) (table 1). Then by interpolation, the freshwater-lake evaporation can be computed for the inundated area occurring at any altitude.

The pan-evaporation data at Utah Lake Lehi were tested for annual variations by computing the ratio of the annual pan-evaporation values to the 1931-70 mean. The ratio ranged from 0.84 to 1.19. These ratios were used initially to correct the 1931-70 means for the evaporation of an individual year. During calibration of the model, however, it was found that these annual variations created a larger error in the mass balance than did a factor of 1.0. So the correction factor for the individual year evaporation was discarded and the mean value for 1931-70 was used without correction. The annual variations are probably within the range of sampling error and are not indicative of annual fluctuations of evaporation rates.

The monthly distribution of evaporation for 1931-73 was computed similarly to that of precipitation. The monthly distribution was computed as a percentage (Emi)(100) of the annual total (fig. 4). The monthly distribution had only a small variation from year to year during a selected test period (1951-60). An average monthly distribution was computed for the Table 2. Average annual precipitation and freshwater evaporation from Willard Reservoir and wetland areas between longterm surface-inflow stations and the 4,200-foot shoreline of Great Salt Lake.

	Precipitation (in)	Evaporation (in)
Bear River Migratory Bird Refuge	13.25	49.4
Willard Reservoir	14.10	49.1
Farmington Bay Waterfowl Management Area	14.08	50.2
Average	13.81	49.6

test period and assumed to be the same for each year of 1931-73. Thus:

Monthly freshwater-lake evaporation = (Efw)(Emi),

The next step was to correct freshwater-lake evaporation (Efw) for the effect of salt content. The following equations, which were developed during a prior study of Great Salt Lake (Waddell and Bolke, 1973, p. 33), were adapted for this study:

$SCE = (1-0.778 CS/\rho S)$

SCEN = $(1-0.778 \text{ CN}/\rho \text{N})$

The equations were then verified with field data obtained from the Morton Salt Co. These data were for brines whose specific gravity indicated that they were near saturation with respect to sodium chloride (table 3). Saturation in the north part of Great Salt Lake is attained at a specific gravity of approximately 1.225 at a temperature of 20° C (68° F). The average specific gravity of the brines observed by the Morton Salt Co. was 1.218 at an average temperature of 24.9° C (76.8° F). This adjusts to 1.219 at 20° C (68° F). The average ratio of the brine to freshwater, adjusted to 20° C (68° F), thus was 0.75. This compares to a ratio of 0.78 which was computed by the equations of Waddell and Bolke (1973, p. 33).

Thus, the evaporation rate from Great Salt Lake, in inches, was computed by applying the salinity correction factor (SCE or SCEN) to the freshwater-lake evaporation rate (Efw) for the concentration (CS or CN) existing in the lake for each month of the 1931-73 base period. Then total evaporation, in acrefeet, was computed for each month by applying the rate to the total area as shown in the following equations:

Monthly evaporation from south part = (Efw/12)(Emi)(SCE)(A)Monthly evaporation from north part = (Efw/12)(Emi)(SCEN)(A)

The annual evaporation from Great Salt Lake ranged from about 2.2 to 4.0 million acre-ft $(2,712.6 \text{ to } 4,932.0 \text{ hm}^3)$ during 1931-73. The average annual

Utah Geological and Mineral Survey Water-Resources Bulletin 21, 1976

Figure 6. Map showing location of gaging sites used for estimating surface inflow to Great Salt Lake.

		Brine			
Date	Evaporation (in)	Specific gravity	Temperature (°F)	Freshwater evaporation (in)	Ratio of brine to freshwater evaporation
June 1958	9.95	1.225	74.6	14.27	.70
July	10.51	1.230	75.0	15.21	.69
Aug.	8.96	1.235	78.7	13.09	.68
June 1959	8.76	1.220	72.9	11.64	.75
Aug.	9.52	1.210	74.9	12.21	.78
Aug. 1960	10.76	1.210	-	13.10	.82
May 1961	8.23	1.214		10.60	.78
June	12.41	1.220	-	14.87	.83
July	11.77	1.217	81.5	13.85	.85
Aug.	9.05	1.238	77.6	12.57	.72
Aug. 1963	10.69	1.206	76.4	13.30	.80
May 1966	7.68	1.203		11.08	.69
July	11.08	1.215		15.42	.72
Aug.	10.21	1.200	_	13.47	.76
July 1968	11.23	1.210	80.6	15.17	.74
May 1969	9.08	1.217	68.3	12.16	.75
July	9.88	1.218	80.7	12.76	.77
Aug.	9.93	1.218	78.6	13.83	.72
June 1970	7.21	1.212	72.7	10.24	.70
July	9.02	1.216	79.6	12.83	.70
Aug.	8.70	1.247	79.4	12.98	.67
July 1971	10.43	1.214	79.2	13.71	.76
May 1972	8.60	1.215	64.7	10.33	.83
July	12.16	1.219	81.2	16.51	.74
Aug.	9.55	1.218	77.8	12.36	.77
June 1973	9.46	1.218	75.2	11.72	.81
July	9.24	1.206	81.1	11.92	.78
Aug.	9.46	1.226	79.6	12.26	.77
Average		1.218	76.8		.75

Table 3. Compilation of evaporation data for brines and freshwater. [courtesy of Morton Salt Co.]

evaporation was 2.98 million acre-ft $(3,674.3 \text{ hm}^3)$ or 45 in (1,143 mm) per year.

Surface Inflow

Surface inflow to Great Salt Lake (Is) was estimated for 1931-73 by correlation of short-term records obtained at stream-gaging sites near the lakeshore with long-term records obtained at sites upstream. On some streams, several correlations were necessary to extend the record to sites nearest the shore of the lake. The site locations are shown in figure 6, and the period of record is shown in table 6. Some of the 1931-73 estimates are based on data collected only during 1971-73. The estimates for these sites are subject to considerable error, and they can be improved only with the collection of additional data.

Statistical summaries for all correlations are shown in table 7. The standard error of estimate ranged from 5.1 to 27 percent of the average. Monthly estimates of surface inflow to Great Salt Lake at individual gaging sites are shown in table 16, and total estimated annual surface- and ground-water inflow to the lake is shown in table 17.

The inflow boundary to Great Salt Lake was selected as the shoreline for a water-surface altitude of approximately 4,200 ft (1,280.2 m). This shoreline is near the dike outlets of bird refuges on the Bear, Weber, and Jordan Rivers, which are the main contributors of surface inflow to the lake.

Bear River

The records of inflow of the Bear River and its tributaries to Great Salt Lake were extended to the dike of the Bear River Migratory Bird Refuge, and the dike was assumed to be the inflow point for the 1931-73 base period.

The gaging station on the Bear River near Collinston (site 10118000) is the closest site to the inflow point of the Bear River with a record that

Figure 7. Graph showing net change of flow from State Highway 83 to the dike of the Bear River Migratory Bird Refuge.

Figure 8. Schematic diagram showing relation of flows in lower Jordan River basin.

includes the entire 1931-73 base period (table 6). Records for site 10118000 were used to extend the record near Corinne (site 10126000) to the 1931-73 base period. Other canals and drainage tributary to the Bear River that cross State Highway 83 (site 10127110) were measured during the 1972-74 water years.¹ This flow was then added to the flow of the Bear River near Corinne, giving the total flow across State Highway 83 (table 13). The percentage of the total flow across State Highway 83 that was contributed by the tributaries and canals was computed for each month during the 1972-74 water years and was found to average about 10 percent of the flow of the Bear River near Corinne. The 10-percent gain was then applied to the 1931-71 estimates to provide a 1931-73 estimate of the total flow across State Highway 83.

To extend the record from State Highway 83 to the outflow point at the Bear River Migratory Bird Refuge dike, measurements were made during 1974 of flow changes from State Highway 83 to the dike (table

Date	Total flow across State Highway 83	Two-day average (rounded)	Refuge dike	Net gain(+) or loss(-)
3-14-74 3-15	4,530 4,470	4,500	5,330	+830
4-11 4-12	3,050 3,210	3,130	4,090	+960
4-25 4-26	3,610 3,670	3,640	4,130	+490
5- 9 5-10	3,960 4,200	4,080	4,480	+400
5-23 5-24	3,450 3,400	3,420	2,800	-620
6- 6 6- 7	3,260 3,370	3,320	3,550	+230
6-20 6-21	2,530 1,940	2,240	2,340	+100
7- 4 7- 5	1,030 1,000	1,020	626	-394
7-21 7-22	1,130 1,090	1,110	122	-988
8- 7 8- 8	733 926	830	598	-232
8-18 8-19	723 451	587	644	+58
9-4 9-5	1,030 794	912	549	-363
9-16 9-17	1,600 1,690	1,640	1,770	+130
9-29 9-30	919 911	915	984	+69
10-14-74 10-15	1,630 1,500	1,560	1,550	-10
11- 3 11- 4	1,630 1,670	1.650	2.120	+470

Table 4. Compilation of data showing net change of flow, in cubic feet per second, from State Highway 83 to the dike of the Bear River Migratory Bird Refuge.

4 and fig. 7). Figure 7 shows the net change of flow from State Highway 83 to the dike of the Bear River Migratory Bird Refuge. Of the 16 measurements made during 1974, 6 indicated net losses. Most of these losses occurred during the warmer months when evaporation was high; conversely, gains generally occurred during the months when evaporation was low. These measurements are representative of 1974, but it is not known how well they relate to 1931-73. In view of these uncertainties, an alternative method was used to estimate the net change from State Highway 83 to the refuge dike.

¹ A water year is the 12-month period from October 1 through September 30, and it is designated by the calendar year in which it ends. Thus, the water year ending September 30, 1974, is called the "1974 water year."

Date	Site 10172630	Two-day average	Site 10170500 plus 10171000	Two-day average	Site 10170500 plus 10171000 minus 10172630	Farmington Bay Waterfowl Management Area plus duck clubs	Net gain(+) or loss(-)
12-18-73	29		713				1
12-19-73	29	29	696	705	676	634	-42
1-23-74	375		911				
1-24-74	377	376	907	909	533	666	+133
2-27-74	361		980				
2-28-74	370	366	994	987	622	538	-84
3-28-74	434		900				
3-29-74	430		906				
3-30-74	423		960				
3-31-74	423		953				
4- 1-74	400	422	932	930 ¹	508	538	+30
5- 2-74	425		688				
5- 3-74	381	403	638	663	260	819	+559
5-30-74	533		1,102				
5-31-74	475	504	1,079	1,091	587	769	+182
6-25-74	36		662				
6-26-74	42	39	640	651	612	296	-316
8-26-74	18		522				
8-27-74	23	21	516	519	498	239	-259
10- 2-74	24		414				
10- 3-74	23	24	458	436	412	244	-168

Table 5. Net change of flow, in cubic feet per second, between the Jordan River (2100 South) and the outlets from duck clubs and Farmington Bay Waterfowl Management Area. [see fig. 6 for location of sites]

¹ Five-day average.

The net change of flow from State Highway 83 to the dike during 1931-73 was estimated by determining the net change due to precipitation and evaporation within the intervening area and then adding or subtracting any other gain or loss as determined by the calibration of the model. (The precipitation and evaporation rates used are shown in table 2.) This is discussed in a later section under "Calibration of model."

Weber River

The gaging station on the Weber River near Plain City (site 10141000) is the site nearest Great Salt Lake with a record that incorporates the entire 1931-73 base period. Records for site 10141000 were used to extend the record of four short-term stations (QWR in table 7 and fig. 6), which monitored the total flow of the Weber River during 1971-73 as the water either entered or bypassed the Ogden Bay Waterfowl Management Area (fig. 6). Monthly gains were recorded during 1971-73 between the long- and short-term sites, the flow at the sites correlated well, and the average monthly gains for 1971-73 were used to extend the short-term records for the 1931-73 base period. The dike of the Ogden Bay Waterfowl Management Area was assumed to be the inflow point to Great Salt Lake, and the gain or loss from precipitation and evaporation on the management area was computed from data given in table 2. Any unmeasured change in flow in the management area was incorporated as part of the unmeasured inflow computed as part of the model calibration discussed in a later section under "Calibration of model."

Jordan River Basin

The discharge of the Jordan River to Great Salt Lake was obtained by extension of the flow in the river to the outlets of the Farmington Bay Waterfowl Management Area and the duck club outlets west of the management area. Several correlations from upstream stations with various intervals of record were required for extension through the 1931-73 base period.

Streamflow records of the Jordan River at Salt Lake City (2100 South) (site 10170490) are available for 1942-73. These records were extended through 1931-73 on the basis of correlations with upstream

Figure 9. Graph showing comparison of observed and computed lake altitudes during calibration of the model.

Waddell and Fields-Model for Evaluating the Effects of Dikes on the Water and Salt Balance of Great Salt Lake

15

Utah Geological and Mineral Survey Water-Resources Bulletin 21, 1976

Figure 9. continued

Figure 9. continued

Table 6. Bar chart of gaging-site records, 1931-73.

PERIOD OF RECORD

		June 2				Standard error of estimate expressed as:	
Site being estimated (dependent variable)	Site(s) used for correlation analysis (independent variable)	Number of months used for correlation	Period being estimated (months and water years)	Correlation coefficient	Average of dependent variable (acre-ft)	Acre-ft	Percentage of the average of the dependent variable
			Bear River Basin				
10126000 10127110	10118000 10126000	180 36	1931-49, 1958-63 1931-70	0.994 -	103,700 (¹)	5,290 -	5.1 -
			Weber River Basin				
QWR ²	10141000	18	1931-71	.998	46,700	2,380	5.1
	Tributaries	between Weber Riv	ver and Farmington Bay	Waterfowl Man	agement Area		
QWF ³	10172500	48	NovFeb.; 1931-49, 1962-73	.578	616	86	14
		48	MarJune; 1931-49, 1962-73	.92	3,740	1,010	27
		48	July-Oct.; 1931-49, 1962-73	.90	733	150	. 20
			Jordan River Basin				
10170490 (Monthly total)	10167000 + 10167500 + 10168500 + 10168500 + 10168500 + 10168500 + 1000000000000000000000000000000000	12 12	Oct., 1931-42 Nov., 1931-42	.915 .964	19,900 18,230	1,939 2,370	9.7 13 8 2
	10170000	12 12 12 12	Jan., 1931-42 Jan., 1931-42 Feb., 1931-42 Mar., 1931-42	.992 .996 .988 .954	20,090 20,120 25,700	1,500 2,050 1,670	8.2 7.5 10 6.5
		13 14 16	Apr., 1931-42 May, 1931-42 June, 1931-42	.915 .845 .887	22,740 26,130 27,060	4,200 5,070 3,100	18 19 11
10170490 (Annual total)	10167000	114	1931-42	.926	262,700	31,920	12
10170490 (July total)	10170490 (Annual total)	10	July, 1931-42	.226	17,170	2,440	14
10170490 (August total)	10170490 (Annual total)	10	Aug., 1931-42	.190	17,300	2,680	15
10170490 (September total)	10170490 (Annual total)	10	Sept., 1931-42	.334	18,560	1,990	11
10170500 10172600	10170490 10171000 + 10171600 + 10172500	154 60	1931-42 1931-63, 1969-73	.975 .922	12,040 9,270	1,690 742	14 8.6
10170800 + 10172630 + 10170700	10170500	60	1931-63, 1969-73	.993	12,940	717	5.5
10170800 (Oct. Nov.)	10170500	10	1931-63, 1969-73	.913	6,730	832	12
10170800 (Dec., Jan., Feb.)	10170500	15	1931-63, 1969-73	.976	7,090	531	7.5
10170800 (Mar., Apr., May, June, July)	10170500	25	1931-63, 1969-73	.916	8,740	1,650	19
10170800 (Aug. Sept.)	10170500	10	1931-63, 1969-73	.475	7,320	1,740	24

Table 7. Statistical summary of estimates of monthly surface inflow to Great Salt Lake.

¹ Average ratio of monthly discharge at site 10126000 to that of site 10127110 during 1971-73 was 0.90. This ratio was used to estimate the 1931-70 discharge at site 10127110.

²Combined discharge of stations 10141050, 10141100, 10141150, and 10141200.

³Combined discharge of station 10141500, 10142000, 10142500, 10143000, 10143500, 10144000, and 10145000. ⁴Number of years used for correlation.

	Farmington Bay (area 5, fig. 3)		Bear (are	Bear River Bay (area l, fig. 3)							
	Antelope Island	Jordan Valley	East shore	Subtotal	Promontory	East shore	Subtotal	(areas 2 and 4, fig. 3)	South part	North part	Total
Monthly inflow	125	165	2,000	2,300	250	1,000	1,250	1,000	870	830	6,250
Total annu	ual: 6,250 x	12 = 75,00	0								

Table 8. Estimates of ground-water inflow to Great Salt Lake, in acre-feet.

stations and inflowing tributaries (table 7). Just below site 10170490, the Surplus Canal diverts from the Jordan River and the flow path to the Great Salt Lake becomes quite complicated (fig. 8).

The record of the Jordan River at site 10171000 was estimated for 1931-41 from correlations with records at site 10170500 on the Surplus Canal and site 10170490 on the Jordan River. This record was then extended to site 10172600 on the Jordan River below Cudahy Lane on the basis of correlations of data collected at site 10172600 with that of data at site 10171000 and tributary sites 10171600 (Parleys Creek) and 10172500 (City Creek). Attempts were made to extend the record at site 10172600 to the dike outlets on the basis of monthly measurements made of outflow from the Farmington Bay Waterfowl Management Area during 1974 (table 5). The results of table 5 are as inconclusive as that of table 4 for extension through the 1931-73 base period.

Therefore, the flow estimated for site 10172600 was combined with the flow estimated for site 10170800 (QJR in fig. 6) and extended to the outlets of the waterfowl management area and duck clubs in a manner similar to that used for the lower reaches of the Bear and Weber Rivers.

Part of the water diverted into the Surplus Canal eventually ends up within the duck club diked areas and some is diverted to Goggin Drain, most of which drains into the south part of Great Salt Lake. Most of the water that flows into the duck club diked areas is water that passes site 10170800 (fig. 8). The flow at site 10170800 was measured during 1964-68, and the record was extended to 1931-73 on the basis of correlations of flows at site 10170800 with flows at site 10170500.

The water diverted from the Surplus Canal to the Goggin Drain was estimated by subtracting the flow passing site 10170800 from the total originating at site 10170500 and correlating with the combined flows of Goggin Drain and the North Point Consolidated Canal at sites 10172630 and 10170700.

Miscellaneous Inflow

Seven tributaries (QWF in table 7 and fig. 6) between the Weber River and the Farmington Bay Waterfowl Management Area had short-term records, which were correlated with the flow of City Creek (site 10172500 in fig. 6) for the entire 1931-73 base period. Although the seven short-term sites were along the slopes of the Wasatch Range and far removed from the lakeshore, they were the only means available for estimating inflows from tributaries along this part of the shoreline. Intermittent measurements were made at points on these tributaries near the shore of the lake during 1971-73, but additional measurements will be needed in order to extend the records of the upstream sites to the sites nearer the lakeshore.

Kennecott Drain and Lee Creek also drain directly into the south part of Great Salt Lake. Efforts to correlate short-term records at sites 10172640 on Lee Creek and 10172650 on Kennecott Drain were not successful. The average monthly flow at both sites was computed for the records at both sites (1963-68, 1971-73) and used for the remaining part of the 1931-73 base period.

Records of inflow were compiled for five sewage plants, all of which discharge their effluents directly into Farmington Bay. The largest of these plants is the Salt Lake City sewage plant. The total monthly discharge from these plants during 1959-73 is shown in table 16.

Ground-Water Inflow

Ground-water inflow to Great Salt Lake (Ig) is difficult to distinguish from other sources of inflow because of fluctuations of the shoreline during the 1931-73 base period. The base altitude used for estimates of ground-water inflow to the lake was 4,200 ft (1,280.2 m). The lowest altitude recorded during the base period (1931-73) was 4,191.35 ft (1,277.5 m) in 1963. The shoreline in many parts of the lake at that time was several miles downstream from its position when the lake was at an altitude of 4,200 ft (1,280.2 m). The flow of some streams increased due to

Figure 10. Graph showing annual inflow to Great Salt Lake from all sources, 1931-73.

21

Figure 11. Schematic diagram showing salt balance for proposed diking option.

ground-water inflow between the 4,200-ft (1,280.2 m) shoreline and the position of any lower shoreline. Thus as the stream entered the lake at a shoreline lower than 4,200 ft (1,280.2 m), some of the surface inflow would be what was computed as ground-water inflow at a shoreline of 4,200 ft (1,280.2 m).

The total ground-water inflow to the lake was estimated to be 75,000 acre-ft (92.5 hm^3) per year, and monthly estimates are shown in table 8 (T. Arnow and J. C. Stephens, written commun., Apr. 22, 1974). The total estimate is subdivided for the north and south parts of the lake, Farmington Bay, Bear River Bay, and the shoreline extending from Bear River Bay to Syracuse. The entries in table 8 represent the estimates of average ground-water inflow to Great Salt Lake during 1931-73. Any error in these estimates would be incorporated with the calibration factor (Ium) discussed in a later section.

Calibration of the Model

After compilation of the inflow estimates for 1931-73, the data were tested in the model of the water budget discussed earlier in this report. The monthly lake altitudes were computed by the model for the 1931-73 base period and then compared with observed lake altitudes.

The observed and computed lake altitudes for the first computation by the model indicated that the net inflow estimate (or volume change, ΔS) was too low during the early part of the base period and too high during the latter part. This is indicated by the skewed contrast between the observed and computed lake altitudes in figure 9. The skewed contrast was removed in a second computation when the annual evaporation was assumed to be constant instead of variable from 1931 to 1973. Although the lake altitude computed with this assumption falls below that of the observed lake altitude, the relation is consistent throughout the base period.

The annual evaporation correction factors, which were based on data of one station (as discussed previously), were probably a result of sampling error and are not indicative of actual trends of evaporation rates. However, there were 3 years in which the evaporation rates had to be adjusted to prevent a large divergence between the observed and computed lake altitudes. During 1937, 1939, and 1970, the annual evaporation was corrected by the factors of 0.9, 0.8, and 1.15, respectively.

Comparison of the computed (second model computation) and observed hydrographs indicates a deficiency in the estimated net inflows, as computed

Figure 12. Graph showing lake altitude and concentration of dissolved solids for diking option 20.

by the budget equation (1) Letting ΔS , as computed by the model, be (ΔS) m and that of the observed lake altitudes be (ΔS) o, the net deficit can be represented by Ium = (ΔS) o - (ΔS) m.

The deficits in net inflow (total inflow less evaporation) indicated by the second model computation cannot be precisely attributed to any parameters in the water-budget equation. The deficits, however, generally became larger during periods of falling stages and smaller during periods of rising lake stages.

The deficit (Ium) was tested as a function of the observed lake altitude, SI, or Ium = (SI - 4190) c, where 4190 is the lake altitude at which the deficit (Ium) was approximately zero and c was a constant representing the slope of the relationship between (SI - 4190) and Ium. The value of c was determined by repeated runs of the model and selection of the best fit between the observed and computed lake altitudes.

All unmeasured inflows plus errors in the estimate of the other parameters can be incorporated into the factor Ium. The computed monthly values of Ium were then added to the inflow estimates for the base period and the budget equation for the 1931-73 base period became:

$$\Delta S = Is + Ig + Ip + Ium - Oe$$
(3)

Figure 9 shows that in the third model computation using the net inflows as computed by equation (3), the computed lake altitudes converge near the observed altitudes.

The annual inflow to Great Salt Lake from the three major tributaries and other parameters within the budget equation is shown in figure 10. The total annual inflow (Is + Ip + Ig + Ium) during 1931-73 ranged from about 1.5 to 5 million acre-ft (1,849.5 to 6,165.0 hm³). The Bear River contributes the largest percentage of the measured surface inflow.

DIKING OPTIONS

The options provided in the model for diking include combinations of eight areas east of a line joining Antelope Island, Fremont Island, and the Promontory Mountains, and the part of Great Salt Lake that lies north of the Southern Pacific Transportation Co. causeway (fig. 3). The dikes would extend from the Promontory Mountains to Fremont Island and from Fremont Island to Little Mountain.

Except for the Southern Pacific Transportation Co. causeway, all dikes are assumed to have only one outlet to the south part of Great Salt Lake, with the width of the outlets being optional. The outflow is considered to be a function of the positive head difference from the diked part to the south part. The dikes are assumed to be impervious to seepage, and the outlet structures are to be operated to prevent density flows from entering the diked part from the south part.

Areas evaluated for diking

 Diking option	Area (from fig. 3)	
1	1	
3	1+2	
4	4	
5	5	
6	4+2	
7	7	
12	4+8	
14	4+2+8	
20	1+2+4+5+8	

Only one diking option can be simulated during each run of the model. Once a diking option is chosen, the remainder of the areas are included with the south part.

The Southern Pacific Transportation Co. causeway can be treated in two ways by the model. It can be treated as an impervious dike, similar to the other dikes with an outlet providing for flows from the south to north parts. Or it can be treated as a permeable structure with culverts as they now exist or with modified culvert widths as discussed by Waddell and Bolke (1973).

SALT BALANCE

The total load of salt in the north and south parts of Great Salt Lake consists of the dissolved load and the undissolved load. The annual inflow load to the lake is small compared to the total load in the lake. Thus, the inflowing load can be ignored in computations of the salt balance for the north and south parts. For any diked area being considered, however, it is necessary to know the inflowing load in order to compute the concentrations within the diked area.

The salt balance for the Great Salt Lake with a diking option is depicted in figure 11. The dissolved load in the diked area (LD) is dependent upon the selected diking option (D), the time step within the base period (t), and the outflow from the diked area (OD).

The dissolved load (LD) contributed by the Bear, Weber, and Jordan Rivers was developed as a function of stream discharge. These relationships were developed at site 10126000 on the Bear River, site 10141000 on the Weber River, and site 10170490 on the Jordan River. Efforts were made to extend these relationships to the refuge outlets on the Jordan and Bear River systems, but the data-collection period was inadequate. A summary of the data collected at the refuge outlets is given in tables 14 and 15. The dissolved load within the diked area at any time step (t) can be estimated as follows:

Dissolved load = initial load + inflow load - outflow load

LD (t) = LD (t - 1) + (ID(t)) (CI) - (OD (t)) (LD (t - 1)/VD (t - 1))

where ID (t) is the inflow to the diked area, CI is the concentration of the inflow, OD (t) is the outflow from the dike, and (LD(t-1)/VD(t-1)) is the concentration of dissolved solids of water within the diked area. VD (t - 1) is the volume within the diked area at the end of the previous time step (t - 1).

Due to the limitations of the available waterquality data, the load of dissolved solids or the concentration of dissolved solids in the diked area cannot be estimated precisely. The model treats the salt balance of the diked area from the standpoint of an inflow-outflow balance with complete mixing, and no allowance is made for any stratification or chemical changes due to interaction with the sediments or solution of entrapped brines or residual salts. Because the degree of inaccuracy created by the assumptions is not known, the concentrations predicted by the model should be regarded not as absolute but as relative indexes by which to compare various diking alternatives. A particular diking alternative can be evaluated from the standpoint of dissolved-solids content by comparing the concentrations predicted by the various diking alternatives.

The salt balance for the north and south parts of Great Salt Lake is complicated because of the twodirectional flows through the causeway, precipitation of sodium chloride and re-solution of sodium chloride deposits, and the presence of two layers of brine with different chemical characteristics in the south part. The total dissolved plus precipitated salt load in the north and south parts (TL) can be described by the following equation:

TL = LS + LSDL + CLSPPT + LN + CLNPPT + LD

where LSDL is the load of dissolved solids in the deep layer of the south part, CLSPPT and CLNPPT are the precipitated salt loads in the south and north parts, respectively, and LS, LN, and LD are the dissolvedsolids loads in the south, north, and diked parts, respectively. Now TL can be estimated by the above equation when all the parameters on the right side of the equation are known.

In the fall of 1972, as previously discussed on page 4, the total dissolved plus precipitated load (TL) in Great Salt Lake was about 5.5 billion tons (4.99 billion t). The dissolved-salt load in the deep layer of the south part (LSDL) has been computed as 0.3 billion tons (0.27 billion t), and it has been essentially constant since it was first observed (Waddell and Bolke, 1973, p. 35). Now the equation can be rearranged so that

For the south part, the dissolved-salt load (LS) can be estimated from the following equation:

- New dissolved load = initial load + inflow load from diked part - outflow load from south part + inflow load from north part + salt re-solution in south part - precipitated salt load in south part
 - LS (t) = LS (t 1) + (OD (t)) (LD (t 1))/VD (t 1) (M) (LS (t - 1))/VS (t - 1) + (N) (LN (t - 1))/VN (t - 1) + ASOLS (t) - LSPPT (t)

For the north part, the dissolved-salt load can be estimated from the following equation:

New dissolved load = initial dissolved plus precipitated load - new dissolved-solids load in south part + salt re-solution in north part - precipitated salt load in north part

Now, ASOLN (t) and LNPPT (t) must be computed using the equations developed by Waddell and Bolke (1973, p. 34). ASOLN (t) and LNPPT (t) can be assumed to be negligible to initially estimate LN(t). Then LN(t) can be tested to determine if the total load in the north part exceeds the limiting salt load necessary for saturation. The limiting salt load necessary for saturation at a given lake volume was determined by Waddell and Bolke (1973, p. 34) to be 483. VN for the north part and 483. VS for the south part. If it exceeds 483.VN, then precipitation will occur and ASOLN(t) will become zero. The amount of precipitation (LNPPT) must then be subtracted from the first estimate of LN (t). This procedure is repeated until the iterative values converge to a solution.

If the quantity (LN(t)) is less than $483 \cdot VN$, then the brine is under saturated and re-solution of the

salt crust will occur if a deposit exists. The amount of re-solution can be computed by the following equation revised from Waddell and Bolke (1973, p. 34):

ASOLN = T[(483) (VN) - LN (t)] (0.00525)

where 0.00525 is an empirical constant for re-solution rate per day. Then after this computation, LN (t) must again be computed using the value given for ASOLN. This procedure must then be repeated until the iterative values converge to a solution.

A generalized flow chart showing the approach used in the model to compute the water and salt balance for various diking proposals follows:

A complete listing of the computer program is given in table 18.

EXAMPLE OF MODEL SIMULATION

The outcome of various diking proposals depends to a large degree upon the way the dike outlets are operated. The quantity of flow leaving the dike affects the salt balance of each separate part of the lake.

Since operation of the control structure of a dike outlet could be arbitrary, a standard weir equation was used with a fixed crest altitude and length. By utilizing this equation, various diking proposals can be evaluated with consistent dike outlet operation.

The standard formula used was $Q = (Cw) (L) (h^{3/2}) (1.983)$, where Q is the discharge, Cw is a coefficient characteristic of flow conditions over a weir, L is the length of the weir crest, h is the height of water surface above the weir crest, and 1.983 is a factor for converting from cubic feet per second to acre-feet per day.

The type of diking proposal to select depends upon the desire of the person using the program. Many combinations of parameters, including dike outlet, causeway-culvert width, initial lake altitude and salt precipitate, and area to be diked may be selected by the operator. All these parameters may significantly alter the results of the model.

For example, if it were desired to have a large diked area for freshwater storage, then option 20 would be the proper selection to test. If it were also desirable that some of the salt load in the north part migrate to the south part, then wider culverts in the causeway would be necessary. An example of the model output for option 20 with the following parameter values is shown in figure 12:

Diking option 20		
Dike-crest-outlet width	200 ft	(61.0 m)
Dike-crest altitude	4,200 ft	(1,280.16 m)
Initial lake altitude-south part	4,200.1 ft	(1,280.19 m)
Initial lake altitude-north part	4,198.7 ft	(1,279.76 m)
Causeway-culvert width (east)	15 ft	(4.57 m)
Causeway-culvert width (west)	15 ft	(4.57 m)

The computer program is listed in table 18. This FORTRAN IV program may not be compatible with some computers or compilers. Compatibility should be tested with a trial run. A trial run with the same initial conditions should generate output that will be similar to the output shown in table 19. Table 19. Example of computer-program output.

			LAKE ALTITUDES (FEET	Г)	LAKE CONC	ENTRATIONS (GRAMS	PER LITRE)
YEAR	MONTH	NORTH	SOUTH	DIKE	NORTH	SOUTH	DIKE
1931	1	4199.16	4199.70	4200.93	337.649	204.770	124.763
1931	2	4199.20	4199.72	4201.53	337.578	205.856	104.213
1931	3	4199.15	4199.69	4201.95	339.511	207.485	89.522
1931	4	4198.96	4199.53	4201.90	344.558	210.247	62.333
1931	5	4198.66	4197.24	4201.59	351.479	214.419	81.659
1931	6	4198.19	4198.76	4200.94	356.279	220.969	86.376
1931	7	4197.64	4198.15	4200.15	356.468	229.154	95.634
1931	8	4197.14	4197.60	4199.44	356.385	236.784	105.295
1931	9	4196.84	4197.26	4199.07	355.896	241.930	106.840
1931	10	4196.74	4197.16	4199.30	355.337	243.907	91.317
1931	11	4196.82	4197.24	4199.69	353.604	242.904	72.704
1931	12	4196.96	4197.41	4200.52	351.414	240.274	51.574
1932	1	4197.15	4197.62	4200.65	348.713	236.587	42,409
1932	2	4197.31	4197.77	4200.80	346.997	233.717	35.456
1932	3	4197.38	4197.88	4201.28	347.499	231.560	27.801
1932	4	4197.34	4197.89	4202.05	350.663	230.267	20.600
1932	5	4197.25	4197.87	4202.95	355.244	228.827	14.692
1932	6	4197.03	4197.64	4202.27	355.725	229.127	13.497
1932	7	4196.67	4197.21	4200.93	356.094	232.509	14.699
1932	8	4196.30	4196.78	4199.78	356.076	237.159	16.390
1932	9	4196.10	4196.54	4199.16	355.619	240.082	10.602
1932	10	4196.07	4196.50	4199.23	355.244	240.353	14.087
1932	11	4196.22	4196.66	4199.47	352.764	237.839	11.330
1932	12	4196.41	4196.88	4200.02	349.632	234.274	8.462

RECOMMENDATIONS FOR FUTURE STUDY

The model developed during this study was based to a large extent on data collected during the short timespan of 1971-74. Most of these data were collected to extend records from long-term upstream stations to downstream points nearer the lakeshore. Because the lakeshore may fluctuate for many miles, the change of flow between the long-term stations and the lakeshore may have a high variability.

If the model is to be refined, the following program should be carried out:

1. Compute evaporation using a different method than that used for this report. The energy budget or mass transfer techniques would provide an independent check of computations made for this report.

2. Verify quantity and quality of ground-water discharge.

3. Monitor stream discharge and water quality as near the shoreline as possible, in conjunction with long-term monitoring stations upstream.

4. Monitor storage changes in waterfowl management and refuge areas between shoreline gaging stations and long-term gaging stations upstream.

5. Monitor lake-surface altitudes and salinity in the north and south parts.

6. Monitor discharge and specific gravities in the east and west culverts of the causeway of the Southern Pacific Transportation Co.

7. Recalibrate the model using refined estimates of the parameters in the water budget.

8. Improve the salt-balance predictions for the diked areas by refinement of the water-quality relation-ships in the model.

CONCLUSIONS

The inflow from precipitation on the surface of Great Salt Lake during 1931-73 ranged from 680,000 to 1,260,000 acre-ft (840 to 1,550 hm³) per year and averaged 966,000 acre-ft (1,190 hm³) per year.

The total ground-water inflow to the lake was estimated to be 75,000 acre-ft (92.5 hm³) per year.

The total annual inflow during 1931-73 ranged from about 1.5 to 5 million acre-ft (1,849.5 to 6,165.0 hm^3).

The Bear River contributes the largest percentage of the measured surface inflow.

The total annual outflow from the lake (evaporation) ranged from about 2.2 to 4.0 million acre-ft (2,712.6 to 4,932.0 hm^3) during 1931-73 and averaged 2.98 million acre-ft (3,674.3 hm^3) per year.

Short-term stations near the shoreline of Great Salt Lake were extended to the 1931-73 base period by correlation with long-term stations upstream. The standard error of estimate for these correlations ranged from 5.1 to 27 percent of the average.

The model treats the salt balance of the diked area from the standpoint of an inflow-outflow balance

with complete mixing and no allowance for stratification or chemical changes due to interaction with the sediments or solution of entrapped brines or residual salts. Because of the model limitations, the predicted concentrations of dissolved solids for the diked areas should be regarded as relative indexes by which to compare various diking alternatives.

SELECTED REFERENCES

- Hahl, D. C., 1968, Dissolved-mineral inflow to Great Salt Lake and chemical characteristics of the salt lake brine, Summary for water years 1960, 1961, and 1964: Utah Geol. and Mineralog. Survey Water-Resources Bull. 10.
- Hahl, D. C., and Handy, A. H., 1969, Great Salt Lake, Utah: Chemical and physical variations of the brine, 1963-1966: Utah Geol. and Mineralog. Survey Water-Resources Bull. 12.
- Hely, A. G., Mower, R. W., and Horr, C. A., 1967-69, Hydrologic and climatologic data, 1966-68, Salt Lake County, Utah: U. S. Geol. Survey open-file repts. (duplicated as Utah Basic-Data Releases 13, 15, and 17).
- Iorns, W. V., Mower, R. W., and Horr, C. A., 1966, Hydrologic and climatologic data, 1964-65, Salt Lake County, Utah: U. S. Geol. Survey open-file repts. (duplicated as Utah Basic-Data Releases 11 and 12).
- Kohler, M. A., Nordenson, T. J., and Baker, D. R., 1959, Evaporation maps for the United States: U. S. Weather Bur. Tech. Paper 37.

- Madison, R. J., 1970, Effects of a causeway on the chemistry of the brine in Great Salt Lake, Utah: Utah Geol. and Mineralog. Survey Water-Resources Bull. 14.
- Peck, E. L., and Dickson, D. R., 1965, Evaporation and ground water, Great Salt Lake, *in* Evaporation studies, Great Salt Lake: Utah Geol. and Mineralog. Survey Water-Resources Bull. 6, p. 4-13.
- U. S. Department of Commerce, 1959, Evaporation maps for the United States: U. S. Dept. Commerce Tech. Paper 37, pl. 3.
- U. S. Geological Survey, 1960, Compilation of records of surface waters of the United States through September 1950, Part 10, The Great Basin: U. S. Geol. Survey Water-Supply Paper 1314.
- _____1961-64, Surface-water records of Utah: Water Resources Div., annual series.
- 1965-73, Water resources for Utah, Part 1, Surface water records, Part 2, Water quality records: Water Resources Div., annual series.
- U. S. Weather Bureau, 1957, Climatic summary of the United States-Supplement for 1931 through 1952, Utah: Climatography of the United States 11-37.
- _____1965, Climatic summary of the United States-Supplement for 1951 through 1960, Utah: Climatography of the United States 86-37.
- Waddell, K. M. and Bolke, E. L., 1973, The effects of restricted circulation on the salt balance of Great Salt Lake, Utah: Utah Geol. and Mineral Survey Water-Resources Bull. 18.
- Whelan, J. A., 1973, Great Salt Lake, Utah: Chemical and physical variations of the brine, 1966-72: Utah Geol. and Mineral Survey Water-Resources Bull. 17.

APPENDIX

			Glossary	Symt	ol or value		
Symt	ool or value			Text	Computer program (table 18)	Description	Units
	Computer			Text	(10010-10)	Description	Omts
Text	program (table 18)	Description	Units	Е		Annual pan evapora- tion	Inches
Α		Area	Acres	Efw		Annual freshwater-	Inches
Acf		Ratio of June-	-			lake evaporation	
		September evapo- ration to annual pan evaporation (E)		Elt		June-September pan evaporation at a long-term site	Inches
AD	L3	Area of diked part	Acres	Emi		Fraction of mean annual evaporation for month (i)	7
Aj	P (K)	Ratio of annual precipitation for year j (or (K)) to the 1931-73 average	-	Est		June-September pan evaporation at a short-term site	Inches
		precipitation		h	QQQ	Head above dike- outlet crest	Feet
Al	S1, N1, L1	Altitude above mean sea level	Feet	i	Ι	Month	-
				ID	Q (K, I)	Inflow to diked part	Acre-feet
ASOL	N H4	Redissolved salt in north part	Tons	Ig		Inflow from ground water	Acre-feet
ASOL	S H5	Redissolved salt in south part	Tons	Ip		Inflow from pre- cipitation on water surface	Acre-feet
CI	C4	Concentration of dissolved solids in	Tons/acre-foot	Is	QT (II, KK)	Surface inflow	Acre-feet
		diked area		Ium		Calibration param- eter for deficient inflows	Acre-feet
CLNP	PT N9	Cumulative precipi- tated salt load in north part	Tons	j	К	Year within base period, 1931-73	÷
CLSPI	PT S9	Cumulative precipi- tated salt load in	Tons	L	CL	Length of dike- outlet crest	Feet
		south part	Cromo/millilitro	LD	L6	Dissolved-salt load in diked part	Tons
CN		centration in north	Grams/ minintre	LN	N6	Dissolved-salt load in north part	Tons
CS		Dissolved-solids con- centration in south part	Grams/millilitre	LNPPT	г Н2	Precipitated-salt load in north part	Tons
Cw	3.5	Coefficient character- istic of flow over a	- (LS	S6	Dissolved-solids load in south part	Tons
D	7	weir		LSDL		Dissolved-solids load in deep brine layer	Tons
D	L	Diking option				in south part	

Glossary-continued

Sym	bol or value		
Text	Computer program (table 18)	Description	Units
LSPPT	Н2	Precipitated-salt load in south part	Tons
М	M1	Discharge from south to north throug causeway	Acre-feet/day h
N	M2	Discharge from north to south throug causeway	Acre-feet/day th
OD	D6	Outflow from the diked part	Acre-feet
Oe		Outflow from evaporation	Acre-feet
Pa		Average annual pre- cipitation	Inches
Pad		Adjusted annual precipitation	Inches
Pcf		Pan coefficient for freshwater evapora- tion	-
Pm		Average monthly precipitation	Inches
Pmi	F(I)	Fraction of mean annual precipitation for month i (or (I))	-
Q		Discharge	Acre-feet/day
SI		Altitude of water surface in south part	Feet
SCE		Effect of salinity on evaporation rate in south part	
SCEN		Effect of salinity on evaporation rate in north part	
t	(K, I)	Time step	-
Т	Tl	Time period (or increment)	Days
TL	TXS	Total dissolved plus precipitated load	Tons
v		Volume	Acre-feet

Sym	bol or value		
Text	Computer program (table 18)	Description	Units
VD	L4	Volume of diked part	Acre-feet
VN	N4	Volume of north part	Acre-feet
VS	S4	Volume of south part, excluding diked part	Acre-feet
ΔS		Volume change	Acre-feet
(∆S) o		Observed volume change	Acre-feet
(∆S) m	n	Computed volume change	Acre-feet
ρS		Density of brine in south part at any temperature	Grams/millilitre
ρΝ		Density of brine in north part at any temperature	Grams/millilitre

Altitude, Area, and Volume Relationships of the Lake

It is necessary to know the altitude, area, and volume relationships of the lake in order to predict changes in the water and salt balance of the north, south, and diked parts of Great Salt Lake. These relationships were developed largely from an advanced copy (scale 1:99,000) of a map of Great Salt Lake and vicinity under preparation by the Topographic Division of the U.S. Geological Survey. The advanced map delineates shorelines at 1-ft (0.3 m) intervals for altitudes ranging from 4,193 to 4,200 ft (1,278.0 to 1,280.2 m). The bay area bottoms lie at altitudes generally above 4,193 ft (1,278.0 m); thus, the altitude-area-volume relationships for the potential diked areas are based almost entirely upon the new map.

In the bay areas, it was assumed for purposes of the model that present industries, waterfowlmanagement and refuge areas, and residential areas at altitudes above 4,205 ft (1,281.7 m) would be protected from inundation by either raising existing dikes or construction of new dikes. Thus, the areas for all diking options except number 7 are constant at altitudes above 4,205 ft (1,281.7 m). Altitude, area, and volume relationships were also developed for the south part to include all the bay areas. Thus, when a particular diking option (D) is chosen, its area (AD) and volume (VD) can be subtracted from the total, and the remainder is considered the area and volume of the south part. The altitude, area, and volume relationships for the diked areas and the north and south parts are shown in table 9.

The area in the south part incorporated by evaporating ponds belonging to the National Lead Corp. has been omitted from the south part altitude, area, and volume relationships.

Utah Geological and Mineral Survey Water-Resources Bulletin 21, 1976

Tables 9-18

Table 9. Altitude, area, and volume relationships for various diking options[see pages 24 and 30 of text for explanation of diking options.]

	DIKE 0	PT NO. 1	DIKE (DPT NO. 3	DIKE O	PT NO. 4	DIKE	OPT NO. 5		DIKE O	PT NO. 6
ALTITUDE (FT)	AREA (ACRES)	VOLUME (AC-FT)	AREA (ACRES)	VOLUME (RC-FT)	AREA (ACRES)	VOLUME (AC-FT)	AREA (ACRES)	VOLUME (AC-FT)	ALTITUDE (FT)	AREA (ACRES)	VOLUME (AC-FT)
4170.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4170.0	0.00	0.00
4171.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4171.0	0.00	0.00
4172.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4172 0	0.00	0.00
4173.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0 00	4172 0	0.00	0.00
4174.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4174 0	0,00	0.00
4175.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4175 0	0.00	0.00
4176.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4175.0	0.00	0.00
4177.0	0.00	0.00	0 00	0.00	0 00	0.00	0.00	0.00	4176.0	0.00	0.00
4178.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4177.0	0.00	0.00
4179 0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4178.0	0.00	0.00
4180 0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4179.0	0.00	0.00
4191 0	0.00	0.00	226 40	160.00	0.00	0.00	0.00	0.00	4180.0	0.00	0.00
4102.0	0.00	0.00	250.40	100.20	0.00	0.00	0.00	0.00	4181.0	326.00	163.00
4102.0	0.00	0.00	076.00	652.80	0.00	0.00	0.00	0.00	4182.0	653.00	652,50
4183.0	0.00	0.00	976.00	1467.20	0.00	0.00	0.00	0.00	4183.0	1000.00	1479.00
4184.0	0.00	0.00	1299.20	2604.80	0.00	0.00	0.00	0.00	4184.0	1325.00	2641.50
4185.0	0.00	0.00	1673.60	4091.20	0.00	0.00	0.00	0.00	4185.0	1600.00	4104.00
4186.0	0.00	0.00	2048.00	5952.00	0.00	0.00	0.00	0.00	4186.0	2048.00	5928.00
4187.0	0.00	0.00	2400.00	8176,00	0.00	0.00	0.00	0.00	4187.0	2500.00	8202.00
4188.0	0.00	0.00	2938.00	10845.00	0.00	0.00	0.00	0.00	4188.0	2938.00	10921.00
4189.0	0.00	0.00	3600.00	14114.00	0.00	0.00	0.00	0.00	4189.0	4500.00	14640.00
4190.0	0.00	0.00	5082.00	18455.00	1133.00	100.00	0.00	0.00	4190.0	6214.00	19997.00
4190.5	0.00	0.00	5541.00	21225.00	1619.00	860.00	200.00	50.00	4198 5	2107 00	23550 50
4191.0	0.00	0.00	6000.00	23996.00	2105.00	1619,90	396.00	199.00	4191 0	2000 00	27104 00
4191.5	0.00	0.00	6462.00	27227.00	2591.00	2914.00	600.00	449 00	4101 E	9001 50	21695 99
4192.0	0.00	0.00	6925.00	30458.50	3078.00	4219.50	1293 00	921 00	4121.0	10002.00	26106.00
4192.5	218.80	109.40	7516,00	34216.00	3529,00	5975,00	2500.00	1069 70	4192.0	10005.00	30100.00
4193.0	437.76	218,88	8107.00	37974 00	3980.00	2739 50	2000.00	2477 76	4192.0	10626.00	41318.70
4193.5	900.00	553.32	9000.00	42251 00	4200.00	9794 50	5000 00	5977.76	4193.0	11549.00	46931.30
4194.0	1418.88	1133.04	9903 00	46977 00	4912 00	12062 50	0000.00	3760.76	4193.5	12022.00	53192.70
4194.5	2100.00	2012 76	10900.00	52122 00	7400 00	15140 50	7828.00	9917.70	4194.0	13396.00	59454.00
4195 0	2025 92	2294 24	12511 00	50000 00	10554 00	10.000 00	14000.00	15000.00	4194.5	16717.00	67812.50
4195 5	4100 00	5075 70	14000 00	CAOE0.00	10004.00	17027.00	19892.00	24598.00	4195.0	20038.00	76171.00
4196 0	5952 20	2509 04	16770.00	70750.00	16564 00	2000r.0t	25000.00	36071.00	4195.5	23711.00	88026.50
4196.0	0000.00	11007.04	10//0.00	12102.00	10000 00	33208.30	32823.00	50776.00	4196.0	27384.00	99882.00
4120.0	10014 00	16701 00	20800.00	82144.80	19000.00	42100.00	38700.00	68657.00	4196.5	30340.00	115052.00
4197.0	1/500 00	10/31.00	24545.00	93481.00	21365,00	52190.0F	43900.00	89307.00	4197.0	33296.00	130222.00
4197.3	16500.00	24010.00	29000.00	105857.00	23000.00	63282.0t	20000.00	112782.00	4197.5	35043.00	147743.00
4196.0	21092.00	33333.00	33870.00	122584.00	24013.00	72160.0K	35732.00	139215.00	4198.0	36790.00	165265.00
4198.3	26000.00	40431.00	39000.00	140802.00	26400.00	87888.00	51000.00	168398.00	4198.5	38756.00	184643.00
4199.0	31782.00	59877.00	44360.00	161642.80	28145.00	101525.0	56055.00	200162.00	4199.0	40722.00	204021.00
4199.5	38500.00	11441.00	52000.00	185732.00	30500.00	116186.0	1000.00	234426.00	4199.5	43044.00	225543.00
4200.0	45606.00	98474.00	58455.00	213345.00	32517.00	131940.0	6724.00	271357.00	4200.0	45366.00	247065.00
4200.5	52500.00	123000.00	66000.00	244459.00	34200.00	148619.0	30600.00	310688.00	4200.5	47000.00	268000.00
4201.0	60000.00	151125.00	75000.00	279710.00	35600.00	166070.0	34000.00	351838.00	4201.0	48700.00	293000.00
4201.5	66600.00	182775.00	82500.00	319085.00	37000.00	184220.0	36200.00	394388.00	4201.5	50000.00	318590.00
4202.0	73000.00	217675.00	89000.00	361960.00	38000.00	202970.0	38500.00	438063.00	4202.0	51000.00	340000.00
4202.5	78500.00	255550.00	93500.00	407585.00	38900.00	222194.0	90500.00	482813.00	4202.5	52000.00	365000.00
4203.0	83000.00	295925.00	98000.00	455460.00	39500.00	241800.0	92500.00	528563.00	4203.0	52800.00	395000.00
4203.5	87000.00	338425.00	102000.00	505460.00	40100.00	261690.0	94500.00	575313.00	4203.5	53500.00	425000.00
4204.0	90600.00	382825.00	105000.00	557210.00	40600.00	281870.0	26800.00	623138.00	4204 0	54000 00	450000 00
4204.5	93500.00	428850.00	107000.00	610210.00	41000.00	362270.0	38000.00	671838.00	4204.5	54500.00	490000.00
4205.0	95578,00	476119.00	108503.00	664086.00	41651.00	322930.0	39908 00	721315 00	4205 0	54577 80	500000.00
4205.5	95578.00	523908.00	108503.00	718337.00	41651.00	343755.0	29908.00	771269.00	4205.0	54577 88	530653 00
4206.0	95578.00	571697.00	108503.00	772588.00	41651.00	364580.2	39908.00	821223 00	1200.0	54577.00	557941 88
4206.5	95578.00	619486.00	108503,00	826839,00	41651.00	385405.0	33908.00	871177 00	4200.0 4200 E	54577 00	505000 00
4207.0	95578.00	667275.00	108503,00	881090,00	41651.00	486238.0	39908.00	921121 00	4205.0	54577 00	610517 99
4207.5	95578.00	715064.00	108503.00	935341.00	41651.00	427055.6	39908.00	971095 00	4207.0	54577.00	C20005 00
4208.0	95578,00	762853.00	108503.00	989592 00	41651.00	447880.6	39968 66	1021020.00	4207.0	54577.00	007000.00
4298.5	95578,00	819642.99	108503.00	1043840.00	41651.00	468705.4	39902 00	1021030.00	4208.0	54577.00	001001.00
4209.0	95578.00	858431.00	108503.00	1092090 00	41651.00	499520 6	00000 00	11200200.00	4208.5	54577.00	694381.00
4209.5	95578.00	906220.00	108503.00	1152340.00	41651.00	510255 0	22200.00	1120930.00	4209.0	54577.00	721669.00
4210 0	95579 00	954009 00	109502.00	1206590.00	41651 00	501100 0	22200.00	1170880.00	4209.5	54577.00	748957.00
1 San & C. 8 C.	20010100	201002.00	*00000.00	4600000,000		001100.8	272805.222	LANDS SHALLING	2121D B	54577 NM	7 / h 7 / h 14 14

Table 10.	Annual	distribution	of	precipitation	ratios	during	1931-73
raute ro.	Annual	uistitution	01	precipitation	ratios	uuiinz	1/51 /5.

Year	Park Valley	Brigham City	Corinne	Farmington	Logan Utah State University	Ogden sugar factory	Midvale	Tooele	Utah Lake Lehi	Salt Lake City	Average ratio of annual to 1931-73 average (Aj)
1931	0.62	0.73	0.71	0.71	0.73	0.81	0.71	0.75	0.70	0.63	0.71
1932	1.30	1.09	1.05	.99	.97	.99	.85	.95	1.01	.92	1.01
1933	.75	.67	.65	.70	.70	.69	.77	.87	.57	.67	1.70
1934	.74	.72	.79	.86	.69	.93	.79	.79	.90	.76	.80
1935	.68	.73	.82	.76	.79	.86	.80	.74	.69	.69	.76
1936	1.10	.99	1.11	1.21	1.08	1.36	1.19	1.06	1.20	1.08	1.14
1937	1.19	1.01	1.24	.99	1.20	1.10	1.04	1.04	1.09	.87	1.08
1938	1.26	1.00	1.12	1.07	1.05	1.28	1.01	1.20	.98	.87	1.08
1939	.74	.62	.65	.71	.73	1.00	.74	.63	.78	.62	.72
1940	1.30	.99	.99	1.14	1.00	1.29	1.00	1.13	.96	.99	1.08
1941	1.69	1.30	1.61	1.38	1.15	1.55	1.54	1.33	1.47	1.25	1.43
1942	1.09	.96	.99	1.10	1.06	1.10	.87	1.07	.89	.88	1.00
1943	.69	.92	.84	.82	1.07	.94	.90	.77	.91	.73	.86
1944	1.00	1.10	.94	1.09	1.11	1.04	1.29	1.23	1.19	1.23	1.12
1945	1.38	1.37	1.31	1.22	1.45	1.40	1.13	1.27	1.21	1.18	1.29
1946	.94	1.10	1.23	1.03	1.21	1.07	1.12	1.12	1.29	1.03	1.11
1947	1.84	.97	1.03	1.15	1.11	1.15	1.25	1.35	1.11	1.13	1.11
1948	88	1.15	93	97	1.02	1.01	03	86	84	96	96
1949	1.20	1.12	1.03	1.15	1.16	1.31	1.01	1.10	1.04	1.11	1.12
1950	1.00	1.06	1.22	.90	1.17	.93	.88	.79	.76	.90	.96
1951	.95	1.12	1.19	1.12	1.11	1.13	1.20	1.08	1.45	1.17	1.15
1952	.87	.78	.70	1.04	.76	.76	.98	.82	1.01	1.01	87

and the north and south parts of Great Salt Lake.

DIKE (OPT NO. 7	JTH PART EXC	LUDING BAY ARE	AS DIKE OP	T NO. 12		DIKE O	PT NO. 14	DIKE	OPT NO.	20	SOUTH PART	INCLUDING BAY	AREAS
AREA (ACRES)	VOLUME (AC-FT)	AREA (ACRES)	VOLUME (AC-FT)	AREA (ACRES)	VOLUME (AC-FT)	ALTITUDE (FT)	AREA (ACRES)	VOLUME (AC-FT)	AREA (ACRES)	VOLU (AC-	JME FT)	AREA (ACRES)	VOLUME (AC-FT)	
36344.00	77000.00	01/25/2 00	170000 00	0.00	0.00	4170.0	0.00	0.00	0.00	e	3.00	81656.00	173000.00	
55000.00	122672.00	81636.00	173000.00	0.00	0.00	4171.0	0.00	0.00	0.00	6	3.00	95000.00	261328.00	
70000.00	185172.00	110000.00	201320.00	0.00	0.00	4172.0	0.00	0.00	0.00	6	3.00	110000.00	363828.00	
86000.00	263172.00	122000.00	401020.00	0.00	0.00	4173.0	0.00	0.00	0.00	6	3.00	127000.00	481828.00	
98000.00	355172.00	146000.00	£10020 BB	0.00	0.00	4174.0	0.00	0.00	0.00	e	3.00	146000.00	618828.00	
112475.00	460410.00	162525 80	773090 00	0.00	6.66	4175.0	0.00	0.00	0.00	6	3.00	162525.00	773090.00	
115000.00	574148.00	199000 00	948852.00	0.00	0.00	4176.0	0.00	0.00	0.00	6	3.00	189000.00	948852.00	
129000.00	696148.00	202000 00	1144350.00	0.00	0.00	4177.0	0.00	0.00	0.00	e	1.00	202000.00	1144350.00	
138000.00	829648.00	220000.00	1355350.00	0.00	0.00	4178.0	0.00	0.00	0.00	E C	1.00	220000.00	1355350.00	
146000.00	971648.00	237000.00	1583850.00	0.00	0.00	4179.0	0.00	0.00	0.00	e e	1.00	237000.00	1583850.00	
152625.00	1120960.00	254375.00	1829540.00	0.00	0.00	4100.0	326.00	162.00	256 00	100	0.00	204370.00	1829540.00	
160000.00	1277270.00	266744.00	2090090.00	0.00	0.00	4102.0	652.00	103.00	250.00	503	5.00	207000.00	2090210.00	
172000.00	1440270.00	279347.00	2363140.00	0.00	0.00	4183.0	1162.00	1568.00	1162.00	1490	1 00	293000.00	2650220.00	
179000.00	1704770.00	291838.00	2648730.00	185.60	92.80	4184.0	1670.00	2976 00	1670.00	2906	5 00	202000.00	2940220.00	
187624 00	1969000 00	301330.00	2945320.00	371.00	371.10	4185.0	2500.00	5061.00	2500.00	4991	. 00	308500.00	3253970 00	
193000.00	2158390 00	306000.00	3248980.00	678.00	895.60	4186.0	3034.00	7828,00	3034.00	7758	8.00	316034.00	3566230.00	
198000.00	2353890.00	313000.00	3558480.00	986.00	1727.60	4187.0	4300.00	11495.00	4000.00	11275	5.00	324000.00	3886250.00	
203000.00	2554390.00	320000.00	3874980.00	1400.00	2920.60	4188.0	5056.00	16173.00	5056.00	15803	3.00	332056.00	4214280.00	
207000.00	2759390.00	327000.00	4198480.00	2118.00	4677.60	4189.0	7000.00	22201.00	7000.00	21831	1.00	343000.00	4551810.00	
212954.00	2969370.00	335000.00	4327700.00	4160.00	10912 60	4190.0	9242.00	30322.00	9242.00	29952	2.00	351242.00	4898930.00	
214973.00	3076860.00	346500.00	5042230.00	4780.00	13308.60	4190.5	10421.00	35532.50	10621.00	35262	2.00	357121.00	5077490.00	
217000.00	3184350.00	351000.00	5215480.00	5400.00	15698.60	4191.0	11600.00	40743.00	12000.00	40573	3.00	363000.00	5256050.00	
220000.00	3293600.00	356000.00	5392230.00	6021.50	18709.30	4191.5	12584.00	47035.00	13400.00	46923	3.00	369400.00	5439150.00	
227000.00	3405350.00	360000.00	5571230.00	6643.00	21720.10	4192.0	13568.00	53327.00	14861.00	53988	3.00	374861.00	5625210.00	
233000.00	3520350.00	363000.00	5751980.00	7375.50	25407.80	4192.5	14672.50	60663.50	17500.00	62078	3.00	380500.00	5814050.00	
246730.00	3640280.00	365800.00	5934180.00	8108.00	29095.60	4193.0	16004 00	58000.00	20146.00	71498	1.00	385946.00	6005670.00	
252000.00	3764960.00	379000.00	6120380.00	8807.50	33499.30	4193.0	17001 00	76442.00	24000.00	82325		403000.00	6202900.00	
201300.00	3893290.00	387350.00	6311970.00	9507.00	37903.10	4194.6	21823.50	95795 50	41000 00	112296	5.00	416088.00	6407800.00	
276360.00	4020110.00	392000:00	6506810.00	12839.50	44322.80	4195.0	25656.00	106707 00	48574.00	135789	9 00	443604 00	6020200.00	
287000.00	4303540 00	395030.00	6703560.00	16172.00	50742.60	4195.5	29486.50	121450.00	61000.00	163182	2.00	461900.00	7065730 00	
298580.00	4449940 00	400900.00	6902550.00	19334.50	60409.80	4196.0	33317.00	136194.00	72104.00	196458	3.00	474384.00	7299790.00	
310000.00	4602080.00	402280.00	7103340.00	22497.00	70077.10	4196.5	36466.00	154427.00	84000.00	235484	1.00	497000.00	7542640.00	
326100.00	4761110.00	413000.00	7307160.00	25090.50	82522.00	4197.0	39615.00	172660.00	96129.00	280516	5.00	513709.00	7795320.00	
335000.00	4926380.00	41/580.00	7514810.00	27684.00	100005 00	4197.5	41578.50	193449.00	110000.00	332048	3.00	531000.00	8056490.00	
343720.00	5096060.00	421000.00	7926970 00	21265 00	124642 00	4198.0	43542.00	214238.00	120867.00	389765	5.00	546327.00	8325830.00	
360000.00	5271990.00	423460.00	9150420 00	33145 00	141214 00	4198.5	45572.00	237024.00	134000.00	453482	2.00	566000.00	8603910.00	
382220.00	5457800.00	442290.00	8369000.00	35025.00	157787.00	4199.0	47602.00	259810.00	145439.00	523341	.00	587729.00	8892340.00	
390000.00	5651100.00	465000.00	8595830.00	37217.50	176396.00	4199.5	49930.50	284775.00	160000.00	599701	.00	625000.00	9195530.00	
405000.00	5849850.00	499670.00	8836990.00	39410.00	195005.00	4200.0	52259.00	309740.00	174589.00	683348	5.00	674259.00	9520330.00	
415000.00	6054850.00	510000.00	9089410.00	41000.00	215000.00	4200.0	54500.00	357000.00	200000.00	070002	.00	598000.00	9863400.00	
423000.00	6259830.00	515000.00	9345660.00	42500.00	235000.00	4201.5	56000.00	299924 00	210000.00	972496	.00	715000.00	10216600.00	
440000.00	2200200 00	516000.00	9603410.00	44000.00	257560.00	4202.0	56500.00	420000 00	218000 00	1080500	3 00	725000.00	109/2100.00	
445000.00	6919250 00	517000.00	9861660.00	45000.00	280000.00	4202.5	57500.00	445000.00	225000.00	1191240	1.00	743000.00	11311600.00	
450000.00	7143600 00	518000.00	10120400.00	46000.00	300000.00	4203.0	58500.00	475000.00	232000.00	1305500	1.00	751000.00	11685100.00	
455000.00	7369850.00	519000.00	10379600.00	47000.00	325000.00	4203.5	59500.00	505000.00	237000.00	1422750	3.00	757000.00	12062100.00	
460000.00	7598600.00	520000.00	10639400.00	47500.00	345000.00	4204.0	60000.00	535000.00	242000.00	1542500	3.00	763000.00	12442100.00	
465000.00	7829850.00	521000.00	10899600.00	48000.00	370000.00	4204.5	60700.00	560000.00	247000.00	1664748	3.00	770000.00	12825400.00	
470000.00	8063600.00	523000.00	11100000.00	40400.00	400000.00	4205.0	61482.00	597081.00	256968.00	1790700	3.00	780468.00	13212000.00	
472272.00	8306550.00	525122 00	11690300.00	48557.00	445590.00	4205.5	61482.00	627822.00	256968.00	1919180	3.00	780468.00	13602200.00	
474544.00	8549500.00	526764.00	11957700.00	48557.00	469868,00	4206.0	61482.00	658563.00	256968.00	2047660	.00	780468.00	13992400.00	
476816.00	8792450.00	528396,00	12225100.00	48557.00	494146.00	4206.5	61482.00	689304.00	256968.00	21/6140	1.00	780468.00	14382700.00	
479088.00	9035400.00	530028.00	12492500.00	48557.00	518424.00	4207.0	61482.00	720045.00	206968.00	2304620	1.00	780468.00	14772900.00	
481360.00	9278350.00	531660.00	12759900.00	48557.00	542702.00	4207.0	61482.00	700786.00	256968.00	2433100	1.00	780468.00	15163100.00	
403632.00	9521300.00	533292.00	13027300.00	48557.00	566980.00	4200.0	61482 00	010027.00	256969 00	2001080	1.00	700468.00	15942600.00	
403704.00	10007200.00	534924.00	13294700.00	48557.00	591258.00	4209.0	61482.00	843009 00	256968.00	2818546	1.00	790469 00	16222000.00	
490448.00	10250100.00	536556.00	13562100.00	48557.00	- 615536.00	4209.5	61482.00	873750.00	256968.00	2947020	1.00	780468.00	16724100.00	
492720.00	10493000.00	538188.00	13829500.00	48557.00	639814.00	4210.0	61482.00	904491.00	256968.00	3075500	.00	780468.00	17114300.00	
		4000020 NN	LENNE MAN NO		DD64437.44									

Table 10. continued

Year	Park Valley	Brigham City	Corinne	Farmington	Logan Utah State University	Ogden sugar factory	Midvale	Tooele	Utah Lake Lehi	Salt Lake City	Average ratio of annual to 1931-73 average (Aj)
1953	.88	.94	.87	1.08	.82	.87	.96	.77	.81	.82	.88
1954	.67	.91	.82	.78	.73	.77	.90	1.16	.66	.83	.82
1955	1.11	1.03	1.19	1.05	1.19	.88	1.03	.92	.90	.91	1.02
1956	.88	.83	.77	.77	.69	.83	.85	.80	.62	.82	.79
1957	1.05	1.20	1.27	1.29	1.05	1.16	1.15	1.18	1.22	1.23	1.18
1958	.97	.73	.70	.79	.79	.52	.79	.78	.65	.71	.74
1959	1.15	.90	.85	.94	.96	.76	.92	.94	.88	.92	.92
1960	.71	.84	.83	.78	.84	.83	.76	.80	.81	.82	.80
1961	.94	.96	.92	.84	.87	.90	.72	.86	.92	.78	.87
1962	.76	.93	.89	.87	.89	.90	.95	.92	.97	.99	.91
1963	1.36	1.25	1.03	1.22	1.16	1.15	1.23	.96	1.35	.94	1.16
1964	1.23	1.15	1.07	1.14	1.12	1.09	1.36	1.21	1.42	1.19	1.20
1965	1.10	1.23	1.10	1.18	1.17	1.18	1.29	1.16	1.14	1.23	1.18
1966	.49	.69	.84	.60	.62	.51	.67	.67	.97	.60	.67
1967	1.20	1.28	1.13	1.00	1.24	1.03	.92	1.11	1.17	1.10	1.12
1968	1.27	1.37	1.29	1.24	1.32	1.14	1.30	1.37	1.31	1.41	1.31
1969	.76	1.05	.99	.98	.99	.71	.98	1.17	1.02	1.06	.97
1970	.99	1.20	1.27	1.39	1.23	1.24	1.22	1.28	1.12	1.32	1.22
1971	-	1.46	1.37	1.30	1.32	1.12	1.16	1.34	1.12	1.25	1.27
1972	1.08	.98	.90	.97	.92	.77	-	1.13	.81	1.05	.96
1973	.96	1.54	1.29	1.37	1.26	1.25	-	1.19	1.11	1.36	1.26

Table 11. Monthly distribution

	Jan	uary	Fet	oruary	Ма	rch	Aı	oril	М	ay	Jı	ine
	Percent of annual	Inches										
Corinne	10.5	1.57	9.1	1.36	10.3	1.54	11.5	1.72	11.9	1.78	7.0	1.04
Farmington	11.8	2.25	9.7	1.86	10.7	2.05	12.2	2.33	9.8	1.88	6.8	1.30
Logan Utah State University	10.0	1.67	8.4	1.39	10.9	1.81	12.7	2.11	11.2	1.86	7.6	1.26
Midvale	8.7	1.22	9.2	1.29	11.6	1.62	11.4	1.60	10.1	1.41	6.6	.93
Ogden sugar factory	10.1	1.66	8.8	1.44	9.4	1.54	12.9	2.12	10.1	1.66	7.5	1.23
Park Valley	10.2	1.05	8.4	.87	7.1	.73	9.1	.94	10.7	1.11	8.2	.85
Salt Lake City	9.7	1.35	8.5	1.18	11.2	1.56	12.7	1.76	10.1	1.40	7.1	.98
Snowville	10.1	1.18	7.5	.88	10.5	1.23	10.6	1.24	13.6	1.60	7.5	.88
Tooele	8.5	1.31	9.8	1.51	11.4	1.76	12.0	1.85	9.7	1.50	6.6	1.02
Utah Lake Lehi	8.5	.84	8.6	.85	9.2	.91	9.6	.95	9.6	.95	7.1	.70
Wendover WBAP	6.9	.32	6.4	.30	8.4	.39	10.9	.51	14.1	.66	9.9	.46
Average percent of annual (PMi) (100)	9.5		8.6		10.1		11.4		11.0		7.4	

of precipitation during 1951-60.

July	ſ	Augu	ist	Sept	ember	Oct	tober	Nove	ember	Decen	nber	er	
Percent of annual	Inches	Inches Percent of annual		Percent of annual	Inches	Total annual inche							
2.9	0.44	3.1	0.47	5.3	0.79	7.6	1.14	9.8	1.46	11.0	1.65	14.96	
2.1	.41	5.3	1.02	3.8	.72	8.3	1.58	9.4	1.79	10.1	1.93	19.12	
2.3	.39	4.4	.74	5.3	.89	8.5	1.41	9.4	1.56	9.3	1.55	16.64	
4.6	.64	6.6	.92	3.9	.54	8.6	1.20	9.9	1.39	9.0	1.26	14.02	
3.2	.53	4.4	.73	5.0	.82	9.2	1.51	9.2	1.52	10.2	1.68	16.44	
8.8	.91	7.9	.82	6.1	.63	6.0	.62	7.9	.82	9.6	.99	10.34	
4.2	.58	6.3	.87	3.8	.53	8.3	1.15	9.4	1.30	8.9	1.24	13.90	
4.1	.48	4.7	.55	6.0	.71	8.4	.99	7.9	.93	9.1	1.07	11.74	
4.9	.76	5.7	.89	4.0	.62	8.2	1.27	10.2	1.58	9.1	1.41	15.48	
6.3	.62	9.2	.91	4.7	.46	9.3	.92	8.1	.80	9.9	.98	9.89	
6.6	.31	7.7	.36	6.9	.32	9.9	.46	6.2	.29	6.2	.29	4.67	
4.5		5.9		5.0		8.4		8.9		9.3			

	Lat	ituda	Long	itudo	Latitude	Longitude	Altitude above mean	June-Sept.	Annual	Pan	Annual evaporation from freshwater
Station	Deg	Min	Deg	Min	-34° Min	-104° Min	sea level (ft)	evaporation (in)	evaporation (in)	coefficient (Pcf)	lakes (Efw) (in)
Bear River Refuge	41	28	112	16	448	496	4,208	37.62	63.67	0.715	45.52
Draper	40	31	111	49	391	469	4,515	37.92	65.30	.708	46.23
Ferron	39	06	111	08	306	428	6,000	23.50	41.67	.689	28.71
Fish Springs Refuge	39	51	113	24	351	564	4,335	59.33	103.54	.700	72.48
Flaming Gorge	40	56	109	25	416	325	6,270	36.25	61.94	.707	43.79
Fort Duchesne	40	17	109	52	377	352	4,990	30.45	52.68	.698	36.77
Green River	39	00	110	09	300	369	4,071	34.64	61.56	.687	42.29
Gunnison	39	09	111	49	309	469	5,145	38.42	68.05	.690	46.95
Hite Lakeside Logan	37 41	49 13	110 112	26 52	229 433	386 532	3,470 4,260	51.24 56.58	93.69 96.18	.670 .715	62.77 68.77
Utah State University	41	46	111	49	466	469	4,608	30.61	51.53	.715	36.84
Manila	41	00	109	43	420	343	6,420	37.12	63.35	.708	44.85
Mexican Hat	37	09	109	52	189	352	4,270	56.72	105.60	.680	71.81
Midlake	41	12	112	39	433	519	4,235	49.53	84.22	.715	60.22
Milford	38	26	113	01	266	541	5,028	56.20	101.20	.687	69.52
Moab 4NW	38	26	109	36	276	336	3,965	46.13	82.74	.685	56.68
Morgan	41	02	111	41	422	461	5,070	30.60	52.19	.711	37.11
Myton National Lead	40	12	110	04	372	364	5,030	28.65	49.65	.700	34.76
Ind.	40	54	112	42	414	522	4,230	50.03	85.54	.710	60.73 46.26
Drovo Dadio	50	19	112	11	239	491	3,900	57.40	07.54	.005	40.20
KOVO Promontory	40	13	111	40	373	460	4,470	30.03	52.02	.700	36.41
Point	41	16	112	30	436	510	4,202	49.59	84.22	.715	60.22 50.52
Saltair	40	46	111	06	406	486	4,210	53.80	92.21	.710	65.47
Salt Lake											
Airport	40	46	111	58	406	478	4,220	44.50	77.47	.709	54.93
Sevier Bridge Dam	39	23	112	02	323	482	4,980	42.96	75.71	.694	52.54
Scofield Dam Silver Sands Strawberry Reservoir	39 40	47 44	111 112	07 12	347 404	427 492	7,630 4,205	29.01 40.65	50.69 69.72	.697 .708	35.33 49.36
East Portal	40	10	111	11	370	431	7,606	29.21	50.65	.700	35.46
Utah Lake Lehi	40	22	111	54	382	474	4,497	36.32	62.73	.703	44.10

Table 12. Compilation of data for estimating annual freshwater evaporation, 1931-70. All sites are in Utah unless indicated otherwise.

	Latitude I		e Longitude		Latitude -34°	Longitude	Altitude above mean sea level	June-Sept.	Annual	Pan	Annual evaporation from freshwater lakes (Ffw)
Station	Deg	Min	Deg	Min	Min	Min	(ft)	(in)	(in)	(Pcf)	(in)
Vernal	40	27	109	31	387	331	5,280	24.94 43.01		.700	30.11
Wanship Dam	40	48	111	24	408	444	5,950	28.82	49.37	.709	35.00
Boulder City, Nev.	35	59	114	51	119	651	2,525	63.62	122.78	.650	79.81
Caliente, Nev.	37	37	114	31	217	631	4,402	41.87	76.96	.680	52.33
Ruby Lake, Nev.	40	12	115	30	372	690	6,012	33.37	57.82	.713	41.23
Green River, Wyo.	41	32	109	29	452	329	6,089	45.81	77.44	.710	54.98
Twin Falls, Idaho	42	33	114	21	513	621	3,960	40.85	67.88	.725	49.21
Grand Junction, Colo.	39	03	108	27	303	267	4,710	45.57	80.90	.688	55.66
Gai Lake, Colo.	40	16	105	50	376	110	8,680	31.67	54.81	.710	38.92
Gr. Mtn. Dam, Colo.	39	53	106	20	353	140	7,740	26.26	445.79	.710	32.51
Meredith, Colo.	29	22	106	45	322	165	7,825	33.02	58.21	.710	41.33
Montrose, Colo.	38	29	107	53	269	233	5,830	34.24	61.58	.689	42.43
Vallecito, Colo.	37	22	107	35	202	215	7,650	24.83	45.95	.690	31.71
Dan's Dam, Ariz.	35	12	112	20	72	500	6,000	81.72	162.25	.700	113.58
Fort Valley, Ariz.	35	16	111	44	76	464	7,347	23.99	47.51	.700	33.26
Many Farms, Ariz.	36	22	109	37	142	337	5,305	49.58	94.50	.690	65.20
Wahweap, Ariz.	36	59	111	29	179	449	3,728	69.78	130.53	.680	88.76

	1	2	3 Total surface flow across	4
	Bear River near Corinne	Tributaries and canals	State Highway 83	Ratio (column 2
Date	(acre-ft)	(acre-ft)	(acre-ft)	divided by column 3)
Oct. 1971	176.600	15,900	192,500	0.08
Nov.	172,700	13,400	186,100	.07
Dec.	182,000	13,300	195,300	.07
Jan. 1972	198.000	13,900	211,900	.07
Feb.	166.200	11,100	177.300	.06
Mar.	226,200	10,900	237,100	05
Apr.	247.800	8,100	255,900	.03
May	251 600	13,700	265,300	.05
Iune	181 700	15,700	197 400	.05
Inly	97 680	16 420	114 100	14
Ang	54 110	15 130	69 240	22
Sent	116 000	19,000	135 000	14
Total for water	110,000	19,000	155,000	.14
year (rounded)	2,071,000	167,000	2,237,000	.07
Oct. 1972	129,700	16,900	146,600	.12
Nov.	149,000	12,200	161,200	.08
Dec.	146,100	10,000	156,100	.06
Jan. 1973	154,100	11,000	165,100	.07
Feb.	140,000	10,400	150,400	.07
Mar.	201,300	25,900	227,200	.11
Apr.	194,100	11,400	205,500	.06
May	185,700	16,400	202,100	.08
June	54,020	17,440	71,460	.24
July	38,740	17,750	56,490	.31
Aug.	7,900	16,850	24,750	.68
Sept.	84,470	21,930	106,400	.21
Total for water				
year (rounded)	1,485,000	188,000	1,673,000	.11
Oct. 1973	106,600	14,900	121,500	.12
Nov.	96,990	12,410	109,400	.11
Dec.	116,900	11,200	128,100	.09
Jan. 1974	138,200	11,300	149,500	.08
Feb.	126,000	12,300	138,300	.09
Mar.	218,700	17,500	236,200	.07
Apr.	194,400	10,100	204,500	.05
May	207,200	15,500	222,700	.09
June	149,100	14,500	163,600	.09
July	43,830	15,300	59,130	.26
Aug.	44,600	15,880	60,480	.26
Sept.	62,230	16,220	78,450	.21
Total for water				
year (rounded)	1,505,000	167,000	1,672,000	.10

Table 13. Surface flow from Bear River basin across State Highway 83, 1972-74 water years.

		Specific conductance (micromhos/cm at 25°C)					
Date	Discharge (ft ³ /s)	Discharge- weighted average	Average				
374	5,330	1,240	3,040				
4-12 4-26 4-30	4,090 4,130	1,370 1,040	2,110 1,220 990				
5-3 5-9			1,520 1,550				
5-10 5-17	4,480	775	1,180 699				
5-24 5-30	2,800	1,010	1,480 1,530				
6- 3 6- 7 6-11	3,550	897	1,970 2,170 2,020				
6-17 6-21 6-24 6-27	2,340	823	1,920 1,240 1,350 1,470				
7- 2 7- 5 7-22 7-26	626 122	1,260 1,930	1,590 2,040 1,870 2,320				
8-2 8-8 8-19	598 644	1,750 2,030	2,350 2,300 2,300				
9- 5 9-17 9-30	549 1,770 984	1,980 1,660 2,250	2,310 2,170 2,390				
10-15	1,550	2,090	2,470				
11- 4 11-17,18	2,120 1,660	2,410 2,740	2,380 3,150				
12-2	1,810	1,920	2,350				

Table 14. Discharge and specific-conductance data for outflow from the Bear River Migratory Bird Refuge near Brigham City.

		Specific conductance (micromhos/cm at 25°C)			
Date	Total flow (ft ³ /s)	Discharge- weighted average	Average		
Farmington	Bay Waterfowl M	anagement Area-con	tinued		
6-26-74	184	1.530	2,570		
8-27-74	121	1,670	2,011		
10- 3-74	171	2,450	2,780		
10-30-74	268	2,610	2,780		
11-29-74	212	1,990	2,090		
1- 6-75	163	1,820	1,770		
11-12-12	Salt Lake Se	ewage Canal			
12-19-73	93.5	-	3,6001		
1-24-74	151	-	3,7001		
2-27-74	145	-	3,7101		
4- 1-/4	128	-	3,050		
5- 3- 14	206	-	2,110*		
6-26-74	120	-	3,400		
10- 3-74	76	7	3 0001		
10-30-74	86		3,900		
11-29-74	57	_	4 0001		
1- 6-75	67	-	3,600 ¹		
	North Point	Duck Club			
12-19-73	201	1,700	1,800		
1-24-74	199	2,120	2,210		
2-28-74	183	2,310	2,540		
4- 1-74	155	1,850	2,150		
5- 2-74	183	1,760	2,400		
5-31-74	150	1,160	1,230		
6-26-74	92	1,460	1,480		
8-27-74	88	1,670	1,660		
10- 3-74	26	2,060	2,230		
10-31-74	64	1,990	2,390		
11-29-74	47 48	1,940	2,040		
1 0 10	Lake Front	Duck Club	_,		
10 10 72	106	1 0 10	1 9 7 0		
1-25.74	100	1,910	2,000		
2-28-74	120	2,040	2,000		
4- 1-74	87	1 600	1,600		
5- 2-74	125	1,620	1,580		
5-31-74	66	1,260	1,280		
6-26-74	20	1.640	1.580		
8-27-74	30	2,040	2,020		
10- 3-74	33	2,420	2,410		
10-31-74	33	2,370	2,290		
11-29-74	30	2,060	2,100		
1- 6-75	27	2,080	2,220		
	West Ambassad	or Duck Club			
12-20-73	23	2,500	2,500		
1-25-74	20	2,490	2,490		
2-28-74	18	2,820	2,820		
4- 1-74	6.9	6,940	6,500		
5- 2-74	13	4,440	4,840		
10- 3-74	14	4,3/0	3,050		
10-31-74	54	3,540	3,950		
	1.5	5.570	5,000		

Table 15. Discharge and specific-conductance data for outflow from the Farmington Bay Waterfowl Management Area, duck clubs, and Salt Lake City Sewage Canal.

		Specific conductance (micromhos/cm at 25°C)					
Date	Total flow (ft ³ /s)	Discharge- weighted average	Average				
Farmingt	on Bay Waterfo	owl Management Area					
12-19-73	304	1,860	1,830				
1-24-74	333	1,770	1,870				
2-28-74	217	2,010	2,030				
3-29-74-4-1-74	337	2,320	2,450				
5- 3-74	498	2,860	3,100				
5-31-74	523	2,230	4,350				

¹ Represents measurement of single discharge point.

Table 16. Monthly estimates of surface inflow to Great Salt Lake, 1931-73.

Total surface flow across State Highway 83, excluding Bear River, near Corinne (10126000)

YEAR	ост	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1931	16390.0	12770.0	11650.0	12400.0	10740.0	10900.0	9734.0	12000.0	16560.0	17060.0	15980.0	20450.0
1932	16390.0	12770.0	11650.0	12400.0	10740.0	10900.0	9734.0	12000.0	16560.0	17060.0	15980.0	20450.0
1933	16390.0	12770.0	11650.0	12400.0	10740.0	10900.0	9734.0	12000.0	16560.0	17060.0	15980.0	20450.0
1934	16390.0	12770.0	11650.0	12400.0	10740.0	10900.0	9734.0	12000.0	16560.0	17060.0	15980.0	20450.0
1935	16390.0	12770.0	11650.0	12400.0	10740.0	10900.0	9734.0	12000.0	16560.0	17060.0	15980.0	20450.0
1936	16390.0	12770.0	11650.0	12400.0	10740.0	10900.0	9734.0	12000.0	16560.0	17060.0	15980.0	20450.0
1937	16390.0	12770.0	11650.0	12400.0	10740.0	10900.0	9734.0	12000.0	16560.0	17060.0	15980.0	20450.0
1938	16390.0	12770.0	11650.0	12400.0	10740.0	10900.0	9734.0	12000.0	16560.0	17060.0	15980.0	20450.0
1939	16390.0	12770.0	11650.0	12400.0	10740.0	10900.0	9734.0	12000.0	16560.0	17060.0	15980.0	20450.0
1940	16390.0	12770.0	11650.0	12400.0	10740.0	10900.0	9734.0	12000.0	16560.0	17060.0	15980.0	20450.0
1941	16390.0	12770.0	11650.0	12400.0	10740.0	10900.0	9734.0	12000.0	16560.0	17060.0	15980.0	20450.0
1942	16390.0	12770.0	11650.0	12400.0	10740.0	10900.0	9734.0	12000.0	16560.0	17060.0	15980.0	20450.0
1943	16390.0	12770.0	11650.0	12400.0	10740.0	10900.0	9734.0	12000.0	16560.0	17060.0	15980.0	20450.0
1944	16390.0	12770.0	11650.0	12400.0	10740.0	10900.0	9734.0	12000.0	16560.0	17060.0	15980.0	20450.0
1945	16390.0	12770.0	11650.0	12400.0	10740.0	10900.0	9734.0	12000.0	16560.0	17060.0	15980.0	20450.0
1946	16390.0	12770.0	11650.0	12400.0	10740.0	10900.0	9734.0	12000.0	16560.0	17060.0	15980.0	20450.0
1947	16390.0	12770.0	11650.0	12400.0	10740.0	10900.0	9734.0	12000.0	16560.0	17060.0	15980.0	20450.0
1948	16390.0	12770.0	11650.0	12400.0	10740.0	10900.0	9734.0	12000.0	16560.0	17060.0	15980.0	20450.0
1949	16390.0	12770.0	11650.0	12400.0	10740.0	10900.0	9734.0	12000.0	16560.0	17060.0	15980.0	20450.0
1950	16390.0	12770.0	11650.0	12400.0	10740.0	10900.0	9734.0	12000.0	16560.0	17060.0	15980.0	20450.0
1951	16390.0	12770.0	11650.0	12400.0	10740.0	10900.0	9734.0	12000.0	16560.0	17060.0	15980.0	20450.0
1952	16390.0	12770.0	11650.0	12400.0	10740.0	10900.0	9734.0	12000.0	16560.0	17060.0	15980.0	20450.0
1953	16390.0	12770.0	11650.0	12400.0	10740.0	10900.0	9734.0	12000.0	16560.0	17060.0	15980.0	20450.0
1954	16390.0	12770.0	11650.0	12400.0	10740.0	10900.0	9734.0	12000.0	16560.0	17060.0	15980.0	20450.0
1955	16390.0	12770.0	11650.0	12400.0	10740.0	10900.0	9734.0	12000.0	16560.0	17060.0	15980.0	20450.0
1956	16390.0	12770.0	11650.0	12400.0	10740.0	10900.0	9734.0	12000.0	16560.0	17060.0	15980.0	20450.0
1957	16390.0	12770.0	11650.0	12400.0	10740.0	10900.0	9734.0	12000.0	16560.0	17060.0	15980.0	20450.0
1958	16390.0	12770.0	11650.0	12400.0	10740.0	10900.0	9734.0	12000.0	16560.0	17060.0	15980.0	20450.0
1959	16390.0	12770.0	11650.0	12400.0	10740.0	10900.0	9734.0	12000.0	16560.0	17060.0	15980.0	20450.0
1960	16390.0	12770.0	11650.0	12400.0	10740.0	10900.0	9734.0	12000.0	16560.0	17060.0	15980.0	20450.0
1961	16390.0	12770.0	11650.0	12400.0	10740.0	10900.0	9734.0	12000.0	16560.0	17060.0	15980.0	20450.0
1962	16390.0	12770.0	11650.0	12400.0	10740.0	10900.0	9734.0	12000.0	16560.0	17060.0	15980.0	20450.0
1963	16390.0	12770.0	11650.0	12400.0	10740.0	10900.0	9734.0	12000.0	16560.0	17060.0	15980.0	20450.0
1964	16390.0	12770.0	11650.0	12400.0	10740.0	10900.0	9734.0	12000.0	16560.0	17060.0	15980.0	20450.0
1965	16390.0	12770.0	11650.0	12400.0	10740.0	10900.0	9734.0	12000.0	16560.0	17060.0	15980.0	20450.0
1966	16390.0	12770.0	11650.0	12400.0	10740.0	10900.0	9734.0	12000.0	16560.0	17060.0	15980.0	20450.0
1967	16390.0	12770.0	11650.0	12400.0	10740.0	10900.0	9734.0	12000.0	16560.0	17060.0	15980.0	20450.0
1968	16390.0	12770.0	11650.0	12400.0	10740.0	10900.0	9734.0	12000.0	16560.0	17060.0	15980.0	20450.0
1969	16390.0	12770.0	11650.0	12400.0	10740.0	10900.0	9734.0	12000.0	16560.0	17060.0	15980.0	20450.0
1970	16390.0	12770.0	11650.0	12400.0	10740.0	10900.0	9734.0	12000.0	16560.0	17060.0	15980.0	20450.0
1971	16390.0	12770.0	11650.0	12400.0	10740.0	10900.0	9734.0	12000.0	16560.0	17060.0	15980.0	20450.0
1972	15900.0	13400.0	13300.0	13900.0	11100.0	10900.0	8100.0	7700.0	15700.0	16420.0	15130.0	19000.0
1973	16880.0	12140.0	9999.0	10900.0	10380.0	25720.0	11370.0	16310.0	17420.0	17700.0	16830.0	21890.0

10126000 Bear River near Corinne

YEAR	OCT	NOV	DEC -	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1931	67640.0	74930.0	72010.0	72010.0	73260.0	85460.0	61490.0	17920.0	9050.0	8980.0	8940.0	8920.0
1932	20110.0	43350.0	53670.0	53360.0	60860.0	128200.0	181400.0	215700.0	96610.0	16900.0	9890.0	20520.0
1933	39180.0	53570.0	62420.0	61590.0	60970.0	100300.0	127200.0	150100.0	55960.0	9430,0	9330.0	9300.0
1934	28230.0	53000.0	70150.0	66810.0	57990.0	58050.0	37370.0	9040.0	8750.0	8710.0	8540.0	14160.0
1935	27060.0	51890.0	52220.0	45030.0	60250.0	78140.0	82670.0	88560.0	46370.0	8650.0	8570.0	8450.0
1936	29390.0	48570.0	47690.0	60510.0	76550.0	90810.0	223600.0	251200.0	89820.0	8630.0	8620.0	13620.0
1937	54200.0	74600.0	71110.0	65430.0	69150.0	145800.0	147400.0	172600.0	49300.0	13940.0	8410.0	10640.0
1938	61070.0	61270.0	80740.0	68530.0	81990.0	123800.0	172400.0	187000.0	41560.0	28590.0	8420.0	13260.0
1939	63160.0	96660.0	92920.0	69490.0	71610.0	141400.0	117100.0	61420.0	10360.0	8630.0	8550.0	33860.0
1940	54190.0	48730.0	57840.0	63620.0	75940.0	96880.0	83590.0	23740.0	9440.0	8590.0	8550.0	23320.0
1941	46250.0	57380.0	61780.0	56850.0	83840.0	95140.0	99070.0	62880,0	14280.0	8700.0	11800.0	16920.0
1942	57240.0	60130.0	71580.0	67720.0	71200.0	111400.0	173000.0	145700.0	28580.0	9560.0	8630.0	14430.0
1943	45350.0	64970.0	76860.0	89790.0	90020.0	125100.0	222100.0	138800.0	131400.0	16760.0	14500.0	21560.0
1944	66590.0	77700.0	74950.0	65940.0	67470.0	97560.0	114500.0	130400.0	88470.0	9350.0	8920.0	9160.0
1945	35970.0	62620.0	56180.0	58880.0	103200.0	103600.0	103100.0	150700.0	176800.0	13250.0	30720.0	49560.0
1946	57270.0	94230.0	96970.0	97570.0	76140.0	165100.0	277100.0	173400.0	74570.0	15800.0	43960.0	51270.0
1947	85970.0	110800.0	120100.0	100800.0	105200.0	122700.0	128000.0	142300.0	97770.0	22540.0	60570.0	70480.0
1948	92190.0	106100.0	110500.0	89640.0	104700.0	99600.0	174400.0	230000.0	116300.0	26370.0	37010.0	47330.0
1949	91130.0	96490.0	108300.0	113100.0	113000.0	163400.0	173100.0	169300.0	61990.0	15550.0	26140.0	44630.0
1950	105300.0	96300.0	99130.0	133700.0	144100.0	161100.0	228500.0	288900.0	220400.0	128400.0	87750.0	102000.0
1951	146800.0	150200.0	166500.0	164100.0	194800.0	188300.0	226700.0	243200.0	99570.0	56240.0	89450.0	85600.0
1952	119000.0	123900.0	133100.0	149000.0	138400.0	160100.0	339000.0	299400.0	121000.0	58120,0	62240.0	71600.0
1953	90860.0	105200.0	121500.0	137900.0	113000.0	116700.0	126400.0	104900.0	118400.0	10920.0	15860.0	15120.0
1954	43690.0	67130.0	69100.0	73220.0	72490.0	92750.0	104200.0	31040.0	21140.0	7540.0	6970.0	20510.0
1955	44010.0	55270.0	55520.0	63970.0	56910.0	96400.0	127700.0	97970.0	55870.0	7280.0	10380.0	16490.0
1956	45820.0	68370.0	111100.0	130500.0	79540.0	124500.0	165600.0	162500.0	44720.0	7690.0	14000.0	15150.0
1957	46820.0	64750.0	76990.0	74880.0	90840.0	124900.0	132500.0	221300.0	145000.0	13270.0	29620.0	42810.0
1958	90100.0	91900.0	84890.0	84900.0	113400.0	110100.0	174000.0	149100.0	24690.0	11640.0	31230.0	42130.0
1959	51030.0	72840.0	80470.0	76290.0	81890.0	83290.0	111300.0	32990.0	11540.0	9560,0	8860.0	26370.0
1960	56550.0	54250.0	56700.0	60990.0	63640.0	123500.0	128800.0	57820.0	8680.0	8460.0	8790.0	11790.0
1961	31210.0	60120.0	56610.0	49000.0	68130.0	80010.0	67620.0	10050.0	8770.0	8900.0	8850.0	17300.0
1962	41680.0	52810.0	55980.0	53740.0	171900.0	108800.0	196700.0	161700.0	57830.0	11640.0	8680.0	8640.0
1963	38360.0	56430.0	56440.0	56600.0	104800.0	67620.0	106500.0	91650.0	66450.0	8510.0	8520.0	26440.0
1964	39080.0	74290.0	58510.0	61390.0	61290.0	71210.0	181500.0	183100.0	179400.0	13940.0	4900.0	7450.0
1965	36980.0	59510.0	109900.0	105500.0	118400.0	90320.0	160100.0	165600.0	122800.0	40170.0	68890.0	104200.0
1966	126200.0	145500.0	145300.0	149900.0	134300.0	179400.0	158700.0	86940.0	7190.0	6900.0	5450.0	8570.0
1967	30110.0	48540.0	60460.0	65220.0	62060.0	97470.0	133300.0	181600.0	205800.0	48990.0	53650.0	66850.0
1968	106800.0	120400.0	115700.0	117100.0	93360.0	146900.0	119800.0	63640.0	107500.0	6960.0	41630.0	19350.0
1969	70200.0	111400.0	113500.0	160100.0	117400.0	172700.0	253400.0	125500.0	42660.0	27010.0	7710.0	13790.0
1970	61890.0	84640.0	101400.0	121100.0	84400.0	84130.0	79740.0	125400.0	96110.0	6650.0	6270.0	24060.0
1971	68500.0	69800.0	121100.0	164900.0	151100.0	178500.0	256000.0	334700.0	362500.0	152400.0	71750.0	136500.0
1972	176600.0	172700.0	182000.0	198000.0	166200.0	226200.0	247800.0	251600.0	181700.0	97680.0	54110.0	116000.0
1973	129400.0	148700.0	145900.0	153900.0	139800.0	201200.0	193700.0	185400.0	53920.0	38670.0	7880.0	84320.0

Combined flow of South Fork Weber Canal (10141050) and South (10141100), North (10141200), and Middle Forks (10141150)

10141400 Howard Slough at Hooper

YEAR	OCT	NOV	DEC	ION	FED	MOD	ODD	MOV	IL IN	11.0	0110	OF D
1001	1570.0	1510.0	1000 0	1010 0	1000 0	0.100		1740.0	1010 0	1000 0	1100 0	0EF
1000	1570.0	1510.0	1000.0	1010.0	1980.0	2470.0	1540.0	1740.0	1010.0	1320.0	1180.0	2140.0
1702	1570.0	1010.0	1860.0	1610.0	1980.0	2490.0	1040.0	1740.0	1910.0	1320.0	1180.0	2140.0
1933	1570.0	1010.0	1860.0	1610.0	1980.0	2490.0	1540.0	1740.0	1910.0	1320.0	1180.0	2140.0
1934	1570.0	1510.0	1860.0	1610.0	1980.0	2490.0	1540.0	1740.0	1910.0	1320.0	1180.0	2140.0
1935	1570.0	1510.0	1860.0	1610.0	1980.0	2490.0	1540.0	1740.0	1910.0	1320.0	1180.0	2140.0
1936	1570.0	1510.0	1860.0	1610.0	1980.0	2490.0	1540.0	1740.0	1910.0	1320.0	1180.0	2140.0
1937	1570.0	1510.0	1860.0	1610.0	1980.0	2490.0	1540.0	1740.0	1910.0	1320.0	1180.0	2140.0
1938	1570.0	1510.0	1860.0	1610.0	1980.0	2490.0	1540.0	1740.0	1910.0	1320.0	1180.0	2140.0
1939	1570.0	1510.0	1860.0	1610.0	1980.0	2490.0	1540.0	1740.0	1910.0	1320.0	1180.0	2140.0
1940	1570.0	1510.0	1860.0	1610.0	1980.0	2490.0	1540.0	1740.0	1910.0	1320.0	1180.0	2140.0
1941	1570.0	1510,0	1860.0	1610.0	1980.0	2490.0	1540.0	1740.0	1910.0	1320.0	1180.0	2140.0
1942	1570.0	1510.0	1860.0	1610.0	1980.0	2490.0	1540.0	1740.0	1910.0	1320.0	1180.0	2140.0
1943	1570.0	1510.0	1860.0	1610.0	1980.0	2490.0	1540.0	1740.0	1913.0	1320.0	1180.0	2140.0
1944	1570.0	1510.0	1860.0	1610.0	1980.0	2490.0	1540.0	1740.0	1910.0	1320.0	1180.0	2140.0
1945	1570.0	1510.0	1860.0	1610.0	1980.0	2490.0	1540.0	1740.0	1910.0	1320.0	1180.0	2140.0
1946	1570.0	1510.0	1860.0	1610.0	1980 0	2490.0	1540 0	1740 0	1910 0	1320.0	1190.0	2140 0
1947	1570.0	1510.0	1860.0	1610.0	1980.0	2490 0	1540.0	1740 0	1910.0	1320.0	1190.0	2140.0
1948	1570 0	1510.0	1860 0	1610 0	1998.0	2490 0	1540.0	1740.0	1910.0	1220.0	1100.0	2140.0
1949	1570 0	1510.0	1860.0	1610.0	1990.0	2490.0	1540.0	1740.0	1910.0	1220.0	1100.0	2140.0
1950	1570.0	1510.0	1960.0	1610.0	1000.0	2400.0	1540.0	1740.0	1910.0	1020.0	1100.0	2140.0
1951	1570.0	1510.0	1020.0	1610.0	1000.0	2420.0	1540.0	1740.0	1010.0	1020.0	1100.0	2140.0
1952	1570.0	1510.0	1000.0	1610.0	1700.0	2470.0	1540.0	1740.0	1910.0	1320.0	1180.0	2140.0
1952	1570.0	1510.0	1000.0	1010.0	1700.0	2470.0	1540.0	1740.0	1710.0	1320.0	1180.0	2140.0
1700	1570.0	1010.0	1000.0	1610.0	1980.0	2490.0	1540.0	1740.0	1910.0	1320.0	1180.0	2140.0
1904	1070.0	1510.0	1850.0	1610.0	1980.0	2490.0	1540.0	1740.0	1910.0	1320.0	1180.0	2140.0
1955	1570.0	1510.0	1850.0	1610.0	1980.0	2490.0	1540.0	1740.0	1910.0	1320.0	1180.0	2140.0
1956	1570.0	1010.0	1850.0	1610.0	1980.0	2490.0	1540.0	1740.0	1910.0	1320.0	1180.0	2140.0
1957	1570.0	1510.0	1860.0	1610.0	1980.0	2490.0	1540.0	1740.0	1910.0	1320.0	1180.0	2140.0
1958	1570.0	1510.0	1860.0	1610.0	1980.0	2490.0	1540.0	1740.0	1910.0	1320.0	1180.0	2140.0
1959	1570.0	1510.0	1860.0	1610.0	1980.0	2490.0	1540.0	1740.0	1910.0	1320.0	1180.0	2140.0
1960	1570.0	1510.0	1860.0	1610.0	1980.0	2490.0	1540.0	1740.0	1910.0	1320.0	1180.0	2140.0
1961	1570.0	1510.0	1860.0	1610.0	1980.0	2490.0	1540.0	1740.0	1910.0	1320.0	1180.0	2140.0
1962	1570.0	1510.0	1860.0	1610.0	1980.0	2490.0	1540.0	1740.0	1910.0	1320.0	1180.0	2140.0
1963	1570.0	1510.0	1860.0	1610.0	1980.0	2490.0	1540.0	1740.0	1910.0	1320.0	1180.0	2140.0
1964	1570.0	1510.0	1860.0	1610.0	1980.0	2490.0	1540.0	1740.0	1910.0	1320.0	1180.0	2140.0
1965	1570.0	1510.0	1860.0	1610.0	1980.0	2490.0	1540.0	1740.0	1910.0	1320.0	1180.0	2140.0
1966	1570.0	1510.0	1860.0	1610.0	1980.0	2490.0	1540.0	1740.0	1910.0	1320.0	1180.0	2140.0
1967	1570.0	1510,0	1860.0	1610.0	1980.0	2490.0	1540.0	1740.0	1910.0	1320.0	1180.0	2140.0
1968	1570.0	1510.0	1860.0	1610.0	1980.0	2490.0	1540.0	1740.0	1910.0	1320.0	1180.0	2140.0
1969	1570.0	1510.0	1860.0	1610.0	1980.0	2490.0	1540.0	1740.0	1910.0	1320.0	1180.0	2140.0
1970	1570.0	1510.0	1860.0	1610.0	1980.0	2490.0	1540.0	1740.0	1910.0	1320.0	1180.0	2140.0
1971	1570.0	1510.0	1860.0	1610.0	1988.0	2490.0	1540.0	1740.0	1910.0	1320.0	1180.0	2140.0
1972	1820.0	1700.0	2270.0	2110.0	1560.0	1200.0	1750.0	1530.0	1440.0	1010 0	1090.0	2400 0
1973	1320.0	1310.0	1440.0	1100.0	2400.0	3770.0	1320.0	1950.0	2370.0	1620.0	1260.0	1890.0
					2,0010						120010	10000

Combined flow of tributaries 10141500, 1042000, 10142500, 1014300, 10143500, 10144000, and 10145000

VEAR	ост	NOV	DEC	(OM	CED	MOD	APP	MAY	n isi		000	ern
1001	541 0	607 0	591 0	598 B	FED 540 0	1040 0	1600.0	2040.0	2020 0	COO O	HUG ACL 0	3EF 370 6
1000	207 0	500.0	524 0	570.0	540.0	1000.0	2450.0	0660.0	2030.0	020.0	461.0	379.0
1232	501.0	COD 0	J34.0 COF 0	321.0	323.0	1000.0	0400.0	7000.0	0070.0	1440.0	831.0	560.0
1233	530.0	032.0	620.0	618.0	557.0	1360.0	2070.0	5130.0	8240.0	1310.0	840.0	622.0
1934	575.0	660.0	559.0	637.0	227.0	1200.0	1220.0	1200.0	936.0	251.0	211.0	216.0
1935	258.0	489.0	528.0	504.0	522.0	1180.0	2290.0	6610.0	6760.0	1250.0	722.0	528.0
1936	506.0	648.0	620.0	612.0	591.0	2270.0	6050.0	12650.0	6880.0	1530.0	886.0	629.0
1937	591.0	667.0	651.0	597.0	593.0	1860.0	3180.0	10850.0	6230.0	1590.0	896.0	640.0
1938	626.0	657.0	658.0	626.0	568.0	1720.0	4690.0	9630.0	6020.0	1390.0	896.0	641.0
1939	620.0	704.0	696.0	667.0	597.0	1940.0	3240.0	5750.0	2850.0	858.0	635.0	513.0
1940	492.0	602.0	606.0	620.0	608.0	1990.0	3770.0	6700.0	3330.0	962.0	673.0	525.0
1941	559.0	670.0	645.0	615.0	650.0	1940.0	3240.0	8830.0	5960.0	1650.0	1020.0	779.0
1942	727.0	732:0	716.0	716.0	672.0	1940.0	6290.0	9130.0	9190.0	2230.0	1330.0	951.0
1943	896.0	805.0	830.0	819.0	765.0	2120.0	4630.0	5370.0	4810.0	1360.0	962.0	687.0
1944	550.0	674.0	665.0	618.0	592.0	1340.0	2580.0	8270.0	7150.0	1700.0	1050.0	733.0
1945	736.0	589.0	689.0	645.0	595.0	1290.0	1700.0	5160.0	5670.0	1450.0	1010.0	724.0
1946	646.0	682.0	644.0	626.0	562.0	1720.0	4220.0	5720.0	4270.0	1130.0	736.0	547.0
1947	547.0	652.0	671.0	638.0	682.0	1960.0	3030.0	8210.0	4480.0	1380.0	933.0	632.0
1948	623.0	711.0	686.0	621.0	505.0	1500.0	3620.0	9570.0	6200.0	1360.0	905.0	760.0
1949	647.0	714.0	672.0	613.0	566.0	1850.0	4810.0	10190.0	7920.0	1800.0	1060.0	724.0
1950	811.0	740.0	660.0	674.0	717.0	1920.0	4040.0	9510.0	8450.0	1940.0	1130.0	812.0
1951	780.0	766.0	720.0	696.0	671.0	1630.0	3000.0	8030.0	5580.0	1420.0	1080.0	663.0
1952	743.0	693.0	704.0	704.0	680.0	860.0	763.0	17140.0	7100.0	2100.0	1070.0	694.0
1953	668.0	658.0	702.0	893.0	686.0	1220.0	3140.0	7400.0	10320.0	2170.0	1020.0	506.0
1954	649.0	703.0	717.0	634.0	647.0	821.0	2490.0	2700.0	10780.0	525.0	350.0	295.0
1955	415.0	499.0	455.0	464.0	460.0	650.0	1960.0	6980.0	2890.0	904.0	507.0	397.0
1956	507.0	559.0	970.0	1070.0	707.0	1380.0	3640.0	6060.0	2540.0	873.0	515.0	413.0
1957	490.0	522.0	571.0	515.0	620.0	962.0	2090.0	9890.0	8120.0	2160.0	928.0	635.0
1958	725.0	675.0	709.0	638.0	784.0	1040.0	3440.0	15060.0	4170.0	1230.0	653.0	541.0
1959	575.0	641.0	622.0	573.0	539.0	8020.0	2070.0	3610.0	1970.0	635.0	428.0	452.0
1960	537.0	452.0	450.0	459.0	440.0	1360.0	3680.0	5380.0	1870.0	673.0	407.0	366.0
1961	447.0	523.0	488.0	447.0	460.0	705.0	1620.0	2730.0	908.0	320.0	247.0	293.0
1962	425.0	470.0	492.0	462.0	987.0	1140.0	7290.0	10630.0	4770.0	1590.0	829.0	633.0
1963	610.0	558.0	509.0	480.0	575.0	781.0	1840.0	7520.0	3430.0	959.0	482.0	461.0
1964	500.0	557.0	479.0	471.0	471.0	580.0	1690.0	12600.0	9000.0	2380.0	1020.0	667.0
1965	669.0	679.0	1010.0	851.0	911.0	1030.0	4140.0	10300.0	6660.0	2310.0	1180.0	926.0
1966	838.0	789.0	755.0	• 703.0	606.0	1920.0	3730.0	5800.0	3150.0	884.0	599.0	464.0
1967	481.0	572.0	495.0	543.0	505.0	1240.0	1970.0	6020.0	7210.0	1710.0	985.0	638.0
1968	593.0	646.0	624.0	604.0	597.0	1600.0	2660.0	7150.0	4520.0	1880.0	1240.0	829.0
1969	831.0	792.0	725.0	629.0	558.0	1370.0	2240.0	3850.0	3640.0	1350.0	899.0	620.0
1970	524.0	612.0	598.0	719.0	723.0	1520.0	1710.0	8480.0	9600.0	2050.0	1030.0	789.0
1971	672.0	(49.0	758.0	783.0	893.0	2640.0	6100.0	10310.0	9250.0	2360.0	1320.0	945.0
1972	886.0	830.0	840.0	768.0	768.0	3970.0	5120.0	10530.0	4770.0	1660.0	1050.0	776.0
1973	731.0	748.0	713.0	691.0	653.0	1780.0	2880.0	10510.0	7980.0	1830.0	1100.0	863.0

10170800 Surplus Canal at Cohen Flume, near Salt Lake City

YEAR	0CT	NOV	DEC	JAN	FEB	MAR	APR	MAY 2020 0	JUN CZEG G	JUL	AUG	SEP
1931	5970 0	7510.0	4600 0	8360.0	5050.0	3610.0	4000.0	7020.0	CO10 0	2560.0	0.0	0.0
1932	4969.0	3520.0	4690.0	4430.0	3480.0	3610.0	4060.0	7000.0 2040 0	0010.0	2560.0	0.0	0.0
1933	4200.0	2330.0	4200.0	9110.0	3150.0	3320.0	7040 0	5040.0 5000 0	2560.0	2560.0	0.0	0.0
1934	2670 0	2000.0	4500.0	4470 0	3200.0	3420.0	4020.0	4440 0	6740 0	2560.0	0.0	0.0
1930	1960 0	2226 8	4620.0	4470.0	2710.0	2700.0	4020.0	7500 0	6928 8	2560.0	0.0	0.0
1936	0000.0	2220.0	4010.0	4400.0	4040 0	4120.0	4200.0	7000.0	6700.0	2610 0	726 0	1260.0
1937	2500.0	2210 0	4630.0	4530.0	2750 0	0746 6	4740.0	7100.0	0710 0	2966 6	1416 0	1990 0
1938	10050.0	0200.0	4070.0 5000.0	4020.0	0000.0	0770.0	C1E0 0	0200 0	6710.0 6720 0	4500.0	2440.0	2000.0
1939	10030.0	3030.0	4000.0	4000.0	3730.0	3110.0	4700.0	0410 0	6730.0	9300.0	10/0 0	1610 0
1940	4700.0	0470.0	4700.0	4470.0	3730.0	3040.0	4720.0	7120.0	6700.0 6700.0	2000.0	1000.0	1010.0
1941	4780.0	0710.0	4660.0	4470.0	3650.0	3160.0	4020.0	CC20.0	0000.0	2000.0	1140.0	1698 8
1942	3680.0	3/10.0	3450.0	4600.0	3330.0	3630.0	4000.0	2040.0	0030.0	3020.0	1140.0	1070.0
1943	9600.0	3890.0	4950.0	4000.0	3450.0	3630.0	5870.0	7040.0	10000 0	4420.0	2130.0	2070.0
1944	6340.0	2070.0	3320.0	3030.0	3820.0	4480.0	5300.0	8200.0	13030.0	6730.0	2810.0	3620.0
1945	5640.0	3070.0	4710.0	3790.0	3700.0	3820.0	3930.0	6020.0	5170.0	3300.0	4310.0	3360.0
1946	5430.0	3570.0	4820.0	4610.0	4110.0	3920.0	6080.0	5240.0	5260.0	4600.0	2510.0	2000.0
1947	8250.0	6690.0	6900.0	4730.0	5000.0	4360.0	6070.0	10110.0	8320.0	4830.0	4560.0	4020.0
1948	4480.0	6060.0	5490.0	4290.0	5300.0	4270.0	9820.0	10440.0	10030.0	5000.0	3370.0	4220.0
1949	2020.0	4270.0	5050.0	3030.0	6210.0	10060.0	1010.0	9870.0	8170.0	5190.0	3340.0	2260.0
1950	3550.0	4190.0	8010.0	7800.0	10990.0	6800.0	6700.0	7980.0	8140.0	5840.0	3800.0	4700.0
1951	5180.0	7500.0	6850.0	5120.0	5390.0	5430.0	4940.0	8690.0	7010.0	1100.0	1320.0	5090.0
1952	9670.0	6080.0	11290.0	19560.0	20090.0	14560.0	17410.0	30000.0	29010.0	14070.0	11080.0	7630.0
1953	19340.0	32030.0	39050.0	44420.0	40220.0	20660.0	19420.0	13790.0	14620.0	6830.0	7830.0	7330.0
1954	11580.0	8000.0	12430.0	13360.0	11630.0	9 960.0	1120.0	6530.0	6770.0	5670.0	2850.0	4270.0
1955	6870.0	4450.0	5740.0	3940.0	3550.0	4840.0	4350.0	5860.0	1050.0	5430.0	4850.0	5580.0
1956	7740.0	3080.0	4160.0	2340.0	2530.0	4040.0	5200.0	8740.0	6660.0	4/10.0	2610.0	5130.0
1957	9120.0	5660.0	5730.0	4700.0	4080.0	4240.0	4650.0	8650.0	13560.0	5890.0	4390.0	5770.0
1958	8930.0	4860.0	6010.0	6370.0	10370.0	8050.0	10590.0	13140.0	11610.0	4520.0	2830.0	6180.0
1959	6060.0	3140.0	5010.0	4610.0	5790.0	4610.0	4580.0	6380.0	7660.0	6470.0	6580.0	8140.0
1960	6740.0	2590.0	4560.0	4230.0	3630.0	4000.0	5090.0	6280.0	6080.0	2090.0	3330.0	3300.0
1961	4840.0	3750.0	5000.0	3810.0	3910.0	4050.0	3540.0	4250.0	3530.0	4130.0	839.0	1890.0
1962	2020.0	3050.0	3950.0	3450.0	4880.0	5540.0	6000.0	7870.0	8160.0	6420.0	4540.0	7280.0
1963	6040.0	4400.0	4580.0	2360.0	706.0	3920.0	4560.0	6160.0	8460.0	5320.0	5460.0	6820.0
1964	8520.0	7860.0	5930.0	4670.0	3310.0	3700.0	5030.0	16500.0	14970.0	5910.0	4930.0	7120.0
1965	5700.0	3510.0	9750.0	8640.0	8140.0	6790.0	8230.0	9470.0	14700.0	9760.0	8750.0	10800.0
1966	8410.0	4900.0	5220.0	7300.0	13330.0	5610.0	5090.0	10730.0	6610.0	5130.0	5390.0	10870.0
1967	8760.0	4260.0	6240.0	5130.0	5830.0	4020.0	4790.0	11760.0	16950.0	8090.0	4370.0	7520.0
1968	9000.0	6380.0	8160.0	7230.0	7500.0	3900.0	9630.0	8450.0	14900.0	7680.0	4030.0	5570.0
1969	11520.0	10110.0	15710.0	21400.0	26290.0	15590.0	17000.0	12530.0	13880.0	7130.0	6680.0	7000.0
1970	15710.0	13430.0	17900.0	25690.0	28120.0	14970.0	11250.0	14880.0	14670.0	7810.0	5890.0	10150.0
1971	13650.0	9860.0	16930.0	22950.0	25470.0	14960.0	13940.0	13400.0	15270.0	7520.0	9100.0	8960.0
1972	12470.0	14750.0	18570.0	24240.0	24480.0	14390.0	15560.0	11160.0	12650.0	7320.0	9480.0	10130.0
1973	12530.0	6370.0	7060.0	13480.0	21000.0	13290.0	14630.0	15360.0	12980.0	9430.0	8000.0	12210.0
							1					
10172600	Jordan Riv	er below Cu	dahy Lane, n	near Salt Lak	e City							

YEAR	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1931	8270 0	7649.9	794R. R	8040.0	7610.0	7270.0	7690.0	8910.0	8750.0	7900.0	7240.0	7150.0
1000	2510.0	7000 0	7940 0	7100 0	7110 0	7600 0	12690 0	14190 0	11330 0	7760 D	7200 0	7060 Q
1936	7010.0	7000.0	7070.0	7/00.0	74/0 0	7200.0	0000 0	10000 0	10000 0	5420 0	4750 Q	1978 8
1933	7590.0	7300.0	1310.0	7590.0	7460.0	7290.0	0200.0	12000-0	12700.0	3430.0	4760.0	4210.0
1934	7440.0	7420.0	7430.0	7300.0	7180.0	7240.0	8210.0	1230.0	5240.0	828.0	827.0	998.0
1935	7240.0	7180.0	7310.0	7230.0	7160.0	7230.0	8030.0	11860.0	11000.0	642.0	142.0	35.0
1936	7280.0	7430.0	7320.0	7390.0	7640.0	8900.0	14560.0	16860.0	11410.0	6360.0	5770.0	6110.0
1937	8030.0	7830.0	7690.0	7410.0	7360.0	7750.0	10620.0	16770.0	11150.0	8730.0	7780.0	7580.0
1938	7950.0	7560.0	7750.0	7370.0	7230.0	8200.0	12970.0	15300.0	11500.0	8430.0	7990.0	7600.0
1000	0620 0	7798 8	7490 0	7270 B	7249 0	2650 Q	9250 0	10780.0	8720 0	7780 Ø	7540 Q	2490.0
1232	7030.0	7970.0	7960 0	7200 0	7260 0	2740 0	9010 0	11400 0	9750 0	7640 0	7270 0	7360 0
1940	7530.0	7070.0	7000.0	7000.0	7000.0	7000 0	10000 0	11900.0	10000 0	0070.0	707010	7498.0
1941	7560.0	7480.0	7390.0	1320.0	1310.0	7980.0	10380.0	14300.0	10990.0	8070.0	7660.0	7430.0
1942	7730.0	8270.0	8810.0	8020.0	7960.0	8350.0	14450.0	14260.0	13370.0	8920.0	8120.0	1100.0
1943	8250.0	7300.0	6770.0	6350.0	7010.0	9120.0	5840.0	LAAA°A	10540.0	8980.0	8190.0	8220.0
1944	7560.0	6940.0	8040.0	7930.0	7890.0	8590.0	8050.0	14230.0	9970.0	5380.0	6360.0	7940.0
1945	9560.0	8470.0	7350.0	7280.0	6270.0	6830.0	5780.0	\$260.0	9010.0	7100.0	9630.0	10570.0
1946	9880.0	8020.0	8110.0	7629.9	7300.0	9130.0	11300.0	10910.0	7950.0	8450.0	7790.0	8940.0
1947	9229 9	7510.0	2190.0	6890.0	7640.0	8430.0	6630.0	12520.0	10110.0	8020.0	9910.0	9280.0
1040	10100.0	0250 0	7790 0	00000 Q	7299.0	9700 0	11010.0	10880.0	9369.9	8940.0	8610.0	10630.0
1040	10100.0	0000.0	0000 0	0540 0	0270 0	0950 0	9310 0	15650 0	11230 0	10200 0	10230 0	12480.0
1949	10480.0	9200.0	2000.0	2340.0	2010.0	7000.0	10/20 0	15400.0	10410 0	10500.0	10010 0	10600 0
1950	13610.0	9490.0	6000.0	6300.0	6650.0	7230.0	100/0.0	10400.0	0010.0	10090.0	10010.0	0010.0
1951	11600.0	8200.0	8410.0	7690.0	6610.0	7110.0	7900.0	14310.0	3310.0	9120.0	8470.0	8510.0
1952	8430.0	6300.0	7720.0	7940.0	11620.0	16550.0	23290.0	21730.0	15590.0	10770.0	9540.0	8300.0
1953	12940.0	12470.0	9990.0	8370.0	4730.0	8080.0	8550.0	9260.0	9320.0	8210.0	6690.0	7970.0
1954	9770.0	8270.0	10430.0	9360.0	9610.0	12120.0	9560.0	8940.0	8690.0	8680.0	8810.0	8900.0
1955	8370.0	6970.0	8270.0	7460.0	7100.0	7030.0	6380.0	10050.0	10250.0	7810.0	7820.0	8150.0
1956	9490.0	9140.0	10769.0	10990.0	8610.0	6800.0	5370.0	12700.0	9520.0	11520.0	9850.0	10070.0
1057	0000 0	9050 0	8260.0	2520.0	6630.0	7880.0	8150.0	11360.0	10840.0	8990. Q	8710.0	9160.0
1050	0100.0	7250 0	7190 0	6600 0	4450 0	2480.0	6820 0	8820.0	6520.0	12610 0	14000 0	13280.0
1930	2120.0	0010.0	1100.0	10700.0	2000.0	7990 0	7500 0	0500 0	0120 0	0010.0	0000 0	0 0200
1959	11160.0	9810.0	11090.0	10/00.0	7800.0	1000.0	1000.0	2000.0	0/00.0	7000.0	6730.0	2120.0
1960	8220.0	7950.0	8370.0	8370.0	1050.0	9370.0	6800.0	8790.0	0500.0	7900.0	6920.0	7130.0
1961	7350.0	6380.9	7210.0	7170.0	6150.0	7140.0	6480.0	5170.0	4440.0	2840.0	3450.0	2680.0
1962	4120.0	4820.0	5500.0	4800.0	4390.0	3620.0	4690.0	8710.0	7170.0	6550.0	6290.0	2220.0
1963	5270.0	4590.0	5630.0	7460.0	8370.0	5690.0	6090.0	7070.0	4840.0	3700.0	2970.0	2450.0
1964	5350.0	5390.0	5680.0	6130.0	6470.0	8020.0	8230.0	13670.0	11040.0	6850.0	5630.0	7340.0
1965	7590.0	6960.0	8340.0	8460.0	7590.0	8720.0	12300.0	14490.0	15770.0	11230.0	10890.0	10360.0
1966	9800.0	9240.0	9260.0	8990.0	10060.0	11020.0	8890.0	10570.0	9810.0	9390.0	9520.0	9860.0
1067	10140.0	2000 0	7270 0	9570 0	7900.0	\$820 Q	9290.0	10000.0	10950.0	9010.0	9648 8	10420.0
1201	10140.0	7490.0	7010.0	7298 8	7060.0	0210 0	11990 0	10570.0	12530.0	10910 0	10920 0	10740.0
1968	9520.0	7900.0	05.00.0	0700.0	1000.0	0260.0	10000.0	10260 0	2953 8	9570 0	4500 G	9500 0
1969	8670.0	7809.0	3360.0	8790.0	7160.0	7200.0	10000.0	10000.0	11000.0	0050.0	2000,0	10120.0
1970	10390.0	A180"N	10960.0	10110.0	1000.0	1370.0	0020.0	10730.0	10090.0	2230.0	2010.0	10120.0
1971	7720.0	8320.0	9840.0	10680.0	9550.0	12080.0	11580.0	10820.0	12640.0	3670.0	2100.0	9686.0
1972	9840.0	8320.0	9120.0	9670.0	9090.0	12240.0	7050.0	14150.0	9790.0	8550.0	7930.0	3216.6
1973	8590.0	8640.0	7710.0	7090.0	6970.0	8710.0	8700.0	13610.0	15260.0	11310.0	9230.0	9960.0

10182630 Goggin Drain near Magna OCT

10172650 Kennecott Drain YEAR OCT 1931 1880.8 1932 1931 1880.8 1932 1170.0 1933 1932 1370.0 1935 1940.0 1935 1935 1490.0 1937 1670.0 1937 1933 1350.0 1937 1670.0 1949.0 1934 1960.0 1943 1990.0 1941 1939 1900.0 1944 2410.0 1945 2590.0 1944 2410.0 1945 2590.0 1944 2410.0 1945 2590.0 1945 2590.0 1945 2590.0 1945 2590.0 1945 1945 2590.0 1945 1949 2980.0 1955 1955 320.0 1955 320.0 1955 320.0 1955 320.0 1955 3550.0 1955 3550.0 1955 3550.0 1955 3550.0 1955 3550.0 1955 3550.0 19555 3550.0 1955	YEAR OCT 1931 1898.0 1932 1758.6 1933 1870.0 1933 2020.0 1935 2020.0 1935 2020.0 1935 2020.0 1937 1460.0 1937 1460.0 1939 1250.0 1940 1740.0 1940 1740.0 1941 2020.0 1942 2020.0 1944 1760.0 1944 1760.0 1945 1840.0 1945 1840.0 1945 1840.0 1945 1890.0 1945 1890.0 1950 2090.0 1951 1890.0 1955 1690.0 1955 1690.0 1956 1590.0 2060 1710.0 2060 1710.0 1966 190.0 2060 1710.0 1966 190.0 1965 544.0 1966 190.0 1965 544.0 1966 1190.0 1967 426.0 1968 1190.0 1969 1140.0 1971 894.0 1972 1490.0 1973 1710.0 1973 1710.0
In near Magna NOV DEC 1088.0 1088.0 1170.0 1178.0 1330.0 1338.0 1330.0 1360.0 1360.0 1360.0 1580.0 1580.0 1580.0 1580.0 1670.0 1678.0 1900.0 1990.0 2980.0 2080.0 2080.0 2080.0 2330.0 2330.0 2410.0 2410.0 2500.0 2590.0 2730.0 2730.0 2830.0 2830.0 2980.0 2980.0 3280.0 3880.0 3550.0 3550.0 3550.0 3550.0 3550.0 3550.0 3550.0 3550.0 3550.0 3550.0 3550.0 3550.0 3550.0 3550.0 3660.0 4000.0 4480.0 4480.0 4580.0 4580.0 4580.0 4580.0	NOV DEC 1588.0 944.0 2030.0 241.0 2160.0 241.0 2130.0 166.0 2120.0 227.0 2088.0 241.0 2088.0 241.0 2088.0 241.0 2088.0 241.0 2088.0 241.0 2080.0 241.0 2080.0 246.0 2080.0 281.0 2080.0 281.0 2080.0 281.0 2080.0 281.0 2080.0 281.0 2080.0 281.0 2080.0 281.0 2080.0 281.0 2080.0 284.0 1790.0 1410.0 1560.0 1620.0 1980.0 381.0 1930.0 434.0 2140.0 381.0 2138.0 249.0 2060.0 165.0 1980.0 170.0 114.0 52.0
JAN FE 1688.0 166 1178.0 137 1330.0 133 1360.0 136 1498.0 167 1580.0 158 1678.0 175 1960.0 199 1960.0 199 1960.0 199 1960.0 205 2170.0 217 2330.0 235 2418.0 256 2590.0 259 2738.0 259 2758.0 355 3550.0 365 3750.0 355 3660.0 366 3750.0 355 3660.0 366 3750.0 355 3660.0 366 3750.0 355 3660.0 366 3750.0 355 3660.0 466 3750.0 469 3950.0 469 3950.0 499 5470.0 492 4708.0 455 3960.0 492 4708.0 455 3960.0 492 4708.0 455 2520.0 492 4708.0 455 2520.0 492 4708.0 455 2520.0 492 4708.0 455 2520.0 492 4708.0 455 2520.0 492 2520.0 492 2520.0 455 2520.0 495 2520.0 455 2520.0 455	JAN FE 939.0 50 191.0 1 138.0 76.0 199.0 6 137.0 5 233.0 11 209.0 6 233.0 11 209.0 6 233.0 11 209.0 6 233.0 12 209.0 6 233.0 2 0.0 2 0.0 2 0.0 2 0.0 2 220.0 31 270.0 31 294.0 304 756.0 124 175.0 39 105.0 124 175.0 39 105.0 124 107.0 2 0.0 22 0.0 22 331.0 33 540.0 45 32870.0 404
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	MAR .0 0.0 .0 0.0 .0 0.0 .0 0.0 .0 0.0 .0 0.0 .0 0.0 .0 0.0 .0 0.0 .0 0.0 .0 0.0 .0 0.0 .0 0.0 .0 0.0 .0 1020.0 .0 14.0 .0 14.0 .0 14.0 .0 14.0 .0 144.0 .0 144.0 .0 144.0 .0 144.0 .0 144.0 .0 15760.0 .0 15780.0 .0 15780.0 .0 12870.0 .0 12870.0 .0 12870.0 .0 19560.0 .0 19560.0 .0
APR 1080.0 1170.0 1330.0 1360.0 1450.0 1450.0 1580.0 1580.0 1670.0 290.0 2170.0 2170.0 2330.0 2410.0 2590.0 2410.0 2590.0 2600.0 3170.0 3430.0 3550.0 3550.0 3650.0 3650.0 3430.0 4120.0 4120.0 4120.0 4120.0 4120.0 4120.0 4120.0 4120.0 4120.0 2590.0 2590.0 2590.0 2590.0 2590.0 200.0 2590.0 250	APR 684.0 467.0 471.0 7380.0 392.0 2118.0 441.0 1710.0 1260.0 399.0 1260.0 3480.0 4740.0 38480.0 4740.0 38480.0 4740.0 38480.0 4740.0 38480.0 15500.0 4740.0 23990.0 27570.0 67750.0 1310.0 1190.0 2090.0 27570.0 6775.0 3100.0 1190.0 2090.0 2160.0 11530.0 2016.0 138.0 23260.0 138.0 23260.0 138.0 23260.0 23260.0 138.0 23260.0 138.0 23260.0 138.0 23260
MAY 1880.0 1170.0 1300.0 1990.0 1750.0 1990.0 2990.0 2990.0 2330.0 2330.0 2330.0 2330.0 2330.0 2330.0 2330.0 2330.0 2330.0 2330.0 2330.0 3420.0 3420.0 3550.0 3340.0 3550.0 3500.	MAY 5370.0 2330.0 2330.0 2750.0 2330.0 2750.0 2750.0 2750.0 2750.0 2750.0 2750.0 2750.0 25560.
$\begin{array}{c} JUN\\ 1880.0\\ 1170.0\\ 1380.0\\ 1380.0\\ 1490.0\\ 1580.0\\ 1580.0\\ 1990.0\\ 2080.0\\ 2080.0\\ 2080.0\\ 2080.0\\ 2080.0\\ 2410.0\\ 2330.0\\ 2410.0\\ 2590.0\\ 2330.0\\ 2410.0\\ 2590.0\\ 2330.0\\ 23$	JUN 5380.0 5490.0 5160.0 5560.0 5580.0 5580.0 5290.0 5280.0 5290.0 1210.0 7570.0 7570.0 7590.0 7590.0 7590.0 7590.0 7590.0 17560.0 7590.0 5590.0 17560.0 5590.0 17150.0 5590.0 17150.0 6670.0 3660.0 5590.0 171700.0 17070.0 11760.0 117720.0 117720.0 117720.0 117720.0 117720.0 117720.0 117720.0 117720.0 117720.0 117720.0 117720.0 117720.0 1190.0 117720.0 1190.0 1190.0 1190.0 1190.0 1190.0 1190.0 1190.0 1190.0 10830.0
$\begin{array}{l} JUL\\ 10800,0\\ 11770,0\\ 1270,0\\ 12800,0\\ 14900,0\\ 14900,0\\ 15800,0\\ 19900,0\\ 19900,0\\ 19900,0\\ 21700,0\\ 24100,0\\ 2$	JUL 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
$\begin{array}{l} AUG\\ AUG\\ 10800, 0\\ 11700, 0\\ 11700, 0\\ 11700, 0\\ 11700, 0\\ 11700, 0\\ 11750, 0\\ 11750, 0\\ 11750, 0\\ 11750, 0\\ 0\\ 11750, 0\\ 0\\ 11750, 0\\ \mathsf$	$\begin{array}{c} AUG\\ 1190, 0\\ 150, 0\\ 160, 00\\ 160,$
$\begin{array}{c} \text{SEP} & 0.0\\ 117300.000000000000000000000000000000000$	SEP 000000000000000000000000000000000000

Table 17. Total estimated surface- plus ground-water inflow to Great Salt Lake, 1931-73 water years.

YEAR	007	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JÜL	AUG	SEP	TOTAL
1931	127800.0	133300.0	131100.0	130900.0	130500.0	145300.0	117100.0	74060.0	61630.0	48070.0	44420.0	50880.0	1195000.0
1932	65690.0	88780.0	103300.0	106200.0	119100.0	216000.0	359800.0	501100.0	220700.0	60590.0	46920.0	63340.0	1952000.0
1933	21210 0	103500.0	113000.0	117300.0	114000.0	172000.0	241500.0	321300.0	186900.0	49110.0	42520.0	48260.0	1596000.0
1935	69660.0	92580.0	101800.0	92520 0	100700.0	107400.0	171300.0	192200.0	149400 0	40280.0	35490.0	48630.0	923100.0
1936	72300.0	93660.0	95430.0	109900 0	130200.0	170100.0	498688.8	551200.0	199000.0	49230 0	43750 0	42340.0 54490 0	2920000.0
1937	108800.0	134600.0	127500.0	121600.0	128500.0	231900.0	303000.0	353000.0	138100.0	59340.0	48370.0	57150.0	1812000 0
1938	115100.0	116600.0	143500.0	124600.0	134900.0	203700.0	335000.0`	392300.0	137400.0	73270.0	50080.0	61510.0	1888000.0
1939	123700.0	164300.0	158400.0	132400.0	122900.0	229000.0	220100.0	149500.0	67080.0	52560.0	50650.0	83850.0	1554000.0
1940	104800.0	94460.0	107900.0	124900.0	132200.0	168100.0	161800.0	89680.0	64780.0	50390.0	48310.0	70560.0	1218009.0
1941	96950.0	110400.0	118400.0	114800.0	141400.0	161600.0	177200.0	161300.0	88000.0	52870.0	52290.0	64320.0	1339000.0
1942	101900.0	118000.0	140000.0	134700.0	136700.0	187400.0	332100.0	314800.0	138500.0	56420.0	51160.0	63950.0	1787000.0
1944	121000.0	132700 0	136000.0	122400.0	125900.0	165500.0	195000.0	243300.0 287800 0	247300.0	63690.0	52220 0	72400.0	1707000.0
1945	92280.0	123800.0	112400.0	115900.0	168000.0	172000.0	175100.0	285200.0	305700.0	62600.0	84950.0	108200.0	1806000.0
1946	125100.0	156900.0	163200.0	167100.0	141900.0	254800.0	483000.0	300400.0	136900.0	63290.0	88560.0	103100.0	2184000.0
1947	150200.0	167700.0	185900.0	161400.0	168200.0	199900.0	219000.0	282000.0	182200.0	70120.0	112200.0	129000.0	2028000.0
1948	151700.0	176600.0	170300.0	152800.0	169100.0	165200.0	350100.0	492100.0	228900.0	76220.0	83610.0	104000.0	2321000.0
1949	145100.0	154600.0	176400.0	176000.0	176900.0	289400.0	337700.0	372300.0	196200.0	68510.0	75570.0	101500.0	2270000.0
1950	212200 0	221499 9	240000 0	210200.0	225200.0	26/800.0	420400.0	379900.0	407700.0	191700.0	137900.0	163700.0	3109000.0
1952	192800.0	199600 0	211700 0	240300.0	200700.0	296400.0	630000 0	913100.0	210000.0	144200.0	125500.0	122800.0	3039000.0
1953	161100.0	197100.0	228700.0	257800.0	216200.0	238400.0	259600.0	264600.0	299300.0	66970.0	68970.0	74810.0	2333000.0
1954	105400.0	126700.0	133700.0	141300.0	141000.0	176400.0	177400.0	82500.0	85060.0	57370.0	52300.0	74460.0	1354000.0
1955	98280.0	108400.0	107200.0	112700.0	105300.0	161900.0	197000.0	180800.0	122600.0	57380.0	59240.0	73100.0	1384000.0
1956	102600.0	124900.0	183700.0	205000.0	149700.0	229700.0	251600.0	288200.0	119200.0	58730.0	60670.0	71530.0	1846000.0
1957	109300.0	123500.0	132600.0	126600.0	152000.0	195900.0	222200.0	399500.0	277400.0	68230.0	79760.0	102300.0	1989000.0
1959	106200.0	129200.0	127200.0	122100.0	185400.0	208700.0	333000.0	31/800.0	94040.0 70660 0	63660.8	83640.0	105100.0	1999000.0
1960	114900.0	103100.0	104600.0	109900.0	111600.0	197600.0	203100.0	119700.0	63150.0	56660.0	55550 O	51420.0	1329000.0
1961	86560.0	112300.0	104500.0	95700.0	113300.0	129600.0	110500.0	51630.0	50220.0	48350.0	46240.0	63000.0	1012000.0
1962	84080.0	92880.0	100100.0	97470.0	238000.0	179400.0	316100.0	269900.0	126600.0	66190.0	56230.0	65650.0	1693000.0
1963	90220.0	109000.0	104400.0	103200.0	155600.0	116400.0	168600.0	186800.0	136700.0	55110.0	54350.0	84640.0	1365000.0
1964	95330.0	128900.0	113600.0	115800.0	117700.0	136900.0	267200.0	358000.0	360700.0	70650.0	58760.0	68070.0	1891000.0
1960	92060.0	200900.0	178600.0	164600.0	189800.0	163100.0	269400.0	329100.0	281100.0	145600.0	171900.0	234600.0	2331000.0
1967	142500.0	118100.0	115500.0	119900.0	114300.0	250000.0 154000 0	122000.0	291900.0	496799 9	125600 0	122400 0	154700.0	2002000.0
1968	198600.0	198100.0	193500.0	187700.0	147700.0	216500.0	199900.0	167100.0	267600.0	80130.0	125700.0	108200.0	2001000.0
1969	148400.0	210500.0	215300.0	267000.0	232400.0	387400.0	435000.0	289400.0	150500.0	101600.0	76450.0	101900.0	2616000.0
1970	185700.0	198300.0	178500.0	212700.0	163900.0	169200.0	157500.0	265500.0	233100.0	83520.0	73210.0	124800.0	2046000.0
1971	161500.0	150200.0	218100.0	274500.0	259500.0	323000.0	457000.0	527300.0	511800.0	232100.0	147000.0	227100.0	3489000.0
1972	268700.0	261100.0	275500.0	319600.0	294500.0	425600.0	480400.0	427400.0	300400.0	168200.0	128600.0	196000.0	3546000.0
1973	219800.0	225900.0	220100.0	244600.0	253000.0	354700.0	355400.0	414/00.0	189000.0	118300.0	87160.0	177000.0	2860000.0
Sewage	inflow												
YEAR	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	
1959	0.0	0.0	0.0	437.0	514.0	459.0	431.0	506.0	226.0	532.0	548.0	539.0	
1960	514.0	446.0	443.0	432.0	444.0	509.0	430.0	247.0	300.0	500.0	309.0	516.0	
1961	201.0	419.0	422.0	412.0	373.0	4J5.0 710 0	413.0 556 0	611 0	414.0	407.0	433.0 043.0	447.0 752 0	
1962	422.0 792.0	758.0	761 Ø	736. Ø	760.0	828.0	931.0	1030.0	1040.0	1120.0	931.0	993.0	
1964	3690.0	3430.0	3530.0	3540.0	3490.0	4290.0	4550.0	5320.0	4750.0	4830.0	4660.0	3960.0	
1965	3890.0	3750.0	4150.0	4290.0	4160.0	3930.0	3940.0	4140.0	3980.0	4200.0	4120.0	3990.0	
1966	3710.0	3470.0	3990.0	3870.0	4370.0	4100.0	3660.0	4220.0	4150.0	4220.0	4710.0	4730.0	
1967	3550.0	3340.0	3230.0	3270.0	3420.0	3480.0	3300.0	3890.0	4490.0	4530.0	4320.0	3970.0	
1968	3750.0	3510.0	3580.0	3360.0 4000.0	3430.0	4050.0 5010 C	4010.0	4070.0	4190.0	4440.0	4170.0	3780.0	
1969	3900.0 4030 0	3880.0 3750 0	3860.0 3890 0	4230.0 4010 p	4720.0 3310 0	3220.0	3210.0	4070.0 3730.0	4020.0	4640.0 4720.0	4720.0	4640.0	
1971	4330.0	4270.0	4600.0	5150.0	4530.0	4540.0	4420.0	4620.0	4510.0	4840.0	4690.0	4270.0	
1972	4600.0	4630.0	4880.0	4980.0	4330.0	4560.0	4890.0	4820.0	4870.0	5120.0	5110.0	4590.0	
1973	4540.0	4380.0	4460.0	4950.0	5040.0	5920.0	5100.0	5160.0	5110.0	54,30.0	5290.0	4960.0	

Table 18. Computer program to simulate the water and salt balance for selected diking options.

```
REAL S(55,3),N(55,3),L(55,3),G(4,3),L4T,L5T
      REAL D(4,3),F(24),P(43),FJ(12)
                                            X(45,12),LL(20,55,3),QT(45,12)
       REAL Q(45,12), H(45,12),
      REAL
               N1,N2,N3,N4,N5,N6,L1,L2,L3,L4,L5,L6
       REAL N7, N8, N9, L7, L8
      REAL QB(45,12),QW(45,12),QJ(45,12),QU(45,12),QI(45,12),DU(45,12)
       INTEGER B(4),Z,W9,R3
       INTEGER 0
      M=5
      0 = 10
       READ (M,101) K,Z,A,CE,CL,N1,S1,L1
      READ (M,102) N6,S6,L6,N9,S9,T1
  101 FORMAT (2110,6F10.0)
  102 FORMAT (5F15.0,F5.0)
С
        KOK PRESERVES K
       KOK=K
С
       READ IN ELEV-AREA-VOL OF N,S,L
              (0,301)((S(II,KK),KK=1,3),II=1,55)
       READ
              (0+301)((N(II+KK)+KK=1+3)+II=1+55)
       READ
       DO 11 MM=1,9
       DO 11 II=1,55
   11 READ (0,301) (LL(MM,II,KK),KK=1,3)
  301 FORMAT (3F10.0)
       IF(Z \cdot EQ \cdot 1)MZ = 1
      IF (Z.EQ.3) MZ=2
      IF(Z \cdot EQ \cdot 4)MZ=3
       IF (Z.EQ.5) MZ=4
       IF (Z.EQ.6) MZ=5
       IF (Z.EQ.8) MZ=6
       IF (Z.EQ.12) MZ=7
       IF(Z \cdot EQ \cdot 14)MZ = 8
       IF (Z.EQ.20) MZ=9
      DO 13 II=1,55
      DO 13 KK=1,3
   13 L(II_{\bullet}KK) = LL(MZ_{\bullet}II_{\bullet}KK)
С
      READ IN STREAMFLOW DATA
              (0, 302) ((QB(II, KK), KK=1, 12), II=1, 43)
       READ
       READ
              (0, 302) ((QW(II, KK), KK=1, 12), II=1, 43)
              (0,302)((QJ(II,KK),KK=1,12),II=1,43)
       READ
              (0,302)((H(II,KK),KK=1,12),II=1,43)
       READ
              (0,302)((X(II,KK),KK=1,12),II=1,43)
       READ
              (0, 302) ((QU(II, KK), KK=1, 12), II=1, 43)
      READ
  302 FORMAT (6F10.0,20X)
С
       STREAMFLOW ANALYSIS
       DO 205 I1=1,43
       DO 205 KK=1,12
  205 \text{ QT}(II \cdot KK) = \text{QB}(II \cdot KK) + \text{QW}(II \cdot KK) + \text{QJ}(II \cdot KK)
       D6 = 41000.
       D8 = 0.0
       IF (K.GT.0) D8=10000.
      D6=D6+D8
```

Waddell and Fields-Model for Evaluating the Effects of Dikes on the Water and Salt Balance of Great Salt Lake

Table 18. continued

```
IF (Z.EQ.1.0R.Z.EQ.3) GO TO 210
    IF (Z.EQ.4.0R.Z.EQ.6.0R.Z.EQ.12.0R.Z.EQ.14) GO TO 220
    IF (Z.EQ.5) GO TO 230
    IF (Z.EQ.20) GO TO 240
210 DO 211 II=1,43
    DO 211 KK=1+15
    QI(II_{K}K) = (375./675.)*(QU(II_{K}K))
211 DU(II,KK) = QU(II,KK) - QI(II,KK)
    D1 = 20000 + D8
    DO 212 II=1,43
    DO 215 KK=1+15
212 Q(II \cdot KK) = QB(II \cdot KK)
    GO TO 245
220 DO 221 II=1+43
    D0 221 KK=1,12
    QI(II_{KK}) = (150./675.)*(QU(II_{KK}))
221 DU(II_{KK}) = QU(II_{KK}) - QI(II_{KK})
    D1 = 0.0
    DO 225 II=1,43
    DO 225 KK=1,12
225 Q(II,KK) = QW(II,KK)
    GO TO 245
230 DO 233 II=1,43
    DO 233 KK=1,12
    QI(II_{KK}) = (075./675.)*(QU(II_{KK}))
233 DU(II,KK)=QU(II,KK)-QI(II,KK)
    D1=21000.
    DO 235 II=1,43
    DO 235 KK=1,12
235 Q(II \cdot KK) = QJ(II \cdot KK)
    GO TO 245
240 DO 241 II=1+43
    DO 241 KK=1,12
    QI(II,KK)=(600./675.)*(QU(II,KK))
241 DU(II \cdot KK) = QU(II \cdot KK) - QI(II \cdot KK)
    D1 = 41000 + D8
    DO 243 II=1,43
    DO 243 KK=1,12
243 Q(II,KK) = QT(II,KK)
245 DO 244 II=1,43
    DO 244 KK=1,12
244 H(II)KK) = QT(II)KK) - Q(II)KK) + H(II)KK)
246 D7=D6-D1
       DATA F /.095,.086,.101,.114,.110,.074,.045,.059,.050,.084,.089,
   1.093,.012,.020,.047,.088,.120,.160,.179,.167,.109,.062,.023,.012/
    DATA P /0.71,1.01,0.7,0.9,0.70,1.14,1.08,1.08,.72,1.08,1.93,1.50,
   1.86,1.12,1.29,1.11,1.11,.96,1.12,.96,1.15,.87,.88,.82,1.02,.79,1.18
   1,.74,.82,.71,.77,.91,1.06,1.20,1.18,.67,1.12,1.31,.97,1.22,1.27,
   1.96,1.26/
    DATA FJ /2200.,2200.,2100.,2000.,1900.,1800.,2000.,2100.,2200.,
   12200.,2200.,2200. /
```

```
Table 18. continued
     JJ = 48
      WRITE (6,310)
 310 FORMAT (1H1,///, 30X, USGS GSL SIMULATION INPUT DATA ,//, 10X, K,Z,A
    1,CE,CL,N1,S1,L1')
     WRITE (6,311) K,Z,A,CE,CL,N1,S1,L1
 311 FORMAT (10X,2110,2F15.2,4F15.2)
     WRITE (6,312)
 312 FORMAT (//,10X, "N6,S6,L6,N9,S9,T1")
     WRITE (6,313) N6,56,L6,N9,S9 ,T1
 313 FORMAT (10X,5F15.0,F10.3)
     IF (Z.EQ.U) GO TO 681
     DO 630 I=1,55
     DO 630 J=2.3
 630 S(I,J) = S(I,J) - L(I,J)
 680 CONTINUE
 681 DO 740 J=1,4
 740 READ (0,305) (D(J,K),K=1,3)
     DO 840 J=1.4
 840 READ (0,305) (G(J,K),K=1,3)
 305 FORMAT (3F10.0)
     K=KOK
     DO 1250 J=1,50
     IF (N1.GT.N(J.1)) GO TO 1250
     B(1) = J
     GO TO 1260
1250 CONTINUE
1260 DO 1300 J=1,50
     IF (S1.GT.S(J.1)) GO TO 1300
     B(2)=J
     GO TO 1302
1300 CONTINUE
1302 IF (Z.EQ.0) GO TO 1341
     DO 1309 J=1,50
     IF (L1.GT.L(J.1)) GO TO 1309
     B(3) = J
     GO TO 1341
1309 CONTINUE
1341 D2=13.87
     D3=50.0
     L5 = 0.0
     I = 1
     X7 = 0.0
     W9 = 0
     TXS=N6+S6+N9+S9+30000000.
     IIJ=0
1185 W9=W9+1
     X7=X7+1.0
     FI=I
     FK=K
     X6 = (FI - 1 \cdot 0) + X7 * (T1/30 \cdot 5)
     X5= X7*(T1/30.5)+(FK-1.0)*12.0 + FI - 1.0
     NN=B(1)-2
```

48

```
DO 1270 J=NN+50
     IF (N(J,1).GE.N1) GO TO 1280
1270 CONTINUE
1280 N2 = (N1 - N(J - 1 + 1)) / (N(J + 1) - N(J - 1 + 1))
     N3=N2*(N(J \cdot 2) - N(J - 1 \cdot 2)) + N(J - 1 \cdot 2)
     N4 = N2 * (N(J_{3}) - N(J_{-1}, 3)) + N(J_{-1}, 3)
     NN=B(2)-2
     DO 1330 J=NN+50
     IF (S(J,1).GF.S1) GO TO 1340
1330 CONTINUE
1340 \ S2=(S1-S(J-1,1))/(S(J,1)-S(J-1,1))
     S3= S2*(S(J+2)-S(J-1+2))+S(J-1+2)
     S4= S2*(S(J+3)-S(J-1+3))+S(J-1+3)
     NN=B(3)-2
     DO 1364 J=NN,50
     IF (L(J,1).GE.L1) GO TO 1365
1364 CONTINUE
1365 L2 = (L1 - L(J - 1, 1)) / (L(J, 1) - L(J - 1, 1))
     L3 = L2 * (L(J_{9}2) - L(J_{1}2)) + L(J_{1}2)
     L4 = L2*(L(J,3)-L(J-1,3))+L(J-1,3)
     L5T=L4
     IF(L4 \bullet LE \bullet 0 \bullet) L4 = \bullet 1
     T2=12.5+12.*SIN(.262*(8.*15.21+X6*30.5)/15.21-3.53)
     P5=0.99823
     P6=(8.*T2-T2**2.0+132416.)/132432.
     P3=1.0 + 0.63*(N6*0.0007353)/N4
     P4=1.0 + 0.63*(56*0.0007353)/(54-620000.)
     P7=1.0 + 0.63*(L6*0.0007353)/L4
     IF (P7.GE.1.225) P7=1.225
     N7 = (P3 - 1 \cdot 0) / \cdot 63
     S7=(P4-1.0)/.63
     L7=(L6/L4)*.0007353
     P4=P4*P6/P5
     P3=(P3*P6/P5)*0.996
     P7=P7*P6/P5
     C1=4183.
C
С
 1644 V = 0.0
      R3 = 0.0
 1939 R3=R3+1
      R=S1-N1
       IF (R.LE..15) R= .15
       Y8=S1-C1
       Y9=Y8-R
      R1=-6.3*Y9-5.84*(P3-P4)*Y8+7.09*Y8
       IF (R1.LE.0.0) R1=0.1
      R2=6.39*Y9+5.94*(P3-P4)*Y8-6.23*Y8
       IF (R2.LE.0.0) R2=0.1
       A4=3.55*(Y8-R1-R2)/(Y8-Y9)-1.02
```

```
Table 18. continued
     IF (A4.LE.0.0) A4=0.01
     A5=3.83*(Y8-R1-R2)/(Y8-Y9)-1.19
     IF (A5.LE.0.0) A5=0.01
     IF (A4.GT.3.0) A4=3.0
1930 IF (A5.GT.3.0) A5=3.0
     IF (W9.GT.1) GU TO 1940
     V2=0.6
1940 T8=A4*V2/(1.0+A4)
     W1=A*R1*(((Y8-R1-R2-A4*V2**2•/64•4)*64•4/(1•0*A4)+T8**2•)**•5-T8)
     V1=W1/(A^{+}R1)
     T9 = A5 \neq V1 / (1 + A5)
     T7=((Y9-R2-R1*P4/P3-A5*V1**2./64.4)*64.4/(1.+A5)+T9**2.)
     IF (T7.LE.0.0) GO TO 2020
     X4=T7**0.5-T9
     IF (X4.LE.0.0) GO TO 2020
     W2=A*R2*(((Y9-R2-R1*P4/P3-A5*V1**2*/64*4)*64*4/(1**A5)*T9**2)***5
    1 - 79
     E=W2/(A+R2)-V2
     A6=(0.05-ABS(E))
2000 IF (A6.GT.0.0) GO TO 2050
     A7 = (V2 + (W2) / (R2 + A)) / 2.
     V2=A7
     GO TO 1940
2020 V2=0.0
     T8 = A4 # V2 / (1 + A4)
     W1=A*R1*(((Y8-R1-R2-A4*V2**2•/64•4)*64•4/(1•+A4)+T8**2•)**•5-T8)
     V1=W1/(A*R1)
     W2 = 0.0
2050 W1=W1
     W2 = W2
     IF (R3.EQ.2) GO TO 2101
     C1=4183.
     A8=W1
     A9=W2
     W2=0.0
     W1 = 0.0
     IF (S1.LE.4188.)GO TO 2101
     V = 0 - 0
     IF (R3.EQ.1) GO TO 1939
2101 W1=A8+W1
     W2=A9+W2
     IF (W2.LE.0.0) W2=1.0
     IF (W1.LE.0.0) W1=1.0
2121 B3=W1*1.983*30.5
     B5=W2*1.983*30.5
     Y = P3 - P4
     88=6.9835-1675.*Y+158.97*R+45535.*Y**2.-3373.3*Y*R+14.01*R**2.
    1-429070.*Y**3.+34904.*Y**2.*R-631.2*Y*R**2.+48.556*R**3.+1302000.
    2*Y**4-105270.*Y**3.*R-176.07*Y*R**3.-5.4593*R**4.+3352.1*Y**2*R**2
     B9=2.1629+1290.3*Y-113.24*R-19649.*Y**2-912.81*Y*R+186.17*R**2+
    1195100.*Y**3+2u974.*Y**2*R-1861.6*Y*R**2-18.802****3-629690.*Y**4
    2-66502.*Y**3*R+308.06*Y*R**3-15.187*R**4+2865.3*Y**2*R**2
```

50

```
Table 18. continued
     IF (88.LE.0.)GO TO 2173
     GO TO 2175
2173 88=0.
2175 IF (B9.LE.0.)GO TO 2178
     GO TO 2181
2178 89=0.
2181 IF (Y.LE..05.AND.R.GT.0.6)GO TO 2183
     GO TO 2235
2183 89=0.
2235 X3=19.307+242.23*Y-35.429*R-4339.9*Y**2+407.5*Y*R+14.332*R**2+
    119021 ** Y**3-1466 ** Y**2*R-45 *647* Y*R**2-3 *8069*R**3
     B9=(1.-((4199.5-S1)/X3)*1.312)*B9
     88=88*69.3936*1.983*30.5
     89=89*69.3936*1.983*30.5
     M1 = (B3 + B8) / 30.5
     M2 = (85 + 89) / 30.5
     K7 = QW(K, I) - 1700 - 1000
     K8=(K7-2446.)/.9757
     K8=K8/60.48
     IF (K8.LE.0.) K8=0.0
     K6 = (QB(K \cdot I) - 81000 \cdot / 12 \cdot - 13880 \cdot - 1300 \cdot ) / 60 \cdot 48
     IF (K6.LE.0.) K6=100.
     C5=(523.-0.6563*K8+.00054494*K8**2-(.0000002005)*K8**3
          +(.00000000027535)*K8**4)
    1
     IF
         (K8.GT.3000.)C5=250.
     IF (K6.LT.109.) GO TO 2236
     C3 = (321647 \cdot / K6 + 965 \cdot ) *0 \cdot 6
2236 IF (K6.LE.110.) C3=3000.
     C4=C3*K6*60.48+81000.*C5/12.+13880.*2900.*.6+(375./675.)*QU(K,I)
    1*2600.*.6
     X8=21000.
     C4=C4/(K6*60.48+81000./12.+13880.+(375./675.)*QU(K.I)
    1+(X8*D2*F(I)-X8*D3*F(I+12))/12.)
     IF (C4.LE.0) C4=0.
     C6=(1.1*C5*K7+1700.*583.+1000.*500.+(75./675.)*QU(K,I)*500.)/(QW(K
    1,I)+(75./675.)*QU(K,I))
     C7=FJ(T)
     IF (Z.EQ.1.0R.Z.EQ.3)G0 TO 940
     IF (Z.EQ.4.0R.Z.EQ.6.0R.Z.EQ.12.0R.Z.EQ.14)GO TO 900
     IF (Z.EQ.5) GO TO 920
     IF(Z.E0.20)60 TO 930
     IF(Z.EQ.0)G0 TO 940
900 C4=C6
     GO TO 940
920 C4=C7
     GO TO 940
930 C4=(C4*(QB(K+I)+(375+/675+)*QU(K+I))+C6*(QW(K+I)+(150+/675+)*QU(K
    1,1))+C7*(QJ(K,1)+(75./675.)*QU(K,1)))/(QT(K,1)+(600./675.)*QU(K,1)
    2)
940 CONTINUE
     CE = (L1 - S1) * .5 + S1
     QQQ = L1 - CE
```

```
Table 18. continued
     IF (QQQ + LT + 0 + 0) QQQ = 0 + 0
     D6 = (3.5*CL*QQQ**1.5)*60.48
     DO 1070 J=2+4
     IF (D(J,1).GE,S1)G0 TO 1080
     IF (D(J-1+1).LT.S1)GO TO 1070
     C=0.
     GO TO 1090
1070 CONTINUE
1080 C = (S1-D(J-1,1)) / (D(J,1)-D(J-1,1))
1090 P1=C*(D(J,2)-D(J-1,2))+D(J-1,2)
     E1=C*(D(J,3)-D(J-1,3))+D(J-1,3)
     00 1160 J=2+4
     IF (G(J,1).GE.N1)GO TO 1170
     IF (G(J-1+1).LT.N1)GO TO 1160
     C=0.
     GO TO 1180
1160 CONTINUE
1170 C=(N1-(G(J-1,1)))/(G(J,1)-G(J-1,1))
1180 P2=C*(G(J,2)-G(J-1,2))+G(J-1,2)
     E2=C*(G(J_{3})-G(J_{1}))+G(J_{1})
     P3=02
     E3=D3
1200 P1=P1*P(K)
     P2=P2*P(K)
     P3=P3*P(K)
     E=.98
     IF (K.EQ.7)E=.9
     IF (K.EQ.9)E=.8
     IF (K.EQ.40)E=1.15
     E1=E1*E
     E2=E2*E
     E3=E3*E
     N8=1.-(.778+N7)/(1.+N7+.63)
     S8=1.-(.778*S7)/(1.+S7*.63)
     L8=1.-(.778*L7)/(1.+L7*.63)
                                )*P2*F(I)=N3*E2*F(I+12)*N8)/12.+X(K,I)+B3
1428 N5 = ((N3)
    1-85+88-89)*T1/30.5
1429 \ S5=((S3)
                               )*P1*F(I)-S3*E1*F(I+12)*S8)/12.+H(K.) +
    1D7*(D2*F(I)-D3*F(I+12))/12.+DU(K.I)-B3-B8+B5+B9+D6
     S5=(S5)*T1/30.5
                                )*P3*F(I)-L3*E3*F(I+12)*L8)/12.+Q(K.I)+QI
     L5=(((L3
                     -D6+(D1*D2*F(I)-D1*D3*F(I+12))/12•)*T1/30•5
    1(K \bullet I)
     L4T=L4+L5
     IF(IIJ_EQ.1)G0 T0 1435
     IF (L4T.LE.0.) GU TO 1432
     GO TO 1435
1432 D6=0.
     IIJ=1
     GO TO 1429
1435 IF(L4T.LE.0.)L4T=0.1
     IIJ=0
     NN=B(1)-2
```

52

Waddell and Fields-Model for Evaluating the Effects of Dikes on the Water and Salt Balance of Great Salt Lake

Table 18. continued

```
DO 1490 J=NN+50
     IF (N(J+3).GE.N4+N5)GO TO 1500
1490 CONTINUE
1500 \text{ N1} = ((N4+N5-N(J-1,3))) / (N(J,3)-N(J-1,3))) * (N(J,1)-N(J-1,1)) + N(J-1,1)
     B(1) = J
     NN=6(2)-2
     DO 1540 J=NN.50
     IF (S(J,3).GE.S4+S5)G0 TO 1550
1540 CONTINUE
1550 \ S1 = ((S4+S5-S(J-1,3))) / (S(J,3)-S(J-1,3)) * (S(J,1)-S(J-1,1)) + S(J-1,1))
     B(2) = J
     NN=B(3)-4
     DO 1570 J=NN,50
     IF (L(J,3).GE.L4T)GO TO 1575
1570 CONTINUE
1575 L1 = ((L4T - L(J-1,3))) / (L(J,3) - L(J-1,3)) * (L(J,1) - L(J-1,1)) + L(J-1,1)
     B(3) = J
1576 G6=N6
     N6=T1*(M1*S6/(S4-620000.)-M2*N6/N4)+N6
     F2=N6/N4
     IF (F2.LE.483.)GO TO 1690
     H2=N6-483.*N4
     N9=H2+N9
     N6=N6-H2
     H4 = 0.
     GO TO 1800
1690 H2=0.
     H4=(.01/1.901)*T1*(483.*N4-N6)
     IF (H4.GT.N9)G0 TO 1710
     GO TO 1715
1710 H4=N9
1715 N6=N6+H4
     N9=N9-H4
     IF (N9.LT.0.)GU TO 1735
     GO TO 1800
1735 N9=0.
1800 TLS=TXS-N6-N9-30000000.
     UFCS=(S4-620000.)*483.
     IF(TLS.LE.UFCS)G0 TO 1840
     H1=TLS-483.*(S4-620000.)
     S9=S9+H1
     S6=TLS-S9
     H5=0.
     GO TO 1890
1840 H1=0.
     S6=TLS-S9
     H5=(0.01/1.901)*T1*(483.*(54-620000.)-S6)
     IF (H5.GT.S9)H5=S9
     S9=S9-H5
     S6=S6+H5
     IF (S9.LT.0.)S9=0.
```

```
1890 IF (L4.LE.0.) L4=.1
     DGL=L6/L4
     IF (DGL.GE.483.)DGL=483.
     L6=L6+T1*(C4*(QI(K,I)+Q(K,I)) *.00136-D6*DGL )/30.5
     S6=S6+D6*(L6/L4)*T1/30.5
     KD=1930+K
     IF (X7*T1.GE.30.49) GO TO 2085
       GO TO 2900
2085 JJ=JJ+1
     WN7 = 1000. *N7
     WS7 = 1000.*S7
     WL7 = 1000.4L7
     IF (WL7.GT.355.)WL7≠355.
     IF (JJ.LE.48) GO TO 2086
     JJ=1
     WRITE (6,315)
 315 FORMAT (1H1,40X, LAKE ELEVATIONS (FEET) ,19X, LAKE CONCENTRATIONS
    1(GRAMS/LITER)',/,16X,'YEAR',5X,'MONTH',10X,'NORTH',10X,'SOUTH',11X
    2, DIKE +, 10X, NORTH +, 10X, SOUTH +, 11X, DIKE +)
2086 IF(L5T.LT.100.)G0 TO 2091
     WRITE (6,316) KD, I, N1, S1, L1, WN7, WS7, WL7
 316 FORMAT (10X,2110,3F15,2,3F15,3)
     GO TO 2900
2091 WRITE (6,317)KU, I,N1,S1,WN7,WS7
 317 FORMAT (10X,2110,2F15.2,12X,3HDRY,2F15.3,12X,3HDRY)
2900 IF (X7*T1.GE.30.49) GO TO 2920
     GO TO 2130
2920 X7=0.
     I = I + 1
2130 IF (I.GT.12)GO TO 2150
     GO TO 2980
2150 I=1
     K = K + 1
2980 IF (K.GT.42.AND.I.GT.9)GO TO 2200
     GO TO 1185
2200 CONTINUE
     STOP
     END
```

54

UTAHGEOLOGICAL AND MINERAL SURVEY

606 Black Hawk Way Salt Lake City, Utah 84108

THE UTAH GEOLOGICAL AND MINERAL SURVEY is a Division of the Utah Department of Natural Resources and operates under the guidance of a Governing Board appointed by the Governor from industry and the public-at-large. The Survey is instructed by law to collect and distribute reliable information concerning the mineral resources, topography, and geology of the state, to investigate areas of geologic and topographic hazards that could affect the citizens of Utah, and to support the development of natural resources within the state. The Utah Code Annotated, 1953 Replacement Volume 5, Chapter 36, 53-36-1 through 12, describes the Survey and its functions.

The Survey publishes bulletins, maps, a quarterly newsletter, and a biannual journal that describe the geology of the state. Write for the latest list of publications available.

The Survey also sells the colored geologic map of Utah (Army Map Service base, 1:250,000, in four quarters), a project of the College of Mines and Mineral Industries of the University of Utah from 1961 through 1964. It acts as sales agent for publications of the Utah Geological Association and its predecessor organizations, the Utah Geological Society, the Intermountain Association of Geologists, and the Intermountain Association of Petroleum Geologists.

THE SAMPLE LIBRARY is maintained to preserve well cuttings, drill cores, stratigraphic sections, and other geological samples. Files of lithologic, electrical, and mechanical logs of oil and gas wells drilled in the state are also maintained. The library's collections have been obtained by voluntary donation and are open to public use, free of charge.

THE UTAH GEOLOGICAL AND MINERAL SURVEY adopts as its official policy the standard proclaimed in the Governor's Code of Fair Practices that it shall not, in recruitment, appointment, assignment, promotion, and discharge of personnel, discriminate against any individual on account of race, color, religious creed, ancestry, national origin, or sex. It expects its employees to have no interest, financial or otherwise, that is in conflict with the goals and objectives of the Survey and to obtain no personal benefit from information gained through their work as employees of the Survey. For permanent employees this restriction is lifted after a two-year absence, and for consultants the same restriction applies until publication of the data they have acquired.