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DESCRIPTION OF GEOLOGIC UNITS 

Where necessary, previously determined isotopic ages given here have been recalculated using the IUGS (International Union 
of Geological Sciences) decay constants (Steiger and Jager, 1977) and the tables of Dalrymple (1979).

QUATERNARY

Qf  Artificial-fill deposits (Historical)—Man-made deposits of artificial fill for the dam at Minersville Reservoir.

Qal1, Qal2 Alluvium (Holocene and upper Pleistocene)—Sand, gravel, silt, and clay in channels, floodplains, and adjacent 
low terraces of major streams; subscript denotes relative age, with Qal1 younger and Qal2 older; maximum thick-
ness about 30 feet (10 m).

Qat1 Younger stream-terrace deposits (Holocene)—Sand and gravel that form dissected surfaces as much as 15 feet 
(5 m) above the level of adjacent modern streams; maximum thickness about 10 feet (3 m).

Qat2 Older stream-terrace deposits (Holocene and upper Pleistocene)—Sand and gravel that form well dissected sur-
faces 15 to 40 feet (5–13 m) above the level of adjacent modern streams; maximum thickness about 10 feet (3 m).

Qat3 Oldest stream-terrace deposits (middle Pleistocene)—Sand and gravel that form well dissected surfaces 50 to 
80 feet (15–25 m) above the level of adjacent modern streams; maximum thickness about 10 feet (3 m).

Qaf1 Young alluvial-fan deposits (Holocene)—Poorly to moderately sorted silt, sand, and gravel deposited by streams, 
sheetwash, debris flows, and flash floods on alluvial fans and on coalesced alluvial fans and pediments (piedmont 
slopes); surface is young and generally undissected; thickness at least 30 feet (10 m). 

Qaf2, Qaf3, Qaf4 

  Middle alluvial-fan deposits (Holocene to middle Pleistocene)—Poorly to moderately sorted silt, sand, and 
gravel deposited by streams, sheetwash, debris flows, and flash floods on alluvial fans and on coalesced alluvial 
fans and pediments (piedmont slopes); surfaces are moderately dissected by modern streams; subscript denotes 
relative age, with Qaf2 youngest and Qaf4 oldest; unit Qaf4 is correlated with the gravel of Last Chance Bench in 
the Beaver basin (Machette and others, 1984); thickness at least 50 feet (15 m).

Qms Landslide deposits (Holocene and upper Pleistocene)—Unsorted, mostly angular, unstratified rock debris moved 
by gravity from nearby bedrock cliffs; maximum thickness about 100 feet (30 m).

QTs Basin-fill sedimentary rocks (lower Pleistocene to upper Miocene)—Poorly to moderately consolidated, tan and 
gray, tuffaceous sandstone and subordinate mudstone, siltstone, and conglomerate deposited in basins of different 
ages (late Pleistocene to late Miocene) and origins; basins were formed by normal faults and subordinate oblique 
and strike-slip faults of the episode of basin-range extension, whose beginning is poorly constrained but seems 
to be at about 20 Ma, if not older; basin-range extension reached maximum intensity and created the present to-
pography largely after 10 Ma (e.g., Rowley and Dixon, 2001; Rowley and others, 2002; Biek and others, 2015a); 
deposits generally consist of fanglomerate near the present basin margins, piedmont slope deposits farther toward 
the centers of the basins, and lacustrine deposits near the centers of the basins; includes deposits studied in detail 
in the Beaver basin (Machette and others, 1984; Machette, 1985), which began to form at about 9 Ma (Evans and 
Steven, 1982); in the Kingston Canyon area east of the mapped area, the main phase of basin-range faulting is be-
tween about 7.6 and 5.4 Ma based on K-Ar ages published by Rowley and others (1981), and recently confirmed 
by new 40Ar/39Ar dating (Utah Geological Survey, unpublished data); thickness of overall map unit in the mapped 
area is variable but locally at least 2000 feet (600 m).

TERTIARY

Tb  Basalt lava flows (Pliocene and upper Miocene)—Resistant, dark-gray and black, locally vesicular or amygda-
loidal, crystal-poor (olivine and pyroxene phenocrysts), olivine basalt lava flows, flow breccia, and cinder cones; 
basaltic rocks and high-silica rhyolitic rocks make up an episode of bimodal magmatism that is synchronous with 
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basin-range extension (Christiansen and Lipman, 1972; Rowley and Dixon, 2001; Biek and others, 2015a); in the 
southwest ¼ of the Beaver 30' x 60' quadrangle (Rowley and others, 2005), includes basalt in the Black Mountains 
that has a K-Ar age of 6.4 Ma (Best and others, 1980; Anderson and others, 1990a), and another north of it near 
Minersville Reservoir that has a K-Ar age of 7.6 Ma; elsewhere in the Beaver quadrangle, basalt southeast of Otter 
Creek Reservoir east of the mapped area that has a K-Ar age of 5.0 Ma (Best and others, 1980), basalt in Kingston 
Canyon east of the mapped area that has a K-Ar age of 7.8 Ma (Rowley and others, 1981), basalt 2 miles (3 km) west 
of Piute Reservoir that has a K-Ar age of 10.9 Ma (Rowley and others, 1994a), and basalt east of Piute Reservoir that 
has K-Ar ages of 12.9 Ma (Damon, 1969) and 12.7 Ma (Best and others, 1980); maximum thickness of lava flows 
in the mapped area about 200 feet (60 m).

Try  Young rhyolite lava flows (upper Miocene)—Small, resistant, mostly gray, flow-banded, crystal-poor, high-
silica rhyolite volcanic domes and lava flows, and subordinate pyroclastic material; these rocks are part of the 
episode of bimodal magmatism and their eruptive centers help define an east-trending structural belt known as 
the Blue Ribbon transverse zone (Rowley and others, 1978; Rowley, 1998; Rowley and Dixon, 2001); this trans-
verse zone includes east-striking faults that form the east-trending Black Mountains in and west of the mapped 
area (Rowley, 1978), as well as ranges east of the mapped area (Rowley and others, 2005) and extending west 
of the mapped area across the entire Great Basin (Rowley, 1998; Rowley and Dixon, 2001); in the Beaver 30' x 
60' quadrangle (Rowley and others, 2005), the rhyolite bodies include the rhyolite of Phonolite Hill in Kingston 
Canyon east of the mapped area, which consists of several domes with K-Ar ages of 5.4 and 4.8 Ma (Rowley and 
others, 1981); a dome at Blue Ribbon Summit in the Black Mountains that has a K-Ar age of 7.6 Ma (Mehnert 
and others, 1978; Rowley and others, 1978); a dome at Teddys Valley in the Black Mountains that has a K-Ar age 
of 7.9 Ma (Anderson and others, 1990a); and a dome southwest of Beaver in the Black Mountains that has a K-Ar 
age of 8.3 Ma (Anderson and others, 1990a); also includes a small dome in Corral Canyon, west of the Mineral 
Mountains and north of the mapped area, that has a K-Ar age of 7.9 Ma (Lipman and others, 1978; see also Evans 
and Steven, 1982); in most places the maximum thickness of the rhyolites is less than 200 feet (60 m).

Tmj  Joe Lott Tuff Member of the Mount Belknap Volcanics (lower Miocene)—Moderately resistant, light-gray and 
tan, partly welded, crystal-poor, high-silica rhyolite ash-flow tuff, with a black basal vitrophyre; the main outflow 
unit that is derived from the Mount Belknap caldera (Cunningham and Steven, 1979) is well exposed as several 
thick cooling units in lower Clear Creek Canyon 24 miles (39 km) northeast of the mapped area (Budding and 
others, 1987; Rowley and others, 2002; Hintze and others, 2003); rocks of the Mount Belknap Volcanics and their 
source plutons in the Mount Belknap caldera and the Central mining area near Marysvale are part of the bimodal 
magmatic episode and contain ore deposits of lithophile elements such as uranium, alunite, and molybdenum in 
the Beaver and Richfield 30' x 60' quadrangles (Kerr and others, 1957; Callaghan, 1973; Steven and others, 1981; 
Cunningham and others, 1982, 1984a, 1998a,b, 2005, 2007; Rowley and others, 1988a,b, 2005; Hintze and others, 
2003); K-Ar ages on overlying and underlying units indicate an age of the map unit of 19 Ma (Steven and others, 
1979), and this interpretation is confirmed by a new 40Ar/39Ar age on sanidine of 19.12 ± 0.10 Ma (Utah Geologi-
cal Survey, unpublished data); as such, this unit is one of the oldest known units that postdates emplacement of 
the Markagunt gravity slide, as discussed below; maximum thickness about 400 feet (120 m).

  Markagunt Megabreccia (lower Miocene)—Deformed pre-existing rocks, including breccia, huge mountain-
sized blocks (megabreccia), cataclasite, and rare pseudotachylyte, and large masses and areas of transported yet 
seemingly intact rock; these rocks make up the Markagunt gravity slide, the world's largest known subaerial slide 
mass, with an aerial extent of at least 2000 square miles (5000 km2), about the size of the state of Delaware (Biek 
and others, 2014; Hacker and others, 2014, 2015). The slide underlies the entire map area and represents failure of 
the southwestern side of the Marysvale volcanic field, which catastrophically moved southward across areas that 
later, after basin-range tectonism, became the southern Tushar Mountains, southern Mineral Mountains, Black 
Mountains, Red Hills, northern and central Markagunt Plateau, and valleys in between. As such, the Markagunt 
slide is larger than the Heart Mountain gravity slide in northwestern Wyoming, at 1300 square miles (3400 km2) 
in areal extent, formerly considered the largest subaerial slide (e.g., Malone and Craddock, 2008; Craddock and 
others, 2009, 2012; reinterpretation of enigmatic volcanic rocks at Squaw Peaks led Malone and others [2014] 
to suggest that the Heart Mountain slide may be larger still, also at least 5000 km2). The Markagunt gravity slide 
was discovered in the mid-1970s during thesis geologic mapping in the northern and central Markagunt Plateau 
by graduate students of John J. Anderson, then Professor at Kent State University. We use the name Markagunt 
Megabreccia, as proposed by Anderson (1993) with a type section along Panguitch Creek southwest of the town 
of Panguitch, for the deposits of the Markagunt gravity slide. Although the gravity slide was not recognized to 
extend as far north as the area of the Beaver 30' x 60' quadrangle during our initial mapping (e.g., Rowley and 
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others, 2005), we now know that it underlies most of the Beaver quadrangle, including most of the Tushar Moun-
tains, Mineral Mountains, and Black Mountains, and extends not only south of the quadrangle (Biek and others, 
2015a) but locally north, west, and southwest of the quadrangle. Curiously, another huge gravity slide, called the 
Sevier gravity slide, was discovered by coauthors Biek and Hacker in 2016 in the Sevier Plateau east of the Beaver 
SW mapped area and represents southward failure of the southeastern flank of the Marysvale field several million 
years earlier than the Markagunt slide; the Sevier gravity slide is now being mapped not only in the eastern Beaver 
30' x 60' quadrangle but also east (Biek and others, 2015b) and south of the quadrangle.

  The rocks of both slides are predominantly Miocene and Oligocene calc-alkaline (which range in chemistry from 
andesite to low-silica rhyolite and therefore predate bimodal magmatism) volcanic rocks that erupted in the Marys-
vale volcanic field as well as calc-alkaline ash-flow tuffs that erupted from calderas in the Great Basin to the west 
and intertongued with Marysvale rocks (e.g., Lipman and others, 1972). The primary failure plane of both slides was 
mostly in incompetent tuffaceous sedimentary rocks of the Brian Head Formation, which immediately underlies the 
volcanic rocks. The failure plane for the Markagunt slide, located beneath the southern Tushar Mountains, Mineral 
Mountains, and Black Mountains, rose to the surface as a ramp in the northern Markagunt Plateau and Red Hills; 
south of the ramp, the slide mass moved along the Miocene land surface for about 20 miles (30 km) (Biek and others, 
2015a). The modern erosional southern edge of the Markagunt slide is on the southern side of Haycock Mountain, 
southeast of Panguitch Lake (Biek and others, 2015a). In one part of the Markagunt slide, in the southern Mineral 
Mountains at the northern edge of the mapped area but mostly just north of the mapped area, a lower failure plane is 
exposed within incompetent shales of the Petrified Forest Member of the Upper Triassic Chinle Formation, cutting 
out nearly 1000 feet (300 m) of Lower Jurassic strata. There, the slide carries Navajo Sandstone and younger rocks 
and is shown by a different symbol on the map.

  In addition to the Markagunt gravity slide, the mapped area contains two small gravity slides, the Minersville 
gravity slide and the Showalter Mountain gravity slide, that appear to be slightly older than the Markagunt slide 
and therefore were carried along by the younger Markagunt slide. Therefore, in the mapped area, all exposed rocks 
except those older than the Petrified Forest Member and presumably some plutons, and rocks younger than about 
21 Ma, have been transported generally southward within the Markagunt slide.

  The Harmony Hills Tuff is the youngest known rock unit below the Markagunt slide and involved in the slide in 
the western Black Mountains west of the mapped area.  This tuff is derived from the Bull Valley Mountains in the 
Great Basin (Williams, 1967; Rowley and others, 1995). The Harmony Hills Tuff has a 40Ar/39Ar age of 22.03 ± 
0.15 Ma (Cornell and others, 2001). The oldest known rock unit that overlies the slide is the Haycock Mountain 
Tuff, exposed in the Panguitch Lake area (Anderson, 1993), with a U-Pb age on zircon of 21.6 ± 0.73 Ma (Biek 
and others, 2015a). We interpret that failure of the Markagunt slide took place rapidly sometime between 22 and 
21 Ma. As with the Sevier, Minersville, and Showalter Mountain slides, the Markagunt slide took place during 
calc-alkaline magmatism.

  The map units involved in the gravity slide are in many places not deformed or little deformed, so they may be 
correlated easily with named rock units not involved in the slide or, where not badly deformed, were mapped 
and named before recognition of the slide (e.g., Cunningham and others, 1983; Rowley and others, 2002, 2005). 
Therefore, following the usage of Biek and others (2015a), the deformed rocks have been designated with a sym-
bol consisting of a prefix "Tm," followed in parentheses by the symbol for the named undeformed rock unit (e.g., 
Tm [Tda]). These components of the slide are listed below; for their descriptions, see the named pre-existing 
(undeformed) rock unit, given elsewhere in the text and in the correlation chart in its proper stratigraphic position. 
The units in the Minersville (prefix Tmi) and Showalter Mountain (prefix Tsh) slides are similarly described. 
However, even though these slides were remobilized in the younger Markagunt slide, to avoid an overly long unit 
label, we do not show the Markagunt prefix on the map; for example, we show Tmi (Tql), but not Tm (Tmi [Tql]).

Tm (Tbmb)   Markagunt Megabreccia, Conglomerate of Big Wash component

Tm (Tbmm)  Markagunt Megabreccia, Conglomerate of Muddy Hill component

Tm (Ticc) Markagunt Megabreccia, Concordant intrusions component

Tm (Ticl)       Markagunt Megabreccia, Lincoln Stock component
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Tm (Tdv)     Markagunt Megabreccia, Mount Dutton Formation, vent facies component

Tm (Tda)      Markagunt Megabreccia, Mount Dutton Formation, alluvial facies component

Tm (Tdb)      Markagunt Megabreccia, Mount Dutton Formation, Beaver Member component

Tm (Tdp)      Markagunt Megabreccia, Mount Dutton Formation, Plugs and dikes component

Tm (Tqcb)    Markagunt Megabreccia, Bauers Tuff Member of the Condor Canyon Formation component

Tm (Tql)       Markagunt Megabreccia, Leach Canyon Formation component

Tm (Tlf)         Markagunt Megabreccia, Tuff of Lion Flat component

Tm (To)         Markagunt Megabreccia, Osiris Tuff outflow facies component

Tm (Tlb)      Markagunt Megabreccia, Mafic lava flows of Birch Creek Mountain component

Tm (Tbc)     Markagunt Megabreccia, Bullion Canyon Volcanics component

Tm (Tbcd)    Markagunt Megabreccia, Bullion Canyon Volcanics, Delano Peak Tuff Member component

Tm (Tbv)      Markagunt Megabreccia, Bear Valley Formation component

Tm (Tlk)       Markagunt Megabreccia, Lava flows of Kents Lake component

Tm (Tbb)     Markagunt Megabreccia, Buckskin Breccia component

Tm (Tin)       Markagunt Megabreccia, Isom Formation and the Needles Range Group component

Tm (Tiw)      Markagunt Megabreccia, Isom Formation and the Wah Wah Springs Formation component

Tm (Tnw)     Markagunt Megabreccia, Wah Wah Springs Formation component

Tm (Tbhu)   Markagunt Megabreccia, Brian Head Formation, upper volcanic unit component

Tm (Tbh)     Markagunt Megabreccia, Brian Head Formation, middle volcaniclastic unit component

Tm (Tcg)     Markagunt Megabreccia, Conglomerate component

Tm (Tc)        Markagunt Megabreccia, Claron Formation component

Tm (Jn)        Markagunt Megabreccia, Navajo Sandstone component

Ticc Concordant intrusions (lower Miocene to lower Oligocene)—Resistant, gray monzonite (calc-alkaline) intrusions 
in the Markagunt Plateau (Anderson, 1965; Anderson and Rowley, 1975; Anderson and others, 1990a, b); demon-
strably or probably all laccoliths that intrude into the Claron (Tc) or Brian Head (Tbh) Formations; includes the 
pluton of Showalter Mountain (Anderson and others, 1990a), which caused the Showalter Mountain gravity slide 
and which has an 40Ar/39Ar age on hornblende of 26.24 ± 0.02 Ma (UGS unpublished data); one such pluton, the 
Spry Intrusion in Circleville Canyon just east of the mapped area (Anderson and others, 1990b; Rowley and others, 
2005), is of batholith size in outcrop (Grant and Anderson, 1979) and extends well to the south in the subsurface 
(Blank and Kucks, 1989; Bankey and others, 1998); the Spry intrusion has an age of about 26 to 25 Ma (Anderson 
and others, 1990b; Utah Geological Survey, unpublished data) and it erupted the Buckskin Breccia (Tbb).
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Ticl  Lincoln Stock (lower Miocene)—Resistant, light-gray monzonite and granodiorite porphyry stock in the south-
ern Mineral Mountains (Earll, 1957; Corbett, 1984; Price, 1998), resulting in contact metamorphic lead-zinc-gold 
ore deposits of the Lincoln and Bradshaw mining districts just north of the mapped area; pluton is interpreted here 
to represent a calc-alkaline phase of the Mineral Mountains batholith, also to the north; the stock itself is just north 
of the mapped area, but two dikes thought to be related to the main stock are present in the mapped area; stock has 
a K-Ar age of 21.9 Ma (Bowers, 1978) and a preliminary U-Pb zircon age of about 23 Ma (Coleman and others, 
1997, 2001), and one of the dikes has K-Ar ages of 22.5 ± 0.9 (biotite) and 22.3 ± 0.8 Ma (sanidine) (Rowley and 
others, 1994a).

  Deposits from unroofing of Black Mountain (lower Miocene)  

Tbmb  Conglomerate of Big Wash—Resistant, tan, pink, and gray, silicified, pebble and boulder fluvial conglomer-
ate and coarse sandstone made up of rounded clasts, in a northern tributary to Big Wash on the eastern side 
of Black Mountain, which is southeast of Minersville; the clasts were derived as fan alluvium from unroof-
ing by streams of the Black Mountain area following rapid uplift that was interpreted by Rowley and others 
(2014) to be due to emplacement of an underlying blind calc-alkaline pluton, perhaps a laccolith; clasts are of 
pink Queantoweap Sandstone (Pq), white chert and minor light-gray carbonate probably from other Perm-
ian rocks, and purple lava flows of the Mount Dutton Formation (Black Mountain flow member) that were 
derived from a stratovolcano whose remains underlie southern Black Mountain; the conglomerate includes 
in its upper part the Black Mountain tuff member of the Mount Dutton Formation, a red crystal-poor dacitic 
ash-flow tuff at least 10 feet (3 m) thick that was interpreted to have been erupted from the blind pluton; the 
map unit largely postdates the Minersville gravity slide (Rowley and others, 2014); thickness at least 100 feet 
(30 m), with the base not exposed.

  Rocks of the Minersville gravity slide—Deformed pre-existing rocks, including breccia, cataclasite, and 
rare pseudotachylyte, of the Minersville gravity slide, a small slide centered on northern Black Mountain, 
about 2 miles (3 km) southeast of Minersville (Rowley and others, 2014, plate 1); northern Black Mountain 
is a horst block of Permian to Mississippian rocks that is surrounded by Tertiary volcanic rocks and must 
have been uplifted many thousands of feet; uplift was interpreted to be due to rapid emplacement of a blind 
pluton, perhaps a laccolith, that fed an overlying stratovolcano, the intrusive andesitic feeder plug (Tdb) that 
underlies southern Black Mountain; the slide mass consists entirely of light-tan and pink, brecciated and 
silicified ash-flow tuff of the Leach Canyon Formation (Tql, 23.8 Ma; see description below) that was spread 
at least 3 miles (5 km) radially from Black Mountain; the slide was locally emplaced onto the Bauers Tuff 
Member of the Condor Canyon Formation (Tqcb, see description below), which has 40Ar/ 39Ar ages of 22.8 
Ma, so the slide postdates that age; a local dacitic ash-flow tuff (Black Mountain tuff member of the Mount 
Dutton Formation), exposed on the eastern side of Black Mountain (interbedded with the conglomerate of 
Big Wash) and interpreted to have vented from the blind pluton, indicates that the pluton was calc-alkaline 
and therefore predates basin-range tectonism, which began at about 20 Ma; the Minersville gravity slide and 
its overlying conglomerate of Big Wash (Tbmb) and its underlying conglomerate of Muddy Hill (Tbmm) 
were in turn incorporated in the giant south-moving Markagunt gravity slide; thickness of the Minersville 
slide mass about 100 feet (30 m).

Tmi (Tql)       Rocks of the Minersville gravity slide, Leach Canyon Formation component

Tmi (Tbm) Rocks of the Minersville gravity slide, Leach Canyon Formation and conglomerate of Muddy Hill 
component—Units combined where map scale does not permit separating them, yet only the Leach Canyon 
Formation slid as the Minersville gravity slide. 

Tbmm Conglomerate of Muddy Hill—Resistant dark-reddish-brown, sandy conglomerate and sandstone made 
up of well-rounded clasts and subrounded boulders of volcanic rocks, mostly of the Black Mountain flow 
member and its feeder plug of Black Mountain, but also some clasts from the Leach Canyon Formation; 
exposed on Muddy Hill and other hills west of Black Mountain and south of Minersville; unit underlies the 
Minersville gravity slide and is interpreted to be fan alluvium that was deposited during the initial unroofing 
of Black Mountain when the Tertiary volcanic rocks were stripped off Paleozoic rocks as the local area was 
uplifted rapidly during emplacement of an inferred blind pluton beneath Black Mountain, after which slope 
failure led to the Minersville gravity slide (Rowley and others, 2014); thickness at least 250 feet (75 m), with 
the base not exposed. 
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  Mount Dutton Formation (lower Miocene to lower Oligocene)—Resistant to non-resistant, brown, tan, pink, 
and gray, volcanic mudflow breccia made up mostly of matrix-supported angular clasts as well as resistant lava 
flows and flow breccia; the clasts in the mudflow breccia and the lava flows are of crystal-poor, generally py-
roxene-bearing, andesitic rock of the same lithology; unit also includes minor fluvial and eolian sandstone and 
conglomerate whose clasts are the same lithology (Anderson and Rowley, 1975); deposited from clustered stra-
tovolcanoes that form most of the southern Marysvale volcanic field (e.g., Callaghan, 1939; Anderson and Row-
ley, 1975; Rowley and others, 1979, 1998, 2002; Steven and others, 1979, 1990; Cunningham and others, 1983; 
Campbell and others, 1999); K-Ar dated at 26 to 21 Ma (Fleck and others, 1975) but some deposits predate the 
Wah Wah Springs Formation (Tnw) and therefore are 30 Ma or older; the most voluminous unit in the Marysvale 
volcanic field; thickness in the area at least 6000 feet (2000 m).

Tdv  Vent facies—Lava flows, volcanic mudflow breccia, and flow breccia interpreted to represent near-source erup-
tions (Anderson and Rowley, 1975); many of the source stratovolcanoes are aligned east-west along the east-
striking Blue Ribbon transverse zone (Rowley and others, 1978, 1998; Rowley, 1998), which passes across the 
Beaver 30' x 60' quadrangle west from Kingston Canyon along the break in slope between the Tushar Mountains 
and Markagunt Plateau, then along the northern side of the Black Mountains and on to the west.

Tda Alluvial facies—Primarily volcanic mudflow breccia in which lithologies are more heterogeneous than in 
the vent facies, representing deposits interpreted to have traveled farther from the source, down the flank of 
individual stratovolcanoes (Anderson and Rowley, 1975), passing into conglomerate still farther from the 
source; the unit is by far the most voluminous component of the formation.

Tdb Beaver Member—Resistant, gray, pink, tan, green, and reddish-brown, dense, thick-bedded, crystal-rich, an-
desite porphyry lava flows and flow breccia of several volcanic domes, and local tuffaceous sandstone, volcanic 
mudflow breccia, and tuff (Anderson and Rowley, 1975); corrected K-Ar ages of 26.2 ± 0.8 and 25.0 ± 0.5 Ma 
(Fleck and others, 1975); exposed only south of Beaver; maximum thickness about 600 feet (200 m).

Tdp Plugs and dikes—Small source calc-alkaline magma bodies (vents) of the formation (e.g., Blackman, 1985); 
the crystal-poor (poorly differentiated) nature of the rock, coupled with the low volume of its source plutons, 
suggest that the intrusive sources of the volcanic rocks of the formation are deep.

  Quichapa Group (lower Miocene and upper Oligocene) —Defined by Mackin (1960) and Williams (1967) for 
a series of regional ash-flow tuffs derived from the Great Basin; two of these are exposed in the study area; the 
youngest tuff of the Quichapa Group is the Harmony Hills Tuff, which is not exposed in the study area, but is 
important because it is the youngest unit overlain by and involved in the Markagunt gravity slide; it is exposed in 
the Panguitch 30' x 60' quadrangle (Biek and others, 2015a) just south of the Beaver quadrangle and in the Thermo 
15' quadrangle (Rowley, 1978) about 5 miles (8 km) west of the Beaver quadrangle; the age of the Harmony Hills 
Tuff is 22.03 ± 0.15 Ma (Cornell and others, 2001) by 40Ar/39Ar analysis.

Tqcb Bauers Tuff Member of the Condor Canyon Formation (lower Miocene)—Resistant brown and light-
purple, crystal-poor, densely welded, dacitic to trachydacitic ash-flow tuff; derived from the southwestern 
part (Clover Creek caldera, in Nevada) of the Caliente caldera complex, which spans the Utah-Nevada border 
(Rowley and others, 1992, 1994b, 1995); age is 22.8 Ma based on 40Ar/39Ar ages, one an average of 22.78 Ma 
on samples of the member (Best and others, 1989b, Table R3) and another a plateau age on sanidine of 22.8 ± 
0.1 Ma by L.W. Snee on the intracaldera pluton of the Clover Creek caldera of the Caliente caldera complex 
just north of Caliente, Nevada (Rowley and others, 1994b); map unit is exposed on Black Mountain north of 
the plug of southern Black Mountain (mapped as Tdp); thickness about 70 feet (20 m).

Tql  Leach Canyon Formation (upper Oligocene)—Moderately resistant, tan and gray, crystal-poor, poorly welded, 
low-silica rhyolite ash-flow tuff; source probably the Caliente caldera complex of eastern Nevada, as suggested 
by isopachs (Williams, 1967; Rowley and others, 1995); an apparent 40Ar/39Ar age of about 23.8 Ma (Best and 
others, 1993) based on oral communication with Professor Myron Best (Brigham Young University), as discussed 
by Rowley and others (1994a); maximum thickness about 150 feet (50 m), thickening southwestward.

Tlf  Tuff of Lion Flat (lower Miocene)—Soft, pink, white, tan, and gray, unwelded, crystal-poor, rhyolite ash-flow 
tuff and minor airfall and water-laid tuff (Wickstrom, 1982; Lanigan and Anderson, 1987); probably tuff-ring 
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deposits related to eruption of the volcanic rocks of Lousy Jim (Sigmund, 1979), exposed overlying the tuff of 
Lion Flat just north of the mapped area (Rowley and others, 2002); the volcanic rocks of Lousy Jim yielded a new 
40Ar/39Ar age on sanidine of 22.88 ± 0.02 Ma (Utah Geological Survey, unpublished data); maximum thickness 
about 300 feet (100 m).

To  Osiris Tuff, outflow facies (lower Miocene to upper Oligocene)—Resistant, light-gray (upper vapor phase zone) 
and brown (lower part), densely welded, moderately crystal-rich, rhyodacitic ash-flow tuff with prominent euhe-
dral biotite phenocrysts (Williams and Hackman, 1971); one or two cooling units containing black basal vitro-
phyres; contains drawn-out pumiceous lenticules; upper part locally contains steeply-dipping flow-foliated rock 
caused by secondary flowage of rock fused in the last few tens of meters of movement; derived from the Monroe 
Peak caldera, the largest in the Marysvale volcanic field (Steven and others, 1984b; Rowley and others, 1986a, b) 
and just northeast of the mapped area; K-Ar age is about 23 Ma (Fleck and others, 1975; Cunningham and others, 
2007; Ball and others, 2009); maximum thickness about 200 feet (60 m).

Tlb  Mafic lava flows of Birch Creek Mountain (lower Miocene and upper Oligocene)—Moderately resistant, 
dark-gray to black, vesicular to dense lava flows of olivine-bearing basaltic andesite or trachybasalt exposed in 
and near Birch Creek Mountain in the southeastern Tushar Mountains (Wickstrom, 1982; Anderson and others, 
1990a, b); contains generally anhedral phenocrysts of olivine (generally altered to iddingsite), augite, and pla-
gioclase generally less than 1 mm long in a groundmass generally of devitrified glass consisting of microlites of 
plagioclase, augite, and Fe-Ti oxides; perhaps correlative with an early eruptive sequence of the potassium-rich 
mafic lava flows that are exposed just east and northeast of the mapped area; map unit appears to be a source of 
the mafic gravels of Gunsight Flat, exposed just east of the mapped area and interpreted to have been deposited 
in basins created by north-dipping (antithetic) faults of the Markagunt gravity slide; corrected K-Ar ages from 
samples of two flows are 22.9 ± 0.4 and 22.4 ± 0.4 Ma ("older basalts" of Fleck and others, 1975), but these are 
supplanted by a new 40Ar/39Ar age of 23.51 ± 0.06 Ma on a groundmass concentrate (Utah Geological Survey, 
unpublished data); thickness typically 200 feet (60 m) to as much as 500 feet (150 m).

Tbc  Bullion Canyon Volcanics (lower Miocene to lower Oligocene)—Moderately resistant, tan, gray, pink, and light-
green lava flows, flow breccia, volcanic mudflow breccia, and minor ash-flow tuff and fluvial conglomerate and 
sandstone (Callaghan, 1939; Rowley and others, 1979; Steven and others, 1979; Cunningham and others, 1984b, 
1994, 1998b, 2007; Rowley and others, 2002); the product of clustered stratovolcanoes, made up of undivided 
vent-facies and alluvial-facies rocks; the second-most voluminous stratigraphic unit in the Marysvale volcanic 
field; mostly crystal-rich dacite, thus more highly evolved than the Mount Dutton Formation, with which it in-
tertongues; unit derived from intrusive sources that are abundantly exposed elsewhere in the Beaver 30' x 60' 
quadrangle (Rowley and others, 2005) and are much more shallow than those for the Mount Dutton Formation; 
isotopic dates and stratigraphic relationships indicate an age of at least 30 to 22 Ma (Steven and others, 1979; 
Kowallis and Best, 1990; Rowley and others, 1994a); rocks of the unit and its source plutons have high potential 
for mineral resources of the chalcophile elements (Callaghan, 1973; Steven and others, 1979; Cunningham and 
others, 1984b, 1994, 1998b, 2007; Steven and Morris, 1987); thickness at least 5000 feet (1500 m).

Tbv  Bear Valley Formation (upper Oligocene)—Generally soft, characteristically light-green but locally gray and 
yellow, moderately to well sorted, commonly cross-bedded, fine- to medium-grained, tuffaceous sandstone 
of mostly eolian but locally fluvial origin, interbedded volcanic mudflow breccia, airfall tuff, and poorly and 
highly welded ash-flow tuff (Anderson, 1971); has K-Ar ages of about 25 Ma (Fleck and others, 1975); maxi-
mum thickness about 1000 feet (300 m).

Tlk  Lava flows of Kents Lake (upper Oligocene)—Moderately resistant, light- to medium-gray, dense, medium- to 
thick-bedded, andesite porphyry lava flows exposed on the crest of the southern Tushar Mountains (Anderson and 
others, 1990a, b), some of which were mismapped as the Osiris Tuff; flows contain 20–40 percent phenocrysts of 
plagioclase (1–10 mm but typically 2–4 mm long), subordinate amounts of pyroxene (0.1–3 mm but typically 0.5 
mm long), and minor amounts of Fe-Ti oxides, amphibole, and biotite in a partly devitrified glassy groundmass con-
taining aligned microlites, chiefly plagioclase; distinguished from the vent phase (Tdv) of the Mount Dutton Forma-
tion by the presence of biotite and from the Beaver Member (Tdb) of the Mount Dutton Formation by the absence 
of quartz; some flows contain a dark-gray basal glass; flows contain pronounced sub-horizontal platy parting that 
reflects primary flow lamination; may include one ash-flow tuff containing the same mineral assemblage in a densely 
welded glass groundmass; yielded a new 40Ar/39Ar age of 25.36 ± 0.41 Ma on plagioclase (Utah Geological Survey, 
unpublished data); thickness generally 130 to 260 feet (40–80 m), with a maximum of about 800 feet (250 m).
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Tbb Buckskin Breccia (upper Oligocene)—Moderately resistant, gray and pink, poorly to moderately welded, 
crystal-poor, dacitic ash-flow tuff, flow breccia, volcanic mudflow breccia, conglomerate, and sandstone (An-
derson and Rowley, 1975; Yannacci, 1986); characterized by as much as 50 percent rock volume of distinctive 
crystal-rich lithic clasts identical to rock of the Spry Intrusion, from which the unit was derived just east of 
the mapped area; locally intertongues with the Isom Formation (Tin) and considered to have an age of about 
26 Ma based on K-Ar ages of the intrusion and related volcanic rocks (Anderson and others, 1990b; Rowley 
and others, 1994a) and a new U-Pb age on zircon of 26.30 ± 0.28 Ma on the Spry intrusion (Utah Geological 
Survey, unpublished data); maximum thickness about 250 feet (80 m).

  Rocks of the Showalter Mountain gravity slide (upper Oligocene)—Deformed pre-existing rocks of the 
Showalter Mountain gravity slide, a small gravity slide that is confined to the flanks of a laccolith between 
Buckskin Valley and Bear Valley in the northern Markagunt Plateau (Anderson, 1965; Anderson and others, 
1990a); only a small part of the inferred laccolith (Ticc) is exposed where it intrudes the Claron Formation 
(Tc), whose rocks failed during rapid intrusion and uplift of the laccolith; age is that of the laccolith (unit Ticc, 
26.24 ± 0.02 Ma) and after deposition of the youngest known unit involved in the slide, the Buckskin Breccia 
(Utah Geological Survey, unpublished data); road cuts where State Highway 20 cuts through the northern flank 
of the laccolith spectacularly display slide breccia; the area later was deformed by movement of the Markagunt 
gravity slide.

Tsh (Tbb)      Rocks of the Showalter Mountain gravity slide, Buckskin Breccia component

Tsh (Tin) Rocks of the Showalter Mountain gravity slide, Isom Formation and Needles Range Group component

Tsh (Tnw) Rocks of the Showalter Mountain gravity slide, Wah Wah Springs Formation component

Tsh (Tiw)   Rocks of the Showalter Mountain gravity slide, Isom Formation and the Wah Wah Springs Formation  
        component

Tsh (Tbhu)   Rocks of the Showalter Mountain gravity slide, Brian Head Formation, upper volcanic unit component 

Tsh (Tc)        Rocks of the Showalter Mountain gravity slide, Claron Formation component

         Isom Formation and Needles Range Group

Tiw  Isom Formation and Wah Wah Springs Formation of the Needles Range Group, undivided (upper and 
lower Oligocene) 

  Isom Formation (upper Oligocene)—Resistant, brown and reddish-brown, crystal-poor, densely welded, 
trachydacitic ash-flow tuff (Mackin, 1960; Fryman, 1987) derived apparently from the Indian Peak caldera 
complex at the Utah-Nevada border (Best and others, 1989a, b); age about 27–26 Ma on the basis of many 
40Ar/39Ar and K-Ar ages (Best and others, 1989b; Rowley and others, 1994a); exposed in the Black Moun-
tains and western parts of the Markagunt Plateau; maximum thickness about 30 feet (10 m).

Tnw Wah Wah Springs Formation (lower Oligocene)—Resistant, gray, tan, pink, and light-purple, crystal-rich, 
moderately welded, dacite ash-flow tuff (Mackin, 1960) derived from the Indian Peak caldera complex (Best 
and others, 1989a, b); exposed in the Markagunt and Sevier Plateaus; many isotopic ages establish it as 30.5 
Ma (Best and others, 1989a); thickness about 50 feet (15 m).

Tin  Isom Formation and the Needles Range Group, undivided (upper and lower Oligocene) (includes Isom 
Formation, described above).

     Needles Range Group (lower Oligocene)—Resistant, gray, tan, pink, medium-red, and light-purple, crystal-
rich, moderately welded, dacite ash-flow tuff (Mackin, 1960) derived from the Indian Peak caldera complex 
(Best and others, 1989a, b); exposed in the Minersville area, where it consists of both the Lund Formation (27.9 
Ma; Best and others, 1989a) and the Wah Wah Springs Formation; maximum thickness about 100 feet (30 m).
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  Brian Head Formation (lower Oligocene to middle Eocene)—Volcanic rocks that can be demonstrated to pre-
date the Wah Wah Springs Formation, and underlying, mostly light-gray, soft, tuffaceous fluvial and lacustrine 
sedimentary rocks; well studied in the Brian Head area, where the unit names were proposed (Sable and Maldo-
nado, 1997; Biek and others, 2015a).

Tbhu Upper volcanic unit—Heterogeneous assemblage of mostly resistant lava flows, ash-flow tuff, flow breccia, 
volcanic mudflow breccia, and tuffaceous sandstone that predates the Wah Wah Springs Formation (Ander-
son and Rowley, 1975; Biek and others, 2015a); a corrected K-Ar age of 31.9 Ma was determined on an ash-
flow tuff (Fleck and others, 1975); maximum thickness about 450 feet (140 m).

Tcg  Conglomerate (Eocene and/or Paleocene)—Moderately resistant, white, tan, and light-gray, fluvial conglomerate 
and sandstone characterized by pebbles of quartzite and carbonates as much as 3 feet (1 m) in diameter, resting 
unconformably on Mesozoic sedimentary rocks and conformably overlain by Tertiary volcanic rocks; where ex-
posed in the southern Mineral Mountains and Minersville area, its maximum thickness is about 120 feet (40 m); 
these beds contain the main shear plane of the Markagunt gravity slide in the southern Mineral Mountains and 
northern Black Mountains; exposed also as a patch that includes tuffaceous sandstone as much as 30 feet thick (10 
m) in the central Tushar Mountains east of the mapped area. 

Tc  Claron Formation (Eocene and Paleocene)—Soft to resistant, white and gray upper part of mostly lacus-
trine limestone and red lower part of fluvial sandstone, siltstone, mudstone, and conglomerate; fluvial strata 
commonly exhibit well-developed paleosols; distinguished from the Brian Head Formation in not containing 
volcanic material; maximum thickness several hundred feet (100 m), but much thicker to the south (Biek and 
others, 2015a). 

JURASSIC

Jn  Navajo Sandstone (Lower Jurassic)—Resistant, red, yellow, and gray, locally spectacularly cross-bedded, fine- 
to medium-grained, eolian sandstone (Earll, 1957; Price, 1998); exposed northeast of Minersville, especially 
north of the mapped area and east of the mapped area in the central Tushar Mountains; maximum exposed thick-
ness about 1500 feet (450 m) northeast of Minersville and 2000 feet (600 m) in the central Tushar Mountains.

TRIASSIC

^cm Chinle Formation and Moenkopi Formation, undivided

    Chinle Formation (Upper Triassic)—Fluvial and lacustrine rocks of the upper Petrified Forest Member 
and the underlying Shinarump Conglomerate Member; the Petrified Forest Member is soft to moderately 
resistant, red, maroon, brown, tan, and white mudstone, and a basal bed of purple, coarse-grained sand-
stone; the member is incompetent and prone to landsliding over most of its area of distribution in Utah, 
Nevada, and Arizona; the Shinarump Conglomerate Member is moderately resistant, red to brownish-red, 
fine- to medium-grained conglomerate; the entire Chinle Formation is exposed only in the central Tushar 
Mountains east and northeast of the mapped area, where the combined thickness is about 600 feet (200 m); 
north of Minersville and mostly north of the mapped area, the Petrified Forest Member has been removed 
by faulting along the lowest known fault of the Markagunt gravity slide, and the Shinarump Member below 
the fault has a maximum thickness of 20 feet (6 m).

^m  Moenkopi Formation (Lower Triassic)—Soft and locally resistant, red, brown, pink, light- and dark-gray, 
and greenish-gray, marine and continental, thin-bedded siltstone, shale, and subordinate locally fossiliferous 
limestone (Earll, 1957; Price, 1998); exposed east and northeast of Minersville and in the central Tushar 
Mountains; thickness about 1300 feet (400 m) to 1700 feet (500 m).

PERMIAN

Ppt  Plympton, Kaibab, and Toroweap Formations, undivided    —Mapped only north of Minersville.
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Ppk Plympton and Kaibab Formations, undivided—Mapped only east and north of Minersville.

  Plympton Formation—Moderately resistant, gray and tan, thin-bedded, ledgy, chert-bearing, marine dolo-
mite and limestone (J.E. Welsh and B.R. Wardlaw, unpublished data, 1978); maximum thickness about 200 
feet (60 m).

    Kaibab Formation—Resistant, light- to dark-gray, medium-grained, thin- to thick-bedded, fossiliferous, 
marine limestone characterized by cliffs and ledges and by abundant dark-brown chert concretions and beds 
(Earll, 1957; J.E. Welsh and B.R. Wardlaw, unpublished data, 1978; Corbett, 1984; Price, 1998); maximum 
thickness about 550 feet (170 m).

Pt  Toroweap Formation—Generally resistant, light- to dark-gray, black, and tan, fine-grained, mostly thin-bedded, 
ledgy, locally cherty and fossiliferous, marine limestone and subordinate sandstone (J.E. Welsh and B.R. Wardlaw, 
unpublished data, 1978; Corbett, 1984); mapped north of Minersville, where the maximum thickness is about 300 
feet (100 m).

Pq   Queantoweap Sandstone (Lower Permian)—Resistant, tan and pink, thin-bedded, ledgy, fine-grained sandstone 
and quartzite (J.E. Welsh and B.R. Wardlaw, unpublished data, 1978); mapped north and south of Minersville, 
where the maximum thickness is about 500 feet (150 m).

Pp   Pakoon Dolomite (Lower Permian)—Alternating soft and resistant, light- to dark-gray and pink, ledgy and cliffy, 
medium-grained, thick-bedded, locally chert-bearing, marine dolomite and subordinate to minor sandstone (J.E. 
Welsh and B.R. Wardlaw, unpublished data, 1978; Corbett, 1984; Price, 1998); mapped north and south of Min-
ersville, where the thickness is about 800 feet (240 m).

PENNSYLVANIAN

*c   Callville Limestone (Pennsylvanian)—Soft to moderately resistant, white and light-gray, fine-grained, thin- to 
medium-bedded, ledgy, locally fossiliferous, rarely cherty, marine limestone and minor gray, purple, and brown 
siltstone and fine-grained sandstone capped by an upper limestone cliff in the Bradshaw district (J.E. Welsh and 
B.R. Wardlaw, unpublished data, 1978; Wardlaw, 1980; Corbett, 1984; Price, 1998); mapped north and south of 
Minersville, where the thickness is about 400 feet (120 m).

MISSISSIPPIAN

Mr   Redwall Limestone (Lower Mississippian)—Resistant, light-gray to black, medium-grained, thick-bedded, high-
ly fossiliferous, rarely cherty, spar-rich, marine limestone and, in the lower part, dolomite (J.E. Welsh and B.R. 
Wardlaw, unpublished data, 1978); forms massive cliffs; mapped north and south of Minersville, where the thick-
ness is about 1,250 feet (380 m).
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High-angle normal fault, dashed where approximately located; dotted 
where concealed; bar and ball on downthrown side 
 
 
Transverse fault (Rowley, 1998), striking generally east; may be a normal 
fault, a strike-slip fault, or an oblique-slip fault; dashed where 
approximately located, dotted where concealed; bar and ball on 
downthrown side, where known; arrows show relative strike-slip 
movement, where known  
 
 
Gravity-slide faults. Main or subsidiary breakaway fault (with normal-slip 
motion and within the gravity slide); most faults are high-angle but some 
represent failure along incompetent (weak) beds and are low-angle; 
symbol is the same for the breakaway faults of the Markagunt, 
Minersville, and Showalter Mountain gravity slides, but they are 
distinguished by the name of the slide "Markagunt," "Minersville," and 
"Showalter Mountain" adjacent to most slide symbols (except where the 
identity of some slide symbols are obvious); dashed where approximately 
located, dotted where concealed; teeth on downthrown side or upper plate 
 
 
Volcanic vent 
 
 
Strike and dip angle of inclined bedding 
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