
BEDROCK STRUCTURE, LITHOLOGY AND GROUND WATER: INFLUENCES ON SLOPE FAILURE INITIATION IN DAVIS COUNTY, UTAH

CONTRACT REPORT 95-4 January 1995 UTAH GEOLOGICAL SURVEY a division of UTAH DEPARTMENT OF NATURAL RESOURCES

This Contract Report represents material that may not have undergone policy, technical, or editorial review required for other UGS publications. It provides information that, in part, may be interpretive or incomplete and readers are to exercise some degree of caution in the use of the data. The UGS makes no warranty as to the accuracy of the information contained in this publication.

BEDROCK STRUCTURE, LITHOLOGY AND GROUND WATER: INFLUENCES ON SLOPE FAILURE INITIATION

IN DAVIS COUNTY, UTAH

A Thesis

by

SOUREN NARIMAN ALA

Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

December 1990

Major Subject: Geology

ABSTRACT

Bedrock Structure, Lithology and Ground Water: Influences on Slope Failure Initiation In Davis County, Utah (December 1990) Souren Nariman Ala B.A., Princeton University Chair of Advisory Committee: Dr. Christopher C. Mathewson

During May and June of 1983 and 1984, an unusually large number of land slips and debris flows occurred along the Wasatch Front, in north-central Utah. Failures on slopes underlain by rocks of the Precambrian Farmington Canyon Complex were often followed by new and sustained ground-water discharge. It has been proposed that elevated pore water pressures within the intensely fractured bedrock contribute to the initiation of slope failures.

In order to better understand the behavior of ground water in the mountain block, it was necessary to characterize the geological properties of the bedrock, and evaluate their influence on preferential ground-water flow paths. This investigation considers the roles of faults, lithological variations, fractures, fracture intersection lines and foliation planes in affecting the local and

iii

regional hydrogeology.

The detailed geology of the Farmington Canyon Complex is extremely heterogeneous. Statistical and geological analyses of fractures, faults, foliation and lithologic variations reveal that spatial variability overrides any one factor contributing to the geometry of the structural fabric. However, inter-regional geological parameters such as lithology and proximity to faults do have an effect on the dispersion and orientation of fracture sets.

The overall fracture pattern in foliated rocks is resolved into a predictable form when variations in the orientation of foliation planes are removed. The resultant fracture geometry may indicate the direction of the greatest principal stress during the Sevier and Laramide orogenies.

The fractured bedrock constitutes an aquifer of highly variable properties. Analysis of stream discharge data suggests that a net northwestward flow of ground water is taking place along major structural lineaments. The distribution of ground-water discharge points is controlled by topography and by geological features including lithologic changes and/or low-angle fractures and foliation planes.

A comparison of slope aspects upon which slope failures have occurred indicates that slopes perpendicular to the main trend of faults (interpreted from aerial

iv

photographs) experience the greatest number of slope failures. Neither fractures, fracture intersection lines nor foliation planes correlate systematically with these slopes.

This work is dedicated to

Jeff, Julie, Jennifer and Laurie Keaton.

ACKNOWLEDGEMENTS

I am indebted to a large number of people who helped me to complete this report. I am primarily grateful to my thesis committee: Dr. Christopher C. Mathewson gave me much support, and showed me the importance of synthesizing information; Dr. J. Richard Giardino helped me greatly in my data analysis; Dr. John H. Spang gave me valuable advice, especially with respect to the regional structural geology.

I am grateful to Dr. David V. Wiltschko for access to and help with the "Structure Graphics" program; Dr. Jeffrey R. Keaton for his expert help and encouragement; Dr. C. Brann Johnson for his teaching and insights; Dr. Dale F. Morgan for help in analyzing the results of the geophysical surveys. Ted Apotria's guidance in the field, and the excellent work and general example provided by Paul Santi were gratefully accepted.

Materials and expert advice were gladly received from Dr. Loren Anderson, Adolf Yonkee, Gary Christensen, Mike Lowe, Scott Williams and Sara Monteith. In addition, the United States Forest Service, Soil Conservation Service, and Davis County Planning Commission gave us information and materials. I also thank Dr. Bill Hicks, with the Forest Service in Oregon, for his input.

The Salt Lake City office of Dames and Moore generously provided for me to print the results of my vii

geophysical surveys. Mr. Roger Fallon of Salt Lake City did us a great service by flying us around the Wasatch Front canyons; much of the regional geological picture only became apparent after viewing photographs taken during that flight.

I thank the Keaton family for their hospitality. I am grateful to Kevin Coleman for his help and patience in the field, and for bringing out the the common ground shared by our complementary research efforts.

Lili Lyddon drafted almost all the figures in this report, with a masterful hand.

I thank the Utah Geological and Mineral Survey for their financial support (contract #89-0327). I thank the Center for Engineering Geosciences, Department of geology, Texas A&M University for funding, equipment, and moral support. I thank the Department of Geology, Texas A&M University, for funding the rental of the VLF geophysical tool.

I will be forever grateful for the love and support of my family: Ann, Fereydoun, Arjan, Tour and Natalyn.

viii

TABLE OF CONTENTS

	Page
ABSTRACT	iii
ACKNOWLEDGEMENTS	vii
LIST OF TABLES	xii
LIST OF FIGURES	xiii
INTRODUCTION	1
Ground Water and Hillslope Processes Slope Failure Mechanisms Purpose of Study	3 3 16
STUDY AREA	17
Physiography Regional Geology Petrology Structural History of the Region Precambrian and Paleozoic Mesozoic through early Cenozoic Miocene through Recent	17 20 20 21 21 27 28
STATISTICAL ANALYSIS OF BEDROCK STRUCTURE IN THE STUDY AREA	33
Data Acquisition. Avoiding Bias. Plotting the Data. Scatter Diagrams. Random or Not ?. The Fisher Method. Rotating Data. The Eigenvalue Method. Comparisons of "Goodness of Fit". Results of Randomness and Goodness of Fit Analyses. Randomness. Statistical Comparisons. Summary and Discussion of Results Contouring Preferred Orientations. Orientations of Fracture Intersections. Fracture Spacing and Length.	34 36 40 41 43 44 48 49 50 50 54 71 73 76 77
GEOLOGIC INTERPRETATION OF THE STRUCTURAL FABRIC	83
Orientations of Fractures and Foliation	83

TABLE OF CONTENTS, CONTINUED

Entire Study Area	83
Lithologic Control	86
Deteting fracture evidentations	88
Rotating fracture orientations.	96
Influence of Faults	
Mapping Fracture Data	96
Aerial Photograph Analysis	99
Discussion	103
HYDROGEOLOGIC IMPLICATIONS OF BEDROCK	
STRUCTURE	106
Regional Hydrogeology in the basin and	
Range	106
Hydrogeology of the Farmington Canyon	200
Complex	107
Complex	107
Directional Permeability of Fractured	
Rocks	115
Fracture Connectivity	118
Effect of Large-Scale Features	119
Regional Ground-Water Flow	119
Debris Flow Initiation and	
Prolonged Discharge	123
Structural Fabric and the Distribution	
of Slope Failures	125
Slope Aspect	125
Daylighting Fracture and Foliation	
Planes	126
Discussion	131
DISCUSSION	121
GEOPHYSICAL SURVEYS	134
GEOPHISICAL SURVEIS	134
Tatao du sti on	204
Introduction	134
Theory	134
Survey Techniques and Results	136
Steed Canyon Survey	137
Ford Canyon Surveys	145
Discussion	159
Method	159
Interpretation of Results	159
Summary	162
	102
SUMMARY AND CONCLUSIONS	164
	104
Structural Fabric	1 ~ 4
	164
Hydrogeology and Application to Slope	
Failures	167
Application to the Debris Flow Hazard	170
RECOMMENDATIONS FOR FURTHER WORK	173

TABLE OF CONTENTS, CONTINUED

	Page
REFERENCES	175
APPENDIX 1: TABLE OF NOMENCLATURE	187
APPENDIX 2: TABLE OF RESULTANTS (Ro) OF RANDOMLY ORIENTED VECTORS AT 95 PERCENT CONFIDENCE	189
APPENDIX 3: KRUSKAL-WALLIS ONE-WAY ANALYSES OF VARIANCE	190
APPENDIX 4: ORIGINAL FRACTURE ORIENTATION DATA	194
APPENDIX 5: ORIGINAL CONDUCTIVITY DATA FROM WADI	225
VITA	236

LIST OF TABLES

Table	2	Page
1	Comparing values of R for each data set with Ro for an equivalent randomly oriented data set	51
2	R/Ro values for fracture intersection lines in regions 1 through 8	52
3	Descriptive parameters of fracture orientation distributions, grouped by lithology (rows) and by geomorphic region (columns)	63
4	Mean orientations of the principal fracture and foliation sets estimated from Figures 39 and 40 A	83
5	Mean orientations of the principal fracture sets estimated from Figure 41 A, B and C	86
6	Resistivities of some consolidated and unconsolidated rocks	136
7	A. Apparent dip angles and directions for planar conductivity anomalies in the Steed Canyon survey area. B. Dip angles and directions for principal orientations of (i) fractures in the area adjacent to the northern mapped fault (data set XNFC), and (ii) foliations over the entire study area; both projected along the same strike (az. 270°) as the WADI survey line	145
8	 A. Apparent dips of conductors in upper and lower Ford Canyon swales, from WADI. B. Dip directions and apparent dip angles for (i) fractures adjacent to the central fault (data set XNFD), and (ii) fractures in pegmatite over the entire study area 	153

LIST OF FIGURES

Figur	re	Page
1	Location of the study area in the Wasatch Range, north central Utah	2
2	Schematic cross-section of a typical soil profile in weathered metamorphic terrain (adapted from Deere and Patton, 1971)	4
3	Schematic diagram of a slope failure mechanism in which pore water pressure is increased through rapid infiltration of rainfall into saturated colluvial soil (adapted from Campbell, 1975)	6
4	Schematic diagram of a slope failure mechanism in which ground water under significant hydrostatic pressure increases pore water pressures at the base of the soil profile	10
5	Schematic diagram of a slope failure mechanism in which pore water pressures in the soil are raised by perched and/or artesian ground-water conditions created by a relatively less permeable rock unit (based on concepts from Hack and Goodlett, 1960; and Everett, 1979)	11
6	Schematic diagram of a slope failure mechanism in which pore water pressures in the soil are raised by ground-water discharge via a relatively more permeable rock unit (after Hicks, 1988)	12
7	Location of piezometers in a study site in Marin County, CA (after Wilson and Dietrich, 1987)	13
8	Contours of hydraulic conductivity in cross-sectional view along the axis of the Marin County study site	15
9	Davis County, Utah, is located in the zone dividing the Basin and Range province from the middle Rocky Mountains	18
10	Geologic map of the Precambrian Farmington Canyon Complex (simplified from Bryant, 1988)	19

Figur	e	Page
11	Geologic map of the study area; developed from photogeology and field investigation.	22
12	Six phases of the geologic evolution of Utah	23
13	ERTS imagery showing major linaments in the earth's crust in northeast Utah	25
14	The Northern Utah Highland distorted the geometry of thrust faults of the Sevier/Laramide orogenies (adapted from Tooker, 1983)	26
15	Fold axes associated with Sevier/Laramide compression are distorted by the existing uplifts	29
16	Seismic slip vectors indicate a complex variety of stress orientations in the transition zone between the CP (Colorado Plateau) and the BR (Basin and Range) (after from Arabasz and Julander, 1986)	31
17	Stations where fracture orientation data were gathered are shown with dots	37
18	Distribution of bedrock outcrops in the study area	39
19	Scatter diagrams of fracture poles in Schmidt nets	42
20	The Fisher mean pole of the data set of poles to fractures is labeled FP	45
21	A. An equatorial plot of bi-modal orientation data. B. The points on the left of the N-S line have been rotated by 180° and overlain on the right side	46
22	A plot of the randomness of fracture pole orientation distributions at 90 and 95 percent confidence	53
23	Fisher k parameters compared for different data sets in the study area	56

Figu	re	Page
24	The rotated alpha95 value is smallest for gneiss (#2) and largest for pegmatite (#4)	57
25	Regions 1 through 8, separated on the basis of geomorphic appearance	59
26	The rotated k values are largest for regions 4, 5 and 6	60
27	The rotated alpha95 values are smallest for regions 3, 4, 5 and 6	61
28	Variability in k for gneiss (#1), amphibolite (#2), and pegmatite (#3)	64
29	Variability in alpha95 for the three lithologies	65
30	Variability in k for regions 1 through 8	66
31	Variability in alpha95 for regions 1 through 8	67
32	A plot of ellipsoid shapes described by the relative lengths of their axes, as indicated by the relative magnitudes of the normalized eigenvalues S ₁ , S ₂ and S ₃	69
33	Eigenvalue ratio plot showing the shape of fracture orientation sets from the Farmington Canyon Complex	70
34	Geomorphic expression of two high angle faults in the Farmington Canyon Complex	74
35	Contoured Schmidt nets of poles to fractures at outcrop A98	78
36	Fracture spacing and half-length for a gneiss outcrop (scan line technique)	80
37	Fracture spacing and half-length for an amphibolite outcrop (scan line technique).	81
38	Fracture spacing and half-length for a pegmatite outcrop (scan line technique)	82

Figu	re	Page
39	Contoured Schmidt net of poles to fracture sets for the entire study area	84
40	A. Contoured Schmidt net (Kamb method) of poles to all foliations in the study area, showing a girdle around a pole at azimuth 291°, dip 20°. B. Contoured poles to foliation for non-cataclastic rocks in Bountiful Peak quadrangle form a girdle around a pole at azimuth 303°, dip 10° (after Bryant, 1988)	85
41	Contoured poles to principal fracture sets over the entire study area for different lithologies: A=gneiss; B=amphibolite; C=pegmatite	87
42	Contoured poles to fractures for all outcrops that included foliation as well as fracture data	90
43	Contoured poles to fractures for gneiss outcrops	91
44	Contoured poles to fractures for amphibolite outcrops	93
45	Fractures forming under applied stress	94
46	Contoured poles to fractures adjacent to faults in the study area	97
47	Strikes of the principal fracture sets in the study area	98
48	Trend and plunge of the principal sets of fracture intersection lines for regions 1 through 8	100
49	Rose diagram of the trends of intersection lines mapped in Figure 48	101
50	Rose diagram of all structural lineaments in the study area visible in stereoscopic color aerial photographs at 1:12000 scale	102

Figu	re	Page
51	Location map of the four springs discussed in the text (after Hunt and Robinson, 1960)	108
52	Histograms comparing the water chemistry of springs at Mesquite Flat (1), western Death Valley (2), eastern Death Valley (3) and Ash Meadows (4)	109
53	Schematic diagram suggesting paths by which recharge through jointed crystalline rocks reaches aquifers in alluvial basins (after Feth, 1964)	110
54	Geologic cross-sections AA' and BB' from Figure 11	112
55	Decline in spring flow after a rainstorm on August 8, 1988	113
56	Hydrograph of Halfway Creek, showing the response of stream level to a rainstorm on August 10, 1989	116
57	Location of creeks along the Wasatch Front that were used in the comparison of normalized discharge	120
58	Discharge data for the years 1951 through 1963 show that, except for Centerville Creek, discharge per unit area of drainage increases northward	122
59	Boundary of the topographically- controlled recharge area for the head of Rudd Creek is shown with a dotted line	124
60	Slope aspect, shown as the normal to the trend of the slope, for 74 mapped slope failures	127
61	Location, dip directions and dip angles of principal fracture sets that dip less steeply, and up to 10° more steeply, than the topography	129

Figur	Figure	
62	Rose diagram of the dip directions of low-angle discontinuities mapped in Figure 61	130
63	A compilation of the mapped structural features in the study area, including faults, intersection lines, pegmatite outcrops and daylighting fractures and foliationspoo	cket
64	Oblique aerial photograph (looking east) of pegmatite outcrops cutting across slopes in the study area	132
65	Location of the WADI surveys in Steed and Ford canyons	138
66	Contoured ECD values from the Steed Canyon WADI survey	139
67	Contoured quadrature values from the Steed Canyon WADI survey	140
68	Generalized topography of the Steed Canyon WADI survey area and location of the Steed Canyon landslide and debris flow	141
69	Location, apparent dip angle and dip direction of planar conductors interpreted by the WADI	146
70	Location and topography of the upper and lower Ford Canyon swale WADI surveys	147
71	Contoured ECD values for the upper Ford Canyon swale WADI survey	149
72	Contoured quadrature values for the upper Ford Canyon swale WADI survey	150
73	Contoured ECD values for the lower Ford Canyon swale WADI survey	151
74	Contoured quadrature values for the lower Ford Canyon swale WADI survey	152

Figure		Page
75	Apparent dip angle and dip direction of planar conductors interpreted by the WADI, for the upper Ford Canyon swale	154
76	Apparent dip angle and dip direction of planar conductors interpreted by the WADI, for the lower Ford Canyon swale	155
77	Schematic diagram of the site of the lower Ford Canyon WADI survey	158
78	Proposed ground-water flow system in the Farmington Canyon Complex between Farmington and Stone Creeks	cket

xix

INTRODUCTION

Rapid population growth in the urban area along the eastern border of the Great Salt Lake, Utah, has led to residential development in the western foothills of the Wasatch Range (Figure 1). Such sites are conveniently located as well as being aesthetically attractive. However, much of this area is susceptible to debris flow and flood hazards. A large number of debris flows occurred on the Wasatch Front during May and June of 1983 and 1984. Although no lives were lost, there was significant damage to structures, and cumulative costs for the state ran in excess of 400 million dollars (Anderson et al., 1985).

Several studies have been conducted in the area since 1983, with the goal of defining the severity and extent of flood and debris flow hazards along the Wasatch Front (Pack, 1985; Brooks, 1986; Jadkowski, 1987; Keaton, 1988b; Monteith, 1988; Santi, 1988; Weiczorek et al., 1989; Mathewson et al., 1990). Attention has been focused on 1) identifying susceptible areas, 2) gaining a better understanding of failure mechanisms, and 3) determining the amount and velocity of sediment reaching the canyon mouth. This study is an attempt to clarify parts of categories 1 and 2, by considering the source of elevated

The style and format of this report follow that of <u>The Bulletin of the Association of Engineering Geologists</u>.

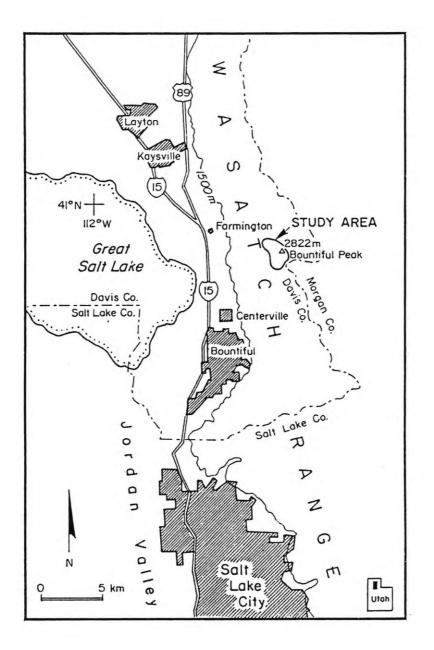


Figure 1. Location of the study area in the Wasatch Range, north central Utah. The 1500 m contour shows the elevation of the general slope gradient change at the base of the mountains. Numerous historical floods and debris flow sedimentation events have occurred at this elevation. pore water pressures leading to slope failure. The main focus will be on characterizing the bedrock as a groundwater delivery system, by addressing the question "how and where do elevated pore water pressures develop?"

Ground Water and Hillslope Processes

Bedrock ground water is active in the evolution of hillslope landforms. Long term weathering of fractured metamorphic rocks under saturated conditions produces residual "saprolitic" soils which vary greatly in depth and composition (Figure 2). Differences in the resistance of the bedrock to weathering gradually become expressed in the topography, leading to the development of hollows on colluvial slopes. These in turn become loci for further weathering and accumulation of soil, debris and ground water (Reneau and Dietrich, 1987; Sidle, 1987). Areas of more highly fractured, weathered and thus, more permeable bedrock become sites of recurrent debris flow activity (Alger and Ellen, 1987; Tsukamoto and Minematsu, 1987).

Slope Failure Mechanisms

Failure of a slope takes place when the downslope component of applied shear stress overcomes the shear strength of the material (Chorley et al., 1984). Often, the slope is in a meta-stable condition, and failure is triggered by a sudden event. Possible examples are an increase in shear stress by added load from upslope, or a reduction in shear strength caused by removal of toe

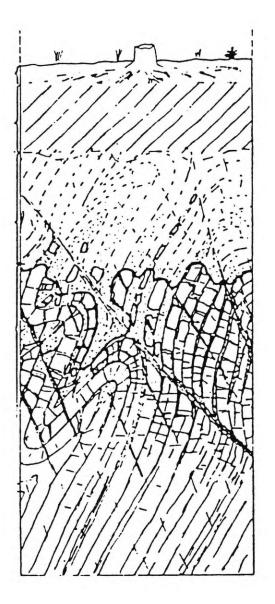


Figure 2. Schematic cross-section of a typical soil profile in weathered metamorphic terrain (adapted from Deere and Patton, 1971).

support, seismic shock or most commonly, an increase in pore water pressure at the incipient failure surface.

Debris flows can be distinguished from block glides or slumps by their more fluid behavior, brought about by a greater water content. They are almost always preceded by extremely heavy rainfall or the melting of snow or frozen ground (Schuster and Krizek, 1978).

Antecedent rainfall of at least 25 cm followed by storms with an intensity of 0.6 cm/hr or greater initiated a series of damaging debris flows in the Santa Monica mountains of southern California (Campbell, 1975). These events took place in colluvial soils underlain by sedimentary, volcanic and low-grade metamorphic rocks ranging in age from Quaternary to Triassic (State of California Department of Natural Resources, 1954). The observed failure mechanism was a critical reduction of effective stress in the colluvium, due to an increase in pore water pressure. The pore water pressure increase was brought about by continued infiltration of surface water into saturated colluvium at a rate which exceeded the hydraulic conductivity of the underlying bedrock. A schematic diagram of this process is shown in Figure 3. Failures generally began as areally extensive blocks of colluvium, that subsequently disaggregated into flows (Campbell, 1975).

Tsukamoto and Minematsu (1987) have subdivided

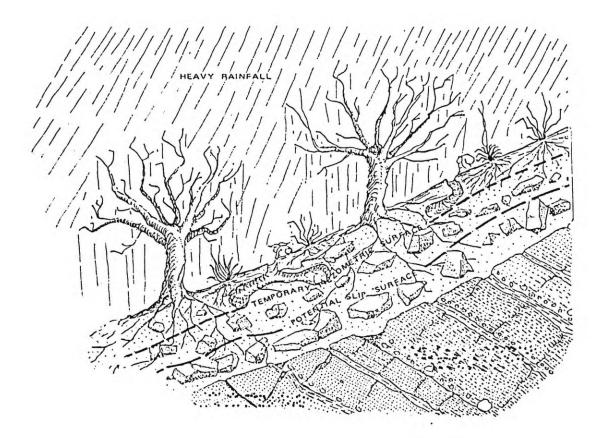


Figure 3. Schematic diagram of a slope failure mechanism in which pore water pressure is increased through rapid infiltration of rainfall into saturated colluvial soil (adapted from Campbell, 1975). hydrologic conditions leading to hillslope erosion according to the relative permeabilities of three shallow subsurface units: soil, "underlying soil", and weathered bedrock. When rainfall intensity greatly exceeds infiltration, surface erosion occurs. When infiltration greatly exceeds the permeability of the underlying soil, shallow slides take place. When the permeability of the underlying soil greatly exceeds that of the weathered bedrock, shallow to deep slides can occur (Tsukamoto and Minematsu, 1987).

An alternative mechanism to those discussed above involves the contribution of upwelling ground water from permeable zones in bedrock, rather than downward infiltration of water through the soil. If regional ground-water flow lines are projected onto a slope, the lower section of the slope is in a zone of discharge. Where low permeability rock units or clays prevent discharge, pore water pressure rises and the potential for slope failure is increased. Campbell (1975) notes that a bedrock source of ground water is generally associated with deep seated landslides rather than debris flows. However, upwelling ground water can cause piping in cohesionless soil (Deere and Patton, 1971), and this process has been recognized as a contributor to slurry flows (Howard and McLane, 1988).

Slope failures initiated by ground water from bedrock have hitherto also been associated with heavy rainfall. Eisenlohr (1952) correlated ground-water "blowouts" with layers of shattered rock recharged by rainfall on higher ground. Hack and Goodlett (1960) found "water blowouts" along the lower contact of an impermeable diabase sill within a hillside composed mainly of permeable clastic sedimentary rocks.

Everett (1979) observed that landslide sources on forested slopes in Mingo County, West Virginia were associated with the <u>upper</u> surfaces of relatively less permeable sandstones, interbedded with highly fractured coal beds. These events were, therefore, associated with perched rather than artesian water table conditions.

Evidence exists that artesian ground-water conditions helped initiate debris flows on slopes underlain by Precambrian metamorphic rocks of the Farmington Canyon Complex, Wasatch Front, Utah (Mathewson et al., 1990). In May and June of 1983 and 1984, the Wasatch Front was the site of numerous debris flows and floods. Many of these originated as small water blowouts which gathered material during their progress down the channel (Santi, 1988). Failures were not correlated with heavy rainfall, but with rapid spring snowmelt. Several debris flow scars experienced new discharge, which was sustained for up to six months after failure (Mathewson and Santi, 1987;

Mathewson et al., 1990).

Mathewson and Santi (1987) proposed that hydrostatic head in the fractured bedrock, combined with variations in topography, led to elevated pore water pressures in the axes of upper mountain swales. This hypothesis has been confirmed in at least one case: a study by Monteith (1988) showed that a landslide and debris flow in Steed Canyon (immediately south of Farmington Canyon) was initiated by artesian ground-water conditions.

Schematic diagrams of the mechanisms proposed by Mathewson and others (1990), Hack and Goodlett (1960), and Everett (1979) are shown in Figures 4 and 5. A third mechanism, observed by Hicks (1988) in the Cascade Mountains, Oregon, is shown in Figure 6.

A large number of landslides and debris flows have occurred in colluvial soils in hilly terrain overlying the highly fractured metamorphic Franciscan melange in Marin County, California. In a small test area in this region, Wilson and Dietrich (1987) were able to construct a contoured hydraulic conductivity profile along the axis of a hollow, using constant head permeability tests in more than 30 piezometer nests (Figure 7).

During a 25-year scale storm that occurred from February 12-20, 1986, water levels along the basin axis were monitored. Results implied that subsurface flow through bedrock was forced up to the surface at point B,

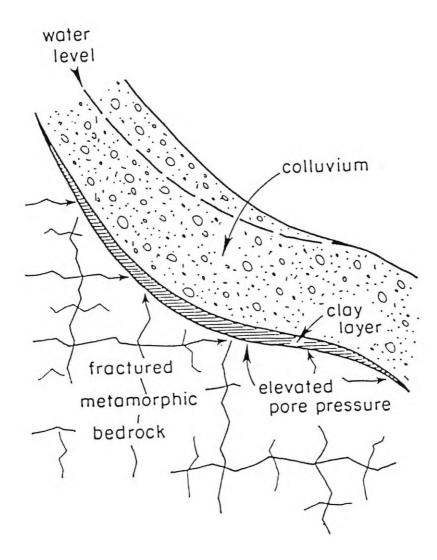


Figure 4. Schematic diagram of a slope failure mechanism in which ground water under significant hydrostatic pressure increases pore water pressures at the base of the soil profile. Communication to the surface is provided by low-angle fractures (adapted from Mathewson and Santi, 1987).

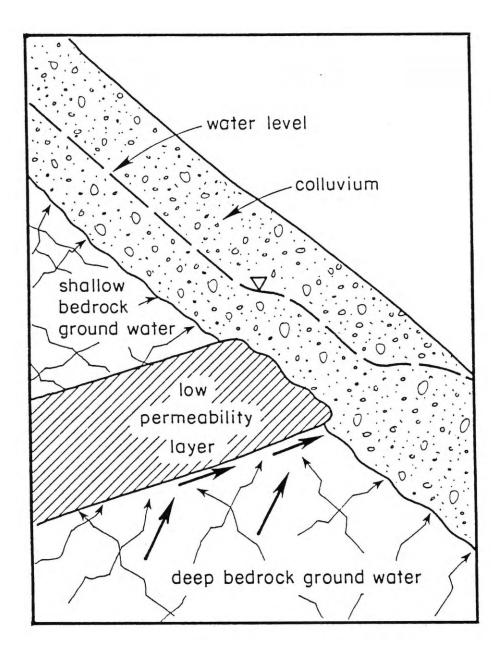


Figure 5. Schematic diagram of a slope failure mechanism in which pore water pressures in the soil are raised by perched and/or artesian ground-water conditions created by a relatively less permeable rock unit (based on concepts from Hack and Goodlett, 1960; and Everett, 1979).

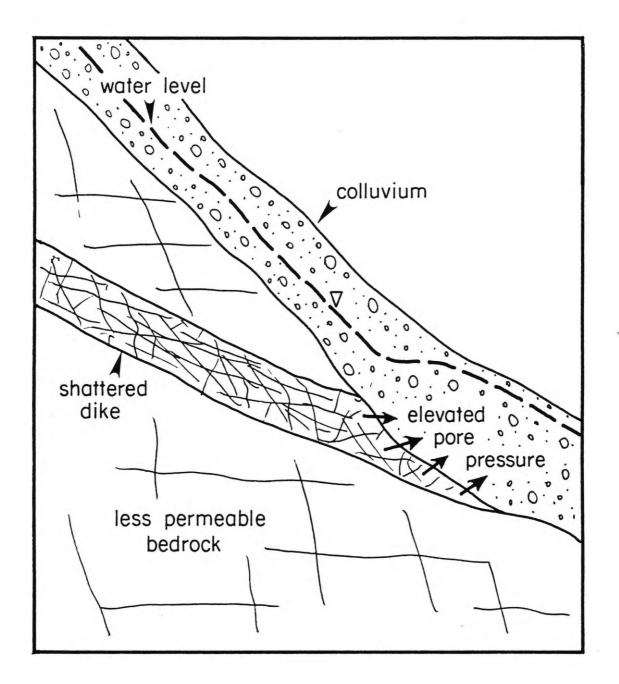


Figure 6. Schematic diagram of a slope failure mechanism in which pore water pressures in the soil are raised by ground-water discharge via a relatively more permeable rock unit (after Hicks, 1988).

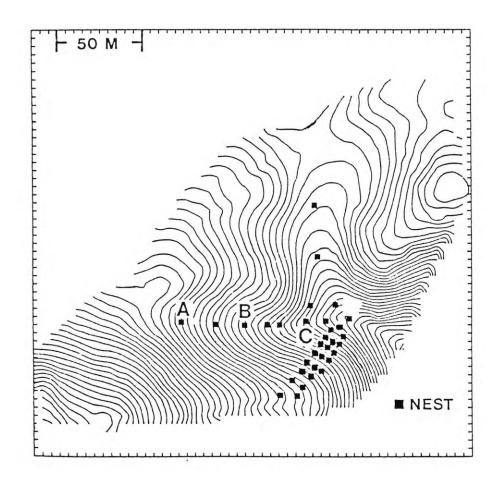


Figure 7. Location of piezometers in a study site in Marin County, CA (after Wilson and Dietrich, 1987).

at K=10⁻⁷ cm/sec, and was then able to drain back down at point C, at K=10⁻⁴ cm/sec (Figure 8). The authors concluded that permeability changes in bedrock may provide an important mechanism for debris flow initiation during periods of intense precipitation. The Franciscan formation, like the Farmington Canyon Complex, is highly fractured and lithologically heterogeneous.

The geology of the Farmington Canyon Complex undoubtedly affected the distribution of slope failures in this section of the Wasatch Front. Pack (1985) presents a multi-component model to predict landslide susceptibility in this area; he mentions that local geology is an important factor in determining landslide locations. However, he does not consider local geology in his model, declaring that bedrock variations are too site-specific for regional study. Olson (1985) states that, although an active ground-water system exists in this section of the Wasatch Front, the hydrogeology is poorly understood.

The slope failures of 1983 and 1984 in this section of the Wasatch Front have been correlated with an ancient uplifted erosional surface identified by Eardley (1944; cited in Vandre, 1985). Vandre (1985) shows that there is a relative increase in debris flow occurences, as well as drainage heads, at the approximate elevation of the ancient surface. It is possible that this surface acts as a shelf, causing ponding and discharge of ground water

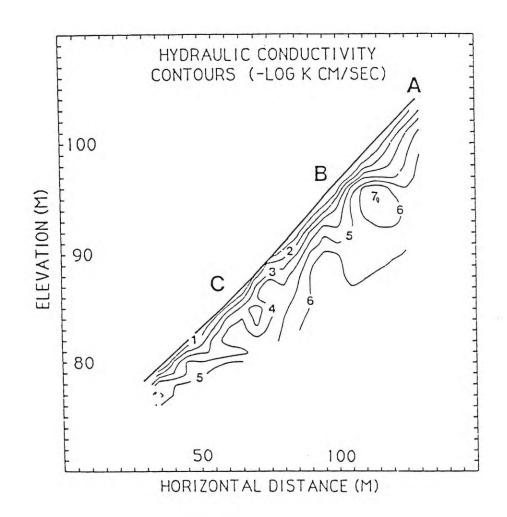


Figure 8. Contours of hydraulic conductivity in crosssectional view along the axis of the Marin County study site. Contoured values are hydraulic conductivity, from 10^{-1} to 10^{-7} cm/sec (after Wilson and Dietrich, 1987).

to the surface. In addition, a relatively thicker soil profile (evident above the upper Rudd Creek failure scar) may have developed on top of the ancient surface. The role of this feature in the distribution of slope failure events was not analyzed in this study.

Purpose of Study

The purpose of this study was to test the hypothesis of Mathewson and Santi (1987) that elevated pore water pressure in colluvium is derived from ground water in the Farmington Canyon Complex. The objective then was to characterize the structure and lithology of the bedrock in terms of its ground-water storage and permeability characteristics.

STUDY AREA

Physiography

The study area is in Davis County, Utah, which includes a portion of the Wasatch Front, which comprises the western flank of the Wasatch Range, in north-central Utah. The western edge of the Front forms an approximate boundary between the uplifted Colorado plateau to the east and the extensional Basin and Range province to the west (Figure 9). The relief on the Wasatch Front is due to approximately 4 km of displacement on the Wasatch fault during the last 12 Ma (Naeser et al., 1983). A series of steep westward-draining canyons have eroded down into the mountain block.

The total relief on this part of the Wasatch Front is approximately 1200 m. Average annual precipitation increases 10 cm for every 200 m increase in elevation; above 2500 m, 90 percent of this is in the form of snow (Pankey and DeByle, 1984). The area is also subject to intense orographic rainstorms during the summer months.

The study area is located on rocks of the Farmington Canyon Complex, which is exposed east of the Wasatch Fault, and extends eastward to the highest ridge on the Front, beyond which it is buried by sediments of Paleozoic through Quaternary age (Figure 10). Although outcrops are common, the great majority of the land area is covered by

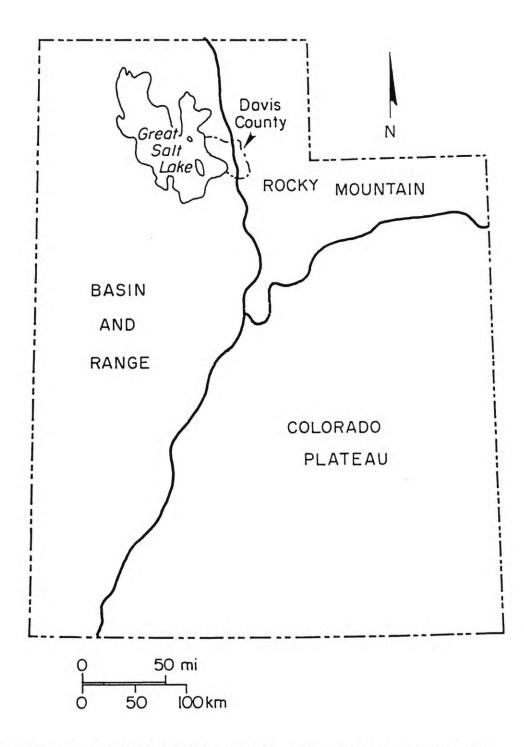


Figure 9. Davis County, Utah, is located in the zone dividing the Basin and Range province from the middle Rocky Mountains. The Farmington Canyon Complex outcrops in eastern Davis County.

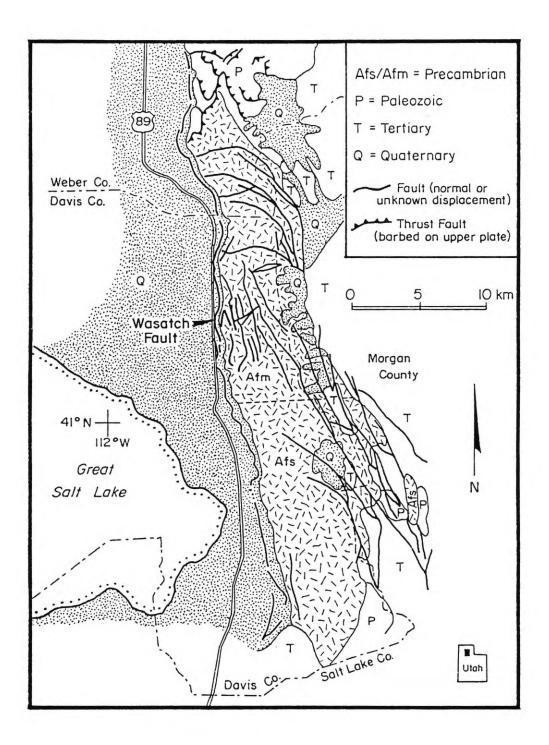


Figure 10. Geologic map of the Precambrian Farmington Canyon Complex (simplified from Bryant, 1988).

vegetation, in the form of trees, scrub and grasses. The ridge crests, where much of the field data were gathered, have little or no vegetation or soil cover.

Regional Geology

Petrology

The Farmington Canyon Complex consists of Precambrian metasediments which have experienced a long history of deformation and igneous intrusion. The dominant lithologies along the Wasatch Front between Bountiful and Ogden, Utah, consist of two generalized units. The first unit, "Afs", covering the southern portion of the Precambrian exposure, is made up of quartzofeldspathic gneiss, sillimanite-grade pelitic schist/gneiss, some quartzite, amphibolite lenses and numerous pegmatite dikes and sills. North of the town of Farmington, this unit grades into "Afm", a migmatite with interlayered and intergradational quartz monzonite gneiss, grey pelitic and quartzofeldspathic schist, greenish-black amphibolite, and peqmatite dikes (Bryant, 1988). Figure 10 shows the location of the gradational boundary between Afm and Afs. Within these two lithologic units are mapped several lenses of quartz monzonite gneiss (containing amphibolite lenses), quartzite, and amphibolite bodies. Localized zones of intensely sheared and mylonitized rocks are found at the base of the outcrop near the Wasatch Fault. Oval to highly elongate pegmatite dikes (quartz and microcline)

are abundant (Bryant, 1988). Figure 11 is a geologic map of the study area.

The oldest rocks in the Farmington Canyon Complex are the schists and gneisses. Detailed radiometric dating by Hashad and others (1970) and Hedge and others (1984) suggests the following events during the Precambrian era: Archean sandstones and shales were deposited between 3.0 and 3.6 Ga; a major igneous/metamorphic event occurred at 2.6 Ga, intruding and extruding gabbros and basalts. Another high temperature metamorphic episode took place at 1.8 Ga, which sheared and partly migmatized these rocks; at the same time they were intruded by quartz monzonite (Hedge et al., 1984). A late Precambrian or early Paleozoic metamorphism of lesser intensity was accompanied by local uplift at approximately 0.5 Ga.

Structural History of the Region

Precambrian and Paleozoic: The geologic evolution of this part of Utah includes periods of marine deposition, compression, intense volcanism and extension. Hintze (1982) divides the Phanerozoic in Utah into six phases, as seen in Figure 12. At the time of diagram 12I, the Farmington Canyon Complex was already in place, had experienced two episodes of intense metamorphism, and was either involved in, or was just emerging from, a lesser stage of metamorphism that generated the structural uplifts of the Northern Utah

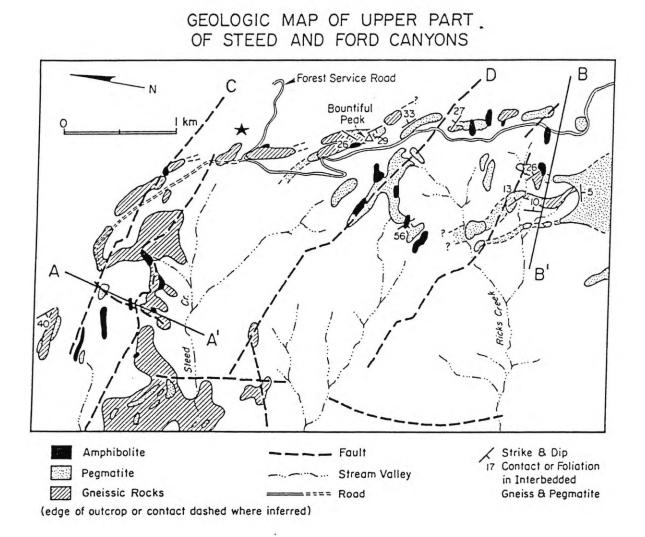
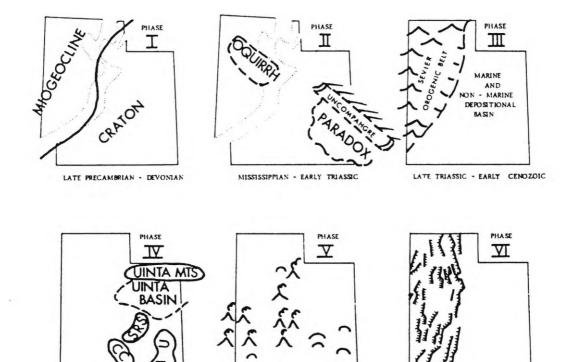
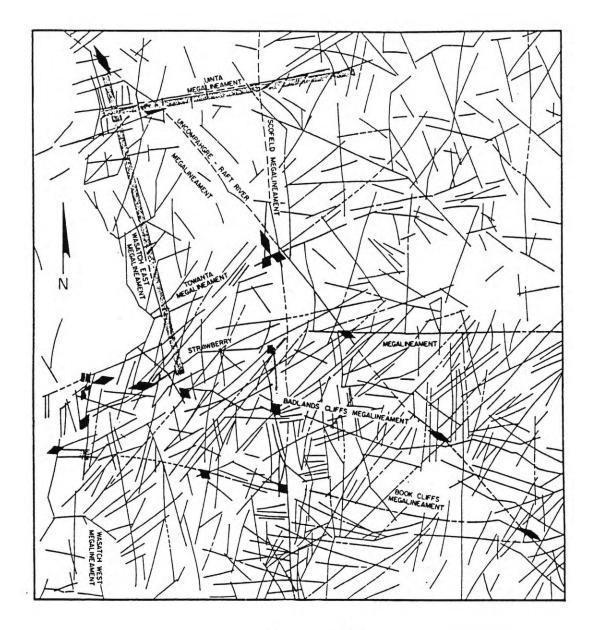



Figure 11. Geologic map of the study area; developed from photogeology and field investigation. Star indicates position of a spring feeding Farmington Lake (see Figure 55).

LATEST CRETACEOUS - EDCENE

Figure 12. Six phases of the geologic evolution of Utah. Note the importance of the northeast-trending "Paleozoic hinge line" in the development of the state (after Hintze, 1982).

OUGOCENE


MIDCENE - RECENT

Highland, (not shown in Figure 12) and the Uinta mountains.

The Paleozoic and early Mesozoic eras in this region were tectonically quiet, and consisted of shallow to intermediate marine deposition of clastics and carbonates. Sediment transport was westward from the craton until the Mississippian Antler Orogeny uplifted rocks to the west and reversed the direction of transport.

As shown by Young (1984), a number of large scale trends or "megalineaments" divide this region (Figure 13). Of particular interest is the junction of the Wasatch East and Uinta megalineaments, which can be traced to the location of the Cottonwood igneous stock. The Wasatch fault itself lies along the "Paleozoic hinge line", which is generally acknowledged to be the division between the late Precambrian through early Paleozoic uplifted craton and the miogeosyncline to the west, also known as the Wasatch line. This corresponds to the transition zone separating the Colorado Plateau and Rocky Mountain regions from the Basin and Range Province. The development of this trend as a major crustal boundary is evident in Figure 12.

The Northern Utah Highland, shown in Figure 14, includes the area around the outcropping Farmington Canyon Complex and its equivalent on Antelope Island. Eardley (1939) claims that early Paleozoic sediments up to 5,500 m

0 <u>30 km</u>

Figure 13. ERTS imagery showing major lineaments in the earth's crust in northest Utah. Note the Wasatch East and Uintah megalineaments (shaded), mentioned in the text. The Wasatch Fault, which forms the western border of the Farmington Canyon Complex outcrop, lies along the Wasatch East Megalineament (adapted from Young, 1984).

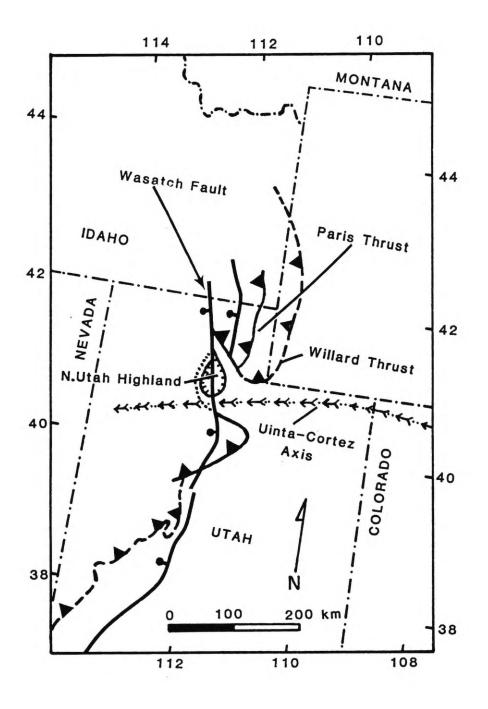


Figure 14. The Northern Utah Highland distorted the geometry of thrust faults of the Sevier/Laramide orogenies (adapted from Tooker, 1983).

thick in adjacent basins pinched out completely on the flanks of this structure before Cretaceous (Laramide) age thrust-faulting began. According to Crittenden (1972), however, there was a considerable thickness of late Precambrian and early Cambrian sediments overlying the Northern Utah Highland, which were "tectonically stripped" by the Willard thrust sheet as it partially over-rode the The thrust plate was being rapidly eroded structure. synorogenically, and continued uplift of the Northern Utah Highland accelerated this process. In either interpretation, the Northern Utah Highland stood as a basement high at the start of Sevier/Laramide deformation. Mesozoic through early Cenozoic: The Sevier/Laramide orogenies in the vicinity of the Wasatch Front consisted of eastward thrust-faulting of sediments, both broad and narrow-curvature folding, high angle reverse-faulting, normal faulting on the flanks of uplifts, and "transcurrent" strike-slip faulting through thrust sheets (Tooker, 1983). Eardley (1944) states that several stages of Sevier motion took place, resulting in a complex geometry of folds and thrust faults.

The main causes of asymmetry in the Sevier folds and thrusts west of the Wasatch front are the Precambrian autochthons. According to Eardley (1939), the Northern Utah Highland acted as a buttress in the way of the advancing thrust sheets, forcing them to wrap around it.

The westward face of the Northern Utah Highland was, therefore, an area of major stress concentration and realignment. Figure 15 shows the great influence of the these uplifts, particularly the Northern Utah Highland, on the regional structure.

The concentration of stress on the rocks of the Farmington Canyon Complex from Sevier/Laramide deformation could be responsible for the dense network of faults in the northern half of Davis County, shown in Figure 10. It is possible that these faults are Precambrian features reactivated by the new stress regime. However, many of the early Precambrian faults and fractures are filled by peqmatite dikes with a different orientation to this fault network. The late Precambrian uplift may not have been strong enough to produce such faulting. It is likely, then, that a new fracture/fault network has been overprinted on the Precambrian structure, at least locally. A combination of compression during the Sevier orogeny, followed by a relaxation of compressive stress, may be the cause of the orthogonal fracture pattern in the rocks (Friedman, 1963).

<u>Miocene through Recent:</u> Faulting in the Basin and Range began about 12 Ma. Physiographically, the eastern margin of Basin and Range extension is represented by the Wasatch fault scarp. This fault trends approximately 12 degrees

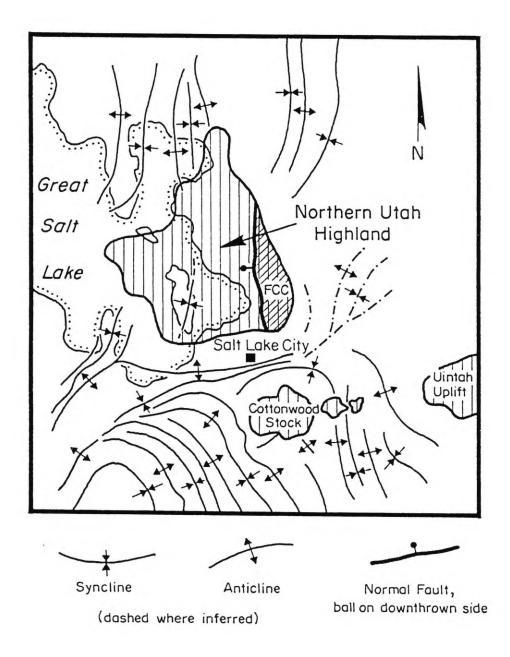


Figure 15. Fold axes associated with Sevier/Laramide compression are distorted by the existing uplifts. FCC=Farmington Canyon Complex (adapted from Eardley, 1944).

west of north. It is locally discontinuous, and has an en echelon surface expression in the southern Wasatch Range (Eardley, 1939).

Investigators have generally had a difficult time interpreting seismic data from the Jordan and Sevier valleys (Zoback, 1983; Arabasz and Julander, 1986). They mention problems associated with complex subsurface structure and heterogeneous mechanical properties of rock units, multiple microseismic events within Range blocks rather than discrete events at block boundaries, and the disagreement of calculated earthquake slip vectors at depth with surface fault attitudes (Zoback, 1983; Arabasz and Julander, 1986). These phenomena are the result of structural constraints imposed by the complicated geologic development of the area, particularly the skewed fault and fold geometry created by Sevier thrusting around Precambrian autochthons.

Both Zoback (1983) and Arabasz and Julander (1986) characterize their study areas as complex transition zones between the Colorado Plateau and the Basin and Range provinces (Figure 16). Both document isolated occurrences of events generated by compressive stress and cases of strike-slip faulting.

Zoback (1983) mentions the low seismicity of the Farmington Canyon Complex relative to the adjacent basin and speculates that it is because of the greater competence of these rock units. It may also be due to the

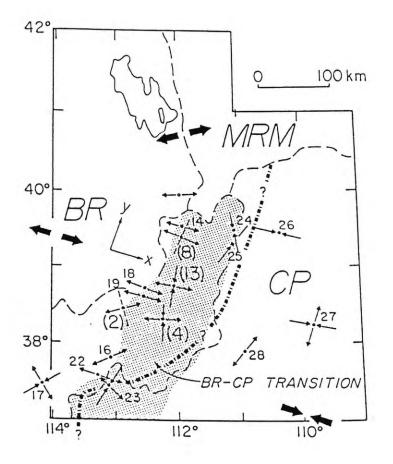


Figure 16. Seismic slip vectors indicate a complex variety of stress orientations in the transition zone between the CP (Colorado Plateau) and the BR (Basin and Range) (after Arabasz and Julander, 1986).

deep fracture network in the bedrock, which allows it to adjust and compensate for applied stress.

The orientation of the least principal stress (the direction of crustal extension) in the Jordan Valley is along azimuth 255° (Zoback, 1983). In the Sevier valley, it is along azimuth 282° (Arabasz and Julander, 1986). The latter is in line with the Basin and Range as a whole. Zoback (1983) accounts for her data by offering two possibilities: that the relative rotation is due to compensation for ongoing spreading in the Rio Grande rift, or that it is a result of anisotropy imparted by the "late Precambrian rift margin", a reference to the Paleozoic hinge line discussed earlier.

STATISTICAL ANALYSIS OF BEDROCK STRUCTURE IN THE STUDY AREA

The Farmington Canyon Complex has undergone multiple episodes of deformation, particularly by late Mesozoic through early Cenozoic age compression associated with the Sevier and Laramide orogenies. It is likely that Sevier and Laramide deformation has overprinted previous structures. The origin of this geologic structure has been discussed in the previous section. The function of this section is to characterize the present structural and lithologic configuration of the Farmington Canyon Complex.

A term commonly used to describe fractured rock masses is "complex". This term reveals nothing about the actual properties of the rock mass. It is hypothesized here that a comprehensive study of the "complex" structural fabric of bedrock can yield valuable information about its hydraulic properties and weathering characteristics. Thus, the main task of the following section is to further examine and refine the general phrase "complex structural fabric". "Structural fabric" here refers to photogeologically identified lineaments, macroscopic lithologic trends and the geometry of fractures and foliation viewed in the field. The study of the properties of these rock masses, individually and as groups, should produce a clearer and more detailed picture

of bedrock trends.

This section is a statistical characterization of the structural fabric of the Farmington Canyon Complex; its aim is to define similar structural domains within the study area. The next section correlates the regional view of lineaments obtained from photogeologic analysis with the detailed view of fracture geometries in the field, and attempts to interpret them geologically.

It is important to distinguish the statistical analysis in this section from the geological analysis in the next section. This section describes the dispersion of fracture orientations <u>regardless of their actual</u> <u>orientation</u>. In the next section, both the dispersion and the orientation of fracture sets are considered <u>in their</u> <u>geological context</u>.

Conclusions from these two sections are used in inferring potential ground-water flow paths in the bedrock, discussed in the section on hydrogeologic implications of the structural fabric.

Data Acquisition

Because the ultimate goal of this study is to better understand the hydrogeology of the bedrock in the study area, the properties chosen for study were those considered important in determining the hydraulic behavior of fractured rocks. In this study, no attempt has been made to arrive at quantitative values for bedrock porosity, storativity, or hydraulic conductivity. Instead, a regional picture of hydrogeologic trends is developed.

There is a debate as to which geometric parameters among fracture orientation, length, spacing, aperture, surface roughness, density of interconnections, and/or other properties are the most important in determining hydraulic conductivity. According to Pollard and Aydin (1988), they are fracture spacing, orientation and aperture, and their connectivity, which is a function of the first two as well as fracture length. From a numerical simulation, Long and Witherspoon (1985) found that the degree of interconnectivity of fracture sets (a function of length and density) controls permeability, and that fracture length is more important than density in determining interconnectivity.

Of the categories of data mentioned above, orientation, length and spacing were readily obtainable in the field. The following physical features and their spatial distribution were studied: fracture orientation, length, spacing and aperture, and the orientation of major structural lineaments.

Once joint data have been gathered, how should they be analyzed? The appropriate probability distributions are not well known as yet (Baecher et al., 1977; Jones et al., 1985). At best, mathematical models of fractured

rock permeability can be summed up in the "Principle of Indeterminacy" (Leopold and Langbein, 1963; cited in Legrand, 1979, p. 344):

...the applicable physical laws may be satisfied by a large number of combinations of values of interdependent variables. As a result, a number of individual cases will differ among themselves, although their average is reproducible in different samples. Any individual case, then, cannot be forecast or specified except in a statistical sense. The result of an individual case is indeterminate.

Fracture and foliation orientations were gathered from 64 stations within the study area (Figure 17). A limited amount of fracture length and spacing data were also gathered. Stations where length and spacing information was obtained are also marked in Figure 17. Fracture apertures at the surface were approximated for a single outcrop in the study area, also shown in Figure 17. Avoiding Bias

Bias in sampling fracture populations is almost inevitable, because outcrops are commonly two-dimensional, and fracture populations are not. There are many other sources of bias in the field sampling of fracture distributions and characteristics (Baecher et al., 1977; LaPointe and Hudson, 1985). In addition, the angle at which fractures intersect a free surface affects how the population will be represented; for instance, in aerial photography, steeply dipping fractures are more visible than flat-lying ones. The same is true at most physically

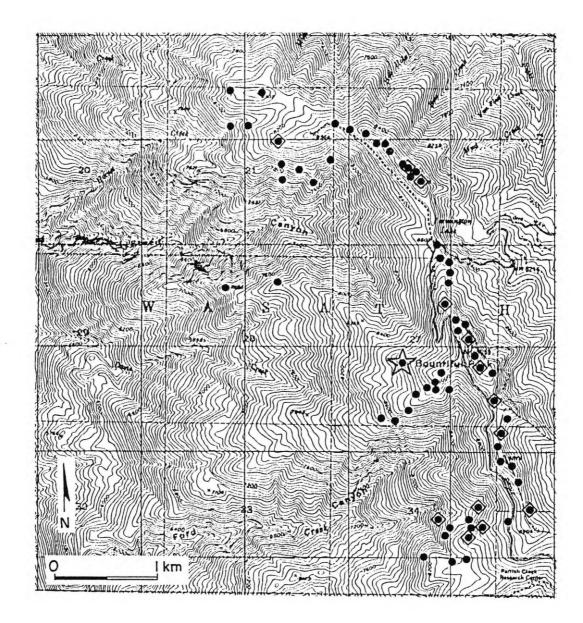


Figure 17. Stations where fracture orientation data were gathered are shown with dots. Diamonds show where fracture half-length and spacing data were taken. The star shows outcrop A98, where orientation, half-length, spacing and aperture data were taken along a scan line.

accessible outcrops. However, in the study area, many of the outcrops were found to have two or more exposed faces. In addition, fractures tended to be well exposed at the surface, allowing measurement of dip as well as strike. Figure 18 shows the distribution of outcrops in which more than one face is exposed.

Some of the sources of bias in the study area were:

 the great majority of sampled outcrops were on ridges. Fractures perpendicular to the ridge trend are more likely to be encountered than those that parallel the ridge. Thus a regional bias is introduced.

2) Fractures are less likely to be filled with weathered material on the ridges than in the valleys.

3) In ground-level outcrops (see Figure 18) high angle fractures are more likely to be encountered than low-angle fractures.

Measures taken to obtain a truly representative sample were:

a large number of observations were made (over
 1400 observations). At each outcrop, an effort was made
 to take a number of fractures from each visible set.

2) In the case of three-dimensional outcrops, which are common throughout the study area, orientation data were obtained from more than one exposed face of the outcrop. The majority of fracture dips appear to be steep. However, dip orientations for foliation planes are much less steep, within the same study area. This fact

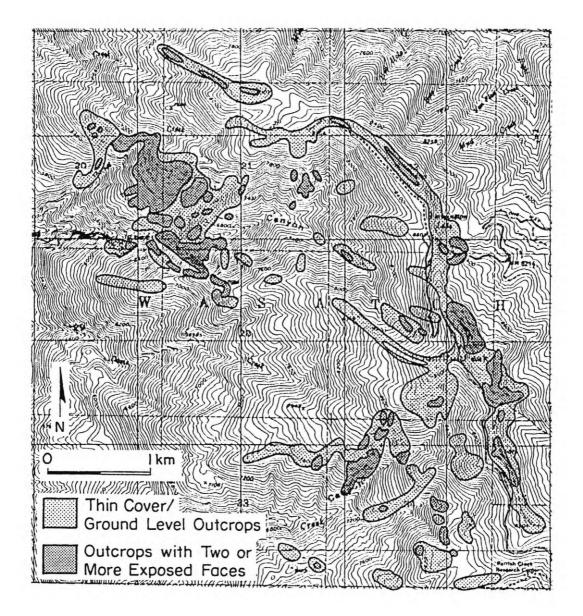


Figure 18. Distribution of bedrock outcrops in the study area.

supports the contention that orientation data are relatively unbiased.

3) The lithology of the bedrock was noted for each fracture orientation.

4) Length and spacing data as well as orientation data were obtained using a scanline method in which only the trace lengths on one side of the tape are sampled. This method simplifies the mathematical estimation of the true (uncensored) trace length distribution from the raw (censored) data (Warburton, 1980). Although this conversion was not done for outcrops sampled in this study, the field technique itself was quicker and more suited to the irregular shape of outcrops in the study area. Thus, trace length data are presented as "halflengths".

Plotting the Data

Fracture analysis involving Fisher statistics and Kamb contouring, and presentation of stereonets and rose diagrams were carried out using the "Structure Graphics" program written by Wiltschko (1990).

Scatter Diagrams

Initially, fracture orientations for each station and lithology were plotted on lower hemisphere Schmidt nets, in the form of scatter diagrams. Discrete joint sets are apparent in many of these diagrams, as in Figure 19 A. When orientation data for the same lithology for a number of local outcrops are combined, joint sets are less clearly defined, as in Figure 19 B. If all the data for one locality are combined, orientations appear to be more or less randomly oriented, as in Figure 19 C.

This apparent randomness is actually the effect of mixing outcrops with different fracture sets into a single group. To avoid mixing different populations, principal fracture sets were determined, by eye, from the original data: one for each lithology within a single outcrop. These principal orientations were then ranked qualitatively as very good, good, fair, poor and very poor, depending on the visually determined tightness of each grouping; poor and very poor were not used. The remainder were compiled into a data set of "principal fracture orientations" for subsequent analysis.

Random or Not?

Both the "principal fracture orientations" data set and different groups of raw data were analyzed statistically to determine whether or not they were random, and also to further characterize their distributions. If the fracture orientation data recorded in the field were truly randomly distributed, then anisotropies in hydraulic properties of the bedrock must be attributed to other factors. Therefore the first step in characterizing fracture orientations was to establish whether any or all of the data sets were randomly

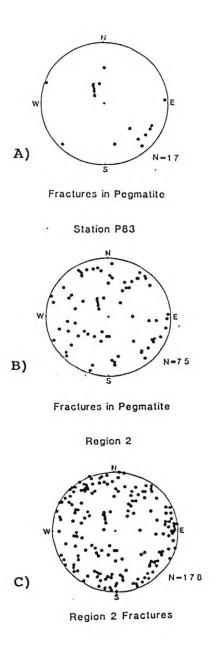


Figure 19. Scatter diagrams of fracture poles in Schmidt nets. A. Poles to fractures at one outcrop form discrete sets. B and C. No individual sets can be distinguished when the area of observation is increased. oriented. Two methods were used to do this.

The Fisher Method

The first method was to view the poles to fracture planes as unit vectors in a sphere, and to compare the magnitude of the resultant vector, R, for each data set with that of Ro, a resultant vector calculated for random spherical distributions at 95 percent confidence (Tabulated by Irving, 1964, and included in Appendix 2). The magnitude of the resultant vector is calculated as follows:

 $R=S^{2}(1)+S^{2}(m)+S^{2}(n)$,

where S^2 is the sum of squares of 1, m and n, which are the components of each of the three-dimensional vectors in a data set (Fisher, 1953, p. 296).

Fisher described the distribution of unit vectors in three-dimensional space with the probability density function P, where

 $P=[K/4(pi)sinh K]e^{Kcos\beta};$

B is the angular distance between a given point and the true population mean, and K is the precision parameter, discussed below (Tarling, 1983, p. 118). This equation has traditionally been most useful in paleomagnetic studies, where a spherical mean direction of remanent magnetism is sought among a distribution of orientations in an area. The mean is the resultant vector with the greatest magnitude of direction cosines. This method is applicable to the analysis of fracture pole distributions. However, it must be used with caution when data sets are broadly distributed throughout the sphere, or when more than one fracture set is present. The majority of data sets from the study area fall into one or both of the above categories. Figure 20 shows how an inappropriate mean can be generated for a population of fractures.

Rotating Data

In order to overcome problems with broad distributions and/or multiple fracture sets, a technique similar to the one suggested by Andrews (1971) was used. The procedure involves finding the best-fit plane to all the poles in a data set; this divides the data set into roughly symmetrical halves. Then all the data points on one side of that plane are rotated by 180° about the vertical axis in the center of the hemisphere, and superimposed on the other half. This technique works best for distributions with two symmetrical fracture sets, which are common in outcrop data from the Farmington Canyon Complex; but it is applicable to all diffuse and disparate orientation distributions. An example from Andrews (1971) is shown in Figure 21.

Rotated data sets were analyzed by the Fisher method. Obviously, the rotated data are not truly representative either of the orientation or the grouping of the original

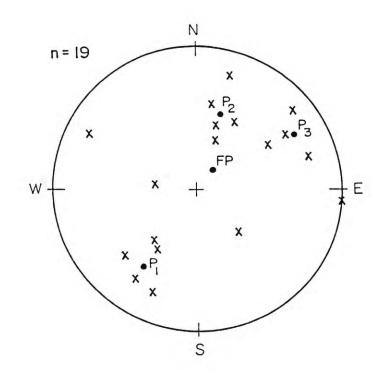


Figure 20. The Fisher mean pole of the data set of poles to fractures is labeled FP. A more accurate representation of the distribution of the data is P_1 , P_2 and P_3 , representing three <u>separate</u> poles.

Figure 21. A. An equatorial plot of bi-modal orientation data. B. The points on the left of the N-S line have been rotated by 180° and overlain on the right side. Open circles are the rotated points (after Andrews, 1971). data sets. However, because the problem with disparate data is eliminated, the result is a better <u>relative</u> representation of the data sets, for purposes of comparison. Since the objective is simply to compare dispersion parameters for different data sets, the mathematical conversion between axial and vectorial data was deemed unnecessary. In addition, the rotated data sets are closer to spherical normal, which is required by the Fisher method. The statistical comparisons in this section use the rotated data sets.

The Fisher distribution is not entirely satisfactory for describing the orientation of poles to fractures, for two reasons: 1) it is a parametric method, which assumes that the data are grouped in a "spherical normal" array (Fisher, 1953), and 2) the Fisher distribution considers the dispersion of vectors on the entire surface of a sphere, where each vector is unidirectional. Fracture orientations are plotted as points on a lower hemisphere projection for convenience, and so may be characterized by Fisher statistics. However, they are really <u>axes</u>, which would be represented by two diametrically opposed points on the surface of an entire sphere (Mardia, 1972). Thus the dispersion of raw axial data cannot properly be analyzed using vectorial criteria (Mark, 1974; Yonkee, 1990).

In conclusion, it may not be advisable to use the Fisher method for 1) determining the randomness of groups of axial data, or 2) finding the trend and plunge of the spherical mean of widely dispersed or multi-modal pole orientations. However, it is believed that the Fisher method is useful for <u>comparative</u> purposes between data sets, particularly if the data are rotated.

The Eigenvalue Method

An alternative analytical method makes use of the eigenvalues of the orientation tensor calculated from the direction cosines of each data set (Woodcock and Naylor, 1983). These values are the magnitudes of the three axes of an ellipsoid that describes the shape of the distribution of orientations in the data set. The eigenvalues are normalized to the population of each data set, and the ratios between the greatest (S_1) , middle (S_2) and least (S_3) are compared. End members of ellipsoid shapes are elongate clusters, where S_1 is much greater than S_2 and S_3 , and girdles, where S_1 and S_2 are similar, and S_3 is much smaller (Woodcock and Naylor, 1983).

The other application of the eigenvalue technique is to test the randomness of groups of orientations. An ellipsoid that is not significantly different from a sphere cannot be described either as a cluster or a girdle. Woodcock and Naylor (1983) developed a statistic to test the "strength" of a group of orientations for

different confidence intervals, based on the ratio S_1/S_3 .

Just as with the Fisher distribution, it is dangerous to use the eigenvalue method indiscriminately, particularly for data sets that have two or more preferred orientations. As shown in Figure 20, many of the data sets from the Farmington Canyon Complex are of this type.

Comparisons of "Goodness of Fit"

The precision of a spherical distribution as described by Fisher (1953) is determined by two methods:

1) The k parameter

This is an approximation of the true precision parameter K. K is 0 for completely uniform spherical distributions, and infinite for a single unit vector. K is a property of an entire population, so it cannot be known in a realistic field survey; but it can be approximated by the sample parameter k, which is given as

k=(n-1)/(n-R)

(Fisher, 1953, p. 303), where n is the sample population, and R is the magnitude of the resultant vector; thus the larger the value of k, the tighter the grouping. This relationship works for k greater than 3 and n greater than 7 (Tarling, 1983). If k is greater than 10, the calculated mean of a Fisher distribution of vectors is a good approximation of the true mean (Tarling, 1983). The maximum k for data sets from the Farmington Canyon Complex is 4.57, and most are well below this value. However, the concern here is simply to characterize the dispersion of fracture orientations; the Fisher distribution is not used for analysis of the actual orientations of fracture sets in this study. Orientations have been determined by contouring the data, as discussed later in this section.

2) The radius of alpha95

This is a graphical way to compare spherical data. The radius of a circle on the surface of the unit sphere which contains 95 percent of the observations, centered on the resultant vector, is calculated (McElhinney, 1973). The smaller the radius, known as alpha95, the tighter the grouping. Alpha95 gives a good visual idea of groupings of fracture orientations about a mean value.

The two methods are similar in that they describe the closeness of the clustering of values around the mean vector. One difference between them is that k takes the entire sample into account, while alpha95 disregards the "worst 5 percent" of the observations. This means that k is more susceptible to outliers than alpha95. It is not known which of the two parameters is most suitable for the description of fracture sets in a hydrogeological context.

Results of Randomness and Goodness of Fit Analyses Randomness

1) Fisher method

Table 1 shows that 71 percent of the unrotated fracture orientation data sets used in this analysis have

a ratio of R/Ro of greater than 1, indicating a non-random distribution at 95 percent confidence. For the remainder, R/Ro is less than 1, so they would seem to lack preferred orientation. These conclusions are not necessarily correct; certain distributions of points on a sphere are inappropriate for analysis using the Fisher method, as discussed above.

Table 1. Comparing values of R for each data set with Ro for an equivalent randomly oriented data set. Left column is for raw data; right column shows effect of rotation procedure (discussed above). Data sets marked by an asterisk (*) are from principal fracture sets determined by eye from scatter diagrams of individual outcrops. XNFC and XNFD refer to fractures in outcrops adjacent to faults labeled C and D in Figure 11. 71 percent of the unrotated data sets are non-random at 95 percent confidence.

Data Set Name	Sample size (n)	R/Ro	
		Unrotated	Rotated
*All Fracs	68	2.49	3.88
*Gneiss	49	1.80	3.39
*Amphibolite	33	2.11	2.62
*Pegmatite	21	1.24	2.03
XNFD	99	2.78	4.57
XNFC	82	2.17	4.19
*Region 1	10	0.83	1.45
*Region 2	9	1.14	1.46
*Region 3	20	1.41	2.04
*Region 4	15	1.19	1.93
*Region 5	10	0.99	1.74
*Region 6	10	0.99	1.62
*Region 7	10	0.93	1.38
*Region 8	13	1.16	1.62

Table 1 also compares unrotated and rotated R/Ro values for the data sets. All the rotated sets are non-

randomn at 95 percent confidence; but this result is also misleading, because values may be inflated above their "true" level. Nevertheless, although the value of R/Ro cannot prove that the remaining 29 percent of the original data sets are non-random, it provides a better description of the data. Eigenvalues were not calculated for the rotated data.

Fracture intersection lines were computed from the data in regions 1 through 8. R/Ro analysis for these (unrotated) data sets shows that they are all non-random at 95 percent confidence (see Table 2 below). A more complete explanation of the importance of fracture intersection lines is given further ahead.

Table 2. R/Ro values for fracture intersection lines in regions 1 through 8. The value for region 3 was not computed since the Ro value for n=190 was not available. Ro for Reg4int was estimated from the tabulated value for n=100. All samples were computed from the "principal fracture orientations" data set. All are comfortably nonrandom at 95 percent confidence.

Data Set Name	Sample Pop.(n)	R/Ro
Reglint	45	2.88
Reg2int	36	2.76
Reg3int	190	
Reg4int	105	3.51
Reg5int	45	2.32
Reg6int	45	2.15
Reg7int	45	2.35
Reg8int	78	2.63

2) Eigenvalue method

Figure 22 shows that poles to fracture sets for

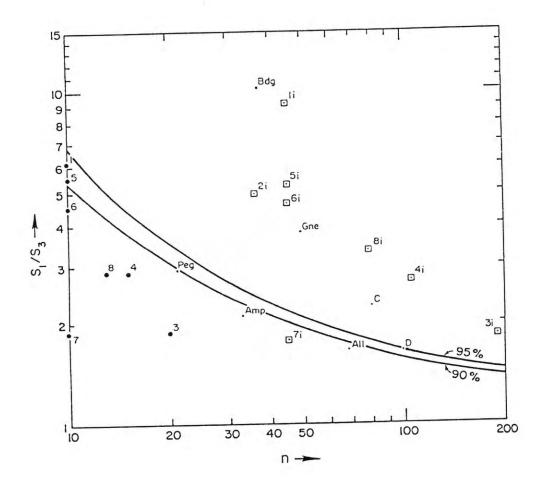


Figure 22. A plot of the randomness of fracture pole orientation distributions at 90 and 95 percent confidence. Numbers 1 to 8 are for poles to fractures, by region. Numbers followed by "i" are for intersection lines, by region. C and D=data sets XNFC and XNFD. Gne=gneiss; Amp=amphibolite; Peg=pegmatite; All=entire study area; Bdg=foliations in study area. Region 2 has only 9 data points and would plot in the random field (adapted from Woodcock and Naylor, 1983).

.

regions 1 through 8 are random at 95 percent confidence. Therefore, at this confidence level, no preferred fracture orientations exist. However, at 90 percent confidence, regions 1 and 5 are non-random, indicating that these two data sets contain preferred orientations of fractures. The distribution of fractures adjacent to fault C is nonrandom at 95 percent confidence; fractures adjacent to fault D are non-random at 90 percent confidence (refer to the geologic map in Figure 11 for the location of faults C and D).

Poles to fractures in pegmatite and amphibolite are random, but in gneiss they are non-random; this is in agreement with the R/Ro analysis. Finally, the principal trends of fracture intersections for seven of the eight sub-regions plot well into the non-random field. This too is in agreement with the R/Ro analysis.

Statistical Comparisons

1) Fisher method

An attempt was made to quantify differences in goodness of fit, or the "tightness" of groupings, for fracture sets within the study area, according to different geological criteria. These criteria were A) lithology, B) proximity to major lineaments, C) geomorphic (and perhaps structural) regions, D) different lithologies within geomorphic regions. Values of k and alpha95 were computed for these criteria. The rotated data sets were

used for comparison. In cases A) and B) the raw data are plotted next to the rotated data for reference.

A) Lithology

Variations in lithology have been simplified into gneiss, amphibolite and pegmatite, as shown in the geologic map in Figure 11. It was hypothesized that the foliated metamorphic rocks classified as gneiss should have more consistent fracture orientations than pegmatites. The results show that k is greatest for gneiss and least for pegmatite; alpha95 is smallest for gneiss and greatest for pegmatite (Figures 23 and 24). The two parameters show that gneiss has the narrowest spread of fracture orientations, and pegmatite has the widest.

B) Proximity to major lineaments

At least three lineaments, interpreted to be faults, were mapped in the study area (Figure 11). It was hypothesized that the strain associated with faulting would have imposed a local disturbance on the regional fracture pattern. Figures 23 and 24 also show the statistical parameters for fracture orientations taken from outcrops adjacent to lineaments in the study area. The values of k and alpha95 for these two data sets reflect values of k and alpha95 for the entire study area. This implies that the distribution of orientations for sites adjacent to faults in the study area is not

Comparing Fisher k

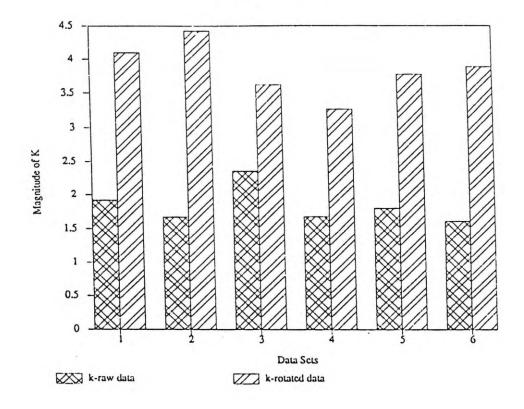


Figure 23. Fisher k parameters compared for different data sets in the study area. 1=all fracture sets; 2=fracture sets in gneiss; 3=fracture sets in amphibolite; 4=fracture sets in pegmatite; 5=fracture sets adjacent to fault C; 6=fracture sets adjacent to fault D. The rotated k value is greatest for gneiss and least for pegmatite.

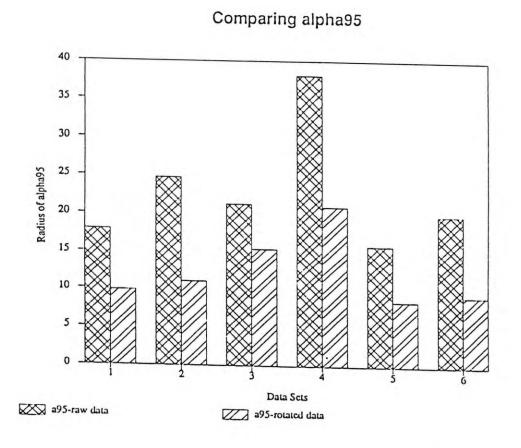


Figure 24. The rotated alpha95 value is smallest for gneiss (#2) and largest for pegmatite (#4).

significantly different from that of the "background", or entire study area.

C) Geomorphic regions

The field study area was divided into eight regions, corresponding to different geomorphic environments (Figure 25). Regions 1, 4, 5 and 6 are along sharp ridges forming the crest of the Wasatch Front; outcrops here are well exposed, and vegetation is sparse. Regions 2, 3 and 8 are located on less steep, wider, west-trending ridges between canyons; aspen and other trees and scrub are present here, and outcrops are less well exposed. Region 7 is on a steep south-facing slope. It was thought that fracturing on sharp ridges would be more consistently oriented than in the other regions.

The following paragraph is a review of results shown in Figures 26 and 27. The highest k values belong to regions 4, 5 and 6. The smallest values of alpha95 are found in regions 3, 4, 5 and 6. Altogether, it appears that regions 4, 5 and 6 have the tightest grouping of fracture orientations. These correspond to three out of the four sharp ridges. Region 7 appears to be the most widely scattered, followed by region 2. The other regions have intermediate statistical properties.

D) Different lithologies within regions 1 through 8

The field data on fracture orientations included an identifier of location as well as lithology; this allowed

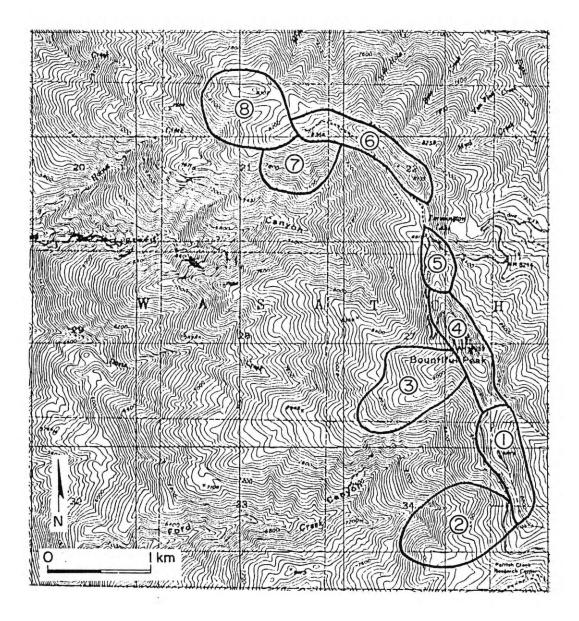
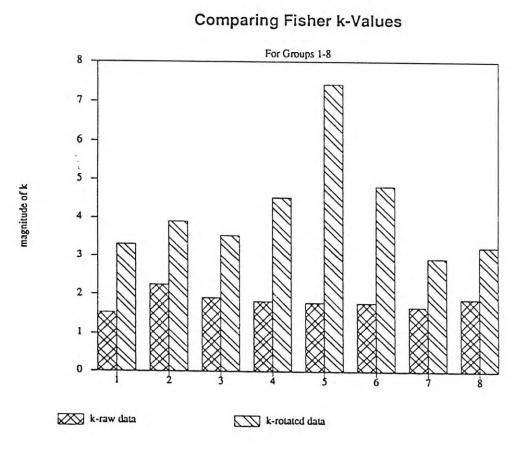
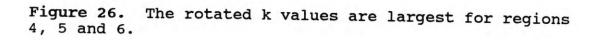




Figure 25. Regions 1 through 8, separated on the basis of geomorphic appearance. Fracture orientation data were classified by region.

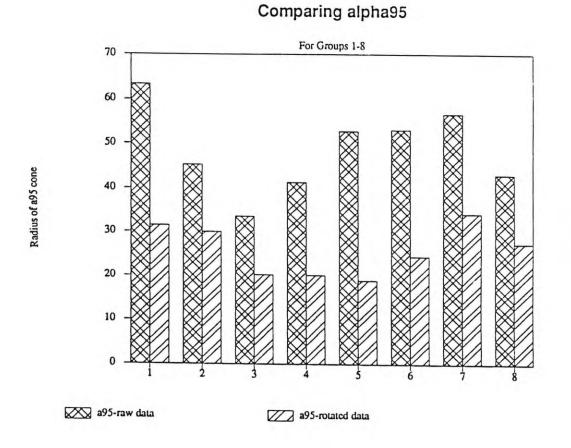


Figure 27. The rotated alpha95 values are smallest for regions 3, 4, 5 and 6.

the same data to be grouped in two different ways. The purpose of doing this was to see which criterion of lithology or spatial location had a greater influence on fracture orientation distribution. It was reasoned that if, for instance, sample parameters k and alpha95 were not statistically different for different lithologies, then lithology in itself was not a significant influence on the distribution of fracture orientations.

The statistical test employed to compare the two groupings of sample parameters was the Kruskal-Wallis test. This is a nonparametric or "distribution-free" statistical test. It does not require that the sample be from a normal population (Davis, 1986). Nonparametric tests cannot be used for analyzing interval or ratio data, as can the sophisticated tests based on normal distributions (Conover, 1980). However, for this simple application, the Kruskal-Wallis test is adequate.

The original data were classified according to the two criteria; k and alpha95 were calculated for each, forming two 3 by 8 matrices of 21 sample parameters (3 slots were empty due to a lack of data) as shown in Table 3. For each criterion, the null hypothesis stated that the given parameters were from the same population (i.e., not significantly different at 95 percent confidence).

		Lithology					
	Gne	Gneiss		Amphibolite		Pegmatite	
	k	95	k	95	k	95	
Regio	n						
ī	6.32	11.4	5.06	10.4	4.81	8.8	
2	3.44	22.0	2.99	13.8	3.22	10.3	
3	-	-	3.68	10.1	3.15	9.6	
4	4.12	8.2	4.45	24.5	4.05	8.7	
5	3.62	11.6	4.83	15.8	-	-	
6	4.26	8.5	4.84	15.1	4.07	17.6	
7	3.46	11.8	3.14	18.9	-	-	
8	4.92	8.1	4.06	11.6	6.19	40.2	

Table 3. Descriptive parameters of fracture orientation distributions, grouped by lithology (rows) and by geomorphic region (columns).

The Kruskal-Wallis test shows that k and alpha95 for gneiss, amphibolite and pegmatite are not significantly different at 95 percent confidence. None of the alpha95 values for regions 1 through 8 are significantly different either. However, one or more of the k values for regions 1 through 8 <u>are</u> different. This can be seen qualitatively in histograms of the parameters for different lithologies, and different regions (Figures 28 through 31).

It was mentioned above that the parameter k is more sensitive to data outliers than alpha95. This is probably the reason why the Kruskal-Wallis test showed significant differences in k for regions 1 through 8, but not for alpha95.

It is concluded that geomorphic environment is a more important influence on the distribution of fracture orientations than lithology. The test results, and the

Average k Values

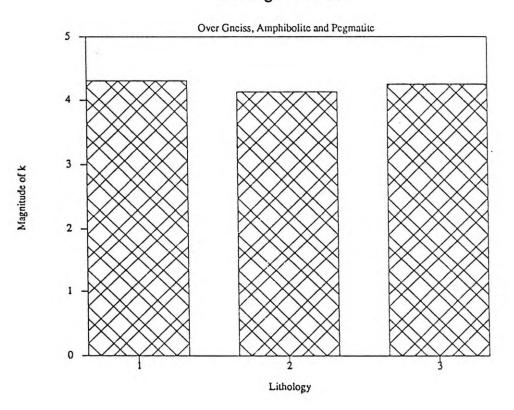


Figure 28. Variability in k for gneiss (#1), amphibolite (#2), and pegmatite (#3). Average values range from near 4.0 to near 4.3.

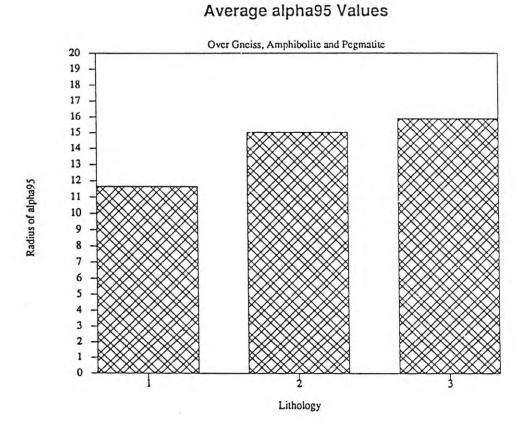


Figure 29. Variability in alpha95 for the three lithologies. Average values range from near 11.5 to near 16.0.

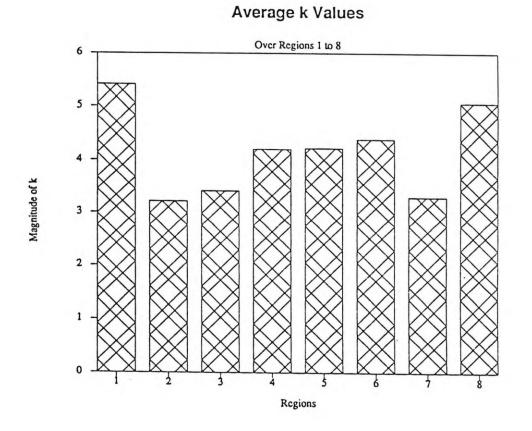
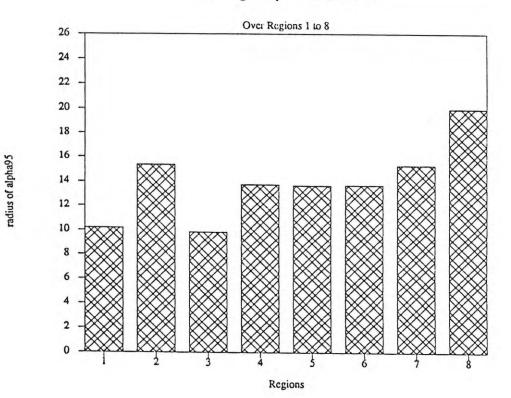



Figure 30. Variability in k for regions 1 through 8. Average values range from near 3.0 to near 5.5.

Average alpha95 Values

Figure 31. Variability in alpha95 for regions 1 through 8. Average values range from near 10 to near 20.

steps involved in calculating the Kruskal-Wallis statistics are shown in Appendix 3.

An important assumption in this test is that the two criteria (lithology and geomorphic region) are independent (Milton and Arnold, 1986). It is likely that there is a geological link between the distribution of lithologies and the geomorphic character of regions; for example, the sharp ridges are in many cases the site of elongate pegmatite outcrops. However, for the Kruskal-Wallis tests, the assumption of independence was justified, because statistical comparisons were made <u>within</u> each classification of variables. In other words, lithology was analyzed separately from regions.

2) Eigenvalue method

The normalized eigenvalue ratios of each data set were compared to show the general shape of the distributions (i.e. towards clusters or girdles). Figure 32 shows how the shapes of the fracture pole orientations can be described by the relative magnitudes of S_1 , S_2 and S_3 . The data sets for the Farmington Canyon Complex are shown in Figure 33. In the perspective offered by Figure 32, most of these data have "weak" fabric strength. Few of the groupings represent either clusters or girdles. The only obvious girdles are for Bdg (the set of foliations) and the fractures in region 2. Relatively strong clusters are seen for fracture intersection lines

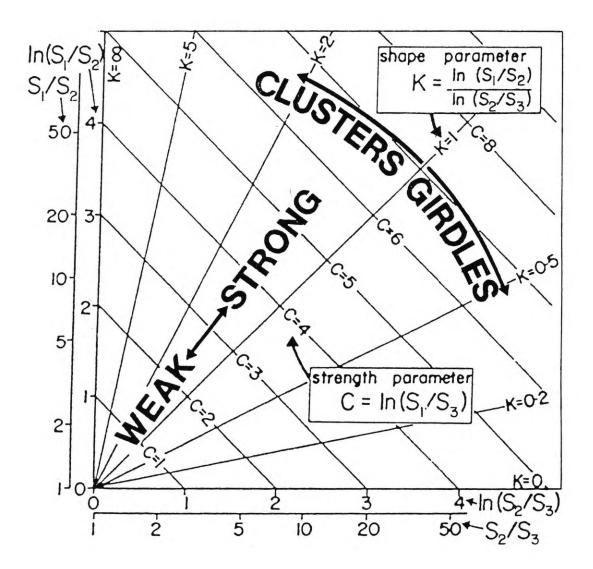


Figure 32. A Plot of ellipsoid shapes described by the relative lengths of their axes, as indicated by the relative magnitudes of the normalized eigenvalues S_1 , S_2 and S_3 . C is a measure of departure from sphericity of the ellipsoid; data at the origin are spheres (after Woodcock and Naylor, 1983).

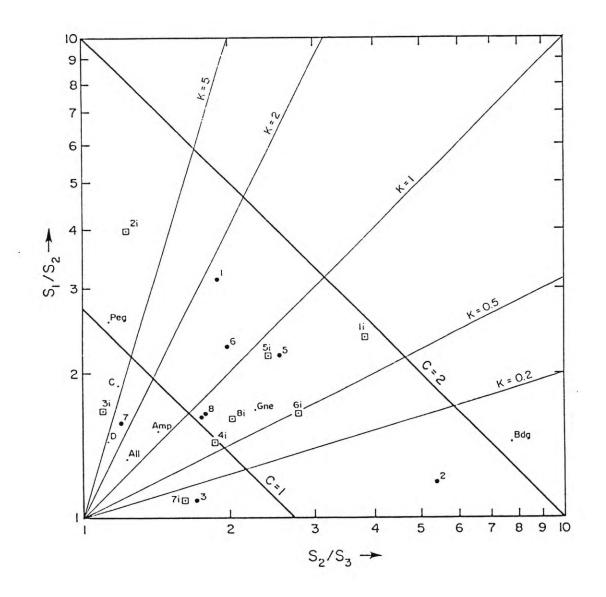


Figure 33. Eigenvalue ratio plot showing the shape of fracture orientation sets from the Farmington Canyon Complex. Dots are poles to fractures; squares are intersection lines; abbreviations are the same as for Figure 22 (adapted from Woodcock and Naylor, 1983.)

in region 2, and for fractures in pegmatite.

An interesting observation from Figure 33 is that poles to fractures plot opposite to fracture intersection lines generated from the same data set. Thus, a welldefined girdle configuration of fracture orientations will have a tight cluster of intersection lines.

Summary and Discussion of Results

The R/Ro analysis of unrotated data suggests that at least 71 percent of the fracture orientation distribution samples selected from the field data in the study area are non-random at a 95 percent confidence level. These findings are incompatible with the results of the eigenvalue tests for the same data sets (Figure 22), which finds them all to be random at 95 percent, except gneiss and data set XNFC. In addition, at 90 percent confidence, regions 1 and 5 and data set XNFD are non-random.

In view of the limitations of the Fisher method (discussed above), the results from the eigenvalue analysis are accepted: 1) there are no preferred orientations in principal fracture sets for the entire study area, for pegmatites or amphibolites, or for any of the eight sub-regions of the study area at 95 percent confidence, and 2) contrary to the Fisher analysis results, it appears that there <u>is</u> a significant difference (at 90 percent confidence) between the dispersion of fractures adjacent to faults and those of the "background", or entire study area.

Among rotated data sets analyzed by the Fisher method, the most tightly focused fracture orientation groups were found in gneiss, and in regions 4, 5 and 6. This agrees to some extent with the eigenvalue analysis of unrotated data sets, which found fractures in gneiss, and in regions 1 and 5, to be non-random at 90 percent confidence. Both the R/Ro and eigenvalue tests on (unrotated) fracture intersection lines for regions 1 through 8 indicate non-randomness at 95 percent confidence, except for region 7, which is random according to the eigenvalue analysis.

The fact that the majority of data sets of fracture intersections are non-random suggests that a preferred orientation of the structural fabric <u>does</u> exist, which is not apparent in the analyses of the fractures themselves. This implies that fracture sets are not truly randomly oriented, and that neither the Fisher nor the eigenvalue analyses are completely satisfactory for such complex and poorly focused orientation data. The Kamb contouring method (discussed ahead) also supports the idea that there are preferred orientations of fractures in these data sets.

The Kruskal-Wallis test on the dispersion parameter k shows that variations in fracturing style between lithologies are overshadowed by the variation between geomorphic environments. However, it is important to recognize that the differences between these regions are the result of geological processes of various types. More resistant lithologies exist along ridges (regions 1, 4, 5 and 6). Regions 2, 3 and 8 are cut by faults; Bryant (1988, p. 43) notes the sites of high-angle faults are wide zones of thicker soil development, "marked by gullies, notches, and vegetation", as shown in Figure 34. The areas depicted in this figure have a similar geomorphic appearance to regions 2, 3 and 8.

These results bring out the truly heterogeneous geological nature of this part of the Farmington Canyon Complex, consistent with its complex geologic history. It is also seen that care must be taken in applying statistical analyses to real geological data, in order to obtain meaningful results. A further implication for this area is that detailed analyses over the entire study area, or within small blocks of the study area, may be less useful than analyses that determine the size and extent of more or less homogeneous regions, such as photogeologic investigation.

Contouring Preferred Orientations

Having statistically characterized the data in terms of randomness and precision, a method was sought which would display the orientation as well as the dispersion of fracture sets. This was accomplished by contouring

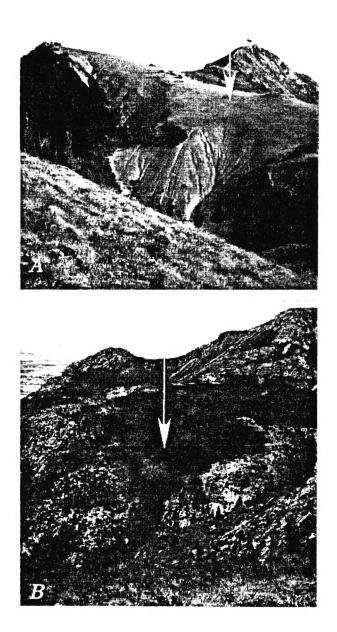


Figure 34. Geomorphic expression of two high-angle faults in the Farmington Canyon Complex. A. Francis Peak Fault B. A fault near Bountiful Peak (after Bryant, 1988). observations by their density on the lower surface of a hemisphere stereonet.

Contouring the orientations of poles to fracture planes clearly identifies fracture sets. Commonly, poles to fractures are contoured by the number of observations within a specified percentage of the area of the hemisphere. This method can be inconclusive for large data sets, because, as the number of poles to be contoured increases, their density increases throughout the hemisphere, and much "noise" may be generated.

The contouring procedure used in this analysis was developed by W.B. Kamb (1959). The Kamb method works independently of the number of observations in the data set. A counting area "A" is assigned such that the number of observations "E" falling within A is equal to 3 times the standard deviation of n, the number of points that will fall within A if the sampling is random (i.e., no preferred orientations). The reason that 3σ is chosen as the lower threshold of significant non-randomness is that randomly oriented groupings of fractures may coincidentally contain points in close proximity to each other, thus imitating a non-random grouping. Raising the requirement for non-randomness allows for this problem. For a population of vectors on a sphere, with no preferred orientation, the following equation can be written (Kamb, 1959, Appendix):

$\sigma/E=([1-A]/nA)^{1/2}$, where E=nA.

Contours were drawn to separate densities up to 3σ , above 3σ to 5σ , above 5σ to 7σ , and so on. Kamb contours of the data sets described in the previous section are shown in the next section.

Orientations of Fracture Intersections

The degree of interconnection of fractures has a great effect on fluid flow through fractured rocks (Long and Witherspoon, 1985). Fracture connectivity is not simple but depends on fracture orientation, length and density.

It has already been shown that samples of fracture intersection lines computed from fractures in regions 1 through 8 of the study area are clearly non-randomly distributed, except for region 7. The Structure Graphics program (Wiltschko, 1990) calculates and plots the orientations of all possible lines of intersection between planes in a data set, assuming fractures are infinite planes. This is an important assumption, and may be unreasonable as a basis for computing hydraulic permeability if the fracture length and density of a sample are non-uniform; if this is the case, longer, more closely spaced fractures will be better connected than shorter, more widely spaced ones, which might greatly affect the main permeability trends (Long and Witherspoon, 1985). A scan-line survey of one outcrop in the region (Station 98) revealed the following information about the orientations of fractures of different lengths and apertures:

1) Longer fractures were oriented similarly to the complete data set (Figures 35 A and B).

2) Open fractures were oriented similarly to the complete data set (Figure 35 C).

If outcrop A98 is representative of the region, the three-dimensional structure of shallow bedrock fractures is relatively uniform for fractures of different lengths and apertures. Other outcrops were qualitatively observed to have similar properties. This analysis helps justify the method used for calculating fracture intersection lines, because if fractures of different types are similarly oriented, their intersection line (and relative permeability) trends should also be similar.

Fracture Spacing and Length

Fracture spacing and length data were collected for a few of the stations, as shown in Figure 17. The data collection technique has already been described. In each case, the scan line was oriented as near as possible to perpendicular to the principal fracture set. Fracture half-lengths, and the spacing between them, were recorded. In some cases, fractures extended to the edges of outcrops. The lengths of these fractures are not known,

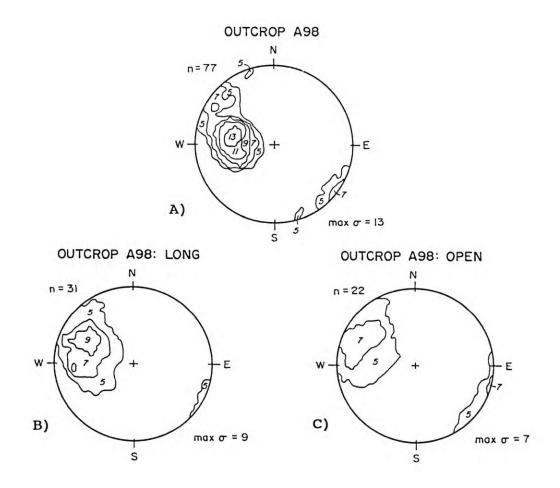


Figure 35. Contoured Schmidt nets of poles to fractures at outcrop A98. A. All fractures B. Fractures with half-lengths greater than 80 mm C. Fractures with apertures greater than approximately 0.5 mm. but the observed lengths were used in subsequent analyses. The irregular surface and elongate shape of most of the outcrops limited the utility of fracture length information.

Results are similar for most stations. Examples are presented, for three different lithologies, in Figures 36, 37 and 38. Both length and spacing data are exponentially or lognormally distributed: most of the fractures are short and closely spaced. There is a lack of longer, more widely spaced fractures. The same distribution was found at almost all outcrops, regardless of lithology. It is not clear what these distributions imply for the hydrogeologic behavior of the rock mass.

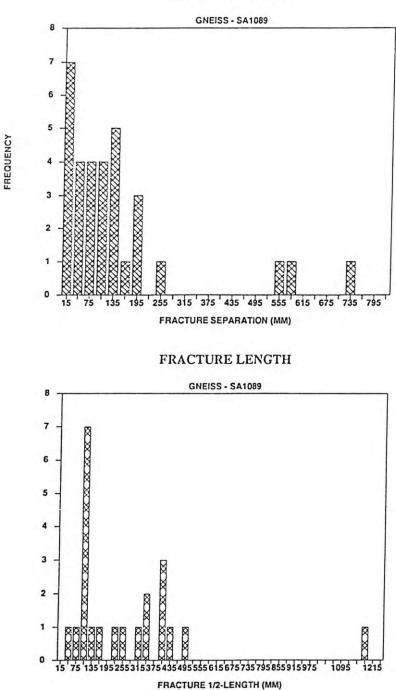
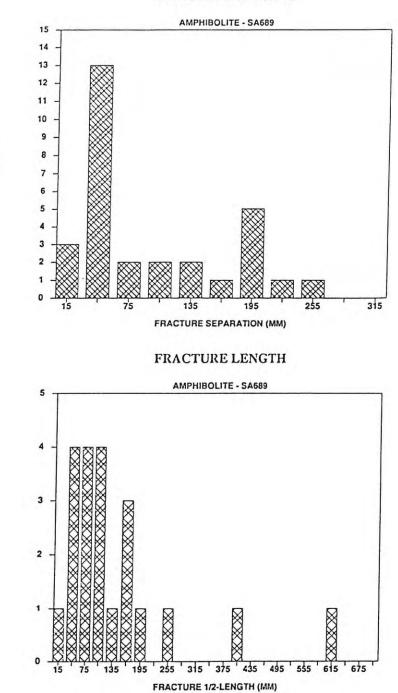



Figure 36. Fracture spacing and half-length for a gneiss outcrop (scan line technique).

FRACTURE SPACING

FREQUENCY

Figure 37. Fracture spacing and half-length for an amphibolite outcrop (scan line technique).

FRACTURE SPACING

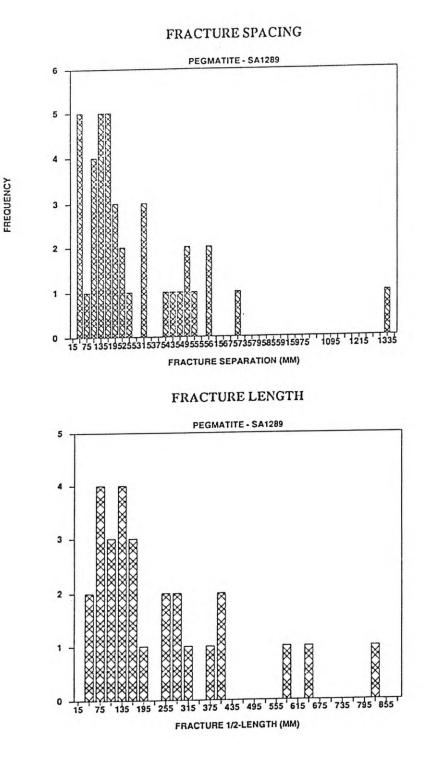


Figure 38. Fracture spacing and half-length for a pegmatite outcrop (scan line technique).

Orientations of Fractures and Foliation Entire Study Area

The principal pole(s) for each outcrop were contoured in one diagram for the entire study area (Figure 39). The density of poles is a maximum of 7σ . There are two clusters of poles, as shown in Table 4. The strike of the most pervasive set of fracture planes is approximately 57° from the trend of major faults in this area (shown as dashed lines in Figure 11), and 65° from the orientation of the Wasatch Fault. (Structural trends are given in azimuth angle from true north, generally between 180° and 359°). The average dip for this set is 79° SE.

Table 4. Mean orientations of the principal fracture and foliation sets estimated from Figures 39 and 40 A.

Data Set	Poles Trend/Plunge	Planes Strike/dip	
All Fractures	323°/11°	233°/79°SE 286°/50°N 311°/33°SW	
	196°/40°	286°/50°N	
All Foliations	196°/40° 221°/57°	311°⁄33°SW	

Figure 40 A shows Kamb contours of poles to observable foliation planes within the study area. The orientation of the greatest density of poles to foliations is listed in Table 4. The poles form a girdle configuration about a pole located at 291°, 20°. This distribution agrees well with similar data obtained by

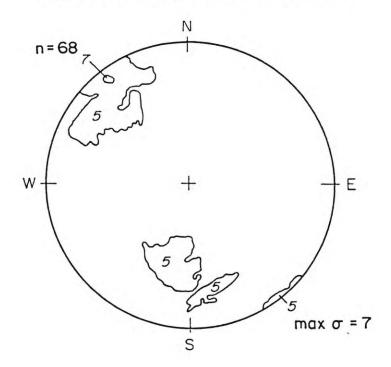


Figure 39. Contoured Schmidt net of poles to fracture sets for the entire study area.

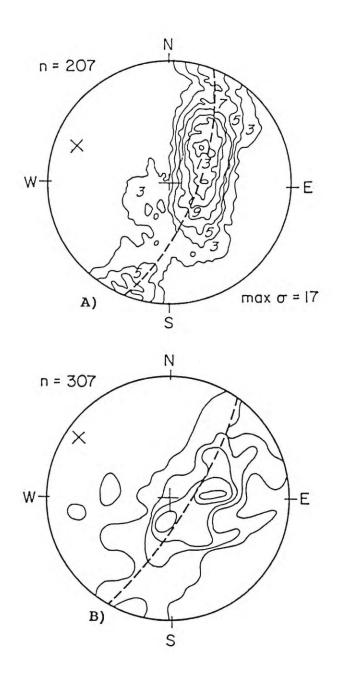


Figure 40 A. Contoured Schmidt net (Kamb method) of poles to all foliations in the study area, showing a girdle around a pole at azimuth 291°, dip 20°. B. Contoured poles to foliation for non-cataclastic rocks in Bountiful Peak quadrangle form a girdle around a pole at azimuth 303°, dip 10° (after Bryant, 1988). Contours in this diagram are for pole density percent (0.65, 2, 3.3, 4.5 and 6 percent) within a fixed area of the sphere (1 percent). Bryant (1988), shown in Figure 40 B. Comparing Figure 40 A with Figure 39, it is apparent that the principal set of poles to fractures and the greatest density of poles to foliation planes are very nearly orthogonal in three dimensions.

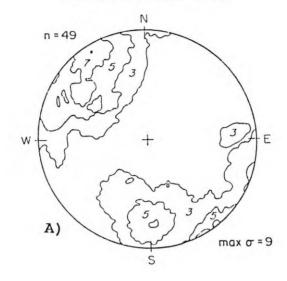

Lithologic control: Rocks of different lithologies have different moduli and will fracture in different ways. Lithologic control of fracture orientations accounts for some of the variability in orientations in Figure 39. Figures 41 A, B and C show these differences graphically. Table 5 lists the orientations of the principal fracture sets for each lithology. Note that the contoured poles for pegmatite outcrops are distinctly different from the other two.

Table 5. Mean orientations of the principal fracture sets estimated from Figure 41 A, B and C. Data sets are from principal fracture sets estimated by eye from scatter diagrams for individual outcrops.

Data Set	Poles Trend/Plunge	Planes Strike/Dip
Gneiss	178°/21°	268°/69°N
	307°/29°	217°/61°SE
	330°/5°	240°/85°SE
Amphibolite	309°/20°	219°/70°SE
Pegmatite	3°/8°	273°/82°S
	197°⁄9°	287°/81°N

The similarity of amphibolite and gneiss fracture orientations implies a similar geologic and structural history for these lithologies, in contrast to the pattern

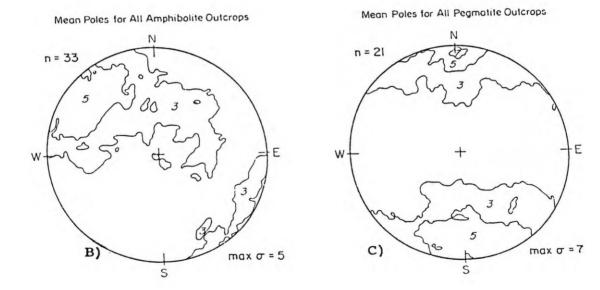


Figure 41. Contoured poles to principal fracture sets over the entire study area for different lithologies: A=gneiss; B=amphibolite; C=pegmatite.

observed in pegmatite outcrops. This is what would be expected, given the lithologic and genetic similarity of the amphibolite and felsic gneisses, and their dissimilarity with pegmatite (Bryant, 1988). The different engineering properties of pegmatite are also significant, in that they must have produced local changes in stress distribution during structural deformation. <u>Rotating fracture orientations:</u> The above analyses are useful in determining an overall picture of fracture set orientations in the study area. However, from the evidence presented in the previous section, it could be argued that any "global" method of characterizing fracture orientations in this part of the Farmington Canyon Complex misrepresents the data because it does not take spatial variability into account.

Geological controls on the regional variability of fracture orientations were discussed to some extent in the previous section. The geological evolution of structures in the Farmington Canyon Complex has also been discussed, in a regional context. Unfortunately, the very complicated geology of the Farmington Canyon Complex makes it difficult to identify regionally consistent structures within the study area. Differences in rock strengths and pre-existing structures have complicated subsequent patterns of deformation.

In the study area, no coherent pattern of folding is apparent; however, the majority of the metamorphic rocks are foliated. Foliation is a regionally consistent characteristic of rocks, in that it may indicate the direction of the greatest principal stress during metamorphism. Bryant (1988) suggests that foliation follows the general pattern of folding within the Farmington Canyon Complex, though both are locally contorted. With this in mind, it was considered that "unfolding" the folded foliation would reveal a regionally pervasive structural fabric.

To allow for regional variability, it was assumed that all foliation planes were originally parallel and horizontal. Differences in foliation orientations were removed so that all fractures were oriented relative to horizontal foliation planes. The unfolding procedure used the fact that most outcrops contained both fractures and well-defined foliation planes. The principal pole(s) to foliation for a given outcrop were determined. If more than one set of foliation planes existed, that outcrop was not used. The pole was rotated to vertical (to bring the principal foliation plane to horizontal). Fractures from that outcrop were then rotated by the same amount.

Rotated and unrotated fractures are compared for the entire study area (Figures 42 A and B) and for different lithologies within the entire study area (Figures 43 and

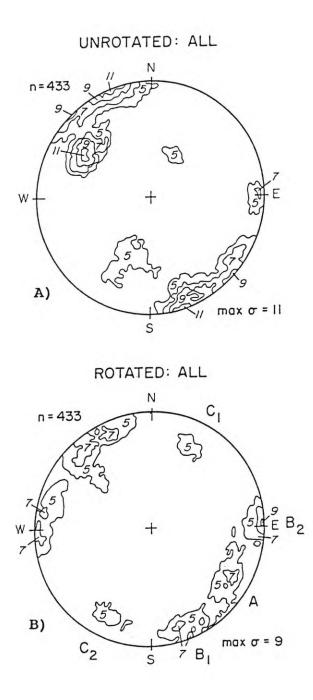


Figure 42. Contoured poles to fractures for all outcrops that included foliation as well as fracture data. A. Before rotation to a common horizontal foliation plane B. After rotation. A, B_1 , B_2 , C_1 and C_2 are zones of high pole density referred to in the text, and in Figure 45.

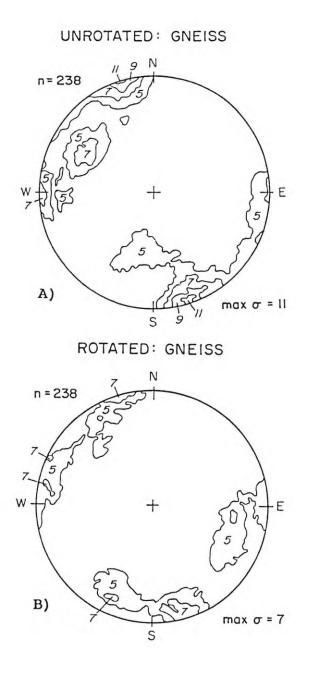


Figure 43. Contoured poles to fractures for gneiss outcrops. A. Before rotation to a common horizontal foliation plane B. After rotation.

44, A and B). Although the general spread of fracture orientations showed very little change, some differences can be seen between unrotated and rotated data sets. It appears that fracture dips are steeper overall, and perpendicular to foliation. This is to be expected if fractures post-date foliation; fractures form early in the lithification history of sedimentary rocks, and are commonly perpendicular to bedding (Nickelsen, 1974; Hodgson, 1961). Mechanically, the relationship of fractures to foliation bands in rocks of the Farmington Canyon Complex appears to be similar to that of fractures in layered sedimentary rocks.

The data set containing all the rotated fractures (Figure 42 B) shows an interesting grouping around the perimeter of the stereonet. There are two areas of high fracture pole density, 76° apart (B_1 and B_2), approximately bisected by a third group of poles. This central group of poles (A) corresponds to a group of fracture planes striking along azimuth 211° and dipping 75° northwest.

According to Friedman (1963), the maximum principal compressive stress for rock deformation is oriented parallel to a plane bisecting shear planes which are generally 60° apart (Figure 45). In addition, a fourth fracture develops orthogonal to the greatest principal stress if any relaxation of compression occurs (Friedman,

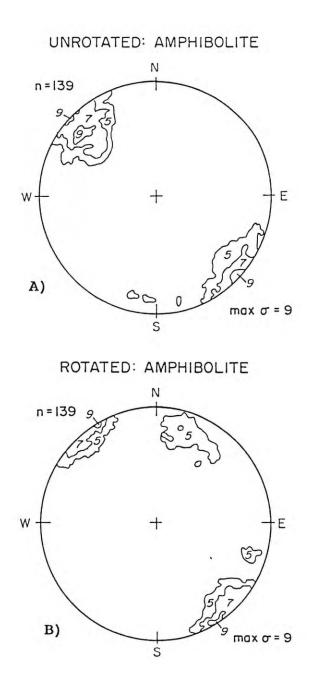


Figure 44. Contoured poles to fractures for amphibolite outcrops. A. Before rotation to a common horizontal foliation plane B. After rotation.

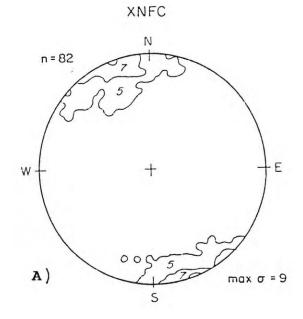


Figure 45. Fractures forming under applied stress. A is parallel to the greatest principal compressive stress. B_1 and B_2 are shear planes 60° apart, bisected by A. C is orthogonal to A, and is a relaxation feature (after Friedman, 1963).

1963).

This model appears to have been reproduced in Figure 42 B. Two less well defined sets of poles to fracture planes are shown in this figure (poles are labelled as C_1 and C_2 : fracture set orientations are 294°, 63° SW and 298°, 71° NE) whose orientations fit this model. If foliation planes were approximately horizontal at the onset of regional compression, then the rotated fracture pattern in the metasedimentary rocks of the study area may be associated with regional stresses leading up to the Sevier and Laramide orogenies. Similar patterns have been observed in structural forelands by Engelder (1982), Engelder and Geiser (1980) and Babcock (1973). In the Farmington Canyon Complex, such a pattern may subsequently have been broken up by folding and faulting associated with intense deformation during the Laramide orogeny.

If the idea of shear planes is ignored, figure 42 B can be interpreted differently: the planes corresponding to C_1 and C_2 could represent the orientation of the greatest principal stress during Sevier/Laramide compression, and the set of planes corresponding to A could be relaxation fractures which developed after the end of compression. This is more consistent with the estimated <u>southeasterly</u> trajectory of compression during the Sevier orogeny (Hollet et al., 1978).


Influence of Faults

Fracture and foliation orientations at outcrops were also grouped according to their position with respect to mapped faults. The analyses in the previous section showed that fractures in outcrops adjacent to faults are non-randomly oriented at 95 percent confidence. For the two faults considered, the contoured hemisphere plots (Figures 46 A and B) are very similar to the overall orientation of fractures shown in Figure 39.

Mapping Fracture Data

Another way to account for spatial variability is to map the data. The spatial distribution of rock types and faults within the study area is shown in Figure 11. This geologic map shows observed and inferred outcrop patterns, lithologies, and best estimates of strike and dip, taken from foliated gneisses and interbedded gneiss and pegmatite. The variety of lithologies has been generalized into amphibolite, pegmatite, and gneissic rocks (generally felsic gneiss).

The strikes of principal fracture sets for the entire study area, presented (as poles) in stereonet form in Figure 39, are shown in Figure 47. Only the strikes are shown here for simplicity; this is justified because the majority of fracture dips are relatively uniform and steep. This figure illustrates the fact that the majority of sampled fractures are roughly perpendicular to the

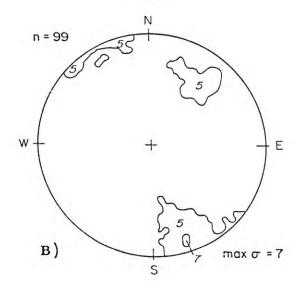


Figure 46. Contoured poles to fractures adjacent to faults in the study area. A. Data set XNFC, corresponding to the fault labeled C in Figure 11. B. Data set XNFD, corresponding to the fault labeled D in Figure 11.

summit ridge. It is not known how much of this pattern is the result of sampling bias.

Figure 48 shows the orientations of fracture intersection lines calculated from the "principal orientations" data set, for geomorphic regions 1 through 8. The spread of orientations is generally smaller for intersection lines than for the fracture planes themselves, with the exception of region 7. The overall trend is northeasterly, as shown in Figure 49; but there are local exceptions, such as in regions 3 and 4, where two of the three principal trends are sub-parallel to a fault running through the area. In region 7, several diffuse trends exist; they coincide with more intense faulting in that locality. Because of this inconsistency, it is not clear exactly what geometric relationship exists between the orientation of fracture intersections and the trend of faults.

Aerial Photograph Analysis

Stereoscopic aerial photographs at 1:12000 scale, taken in 1980 and 1981, were used to develop a rose diagram of all visible surface lineaments in the study area (Figure 50). These lineaments trend most strongly toward azimuths 185°, 295° and 355°. The generally north-trending group is sub-parallel to the Wasatch Fault; the other is oriented northwest, approximately 60° from the first.



Figure 47. Strikes of the principal fracture sets in the study area.

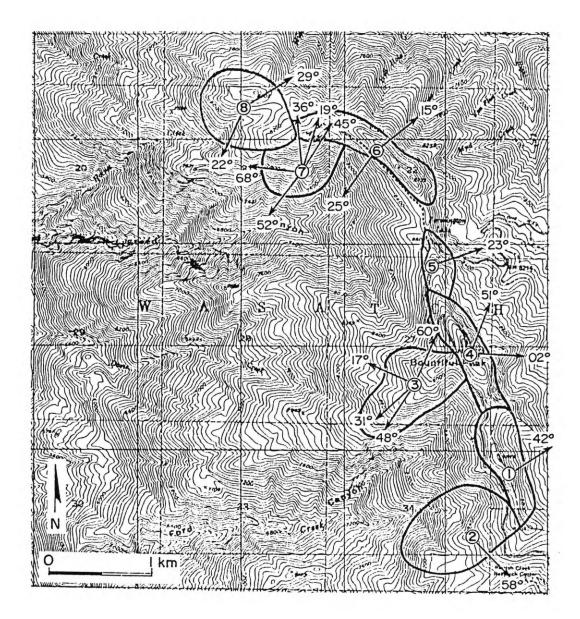


Figure 48. Trend and plunge of the principal sets of fracture intersection lines for regions 1 through 8.

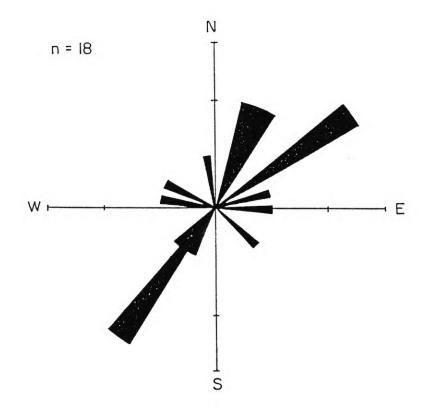


Figure 49. Rose diagram of the trends of intersection lines mapped in Figure 48.

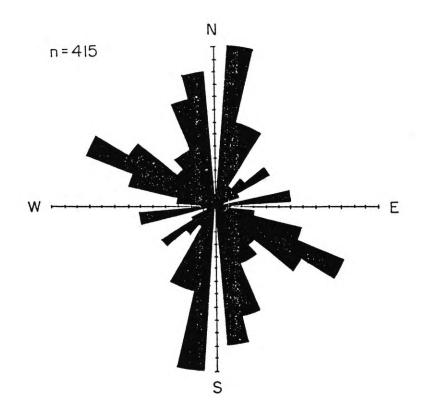


Figure 50. Rose diagram of all structural lineaments in the study area visible in stereoscopic color aerial photographs at 1:12000 scale.

The structural lineament groupings correspond well with the principal trends (approximately 180° and 290°) of large-scale faults in the study area. These were taken from Bryant (1988), and also independently interpreted from 1946 1:20000-scale black and white aerial photographs; some sections were checked in the field. They are shown as dashed lines in Figure 11. The trends of these two groups of lineaments are perpendicular and oblique to the overall (westward) topographic slope. They also appear to be rotated westward from the generally north-trending regional orientation of faults in this section of the Wasatch Front, seen in Figure 10.

Many of the creeks in the vicinity of the study area have a linear appearance. The easiest places for streams to erode should be where the bedrock is already weakened by tectonic deformation. Thus it is believed that the paths of streams reflect the trends of faults or fracture zones in the bedrock. The general trend of stream channels is approximately 270°.

Large pegmatite bodies in the study area crop out across the slope, and trend along a range of azimuths from 302° to 333°. Locally, they dip gently eastward, as shown in the geological map of the study area (Figure 11).

Discussion

Statistical and geological analyses of fractures show that the dominant characteristic of fracture patterns is

their great spatial variability. However, lithology is a spatially consistent control on the style and orientation of fracture populations. The distribution of fractures in gneissic rocks is significantly non-random. The principal orientation of fractures in pegmatites is different from those in gneiss and amphibolite.

It is concluded that an overall fracture pattern does exist, which was mainly imprinted by stresses associated with the Sevier and Laramide orogenies. The geological complexity of the Farmington Canyon Complex is responsible for widely disparate <u>fracturing styles</u> at different localities.

Rotation of the fracture sets suggests that:

1) major lineaments in the study area that trend along azimuth 290° are subparallel to the direction of the greatest principal stress during the Sevier orogeny, and that

2) the majority of rotated fractures are orthogonal to this direction (i.e., parallel to the least principal stress during Sevier compression), and therefore may be "relaxation" fractures, which have been further opened by Basin and Range extension. This subsequent extension may also explain why the northeast-trending fractures are better represented at the outcrop than other orientations of fractures in the study area.

Regions classified according to their geomorphology appear to have significantly different fracturing styles. It is most likely, however, that their geomorphology is a function of their geology. It is concluded that regional tectonic stress, followed by folding, and compounded by lithological variation, along with an unknown degree of topographically induced sampling bias, has resulted in the observed distribution of fracture and foliation orientations in the study area.

HYDROGEOLOGIC IMPLICATIONS OF BEDROCK STRUCTURE

This section integrates information from multiple sources in an attempt to comprehensively describe the hydrogeology of the Farmington Canyon Complex in the study area. Before addressing the the hydrological implications of the bedrock structure, some general properties of this and other consolidated bedrock aquifers are discussed.

Regional Hydrogeology in the Basin and Range

Circulation of ground water through deep flow systems contributes significantly to the hydrologic balance in the southwestern Basin and Range province. Miflin (1968) emphasizes the importance of interbasin flow for the Nevada water budget. He states that avenues for water transport through carbonates exist at great depths along shear zones created by intense and repeated structural deformation associated with the development of the Basin and Range. Continuous interbasin flow has maintained or enlarged these flow routes. The author mentions that deep flow systems may also be present in lithologies other than carbonates (Miflin, 1968).

In the Death Valley salt pan of California, major differences in water chemistry were found between springs on the eastern and western edges of the salt pan (Hunt and Robinson, 1960). The authors attribute this to interbasin flow along faults connecting the eastern springs to

Mesquite Flat, 16 km northwest in an adjacent basin. Springs on the western edge are linked to Ash Meadows Springs, 80 km to the east (Figure 51). The differences in water chemistry shown in Figure 52 support the authors' hypothesis.

Recharge from mountain blocks bordering alluvial valleys in the Basin and Range province accounts for a substantial portion of the available ground water. Extensively fractured bedrock, underlying saprolites and colluvium, can constitute a large ground-water reservoir (Mundorff et al., 1963). Discharge is via springs, or directly into the valley alluvium at depth (Figure 53).

Hydrogeology of the Farmington Canyon Complex

Little has been written about the hydrogeology of this part of the Wasatch Front. A study by Feth (1964) shows evidence of recharge to the Jordan Valley (Lake Bonneville sediments) from the Farmington Canyon Complex. He cites water chemistry similarities, analogous seasonal level fluctuations in mountain and valley water tables, and the position of equipotential lines in concluding that the mountain block is an aquifer which provides significant recharge to the basin reservoir. Feth (1964) also mentions that during the construction of Gateway Tunnel, a water supply tunnel dug parallel to the Weber River, a ground-water source was encountered approximately 305 m into rocks of the Farmington Canyon Complex, which yielded a steady discharge of 19 to 38 1/s.

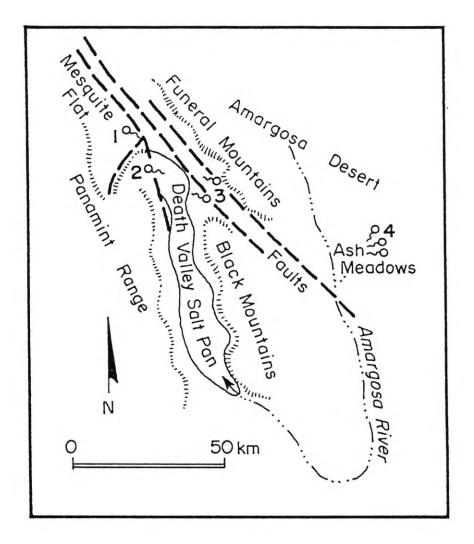
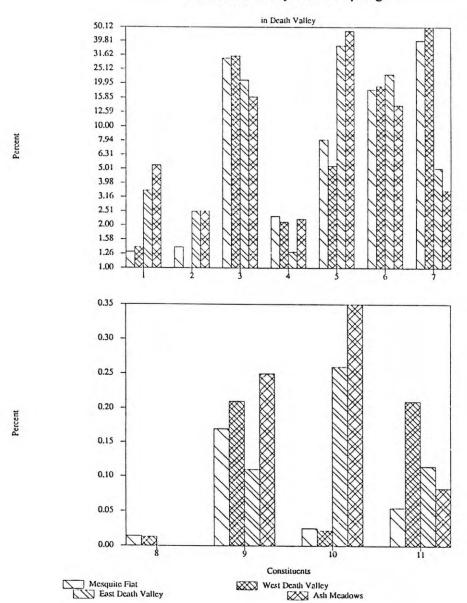



Figure 51. Location map of the four springs discussed in the text (after Hunt and Robinson, 1960).

Water Chemistry at Four Springs

Figure 52. Histograms comparing the water chemistry of springs at Mesquite Flat (1), western Death Valley (2), eastern Death Valley (3) and Ash Meadows (4). 1=Ca; 2=Mg; 3=Na; 4=K; 5=HCO₃; 6=SO₄; 7=Cl; 8=As(x100); 9=Sr; 10=F; 11=B (adapted from Hunt and Robinson, 1960).

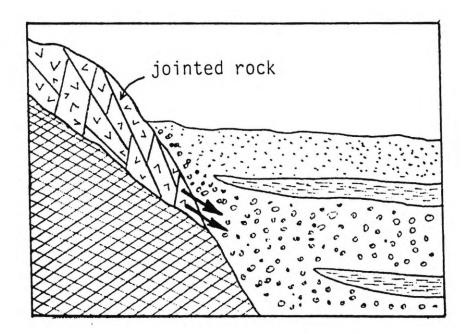


Figure 53. Schematic diagram suggesting paths by which recharge through jointed crystalline rocks reaches aquifers in alluvial basins (after Feth, 1964).

Feth's study is primarily concerned with the state of the alluvial aquifer at the base of the Wasatch Front. He does not discuss ground-water discharge within the mountain block, which is the concern of this study. The cross-sections in Figure 54 were developed from investigations in the study area. They show inferred downslope ground-water flow paths, and different bedrock controls on ground-water discharge. The locations of these cross-sections are shown in Figure 11.

Many springs and seeps are known to exist along the Front (Skelton, 1990; Olson, 1985). A number of springs in Rudd Canyon were developed to supply water for the town of Farmington. These springs were abandoned when they could no longer meet demand and a water supply aqueduct became available (Keaton, 1987).

A number of springs were observed in the study area during the summer of 1988. Outflow from one of these (shown with a star in Figure 11) was measured on a daily basis after a significant local rain on August 8, 1988. A best-fit recession curve was plotted for these data (Figure 55). Recession curves can be used to estimate aquifer properties, including specific yield (Weeks, 1964; Domenico, 1972). Fractured aquifers in crystalline rock generally have low porosity, and therefore low specific yield (Freeze and Cherry, 1979).

The base discharge for the spring is unknown; but the

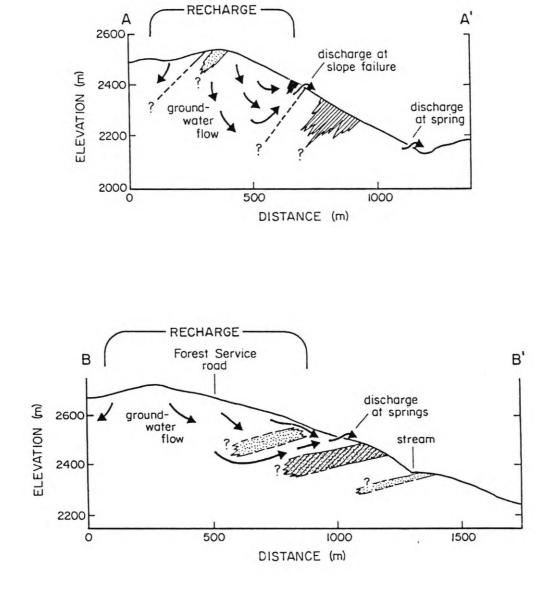


Figure 54. Geologic cross-sections AA' and BB' from Figure 11. Arrows show inferred paths of ground-water flow. Discharge is due locally to the influence of faults or lithologic contacts.

Farmington Lake Spring Flow

Figure 55. Decline in spring flow after a rainstorm on August 8, 1988. Time (x-axis) is measured in seconds, starting from 0 at the time of the first measurement.

presence of a large pond fed by this and other local springs implies that it does not dry up completely during the year. Projected forward, the spring discharge curve decreases to 0.1 l/s in just over 46 days. The total volume of water discharged by the spring over this time is approximately 765,695 l, or 766 m³.

This result indicates that the specific yield of the aquifer tapped by this spring is low. This means that for a given recharge volume, the aquifer fills up more rapidly than a porous medium aquifer with a greater specific yield. Thus a critical pore water pressure can be achieved earlier in these fractured rocks than in porous media, assuming the head difference is the same for the two cases.

It could be argued in this case that the rapid decline in spring flow is simply due to the aquifer having a very limited areal extent. A small, highly permeable porous media aquifer would behave in the same way. Indeed, it is likely that structural and lithological heterogeneities compartmentalize the bedrock aquifer to a considerable extent. However, some new springs emerging from debris flow scars in this area have flowed continuously for up to five months after the event. Springs feeding a stream in Lightning Canyon, north of the study area, had a total estimated discharge of 388,000 m³ for the calendar year 1984 (Mathewson et al., 1990). In view of the inferred low specific yield of the rocks that make up the aquifer, this implies that the areal extent of aquifer compartments can be very great, and that large sections of the subsurface are in hydraulic communication.

Sustained post-storm flow can be seen in the hydrograph of Halfway Creek, a tributary of Farmington Creek, just north of the study area, shown in Figure 56 (Davis County Planning Commission, 1989). A storm on August 10, 1989 caused an immediate rise in the stream level, due to surface runoff. The stream level then decreased to 10 cm above pre-storm levels, and stayed constant for at least 26 hours.

Halfway Creek is in a steep tributary canyon of Farmington Creek. Aerial photographs show that bedrock exposures are common, especially on the southeast-facing flanks. It appears that colluvial cover is minimal on these slopes, particularly on the southeast-facing flanks. In addition, some large contour trenches have been cut into the head of the drainage; these probably enhance recharge to the fractured bedrock. In view of the character of the Halfway Creek watershed, it is concluded that the hydrograph in Figure 56 shows post-runoff drainage out of a fractured bedrock aquifer.

Directional Permeability of Fractured Rocks

The Farmington Canyon Complex consists primarily of crystalline rocks, which generally have very little

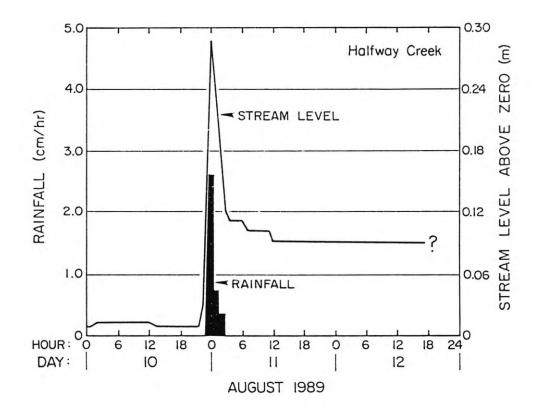


Figure 56. Hydrograph of Halfway Creek, showing the response of stream level to a rainstorm on August 10, 1989.

intergranular porosity. However, the rocks are ubiquitously fractured. In this study, it is assumed that fractures control the porosity and permeability of the bedrock. As a result, the permeability may be highly anisotropic, making it very difficult to predict flow paths (Neretnieks, 1985).

Much work has been done on evaluating reliable permeability parameters in fractured rock. The recent interest in tracing the flow directions of solutes in ground water has added momentum to this research. Studies generally approach the subject from opposite extremes: the microscale (non-continuum) or the megascale (continuum). The megascale approach is to evaluate basin-scale regions in terms of average values of hydraulic conductivity and effective porosity. Results can be very useful but may mask important local anomalies.

Examples of microscale work are papers by Witherspoon and others (1980) and Brown (1987), who discuss the applicability of the parallel plate model for flow through a single fracture, first put forward by D. T. Snow in 1965. The basic equation is derived from Darcy's Law: flow rate is proportional to the difference in hydraulic head and the fracture aperture cubed (Gale et al., 1985, p. 1). The model appears to be reliable in laboratory experiments, for a range of fracture apertures (down to 4 microns), even when surfaces are quite rough (Witherspoon et al., 1980; Brown, 1987).

It is difficult to adapt such detailed theoretical studies to realistic in situ conditions, especially when dealing with an extensive and geologically heterogeneous study area. Complex numerical methods have been developed for this (e.g., Long and Witherspoon, 1985). Another method of characterizing the hydraulic conductivity of an area is to interpolate between known values (such as boreholes) using geostatistical methods (Jones et al., 1985). If fracture density is great enough, the aquifer can be modeled as an equivalent anisotropic porous medium (Greenkorn et al., 1960; Long et al., 1985).

Fracture Connectivity

Long and Witherspoon (1985) found that the degree of interconnection of a network of fractures greatly affects its hydraulic conductivity. LaPointe and Hudson (1985) used a printed electrical circuit board analog to model two-dimensional hydraulic conductivity. They found that the direction of greatest hydraulic conductivity was approximately parallel to the direction of maximum fracture interconnectivity.

Taylor and Fleming (1988) used azimuthal resistivity surveys (Wenner array) to characterize the hydraulic conductivity of fractured rocks. In all cases, they found that the major axis of the resistivity ellipse corresponded to the direction of greatest hydraulic conductivity. This direction also coincided with the direction of greatest joint connectivity (Taylor and Fleming, 1988). Based on this work, it is believed that the principal direction of fracture intersection lines (shown for regions 1 through 8 in Figure 49) is a good indicator of the direction of maximum bedrock permeability, at least in areas unaffected by large-scale features such as faults or major lithological boundaries.

Effect of Large-Scale Features

Regional Ground-Water Flow

The principal trend of faults interpreted from aerial photographs in the study area is 290°. The trend of pegmatite outcrops across the study area is between 302° and 333°. In contrast, the principal strike of fracture sets is 223°, and, based on Figure 49, the principal trends of fracture intersection lines are 22°, 54° and 215°, with very flat plunges. It has not been possible to directly assess the relative contribution of each type of structural discontinuity to regional permeability trends in this part of the Farmington Canyon Complex. Some indirect comparisons have been made using available data, to infer the dominant trend of ground-water transport, and hence to identify the most influential bedrock feature(s).

Figure 57 shows the location of several creeks flowing through rocks of the Farmington Canyon Complex along the Wasatch Front. Discharge data from these creeks

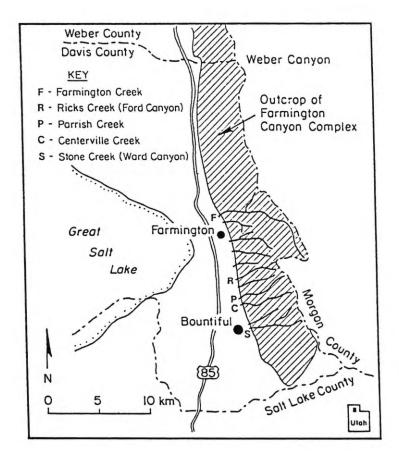
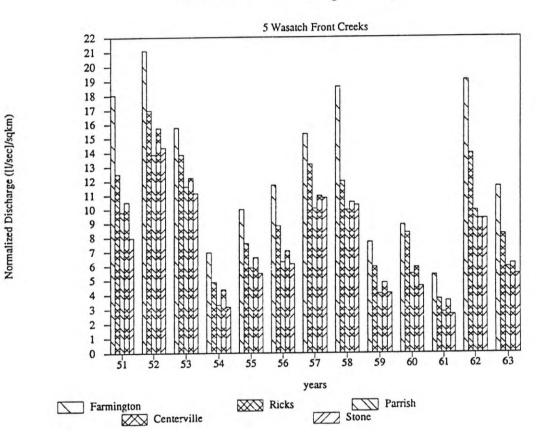



Figure 57. Location of creeks along the Wasatch Front that were used in the comparison of normalized discharge.

for the available years are shown in Figure 58. Discharge data were obtained from United States Geological Survey records, for the years 1952 through 1963. Average annual discharge has been divided by the drainage basin area to normalize the values. Overall, the pattern is of increasing discharge northward. An explanation for this trend is that northwestward "inter-canyon" transfer of ground water takes place at depth along faults and fracture zones.

The exception to this trend is Centerville Creek, which has a higher discharge per drainage area than Parrish Creek even though it is located southward of it. Possible reasons for this are: 1) Centerville Canyon has a different land use history than the other creeks. It is the only one whose pristine condition has been preserved (Croft and McDonald, 1944). Thus, clayey residual soils may be better developed, inhibiting recharge to deep bedrock conduits, and directing interflow back into Centerville Creek. 2) A broad area to the southeast of Centerville Canyon is free of other canyons. Thus Centerville Creek may be recharged by ground water moving along northwest-trending fault zones. The southeast flank of Parrish Canyon is much narrower, so recharge to deep structures is likely to be much less.

Normalized Discharge Comparison

Figure 58. Discharge data for the years 1951 through 1963 show that, except for Centerville Creek, discharge per unit area of drainage increases northward.

Debris Flow Initiation and Prolonged Discharge

The largest debris flow along the Wasatch Front during 1983 was in Rudd Creek. Approximately 63,000 m³ of material was deposited at the mouth of the creek (Keaton, 1988b). After the debris flow at Rudd, water continued to flow out of the slide scar well into the summer (a small but steady stream was observed there by this writer in August 1988).

Figure 59 shows the topography of the area around the Rudd Creek debris flow scar. Failure occurred at an elevation of approximately 2109 m. Thus the maximum head that could have developed, from the highest point in the recharge area to the failure scar, is approximately 420 m, equivalent to 42 kg/cm² in an open conduit. Even through a network of fractured rock, substantial pressures would be generated. However, it seems unlikely that the small recharge area directly above Rudd Creek (shown with a dotted line in Figure 59) could have sufficient storage to provide water for year-round flow.

Taking into account the possibility of cross-slope discharge along a fault, the recharge area for Rudd Creek can be greatly expanded (Keaton, 1988a). The inferred boundary for the <u>structurally-controlled</u> recharge area is shown with a dashed line in Figure 59. In addition, approximately 116 m can be added to the pressure head column above the point of debris flow initiation.

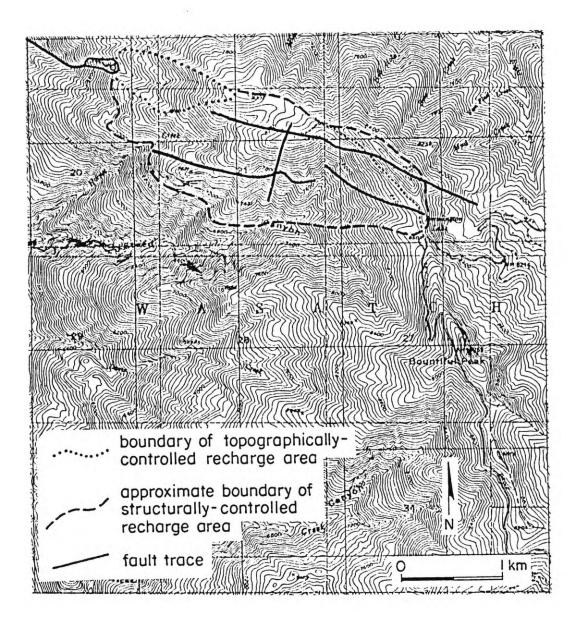


Figure 59. Boundary of the topographically-controlled recharge area for the head of Rudd Creek is shown with a dotted line. Inferred boundary of the recharge area controlled by bedrock structure is shown with a dashed line. Faults are heavy solid lines. Note debris flow failure scar and spring in northwest corner. Structural Fabric and the Distribution of Slope Failures Slope Aspect

In order to assess the relative contribution of fractures and faults to the initiation of slope failures, the aspects of slopes (i.e. the direction faced by the slope) on which slope failures occurred were measured for 74 mapped shallow landslides and debris flows (compiled by Lowe, 1989). Slope aspect at the failure scar was determined at the highest point of the failure. A sampling circle with a diameter equal to twice the width of the widest mapped <u>debris flow</u> scar was used to standardize the areas measured. The circle was positioned such that the topographic contour nearest to the failure scar touched the circle on diametrically opposite sides. The direction of the (downslope) normal to this diameter was taken to be the aspect of the slope failure.

It was thought that slopes perpendicular to structural features conducting significant amounts of ground water would have the greatest chance of experiencing high pore water pressures leading to slope failure. Conversely, slopes parallel to discontinuities would have little chance of intersecting major groundwater pathways, and should therefore have fewer slope failures. This analysis assumes that all other conditions are the same for the slopes. Figure 60 shows that the majority of slope failures occurred on slopes facing azimuth 290°. This corresponds to the orientation of large scale structural lineaments in the study area. There are very few slope failures on slopes facing azimuth 110°, diametrically opposite 290°. This is because of the general westward aspect of this section of the Wasatch Front.

There is no increase over background in slope failure occurrences for any other azimuth. Therefore, it does not appear that the main trends of fractures, fracture intersection lines, or pegmatites in the study area play a significant role in the <u>regional</u> control of ground-water flow paths. However, these may be more important in contributing to <u>local</u> failure mechanisms, as discussed below.

Daylighting Fracture and Foliation Planes

There is some evidence that gently-dipping bedrock discontinuities exert a more localized control on the initiation of debris flows. One of the possible failure mechanisms discussed earlier involved gently-dipping fracture and foliation plane sets intersecting the slope at the base of the soil mantle, and thus allowing communication between the bedrock aquifer and the surface (Figure 4). For these gently-dipping planes, dip direction rather than strike was considered to be more important in controlling ground-water flow paths.

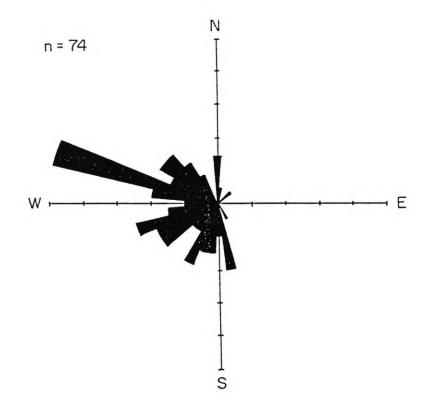


Figure 60. Slope aspect, shown as the normal to the trend of the slope, for 74 mapped slope failures.

Figure 61 shows the location, dip angle, and dip direction of principal foliation planes and fractures that dip less steeply and up to 10° steeper than the topographic slope. (The latter were included because slope angles might locally be steeper than the mean angle calculated from the topographic map). Figure 62 is a rose diagram of the dip directions mapped in Figure 61. Three major trends are apparent; toward azimuths 45°, 235° and 296°.

The location of data points depended on the distribution of accessible outcrops, so the direct utility of this analysis is limited with respect to areas susceptible to soil slips or debris flows. Most of the gently-dipping discontinuities were found on ridges, where there is little or no soil cover, and no hydrostatic column within the aquifer. The swales, where such data would have been most useful, were often covered by vegetation, or were too remote. However, the fracture and foliation sets shown in Figure 61 may persist within the local area, so it may be possible to extrapolate the effect of daylighting planes to swales adjacent to the outcrops shown. Information from Figure 61 forms part of the composite map of structural features and mapped slope failures compiled by Lowe (1989), shown in Figure 63 (in pocket).

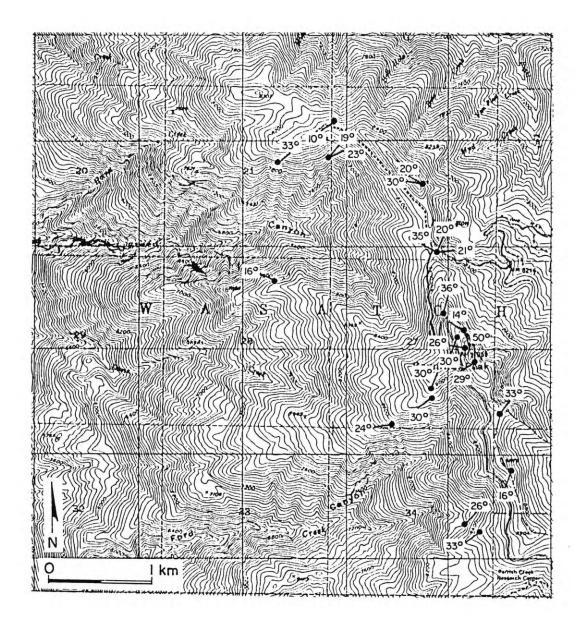


Figure 61. Location, dip directions and dip angles of principal fracture sets that dip less steeply, and up to 10° more steeply, than the topography.

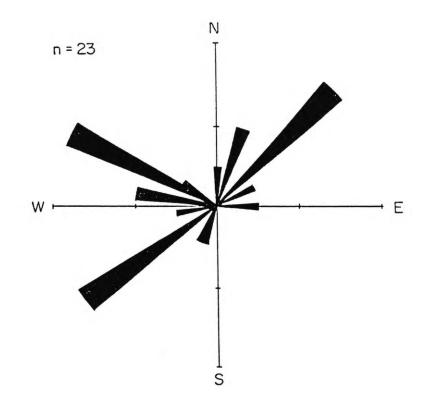


Figure 62. Rose diagram of the dip directions of lowangle discontinuities mapped in Figure 61. Another thing to note about Figure 62 is that many of the locations are included because of having extremely steep slopes rather than extremely flat discontinuities. Such steep slopes are unlikely to be the sites of landslides or slope failures, because of a lack of soil development. However, the locations do correlate with several rock failures observed in the study area, particularly on the east side of the ridge crest.

Gently-dipping contacts between gneiss and pegmatite were also proposed as potential sites for ground-water discharge and/or slope failure (Figure 5). In Ford Canyon, a shelf-like pegmatite outcrop trends across the slope, and is associated with several springs and at least one recent shallow soil slip (Figure 64). Pegmatite outcrops have also been included in Figure 63 (in pocket).

Discussion

What appears to exist in the region are two separate structural and ground-water environments, conceptually divided into "shallow" and "deep". Each exerts different controls on ground-water flow. Where they are in communication, the potential for prolonged discharge or a rise in pore water pressure is increased. Thus, the controlling influence on ground-water discharge of a given spring or seep is how well it is connected to a high volume compartment within the aguifer.

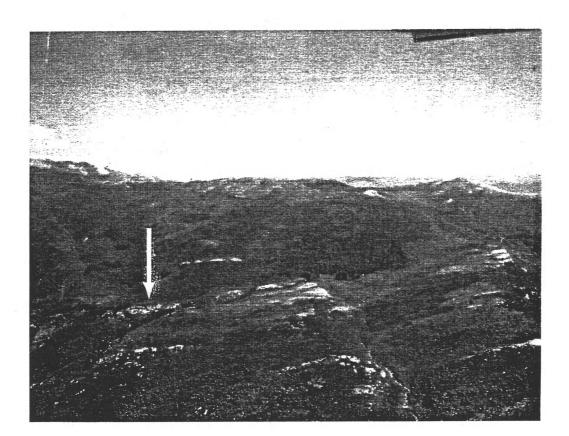


Figure 64. Oblique aerial photograph (looking east) of pegmatite outcrops cutting across slopes in the study area. Arrow shows Ford Canyon swale (site of a WADI survey) underlain by a pegmatite unit. Directly west of the flat swale is a wide, shallow soil slip. At a regional scale, major structural lineaments may be responsible for significant cross-slope transport of ground water. More locally, heterogeneities in lithology and bedrock discontinuities control the distribution of discharge points. The cross-slope trend of lowpermeability rock units, together with the dip directions of low-angle discontinuities (Figure 62) identify the particular slopes on which ground-water discharge is more likely to take place.

GEOPHYSICAL SURVEYS

Introduction

Three geophysical surveys were conducted in the study area to get an idea of bedrock structural fabric at depth. The VLF (very low frequency) electromagnetic method was used, with a hand-held receiver marketed under the name of "WADI" by Saga Geophysics of Austin, Texas. The instrument makes use of an existing 15-30 KHz EM field emitted by various stations around the world, normally used for worldwide navigation purposes.

Theory

The horizontal component of the magnetic field reaches the study area. When a steeply dipping planar subsurface conductor (for example, a fracture containing ion-rich water) is encountered by the primary field, eddy currents are induced on the edges of the conductor; an associated vertical magnetic field is induced. The WADI measures the addition of the primary (source) and secondary (induced) fields, thus yielding a ratio of $([e_p+e_s]/e_p)$ denoted as "ECD" (equivalent current density), where e_p is the in-phase component of the primary magnetic field and e_s is the in-phase component of the secondary magnetic field. In this way, conductive planar features in the subsurface are recorded as positive anomalies over a background established for the survey.

The magnitude of the quadrature, (i.e. the vertical, out-of-phase component) of the secondary magnetic field gives a measure of the capacitance, or ability to hold current, of the subsurface conductor. The larger the quadrature, the greater the capacitance of the feature; thus fractures filled with saturated clays or metallic mineralization, being excellent conductors, should have high values for both ECD and quadrature. Fresh-waterbearing fractures are much less conductive, though still more conductive than most rock, especially dense metamorphic rock; thus they do not hold current well, and should have lower quadrature values (Morgan, 1990; Saga Geophysics, 1989).

Intact cystalline rocks typically have very high resistivities, as shown in Table 6. Therefore, saturated fractures or fracture zones are likely to be represented by lower resistivity (higher conductivity) values over a background established in rocks of the Farmington Canyon Complex. These would be recorded as positive conductivity anomalies by the WADI.

For this study, anomalously high ECD values occuring in conjunction with low quadrature values were taken to be water-bearing fractures. The following hypothesis was advanced: linear conductivity anomalies are water-bearing fractures that represent preferential pathways for groundwater flow through bedrock. Conversely, if the bedrock is

so pervasively fractured that it is isotropically and homogeneously permeable to ground water, conductivity values will be relatively uniform.

Table 6. Resistivities of some consolidated and unconsolidated rocks. Note that unconsolidated sediments have much lower resistivities than consolidated rocks (adapted from a table compiled by Heiland, 1968).

Material	Locality	Res. (Ohm-m)
Lab specimens:		
Garnet gneiss	Bavaria	2x10 ⁹
Hornblende gneiss	Mineville	$1 - 6 \times 10^{10}$
Gray biotite gneiss	Mineville	4×10^{10}
In situ:		
Graphitic schist	Normandy	$1 - 10 \times 10^{5}$
Schists	Missouri	2-60x10 ⁵
Hard calc. schist	Belgian Congo	$2 - 11 \times 10^{6}$
Mica schist	Washington D.C.	1.3×10^{7}
(hard packed)		
Quartz porphyry	Newfoundland	3.4×10^{6}
(slightly altered)		
Slightly altered	Ontario	$2.4 - 3.7 \times 10^{7}$
syenite		
Serpentine	Ontario	2.1-5.3x10 ⁶
Clays with Mg salts	Australia	1-2
Wet clay	New Jersey	51
Dry clay	New Jersey	80
Alluvium (moist)	Montana	23
Silt (dry)	Montana	20

Survey Techniques and Results

A VLF transmission station in Seattle, Washington was used for all the surveys. This station transmits a 125 kW, 24.8 kHz signal; thus its wavelength is approximately 20 km (Halliday and Resnick, 1978). As discussed below, it is preferable to use at least two transmitters for any VLF survey, but this was not done in the study area.

Steed Canyon Survey

A VLF survey was carried out in Steed Canyon, in two adjoining swales along the northern flank of the canyon (Figure 65). The eastern swale is the site of a 1983 landslide and debris flow that has been studied by researchers at Utah State University (Brooks, 1986; Monteith, 1988). The bedrock in this area consists of layered to migmatized gneiss, some of which grades into amphibolite. No pegmatites were found in the surveyed area. The two swales contain a relatively thicker soil column than the surrounding slopes.

Four parallel conductivity profiles were recorded at this site. Each reading was spaced 10 m apart, and profiles were 30 m apart. The results were contoured in separate maps for ECD and quadrature, shown in Figures 66 and 67.

Figure 68 shows the general topography of the survey area. In the east swale, ECD values are generally low. There is an elongate zone of higher ECD on the eastern flank of the ridge separating the two swales; this also corresponds to a quadrature high. This feature is interpreted to be a north-trending fault or fracture zone containing moist clayey material. In the west swale, there is a relatively higher ECD zone trending northwest across the swale axis. There is no increase in the quadrature over the area, so this feature could be a

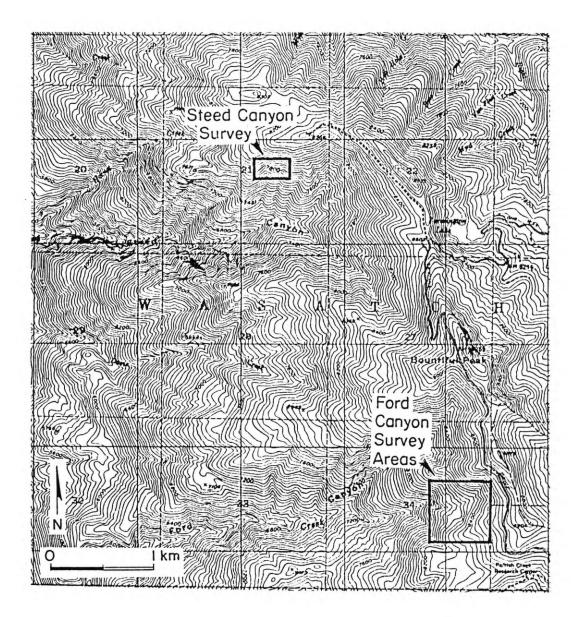


Figure 65. Location of the WADI surveys in Steed and Ford canyons.

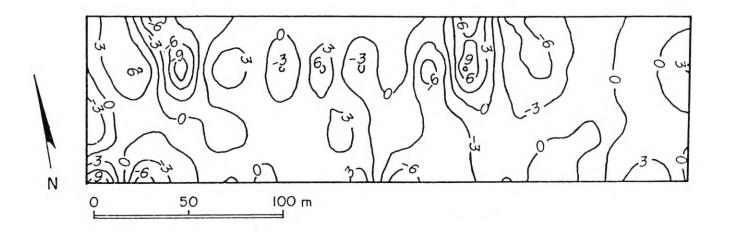


Figure 66. Contoured ECD values from the Steed Canyon WADI survey. Conductivity anomalies trend north in the east swale, and northwest in the west swale.

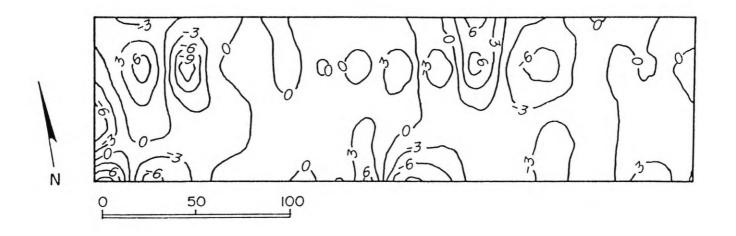


Figure 67. Contoured quadrature values from the Steed Canyon WADI survey.

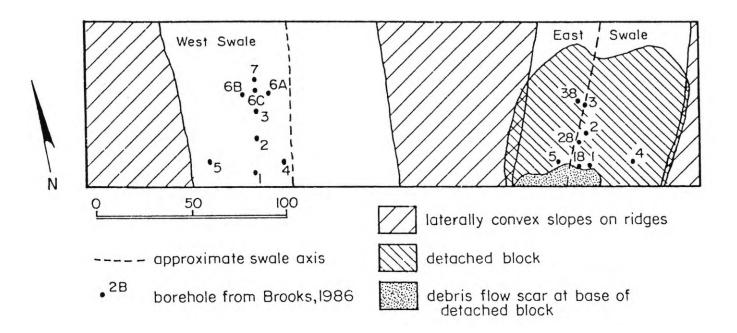


Figure 68. Generalized topography of the Steed Canyon WADI survey area and location of the Steed Canyon landslide and debris flow. Also shown are the locations of boreholes from a study by Brooks (1986). In the text, boreholes in the east and west swales are distinguished by E or W before the borehole number. broad, unevenly saturated fracture zone with little or no clay.

West of and sub-parallel to this zone is a narrow trend of negative ECD and quadrature values. This feature, located on the western edge of the west swale, could be interpreted either as a hard bedrock ridge or as an <u>unsaturated</u> fracture zone. Finally, an ECD high on the far west side of the survey corresponds to a quadrature high, and appears to be another clay-filled structure.

In a previous study, Brooks (1986) logged several boreholes in each of the Steed Canyon swales. Figure 68 shows the locations of the boreholes. In the east swale, almost all the borings encountered a layer of rock or rock fragments at approximately 3 m. Soils beneath this layer were found to be non-plastic. In borings E1 and E1B, a plastic, silty to clayey sand layer was found overlying the ledge. If it is assumed that higher plasticity corresponds to lower hydraulic conductivity (Brooks, 1986), then it is possible that ground water in and under the fractured ledge was prevented from discharging, and pore water pressures built up to a critical level in the vicinity of E1 and E1B.

Borings in the west swale indicated the presence of a rocky ledge which divides the swale into an upper and a lower part. Brooks (1986) found evidence of large voids in the bedrock in borehole W5. A water hose with 122 m of head on it failed to fill borehole W6B, "regardless of the quantity of water poured down the hole" (Brooks, 1986, p. 46). Boreholes 5 and 6B in the west swale correspond to the edges of the northwest-trending low-conductivity anomaly found by the WADI. This supports the interpretation of the anomaly as an unsaturated fracture zone. It appears, therefore, that a deep, highly permeable fracture zone cuts across the west side of this swale, which is capable of draining great volumes of water during flood conditions, but is dry for most of the year. This feature probably prevented the development of elevated pore water pressures in the west swale during May and June of 1983 and 1984, which may explain why slope failure did not occur in this swale.

In the Steed Canyon survey, the overall low ECD values in the hollows compared with the ridges are thought to be due to masking of the signal by electrically conductive clays in the subsurface. Topographic ridges have higher ECD values, consistent with the greatly decreased (to non-existent) soil cover in these areas. In addition, the depths of conductors found by the WADI are greater on the ridges: between the two swales, these values range from 2 to 10 m, averaging 6.3 m; on the ridge west of the western swale, values range from 4 to 16 m, averaging 9 m. In the hollows, the depths of conductors average 3.2 m (east swale) and 5.4 m (west swale). Brooks

(1986) found the depth to "true" bedrock (not the rocky ledge) to be between 5 and 10 m for the east swale, and between 3.7 and 12 m for the west swale. This range is similar to the depths of the conductors recorded on <u>ridges</u> by the WADI, which appears to be more realistic than the depths recorded in the hollows.

Monteith (1988) mentions that the clay layer in the east swale is thick at the downslope end of the swale, and thins upslope. This correlates with higher ECD values at the north edge of the WADI survey, and supports the claim that readings were suppressed by electrically conductive clayey soils toward the south.

The WADI also indicates the apparent dip of a planar conductive feature, by determining the lateral changes in conductivity at different depths for a given conductivity peak (Karous and Hjelt, 1983). Table 7 shows the distribution of dips for the Steed Canyon survey area. Since the survey was carried out along azimuth 270°, all values are apparent dips along this strike. The majority of features have a westward apparent dip, at an average angle of 42°. Table 7 shows that this is not in agreement with the fracture and foliation orientations measured at the surface.

The validity of dip values given by the WADI is questionable for this survey. Furthermore, it is unlikely that individual fractures are being recorded by the WADI.

Table 7. A. Apparent dip angles and directions for planar conductivity anomalies in the Steed Canyon survey area. B. Dip angles and directions for principal orientations of (i) fractures in the area adjacent to the northern mapped fault (data set XNFC), and (ii) foliations over the entire study area; both projected along the same strike (az. 270°) as the WADI survey line.

Dip direction	Avg.Dip angle	Std.Dev.	Number	
A) WADI: west	42° 28° 90°	11°	14	
east	28°	5.5°	5	
vertical	90°		1	
B) OUTCROP:				
(i) Fractures from east	data set XNFC 84°			
(ii) Foliations ove west	r entire study 23°	area:		

(iii) Geomorphic region 7: no resolvable principal sets.

It is more likely that a larger feature such as a fault or fracture zone is being recorded. In Figure 69 a line of anomalies appears to trend northwestward (approximate azimuth 315°) across the survey area. This follows the trend of the broad, high ECD/low quadrature zone shown in Figures 66 and 67, and may be more representative of the scale of bedrock features best suited for investigation by the WADI.

Ford Canyon Surveys

Two surveys were run in the upper part of Ford Canyon. The survey areas are located on the flank and at the base of a large swale which appears to have been the site of Holocene land slips (Lowe, 1989). The location and topography of the survey areas are shown in Figure 70.

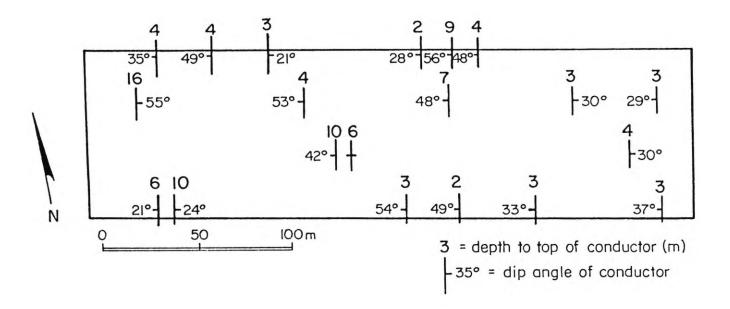


Figure 69. Location, apparent dip angle and dip direction of planar conductors interpreted by the WADI. Note the northwest trend of conductors across the west swale.

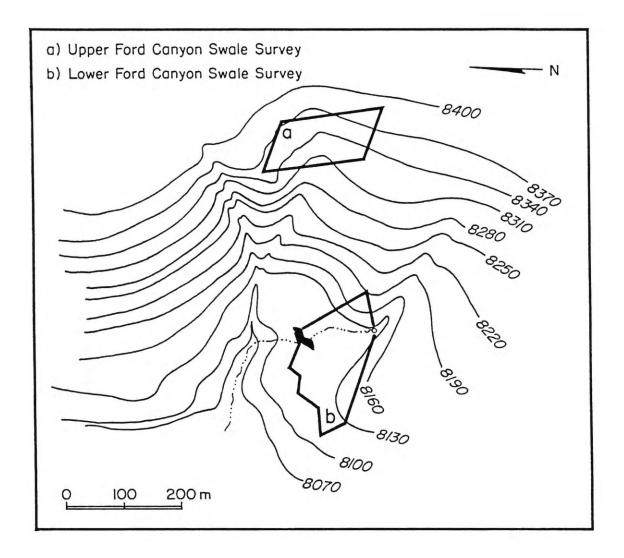


Figure 70. Location and topography of the upper and lower Ford Canyon swale WADI surveys. Note the pond created by a beaver dam. This swale is underlain by a gently eastward-dipping series of interbedded pegmatite and gneiss units of varying thickness. At least one shallow soil slip from 1984 is located at the head of the steeper slope just beyond the western edge of the swale. No direct subsurface information was available for these sites, although the descriptions in Harp and others (1990) indicate that the soil stratigraphy is similar to that of the Steed Canyon area.

Contour maps were generated for ECD and quadrature for the upper and lower Ford Canyon surveys, as shown in Figures 71 through 74. Linear conductivity anomalies for both surveys trend approximately due north and due west. The quadrature for the entire lower swale is near zero, except in the northeastern and southern corners (Figure 74). In the upper swale, ECD highs roughly correspond to quadrature lows. Therefore it is reasonable to conclude that these linear anomalies are water-bearing fracture zones. The west-trending subsurface features parallel the general orientation of fractures measured at the outcrop for pegmatites, shown in the lower hemisphere plot in Figure 41 C.

The low ECD values along the southern edge and in the northeastern corner of the lower Ford Canyon swale survey (Figure 73) indicate the presence of extremely poor conductors. These are discussed below.

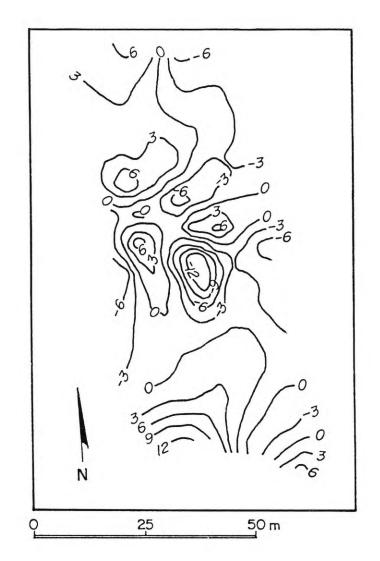


Figure 71. Contoured ECD values for the upper Ford Canyon swale WADI survey. Linear anomalies in the center of the plot trend approximately north and west.

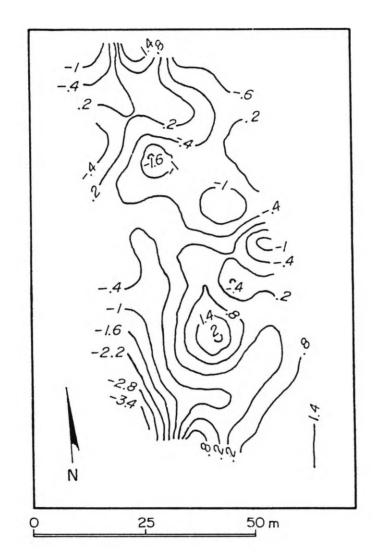


Figure 72. Contoured quadrature values for the upper Ford Canyon swale WADI survey.

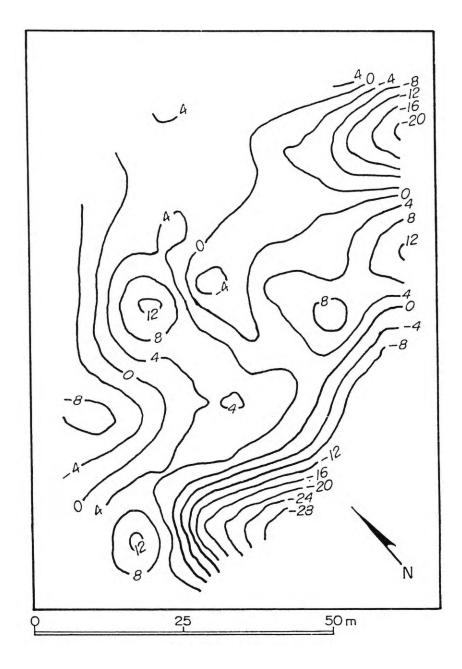


Figure 73. Contoured ECD values for the lower Ford Canyon swale WADI survey. Anomalies trend north and west.

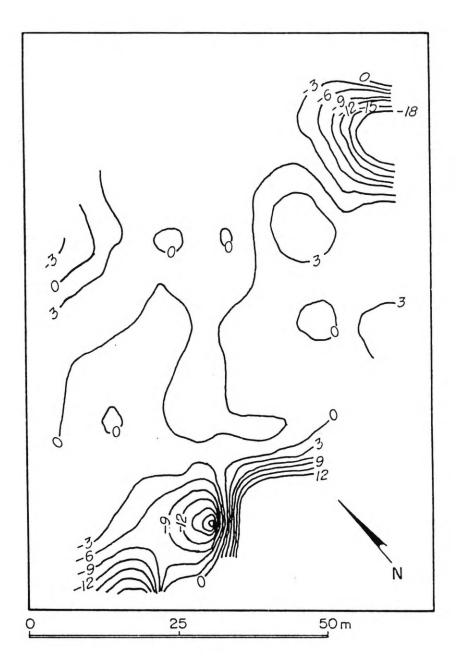


Figure 74. Contoured quadrature values for the lower Ford Canyon swale WADI survey.

Dips recorded by the WADI in the upper and lower Ford Canyon Swale surveys are compared with outcrop-derived orientation data in Table 8 below. Apparent dips do not appear to match between surface information and interpretations made by the WADI.

Table 8. A. Apparent dips of conductors in upper and lower Ford canyon swales, from WADI. B. Dip directions and apparent dip angles for (i) fractures adjacent to the central fault (data set XNFD), and (ii) fractures in pegmatite over the entire study area.

A) WAD	<u>rection A</u> L:				<u>Number</u>
(i)	Conductors	in upper	Ford	Canyon Swal	le
	west	36°		9.5	8
	east	43°			1
(ii)	Conductors		Ford	Canyon Swal	Le
	west	41°		7.3	11
	east	42°			1
	vertical	90°		0	2
B) <u>OUT</u>	CROP:				
	Fractures f				
l - Pro	ojected to t west east	rend of u 24° 31°	upper	swale surve	ey line
2 - Pro	ojected to t west east	rend of 1 66° 30°	lower	swale surve	ey line
(ii)	Fractures f	rom Pegma	atite	over entire	e study area
	ojected to t east				
2 - Pro	ojected to t east	rend of 1 76°	lower	swale surve	ey line
(iii)	Geomorphic	region 2:	no	resolvable f	fracture set

The depths to conductors in the Ford Canyon surveys are shown in Figures 75 and 76. There was no independent subsurface information with which to compare these readings. The north-trending, higher ECD zone in Figure

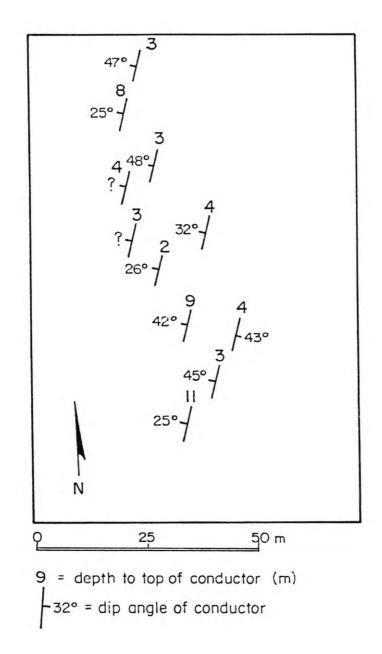
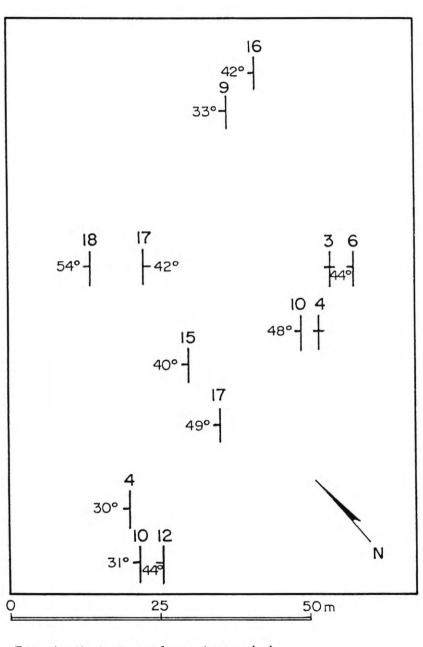



Figure 75. Apparent dip angle and dip direction of planar conductors interpreted by the WADI, for the upper Ford Canyon swale.

5 = depth to top of conductor (m) 15° = dip angle of conductor

Figure 76. Apparent dip angle and dip direction of planar conductors interpreted by the WADI, for the lower Ford Canyon swale.

73 (lower swale) corresponds to depth readings in Figure 76 which average 13.4 m. This may indicate the depth to water in the fractured bedrock. In contrast, the westtrending higher ECD zone at the slope break averages 7.9 m in depth. Both of these readings appear too deep, considering the numerous springs and seeps in theimmediate area. No individual trends are distinguishable in the upper survey.

The depths to conductors recorded by the WADI in these surveys are highly variable. This is consistent with the picture of the subsurface obtained from boreholes in the Steed Canyon survey area. In general, little can be concluded from the data on the dip of, or the depth to, conductors in the two Ford Canyon surveys, beyond the fact that the soil/bedrock interface is highly irregular.

A curious feature in the lower Ford Canyon swale survey is the pattern of strong negative values at the southern edge and northeasten corner of the survey. Assuming these are not due to instrument malfunction, they may be due to distortion of the primary magnetic field by topographic effects, because the anomalous values correspond approximately to the edge of steeper slopes on the southeastern edge of the swale. Another possible cause for the low conductivity readings is that the water table is deeper in these zones of higher topography, although evidence from the Steed Canyon survey showed a

general <u>increase</u> in conductivity over topographic highs. A third possibility is that the negative anomalies are electrical edge effects on either end of a conductive zone of saturated fractured bedrock (seen as a long westtrending higher ECD zone in the southern part of the survey in Figure 73).

A hypothesis for the development of the apparent bedrock ground-water condition in the lower Ford Canyon swale is that the bedrock ledge north of the slope break has been downdropped, forming a shelf which has become a ground-water discharge area, as well as a repository for residual soil and colluvium. Ground water has been impounded due to the (post-faulting) geometry of the less permeable bedrock. A conceptual diagram of this feature is presented in Figure 77.

The presence of springs and seeps as well as water in fractures (inferred from the Wadi survey) during August 1988, one of the driest summers on record for this region, indicates perched water table conditions. Discharge through this system is probably greatly increased during times of peak runoff and snowmelt. This area of groundwater discharge was created by the anomalous presence of a relatively less permeable rock body, as shown schematically in Figure 5. The area is presented as one example of bedrock control over ground-water discharge and/or slope failure in the study area.

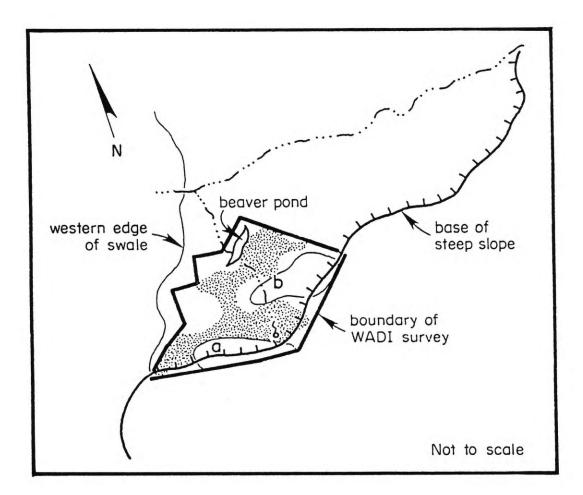


Figure 77. Schematic diagram of the site of the lower Ford Canyon WADI survey. The pegmatite unit underlying this area has been down-dropped across a fault or fracture zone trending approximately due west. This has created a ground-water discharge zone throughout the Ford Canyon Swale. The fault hanging wall is marked with hachures; a and b denote the low ECD areas next to the fault scarp; the patterned area shows high ECD, corresponding to saturated fractured bedrock.

Discussion

Method

The WADI, and the VLF method, are excellent reconnaissance tools for a number of reasons. The WADI is light and compact; it was found to have great utility in the rough terrain of the study area. Surveys for quite large areas can be conducted rapidly. Each data point recorded in a survey contains information on in-phase and out-of-phase components of the induced field. Anomalies can be interpreted in situ. The lateral and vertical position of the anomaly, and a value for the dip of the feature are presented graphically. Up to approximately 4000 measurements can be held in the memory (Saga Geophysics, 1988).

The low frequency of the waves allows them to penetrate some distance into the ground, depending on the conductivity of the material. The remoteness of the primary field source means that the field is essentially uniform for surveys of the size used in this study (Telford et al., 1985).

Interpretation of Results

The principal drawbacks of this method, as with any geophysical method, lie in the ambiguity of the results. Some of the causes of ambiguity are listed below.

1) Resolution is poor; conductive features must be on the order of 10 m or more in length to be detected.

2) The dip of the subsurface conductor affects the magnitude of the secondary field. Since the primary field is dominantly horizontal, more steeply dipping planes present a larger conductive area; so the greater the dip, the greater the induced field. Thus an apparently poor conductor may simply be oriented near to horizontal, while a less conductive, more steeply dipping feature may appear to be a stronger conductor than it really is.

3) In order for the secondary field to be maximized, the subsurface conductor must be aligned perpendicular to the primary field. Deviation from this orientation results in distortion of the secondary field read by the VLF instrument. If the primary field is near parallel to the trend of the conductor, the secondary field may be severely inhibited (Telford et al., 1985). Thus it is recommended that the same area be traversed at least twice, using different stations for each survey. This was done by White and Gainer (1985), in their reconnaissance for fractures around a uranium mill tailings pond.

4) The WADI measures all conductivity values with respect to the first data point of the survey. Thus, if the first point is taken on a highly conductive (or highly resistive) material, subsequent points might all show excessively low (or high) conductivities because of the contrast with the first point. However, relative values should not be affected. In this study, a procedure

suggested by Morgan (1990) was followed, in order to normalize conductivity values between surveys. The average conductivity over the entire survey was calculated, and was set equal to zero. The data for that survey are then shifted by the same amount. All the ECD and quadrature grids shown in Figures 66, 67, and 71 through 74 were normalized to their average value.

5) Results can be affected by topography, and by the in situ properties of surface and subsurface materials. Topography can affect induced conductivity readings by "channelizing" the primary field and creating higher readings in valleys than on ridges (Morgan, 1990). It is not known how local topography has affected these results, though Lagmanson (1990) states that the filtering method incorporated into the WADI accounts for topographic changes. At any rate, the Steed and lower Ford Canyon swale surveys have <u>opposite</u> correlations with topography (Figures 66 and 73), so other factors must be more important than topography in producing the observed conductivity distributions.

6) Changes in the conductivity of the overburden may mask the response from bedrock; highly conductive surficial materials such as clays may completely preclude this method (Saga Geophysics, 1988). However, surface water bodies do not induce a noticeable secondary field, probably because of their horizontal upper surface; this

was observed in the lower Ford Canyon swale, where a beaver dam has impounded spring discharge (Figure 70).

In contrast to surface water, subsurface clayey zones may have a near-vertical tabular geometry, as in the case where a highly fractured or weathered zone has been filled by clay minerals. Clay-filled fractures should be distinguishable from water-bearing fractures by the magnitude of their quadrature.

Finally, as with any geophysical method, it is important to have independent geological verification of the results. This type of supporting data was lacking in the Ford Canyon study area.

Summary

The clayey subsoils which are present in the Steed Canyon survey area (Brooks, 1986) and probably also in the Lower Ford Canyon swale, may have dampened the secondary field response from deeper conductive features in the bedrock. In spite of this, several linear anomalies were recorded.

A trend of anomalies was recorded by the WADI in the Steed Canyon survey, along azimuth 315°. This does not correspond to the trend of the fault mapped through this region using aerial photographs and surface information (azimuth 290°). However, north-trending anomalies in the east Steed Canyon swale, and north and west-trending anomalies in the Ford Canyon swales do correspond to the

trends of faults and fracture sets observed at the surface.

The WADI survey in Steed Canyon correlates with a change in soil properties found in borings (Brooks, 1986), and may have identified a fault or fracture zone in the west swale. In Ford Canyon, little direct confirmation of the WADI data was available. Conductivity anomalies were generally aligned due north and west, and a possible fault-controlled ground-water discharge mechanism was hypothesized for the lower swale. The geophysical data correlated well with surface observations, and were supported by geomorphic and hydrologic evidence.

SUMMARY AND CONCLUSIONS

This study has attempted to characterize the large and small scale structural fabric of the Farmington Canyon Complex, to infer ground-water flow directions in the bedrock, and to determine the distribution of ground-water discharge points at the surface. Several slope failures in the study area were initiated by ground-water discharge; thus the main application of this research was to establish a link between the structural fabric of the bedrock and the distribution of slope failures.

The following sections summarize the findings of this research. The bedrock features and distribution of slope failures discussed in this section refer to several different figures in the text. Most of these are combined in Figure 63 (in pocket).

Structural Fabric

1) Randomness

A. Analysis of the randomness of different families of fractures indicates that preferred orientations exist in only a small percentage of the data sets. These are fractures in gneiss, fractures adjacent to faults in the study area, and foliations. Therefore, the character of fracturing has been significantly influenced by regional geologic conditions such as faulting, metamorphism and the juxtaposition of different rock types.

B. The study area was divided into eight regions on the basis of geomorphology. None of the fracture sets in any of the eight regions have preferred orientations at 95 percent confidence. Regions 1 and 5, representing two of the four sharp north to northwest-trending ridges, have preferred orientations at 90 percent confidence. This may be due to topographic sampling bias and/or the uniformity of bedrock characteristics along ridges.

C. The orientation of principal trends of intersection lines between fracture planes in regions 1 through 8 were tested for randomness. All regions except region 7 are non-random at 95 percent confidence.

In summary, although most of the data sets of fractures proved to be randomly distributed at 95 percent confidence, fracture <u>intersections</u> have statistically significant preferred orientations.

2) General trends

Contouring sets of poles to fractures shows that the orientations of principal fracture sets in pegmatite are different from fractures in gneiss and amphibolite. The principal strike of fracture sets adjacent to faults is approximately 40° from the trend of the faults.

3) Regional structural influence

It appears that the distribution of fracture orientations, as observed in outcrops, is mainly derived from late Jurassic through Eocene (Sevier/Laramide)

compression. Rotation of fracture sets to a common horizontal foliation plane suggests that the majority of fractures formed during the earliest stages of Sevier/Laramide compression, and were subsequently contorted by complex folding. Subsequent Miocene through Recent (Basin and Range) extension resulted in further development of the northeast-trending fractures. 4) Controls on fracture characteristics

A comparison of twenty-one data sets grouped by region and by lithology shows that regional location has a significant influence on fracture orientation dispersion parameter k, while lithology does not. Thus geomorphic environment accounts for a greater variability in fracture orientations than lithology. Geomorphic character is not directly a geological criterion; however, it describes the cumulative expression of an indeterminate combination of physical parameters. From this test it is concluded that the observed fracture geometry of the Farmington Canyon Complex is due to a combination of factors (including lithologic variability and sampling bias) which cannot be resolved separately.

5) Fracture half-length, spacing and intersections

Fracture half-length and spacing distributions appear to be exponential or lognormal, irrespective of lithology or regional position. At one station it was found that longer and more open fractures are similarly oriented to

all the fractures for that station. Based on this example, it was assumed that the theoretical distribution of fracture intersection lines as calculated by the Structure Graphics program is representative of the true distribution of fracture intersection lines in the Farmington Canyon Complex.

6) Geophysical surveys

WADI surveys in Steed and Ford canyons suggested the presence of elongate to linear saturated and unsaturated fracture zones in the bedrock. In the west swale of the Steed Canyon survey, a fracture zone functions as a drain; in the lower Ford Canyon swale, fracture zones appear to be sites of ground water accumulation.

Hydrogeology and Application to Slope Failures

 The role of fracture intersections

Previous studies have pointed out the importance of fracture interconnectivity in influencing ground-water flow in fractured rock masses (Long and Witherspoon, 1985; Pollard and Aydin, 1988). The distribution of intersection lines for the eight sub-regions in the study area is non-random at 95 percent confidence. However, this study did not find evidence confirming that preferential ground-water flow takes place parallel to the principal trends of fracture intersections. In the absence of such evidence, it is believed that the trends of fracture intersection lines for regions 1, 2, 3, 4, 5, 6 and 8 are the directions of maximum bedrock permeability in these regions.

2) Aquifer characteristics

Hydrogeologic evidence suggests that the shallow bedrock forms an aquifer of low specific yield. However, long-term discharge has been observed from some springs and debris flow scars underlain by the Farmington Canyon Complex (Mathewson and Santi, 1987). Therefore, the aquifer is divided into compartments of different sizes. It is believed that faults, fracture zones and/or lithological contacts control the partitioning of the aguifer, by acting either as conduits for deep groundwater flow or as barriers against topographically driven interflow, and thus re-direct ground water obliquely across the slope. The area around the head of Rudd Creek appears to be recharged in this manner (Keaton, 1988a). Further support for this hypothesis is provided by the WADI surveys, which indicated the the presence of waterbearing fractures in the vicinity of a fault in Steed Canyon, and near pegmatite outcrops in Ford Canyon.

3) Permeability trends

Two forms of indirect evidence support the hypothesis that ground water travels preferentially along faults. First, a generally northwestward increase in stream discharge (normalized to drainage area) is apparent for five westward-draining canyons in this region. Second, the greatest number of slope failures within the study area occurred on slopes perpendicular to the principal trend of faults in the study area. No such correlations were found between slope failures and the strikes of fractures or the trends of fracture intersection lines.

The role of steeply-dipping fractures and fracture intersection lines appears to be one of recharge to the deep permeable zones in the bedrock. The extent of communication between shallow structures (fractures and foliation) and deep structures (faults) is important: the greater the permeability of the shallow bedrock, the greater the recharge to the deeper aquifer. Where the fractured shallow bedrock is not near a deep conduit, downslope movement of ground water occurs as interflow, until a permeable zone is encountered, or surface discharge occurs.

4) Surface discharge mechanisms

Bedrock features causing surface discharge of interflow may be relatively less permeable rock bodies such as pegmatite, and/or fracture and foliation sets that intersect the slope, as hypothesized by Mathewson and Santi (1987). A number of gently dipping fractures and foliation planes dip toward the northwest, corresponding to the slopes on which the greatest number of debris flows occurred.

Extrapolating the surficial bedrock structure observed in the study area to all of eastern Davis County, it is concluded that the density of structural discontinities near the surface is uniformly high. Thus, while the principal trends of discontinuities may vary considerably, overall permeability characteristics of the near-surface bedrock are interpreted to be uniform and nearly isotropic.

Figure 78 A (in pocket) shows the proposed groundwater flow system in the Farmington Canyon Complex between Farmington Canyon and Ward Canyon. Permeability trends in the bedrock <u>between</u> major linears are nearly perpendicular to the linears, allowing for rapid recharge to the deeper flow system. Linears are interpreted to be ground-water conduits. Some, however, may have <u>lower</u> permeability than the material around them, and thus may be barriers to ground-water flow. The barriers that trend across the general westward slope of the Wasatch Front cause ground water to be conducted down and across the slope, parallel to and uphill of the linear feature.

Application to the Debris Flow Hazard

It is concluded from this study that the distribution of slope failures, particularly debris flows, underlain by the Farmington Canyon Complex is at least partially dependent on bedrock geology. Two general ground-water conditions can lead to a debris flow, consistent with two

different meteorologic conditions. First, intense and localized summer rainstorms may lead to rapid interflow and discharge at contacts with pegmatite, and through lowangle fractures and partings in well-foliated gneisses. Second, spring snowmelt may saturate deep ground-water conduits, causing prolonged discharge and/or slope failure through the localized elevation of pore water pressure in the manner described by Mathewson and Santi (1987).

The results of this study suggest that the future occurrence of slope failures associated with spring snowmelt in this region will take place on slopes perpendicular to regional faults, and at discharge points <u>along</u> fault traces, created by local variations in the permeability of fault zones and the presence of favourably oriented fractures or foliations. Debris flows and shallow landslides associated with intense summer rainfall may correlate more strongly with the occurrence of "daylighting" fractures and foliation, and along contacts between pegmatite and other lithologies.

The proposed distribution of ground-water discharge points and shallow ground water for both of the conditions discussed in the previous paragraph is shown in Figure 78 B (in pocket). Many are located adjacent to creeks, most of which appear to mark the trace of bedrock faults or fracture zones. Thus in the wet season, the entire length of a stream valley becomes a ground-water discharge zone.

In this way, sufficient pore water pressure is maintained along a canyon to allow the continuous mobilization of colluvium in a debris flow, as proposed by Santi (1988).

RECOMMENDATIONS FOR FURTHER WORK

The traces of regional faults and the trends of lithologic contacts are best identified using aerial photographs. A large percentage of slope failures in this study area correlate with these features. Aerial photograph analysis, with a limited amount of field checking, would provide useful input to slope failure hazard maps of larger regions. Digital image processing would help in identifying these regionally important bedrock features.

The conclusions drawn from the detailed analysis of fracture and foliation orientations may not be directly applicable outside the study area. Because of the heterogeneous geology of the Farmington Canyon Complex, orientations are likely to be quite different elsewhere. In new areas, data collection at the outcrop level may be necessary for comparison with the data sets in this study.

Further work is necessary to test the hypothesized relationship between structural fabric and ground-water flow directions. Useful field techniques might include measuring spring discharge and water chemistry, and conducting tracer tests to investigate the areal extent of aquifer compartments, and travel times.

The relative permeability of gneissic, amphibolitic and pegmatitic rocks should be better established. In

this study, geomorphic and hydrologic evidence was used to infer that pegmatites (at least in the subsurface) are the least permeable rock type.

Slope failure scars in part or all of the study area could be field checked to distinguish those which involved significant deep ground-water discharge from those which may have been initiated by pore water pressures in colluvium or shallow bedrock. This would refine the correlations found in this study between ground-water trends and slope failures.

Finally, the statistical techniques used here for characterizing the dispersion and orientation of families of structural discontinuities can be used in other applications, such as in predicting the fate of solutes in the ground water within fractured rock masses. This is particularly true of regions with less complex fracture geometries. Some preliminary conclusions about the permeability characteristics of a fractured rock mass could be drawn from an analysis of eigenvalues, k, alpha95, and Kamb contours of fracture poles and intersection lines. The data for these analyses can be gathered relatively quickly. In comparison, in situ hydrogeologic investigations of fractured rock masses can involve very large amounts of money and time; and mathematical treatments are generally extremely complex.

REFERENCES

- Alger, C.S., and Ellen, S.D., 1987, Zero-order Basins Shaped by Debris Flows, Sunol, California, U.S.A. In Beschta, R.L.; Blinn, T.; Grant, G.E.; Ice, G.G.; and Swanson, F.J., (editors) <u>Erosion and Sedimentation in</u> <u>the Pacific Rim</u>: Publication No. 165, International Association of Hydrological Sciences, Washington, D.C., p. 111.
- Anderson, L.R.; Keaton, J.R.; Saarinen, T.F.; and Wells, W.G. III, 1985, The Utah Landslides, Debris Flows, and Floods of May and June 1983, in Bowles, D.S., (editor), <u>Delineaton of Landslide, Flash Flood, and</u> <u>Debris Flow Hazards in Utah</u>, Utah Water Research Laboratory, Utah State University, Logan, UT, 592 p.
- Andrews, J.T., 1971, Techniques of Till Fabric Analysis; in Brunsden D. and Thornes, J.B., (editors), <u>British</u> <u>Geomorphological Research Group, Technical Bulletin</u> <u>No. 6</u>, British Geomorphological Research Group, (Private Collection, J.R. Giardino), 43 p.
- Arabasz, W.J., and Julander, D.R., 1986, Geometry of Seismically Active Faults and Crustal Deformation Within the Basin and Range-Colorado Plateau Transition in Utah, in Mayer, L., (editor), <u>Extensional Tectonics of the Southwestern United</u> <u>States: a Perspective on Processes and Kinematics</u>, Geological Society of America Special Paper No. 208, p. 43-74.
- Babcock, E.A., 1973, Regional Jointing in Southern Alberta, <u>Canadian Journal of Earth Science</u>, Vol. 10, p. 1769.
- Baecher, G.B.; Lanney, N.A.; and Einstein, H.H., 1977, Statistical Description of Rock Properties and Sampling, in Wang, F.D., and Clark, G.B., (editors), <u>Energy Resources and Excavation Technology:</u> <u>Proceedings of the 18th United States Symposium on</u> <u>Rock Mechanics</u>, Keystone, CO, Colorado School of Mines Press, Golden, CO, p. 5Cl1-8.
- Brooks, R.K., 1986, <u>Instrumentation of the Steed Canyon</u> <u>Landslide</u>, Unpublished Master of Science Thesis, Department of Civil and Environmental Engineering, Utah State University, Logan, UT, 183 p.
- Brown, S.R., 1987, Fluid Flow Through Rock Joints: the Effect of Surface Roughness, <u>Journal of Geophysical</u> <u>Research</u>, Vol. 92, No. B2, p. 1337-1347.

- Bryant, Bruce, 1988, <u>Geology of the Farmington Canyon</u> <u>Complex, Wasatch Mountains, Utah</u>, United States Geological Survey Professional Paper 1476, United States Government Printing Office, Washington, D.C., 54 p.
- Campbell, R.H., 1975, <u>Soil Slips, Debris Flows, and</u> <u>Rainstorms in the Santa Monica Mountains and</u> <u>Vicinity, Southern California</u>, United States Geological Survey Special Paper 851, Denver, CO, 51 p.
- Chorley, R.J.; Schumm, S.A.; and Sugden, D.E., 1984, <u>Geomorphology</u>: Methuen and Company, New York, NY, 605 p.
- Conover, W.J., 1980, <u>Practical Non-Parametric Statistics</u>, <u>Second Edition</u>, John Wiley and Sons, New York, NY, 493 p.
- Crittenden, M.D. Jr., 1972, Willard Thrust and the Cache Allochthon, Utah, <u>Geological Society of America</u> <u>Bulletin</u>, Vol. 83, p. 2871-2880.
- Croft, A.R., and McDonald, L.W., 1944, Centerville, Utah, A Pattern for Progress, <u>The Centerville Newsette</u>, Centerville, UT, November 1944.
- Davis County Planning Commission, 1989, Unpublished Stream flow and Precipitation Data for Halfway Creek, Davis County Courthouse, Farmington, UT.
- Davis, J.C., 1986, <u>Statistics and Data Analysis in</u> <u>Geology, Second Edition</u>, John Wiley and Sons, New York, NY, 646 p.
- Deere, D.H. and Patton, F.D., 1971, Slope Stability in Residual Soils. In <u>Proceedings of the Fourth</u> <u>Panamerican Conference on Soil Mechanics and</u> <u>Foundation Engineering</u>, Vol. 1, American Society of Civil Engineers, New York, NY, p. 87-170.
- Domenico, P.A., 1972, <u>Concepts and Models in Groundwater</u> <u>Hydrology</u>, McGraw Hill, New York, NY, p. 48-52.
- Eardley, A.J., 1939, Structure of the Wasatch-Great Basin region, <u>Geological Society of America Bulletin</u>, Vol. 50, p. 1277-1310.

_____, 1944, Geology of the north-central Wasatch mountains, Utah, <u>Geological Society of America</u> <u>Bulletin</u>, Vol. 55, p. 819-894.

- Eisenlohr, W.S. Jr., 1952, Floods of July 18, 1942, Pennsylvania, in <u>Notable Floods of 1942-3</u>, United States Geological Survey Water Supply paper 1134-B, United States Government Printing Office, Washington, D.C., p. 75-79.
- Engelder, T., 1982, Is There a Genetic Relationship Between Selected Regional Joints and Contemporary Stress Within the Lithosphere of North America ? Tectonics, Vol. 1, No. 2, p. 161-177.
- , and Geiser, P., 1980, On the Use of Regional Joint Sets as Trajectories of Paleostress Fields During the Development of the Appalachian Plateau, New York, <u>Journal of Geophysical Research</u>, Vol. 85, No. B11, p. 6319-6341.
- Everett, A.G., 1979, Secondary Permeability as a Possible Factor in the Origin of Debris Avalanches Associated with Heavy Rainfall, <u>Journal of Hydrology</u>, Vol. 43, p. 347-354.
- Feth, J.H., 1964, <u>Hidden Recharge</u>, United States Geological Survey Water Resources Division, United States Government Printing Office, Washington, D.C., p. 14-17.
- Fisher, Sir Ronald, 1953, Dispersion on a sphere, <u>Proceedings of the Royal Society, Series A</u>, Vol. 217, No. 1130, Cambridge University Press, London, England, p. 295-305.
- Freeze, R.A., and Cherry, J.A., 1979, <u>Groundwater</u>, Prentice-Hall, Englewood Cliffs, NJ, p. 472.
- Friedman, M., 1963, Petrofabric techniques for the determination of principal stress directions in rocks, in Rudd, W.R., (editor), <u>International</u> <u>Conference on the State of Stress in the Earth's</u> <u>Crust</u>, Proceedings, Elsevier Publishing Company, New York, NY, p. 474.
- Gale, J.E.; Rouleau, A.; and Atkinson, L.C., 1985, Hydraulic Properties of Fractures, in <u>Hydrogeology of</u> <u>Rocks of Low Permeability</u>, International Association of Hydrogeologists Memoires, Tucson, AZ, Vol. XVII, Part 1 (Proceedings), p. 1-16.
- Greenkorn, R.A.; Johnson, C.R.; and Shallenberger, L.K., 1964, Directional Permeability of Heterogeneous Anisotropic Porous Media, <u>Society of Petroleum</u> <u>Engineers Journal</u>, June 1964, p. 124.

- Hack, J.T. and Goodlett, J.C., 1960, <u>Geomorphology and</u> <u>Forest Ecology of a Mountain Region in the Central</u> <u>Appalachians</u>, United States Geological Survey Professional Paper #347, United States Government Printing Office, Washington, D.C., p. 41-56.
- Halliday, D. and Resnick, R., 1978, <u>Physics: Part Two,</u> <u>Third Edition</u>, John Wiley and Sons, New York, NY, 894 p.
- Harp, E.L.; Wells, W.G. II; and Sarmiento, J.G., 1990, Pore Pressure Response During Failure in Soils, <u>The</u> <u>Geological Society of America Bulletin</u>, Vol. 102, No. 4, p. 428-438.
- Hashad, A.H.; Damon, P.; and Whelan, J.A., 1970, Precambrian Geology of the Central Wasatch mountains, in Whelan J.A., (editor), <u>Radioactive and isotopic</u> <u>determinations of Utah rocks</u>, Utah Geological and Mineral Survey, affiliated with The College of Mines and Mineral Industries Bulletin 81, Salt Lake City, UT, p. 15-17.
- Hedge, C.E.; Stacey, J.S.; and Bryant, Bruce, 1984, Geochronology of the Farmington Canyon Complex, Wasatch Mountains, Utah, in Miller, D.M., Todd, V.R., and Howard, K.A., (editors), <u>Tectonic and</u> <u>stratigraphic studies in the Eastern Great Basin</u>, Geological Society of America Memoir 157, Denver, CO, p. 37-45.
- Heiland, C.A., 1968, <u>Geophysical Exploration</u>, Hafner Publishing Co., New York, NY, 1013 p.
- Hicks, B.G., 1988, Personal Communication, Geologist, Rogue River National Forest, Medford, OR.
- Hintze, L.F., 1982, <u>Geologic History of Utah</u>, Department of Geology, Brigham Young University, Provo, UT, 181 p.
- Hodgson, R.A., 1961, Regional Study of Jointing in Comb Ridge-Navajo Mountain Aera, Arizona and Utah, <u>American Association of Petroleum Geologists</u> <u>Bulletin</u>, Vol. 45, No. 1, p. 38.
- Hollet, D.W.; Bruhn, R.L.; and Parry, W.T., 1978, Physicochemical Aspects of Thrust Faulting in Precambrian Gneiss, Sevier Orogenic Belt, Utah, <u>Geological Society of America Abstracts With</u> <u>Programs</u>, Vol. 15, No. 5, p. 402.

- Howard, A.D., and McLane, C.F. III, 1988, Erosion of Cohesionless Sediment by Groundwater Seepage, <u>Water</u> Resources Research, Vol. 24, No. 10, p. 1659-74.
- Hunt, C.B., and Robinson, T.W., 1960, Possible Interbasin Circulation of Ground Water in the Southern Part of the Great Basin, in <u>Geological Survey Research</u>, United States Geological Survey Professional Paper 400-B, United States Government Printing Office, Washington, D.C., p. 273.
- Irving, E., 1964, <u>Palaeomagnetism and its Application to</u> <u>Geological and Geophysical Problems</u>, John Wiley and Sons, Inc., New York, NY, 399 p.
- Jadkowski, M.A., 1987, <u>Multispectral Remote Sensing of</u> <u>Landslide Susceptible Areas</u>: Unpublished Ph.D. Dissertation, Department of Civil and Environmental Engineering, Utah State University, Logan, UT, 264 p.
- Jones, J.W.; Simpson, E.S.; Neuman, S.P.; and Keys, W.S., 1985, <u>Field and Theoretical Examinations of Fractured</u> <u>Crystalline Rock Near Oracle, Arizona</u>, Division of Radiation Programs and Earth Sciences, Office of Nuclear Regulatory Research, United States Nuclear Regulatory Commission, Washington, D.C., 104 p.
- Kamb, W.B., 1959, Ice Petrofabric Observations from Blue Glacier, Washington, in Relation to Theory and Experiment, <u>Journal of Geophysical Research</u>, Vol. 64, No. 11, p. 1891-1909.
- Karous, M., and Hjelt, S.E., 1983, Linear Filtering of VLF Dip-Angle Measurements, <u>Geophysical Prospecting</u>, Vol. 31, p. 782-794.
- Keaton, J.R., 1987, Personal Communication, Senior Engineering Geologist, Sergent, Beckwith and Hauskins, Salt Lake City, UT.

, 1988a, <u>A Probabilistic Model For Hazards</u> <u>Related to Sedimentation Processes on Alluvial Fans</u> <u>in Davis County, Utah</u>: Unpublished Ph.D. Dissertation, Department of Geology, Texas A&M University, College Station, TX, 441 p.

_____, 1988b, Personal Communication, Senior Engineering Geologist, Sergent, Beckwith and Hauskins, Salt Lake City, UT.

Lagmanson, M., 1990, Personal Communication, Saga Geophysics, Austin, TX.

- LaPointe, P.R., and Hudson, J.A., 1985, <u>Characterization</u> <u>and Interpretation of Rock Mass Joint Patterns</u>, Geological Society of America Special Paper 199, Boulder, CO, 37 p.
- Legrand, H., 1979, Evaluation Techniques in Fractured-Rock Hydrology, Journal of Hydrology, Vol. 43, p. 333-346.
- Long, J.C.S.; Endo, H.K.; Karasaki, K; Pyrak, L; MacLean, P.; and Witherspoon, P.A., 1985, Hydrogeologic Behavior of Fracture Networks, in <u>Hydrogeology of</u> <u>Rocks of Low Permeability</u>, International Association of Hydrogeologists Memoires, Tucson, AZ, Vol. XVII, Part 1 (Proceedings), p. 449.
- Long, J.C.S., and Witherspoon, P.A., 1985, The Relationship of the Degree of Interconnection to Permeability in Fracture Networks, <u>Journal of</u> <u>Geophysical Research</u>, Vol. 90, No. B4, p. 3087-3098.
- Lowe, M., 1989, <u>Slope Failure Inventory Map; Bountiful</u> <u>Peak Quadrangle</u>, Unpublished Davis County Planning Commission Map, Farmington, UT, 1:24000 scale.
- Mardia, K.V., 1972, <u>Statistics of Directional Data</u>, Academic Press, New York, NY, 357 p.
- Mark, D.M., 1974, On the Interpretation of Till Fabrics, <u>Geology</u>, Vol. 2, p. 101-104.
- Mathewson, C.C. and Santi, P.M., 1987, Bedrock Ground Water: Source of Sustained Post-Debris Flow Stream Discharge. In <u>Proceedings of the 23rd Symposium on</u> <u>Engineering Geology and Soils Engineering</u>, Utah State University, Logan, UT, p. 253.
- ; Keaton, J.R.; and Santi, P.M., 1990, Role of Bedrock Ground Water in Debris Flows and Sustained Post-Flow Stream Discharge, <u>The Bulletin of the</u> <u>Association of Engineering Geologists</u>, Vol. XXVII, No. 1, p. 73-83.
- McElhinny, M.W., 1973, <u>Palaeomagnetism and Plate</u> <u>Tectonics</u>, Cambridge University Press, New York, NY, 358p.
- Miflin, M.D., 1968, <u>Delineation of Ground-Water Flow</u> <u>Systems in Nevada</u>, Technical Report Series H-W, Hydrology and Water Resources Publication No. 4, Center for Water Resources Research, Desert Research Institute, University of Nevada System, NV, p. 35-45.

- Milton, J.S., and Arnold, J.C., 1986, <u>Probability and</u> <u>Statistics in the Engineering and Computing Sciences</u>, McGraw-Hill Book Company, New York, NY, 643 p.
- Monteith, S., 1988, <u>Stability Analysis of the Steed Canyon</u> <u>Landslide</u>, Unpublished Master of Science Thesis, Department of Civil and Environmental Engineering, Utah State University, Logan, UT, 107 p.
- Morgan, D.F., 1990, Personal Communication, Associate Professor, Department of Geophysics, Texas A&M University, College Station, TX.
- Mundorff, M.J.; Broom, H.C.; and Kilburn, C., 1963, <u>Reconnaissance of the Hydrology of the Little Lost</u> <u>River Basin, Idaho</u>, United States Geological Survey Water Supply Paper 1539Q, United States Government Printing Office, Washington, D.C., p. Q22.
- Naeser, C.W.; Bryant, Bruce; Crittenden, M.D. Jr.; and Sorensen, M.L., 1983, Fission-track Ages of Apatite in the Wasatch Mountains, Utah: an Uplift Study, in Miller, D.M.; Todd, V.R.; and Howard, K.A., (editors), <u>Tectonic and Stratigraphic Studies in the Eastern</u> <u>Great Basin</u>, Geological Society of America, Boulder, CO, Memoir 157, p. 29-36.
- Neretnieks, I., 1985, Transport in Fractured Rocks. In <u>Hydrogeology of Rocks of Low Permeability</u>, International Association of Hydrogeologists Memoires, Tucson, AZ, Vol. XVII, Part 1 (Proceedings), p. 301.
- Nickelsen, R.P., 1974, Early Jointing and Cumulative Fracture Patterns, in Hodgson, R.A., and Gay, S.P. Jr., (editors), <u>Proceedings of the First</u> <u>International Conference on the New Basement</u> <u>Tectonics</u> No. 23, Utah Geological Association Publication No. 5, Salt Lake City, UT, p. 193-199.
- Olson, E.P., 1985, East Layton Debris Flow, <u>Environmental</u> <u>Geology, Level 2 Case Study</u>, Report G R-4, 85-2, United States Department of Agriculture, Forest Service, R-4 Intermountain Region, Ogden, UT, 25 p.
- Pack, R.T., 1985, Multivariate Analysis of Landslide-Related Variables in Davis County, Utah, in Bowles, D.S. (editor), <u>Delineation of Landslide, Flash Flood,</u> <u>and Debris Flow Hazar</u> in Utah, Utah Water Research Laboratory, Utah State Jniversity, Logan, UT, p. 50-66.

- Pankey, J. M., and DeByle, N.V., 1984, <u>Streamflow</u> <u>Summaries from Twelve Tributaries of Farmington</u> <u>Creek, Davis County Experimental Watershed, Northern</u> <u>Utah</u>, General Technical Report INT-162, United States Department of Agriculture, Forest Service, Ogden, UT, 133 p.
- Pollard, D.D., and Aydin, A., 1988, Progress in Understanding Jointing Over the Past Century, <u>Geological Society of America Bulletin</u>, Vol. 100, p. 1181-1204.
- Reneau, S.L., and Dietrich, W.E., 1987, <u>The Importance of</u> <u>Hollows in Debris Flow Studies: Examples from Marin</u> <u>County, California</u>, Geological Society of America Reviews in Engineering Geology, Boulder, CO, Vol. VII, p. 165-179.
- Saga Geophysics, 1988, Unpublished WADI User's Manual, Saga Geophysics, Austin, TX, 64 p.
- Santi, P.M., 1988, <u>The Kinematics of Debris Flow Transport</u> <u>Down a Canyon</u>, Unpublished Master of Science Thesis, Department of Geology, Texas A&M University, College Station, TX, 85 p.
- Schuster, R.L., and Krizek, R.J., (editors), 1978, <u>Landslides, Analysis and Control</u>, Transportation Research Board Special Report 176, National Academy of Sciences, Washington, D.C., p. 18.
- Sidle, R.C., 1987, A dynamic model of slope stability in zero-order Basins. In Beschta, R.L.; Blinn, T.; Grant, G.E.; Ice, G.G.; and Swanson, F.J., (editors), <u>Erosion and Sedimentation in the Pacific Rim</u>: Publication No. 165, International Association of Hydrological Sciences, Washington, D.C., p. 101.
- Skelton, R.K., 1989, Personal Communication, Department of Geology, Texas A&M University, College Station, TX.
- Snow, D.T., 1965, <u>A Parallel Plate Model of Fractured</u> <u>Permeable Media</u>, Ph.D. Thesis, University of California, Berkeley, CA, 331 p.
- State of California Department of Natural Resources, 1954, <u>Geology of Southern California</u>, Bulletin 170, Division of Mines, San Francisco, CA, 527 p.
- Tarling, D.H., 1983, <u>Palaeomagnetism: Principles and</u> <u>Applications in Geology, Geophysics and Archaeology</u>, Chapman and Hall, New York, NY, 379 p.

- Taylor, R.W., and Fleming, A.H., 1988, Characterizing Jointed Systems by Azimuthal Resistivity Surveys, <u>Ground Water</u>, Vol. 26, No. 4, p. 464-474.
- Telford, W.M.; Geldhart, L.P.; Sheriff, R.E.; and Keys, D.A., 1985, <u>Applied Geophysics</u>, Cambridge University Press, New York, NY, 860 p.
- Tooker, E.W., 1983, Variations in the Structural Style and Correlation of Thrust Plates in the Sevier Foreland Thrust Belt, Great Salt Lake Area, Utah, in Miller, D.M.; Todd, V.R.; and Howard, K.A., (editors), <u>Tectonic and Stratigraphic Studies in the Eastern</u> <u>Great Basin</u>, Geological Society of America Memoir 157, Boulder, CO, p. 37-45.
- Tsukamoto, Y., and Minematsu, H., 1987, Hydrogeomorphological Characteristics of a Zero-Order Basin, in Beschta, R.L.; Blinn, T.; Grant, G.E.; Ice, G.G.; and Swanson, F.J., (editors), <u>Erosion and Sedimentation</u> <u>in the Pacific Rim</u>: Publication No. 165, International Association of Hydrological Sciences, Washington, D.C., p. 61.
- United States Department of the Interior, Geological Survey, 1952, <u>Surface Water Supply of the United</u> <u>States, 1950, Part 10, The Great Basin</u>, United States Geological Survey Water Supply Paper No. 1180, United States Government Printing Office, Washington, D.C., 234 p.

, 1953, <u>Surface Water Supply of the</u> <u>United States, 1951, Part 10, The Great Basin</u>, United States Geological Survey Water Supply Paper No. 1214, United States Government Printing Office, Washington, D.C., 247 p.

, 1954, <u>Surface Water Supply of the</u> <u>United States, 1952, Part 10, The Great Basin</u>, United States Geological Survey Water Supply Paper No. 1244, United States Government Printing Office, Washington, D.C., 247 p.

______, 1955, <u>Surface Water Supply of the</u> <u>United States, 1953, Part 10, The Great Basin</u>, United States Geological Survey Water Supply Paper No. 1284, United States Government Printing Office, Washington, D.C., 227 p. __, 1956, <u>Surface Water Supply of the</u>

<u>United States, 1954, Part 10, The Great Basin</u>, United States Geological Survey Water Supply Paper No. 1344, United States Government Printing Office, Washington, D.C., 252 p.

, 1957, <u>Surface Water Supply of the</u> <u>United States, 1955, Part 10, The Great Basin</u>, United States Geological Survey Water Supply Paper No. 1394, United States Government Printing Office, Washington, D.C., 232 p.

, 1958, <u>Surface Water Supply of the</u> <u>United States, 1956, Part 10, The Great Basin</u>, United States Geological Survey Water Supply Paper No. 1444, United States Government Printing Office, Washington, D.C., 231 p.

, 1959, <u>Surface Water Supply of the</u> <u>United States, 1957, Part 10, The Great Basin</u>, United States Geological Survey Water Supply Paper No. 1514, United States Government Printing Office, Washington, D.C., 233 p.

, 1960a, <u>Surface Water Supply of the</u> <u>United States, 1958, Part 10, The Great Basin</u>, United States Geological Survey Water Supply Paper No. 1564, United States Government Printing Office, Washington, D.C., 279 p.

, 1960b, <u>Surface Water Supply of the</u> <u>United States, 1959, Part 10, The Great Basin</u>, United States Geological Survey Water Supply Paper No. 1634, United States Government Printing Office, Washington, D.C., 247 p.

, 1961a, <u>Surface Water Supply of the</u> <u>United States, 1960, Part 10, The Great Basin</u>, United States Geological Survey Water Supply Paper No. 1714, United States Government Printing Office, Washington, D.C., 270 p.

, 1961b, <u>Surface Water Records of Utah</u>, United States Geological Survey, Water Resources Division, United States Government Printing Office, Washington, D.C., 272 p.

, 1962, <u>Surface Water Records of Utah</u>, United States Geological Survey, Water Resources Division, United States Government Printing Office, Washington, D.C., 270 p. , 1963, <u>Surface Water Records of Utah</u>, United States Geological Survey, Water Resources Division, United States Government Printing Office, Washington, D.C., 272 p.

- Vandre, B.C., 1985, Rudd Creek Debris Flow, in Bowles, D.S., (editor), <u>Delineation of Landslide, Flash</u> <u>Flood, and Debris Flow Hazards in Utah</u>, Utah Water Research Laboratory, Utah State University, Logan, UT, p. 117-132.
- Warburton, P.M., 1980, A Stereological Interpretation of Joint Trace Data, <u>International Journal of Rock</u> <u>Mechanics, Mining Science and Geomechanics Abstracts</u>, Vol. 17, p. 181-190.
- Weeks, E.P., 1964, <u>Use of Water-Level Recession Curves to</u> <u>Determine the Hydraulic Properties of Glacial Outwash</u> <u>in Portage County, Wisconsin</u>, United States Geological Survey Professional Paper 501-B, United States Government Printing Office, Washington, D.C., p. B181-B184.
- White, R.B., and Gainer, R.B., 1985, Control of Ground Water Contamination at an Active Uranium Mill, <u>Groundwater Monitoring Review</u>, Vol. 5, No. 2, p. 75-82.
- Wieczorek, G.F.; Lips, E.W.; and Ellen, S.D., 1989, Debris
 Flows and Hyperconcentrated Floods Along the Wasatch
 Front, Utah, 1983 and 1984: <u>The Bulletin of the
 Association of Engineering Geologists</u>, Vol. XXVI, No.
 2, p. 191.
- Wilson, C., and Dietrich, W.E., 1987, The Contribution of Bedrock Groundwater Flow to Storm Runoff and High Pore Pressure Development in Hollows, in Beschta, R.L.; Blinn, T.; Grant, G.E.; Ice, G.G.; and Swanson, F.J., (editors), <u>Erosion and Sedimentation in the</u> <u>Pacific Rim</u>: Publication No. 165, International Association of Hydrological Sciences, Washington, D.C., p. 41.
- Wiltschko, D.V., 1990, <u>Structure Graphics</u>, Unpublished Computer Program, Department of Geology and Center for Tectonophysics, Texas A&M University, College Station, TX.
- Witherspoon, P.A.; Wang, J.S.Y.; Iwai, K.; and Gale, J.E., 1980, Validity of Cubic Law for Fluid Flow in a Deformable Rock Fracture, <u>Water Resources Research</u>, Vol. 16, No. 6, p. 1016-1024.

- Woodcock, N.H., and Naylor, M.A., 1983, Randomness Testing in Three-Dimensional Orientation Data, <u>Journal of</u> <u>Structural Geology</u>, Vol. 5, No. 5, p. 539-548.
- Yonkee, A., 1990, Personal Communication, Utah Geological and Mineral Survey, Salt Lake City, UT.
- Young, R.B., 1984, A Geologic Analysis of a Part of Northeastern Utah Using ERTS Multispectral Imagery, in <u>Brigham Young University Geology Studies</u>, Vol. 31, Part 1, Provo, UT, p. 187.
- Zoback, M.L., 1983, Structure and Cenozoic Tectonism Along the Wasatch Fault Zone, Utah, in Miller, D.M.; Todd, V.R.; and Howard, K.A., (editors), <u>Tectonic and Stratigraphic Studies in the Eastern Great Basin</u>, Geological Society of America Memoir 157, Denver, CO, p. 3-28.

APPENDIX 1

TABLE OF NOMENCLATURE

- Ma: Mega-annum (million years)
- Ga: Giga-annum (billion years)
- R: Resultant vector
- Ro: Resultant vector for a random distribution of vector orientations at 95 percent confidence
- R: Magnitude of resultant vector
- S²: Sum of squares
- 1: east direction cosine
- m: north direction cosine
- n: vertical (down) direction cosine
- P: Probability density function describing the Fisher distribution of vectors
- K: Fisher precision parameter; in eigenvalue analysis, an indicator of the shape of the ellipsoid $([S_1/S_2]/[S_2/S_3])$
- k: Estimate of Fisher precision parameter
- eta: Angular distance between a given data point on a sphere and the spherical mean
- S₁, S₂, S₃: Normalized eigenvalues calculated from sums of products matrix of direction cosines
- C: Strength of the structural fabric, shown by departure from sphericity of the ellipsoid (S_1/S_3)
- n: Sample population

alpha95: angular radius of a circle on a sphere which

contains 95 percent of the Fisher distributed data

- A: Counting area on lower hemisphere for Kamb contouring
- E: Expected number of observations falling in A
- σ: Standard deviation of the number of points that will fall within A for a randomly distributed sample
- e_n: Primary magnetic field emitted by station
- e_s: Secondary field induced by current in subsurface conductor
- n_j: The number of ranked observations in each sample of the Kruskal-Wallis test
- R_j: The numerical value of the summed ranks within each sample of the Kruskal-Wallis test
- q: The summed values of (R_i^2/n_i) for calculating H
- H: The test statistic for comparison with H_0 and H_1 , calculated as follows: H = (12/n[n+1])(q)-3(n+1); from Conover, 1980, p. 230.
- H₀: The null hypothesis
- H1: The alternative ("research") hypothesis

APPENDIX 2

TABLE OF RESULTANTS (RO) OF RANDOMLY ORIENTED VECTORS

AT 95 PERCENT CONFIDENCE

n	0	1	2	3	4	5	6	7	8	9
0	-	-	-	2.62	3.10	3.50	3.85	4.18	4.48	4.76
10	5.03	5.28	5.52	5.75	5.98	6.19	6.40	6.60	6.79	6.98
20	7.17	7.35	7.52	7.69	7.86	8.02	8.18	8.34	8.50	8.65
30	8.80	8.94	9.09	9.23	9.37	9.51	9.65	9.78	9.91	10.0
40	10.2	10.3	10.4	10.6	10.7	10.8	10.9	11.0	11.2	11.2
50	11.4	11.5	11.6	11.7	11.8	11.9	12.0	12.2	12.3	12.4
60	12.5	12.6	12.7	12.8	12.9	13.0	13.1	13.2	13.3	13.4
70	13.5	13.6	13.7	13.8	13.8	13.9	14.0	14.1	14.2	14.3
	14.4									15.2
90	15.3	15.4	15.4	15.5	15.6	15.7	15.8	15.9	15.9	16.0
					10	0 - 1	6.1			

Adapted from Irving, 1964. Numbers above 10.0 have been rounded off to one decimal place.

APPENDIX 3

KRUSKAL-WALLIS ONE-WAY ANALYSES OF VARIANCE

1) To compare the Fisher k values for different lithologies.

 H_0 = there is no significant difference in the Fisher k for different lithologies.

 H_1 = Fisher k values for different lithologies are significantly different.

Confidence level = 95 percent

n = 21; df = 2

Gneiss	RANKS Amphibolite	Peqmatite
5	1	3
6	2	4
7	8	9
12	10	11
13	14	15
18	16	20
21	17	
	19	
n _i =7	n _i =8	n _i =6
R'j=82	Rj=87	$R_j = 62$

Sum from j=1 to j=3 for $(R_j^2/n_j) = 2547.37 = "q"$. H = (12/n[n+1])(q)-3(n+1) = 0.165.

For small sample sizes, the approximate value of the statistic at 95 percent confidence with df=2 is obtained from the Chi-square distribution. The value of the statistic is 5.991 (Conover, 1980, p. 432); thus H_0 cannot be rejected. It is concluded that the Fisher k values for different lithologies are the same.

2) To compare the Fisher k values for different regions.

 H_0 = there is no significant difference in the Fisher k for different regions.

 H_1 = Fisher k values for different regions are significantly different.

Confidence level = 95 percent

n = 21; df = 7

RANKS OF REGIONS 1-8							
1	2	3	4	5	6	7	8
15	1	3	9	7	11	2	10
19	4	8	12	16	13	6	18
21	5	-	14	-	17	_	20
n;=3	n;=3	$n_i=2$	n;=3	$n_i=2$	$n_i = 3$	n;=2	n;=3
$R_{j}^{\prime} = 55$	R _j =10	$n_j=2$ $R_j=11$	$R_{j}^{2}=35$	$R'_j=23$	$R'_{j} = 41$	R'j=8	R _j =48

Sum from j=1 to j=8 for $(R_j^2/n_j) = 3135.20 = "q"$. H = (12/n[n+1])(q)-3(n+1) = 15.43.

The value of the statistic at 95 percent confidence with df=7 is obtained from the Chi-square distribution. The value of the statistic is 14.07 (Conover, 1980, p. 432); thus H_0 is rejected in favour of H_1 . It is concluded that the Fisher k values for different regions are different.

3) To compare alpha95 values for different lithologies.

 H_0 = there is no significant difference in alpha95 for different lithologies.

 H_1 = alpha95 values for different lithologies are significantly different.

Confidence level = 95 percent

n = 21; df = 2

Gneiss	RANKS Amphibolite	Peqmatite		
1	7	4		
2	9	5		
3	11	6		
10	14	8		
11	15	17		
13	16	21		
19	18			
	20			
n;=7	n _i =8	n _i =6		
$R_j^{1}=59$	R _j =110	$R_j^{\prime}=61$		

Sum from j=1 to j=3 for $(R_j^2/n_j) = 2629.95 = "q"$.

H = (12/n[n+1])(q)-3(n+1) = 3.03.

For small sample sizes, the approximate value of the statistic at 95 percent confidence with df=2 is obtained from the Chi-square distribution. The value of the statistic is 5.991 (Conover, 1980, p. 432); thus H_0 cannot be rejected. It is concluded that alpha95 values for different lithologies are the same.

4) To compare alpha95 values for different regions.

 H_0 = there is no significant difference in alpha95 for different regions.

 H_1 = alpha95 values for different regions are significantly different.

Confidence level = 95 percent

n = 21; df = 7

		RANK	SOFR	EGIONS	1-8		
1	2	3	4	5	6	7	8
5	8	6	2	11	3	13	1
9	14	7	4	16	15	18	11
10	19	-	20	-	17	-	21
$n_j=3$ $R_j=55$	$n_j=3$ $R_j=10$	$n_j=2$ $R_j=11$	$n_j=3$ $R_j=35$	$n_j=2$ $R_j=23$	$n_j=3$ $R_j=41$	$n_j=2$ $R_j=8$	$n_j=3$ $R_j=48$

Sum from j=1 to j=8 for $(R_j^2/n_j) = 2678.40 = "q"$. H = (12/n[n+1])(q)-3(n+1) = 4.15.

The value of the statistic at 95 percent confidence with df=7 is obtained from the Chi-square distribution. The value of the statistic is 14.07 (Conover, 1980, p. 432); thus H_0 cannot be rejected. It is concluded that alpha95 values for different regions are the same.

APPENDIX 4

ORIGINAL FRACTURE ORIENTATION DATA

1) Raw Data: "Field Observations" and "Wasatch3"

2) Reduced Data: "Wholeoutcrop" and "Mean Poles to Bedding"

FIELD OBSERVATIONS

a Color and a second			Sec. 15	1. 2. 1.			1.1.1		
	Ping	Trnd			Azmth	Dip		DDir	Plt Site
1 IX I	47	179 1	N89E	43 NW	1 269	43 1	43	359	: :GQ55
2 1X 1	62	181 :	N89W	28 NE	1 271	28 1	28	1	: :GQ55
3 IX I	26	92 1	N2E	64 NW	1 182	64 :	64	272	1 16Q55
4 IX I	42	100 :	NIØE	48 NW	: 190	48 :	48	280	1 16055
5 IX I	3	261 1	NBM	87 NE	1 351	87 1	87	81	1 16Q55
6 IX I	72	205 1		18 NE	1 295	18 :	18	25	
			NESW						
7 IX I	46	175 1	N85E	44 NW	1 265	44 1	44	355	1 16Q55
8 IX I	55	176 1	N86E	35 NW	1 266	35 1	35		1 16Q55
9 IX I	49	67 ;	N23W	41 SW	1 157	41 1	41		1 16055
10 IX I	41	102 1	N12E	49 NW	1 192	49 1	49	282	1 1P55
11 IX 1	26	43 1	N47W	64 SW	1 133	64 !	64	223	1 IP55
12 IX I	3	59 !	N31W	87 SW	: 149	87 :	87	239	1 1P55
13 IX I	36	110 1	N20E	54 NW	: 200	54 :	54	290	I IP55
14 IX I	46	301 1	N31E	44 SE	1 31	44 1	44	121	1 1A55
15 IX I	10	113 1	N23E	80 NW	1 203	80 :	80	293	1 1A55
16 IX I	32	66 1	N24W	58 SW	1 156	58 1	58	246	1 1A55
17 IX I	33	67 1	N23W	57 SW	1 157	57 :	57	247	1 1A55
18 IX I		313 1					47		
	43		N43E					133	1 1A55
19 IX I	50	308 1	N38E	40 SE	: 38	40 !	40		I 1A55
20 IX I	26	41 1	N49W	64 SW	1 131	64 !	64	221	1 1A55
21 IX I	37	303 1	N33E	53 SE	1 33	53 1	53	123	I 1A55
22 IX I	25	346 1	N76E	65 SE	: 76	65 1	65	166	I IA55
23 IX I	75	128 1	N38E	15 NW	1 218	15 1	15	308	1 1A55
24 BDG	15	190 :	NBØW	75 NE	: 280	75 !	75	10	1 1955
25 IX I	23	90 1	NØW	67 W	: 180	67 1	67		1 1555
26 IX I	41	85 1	NSW	49 SW	1 175	49 1	49		1 1555
27 IX I	30	95 1	NSE	60 NW	1 185	60 1	60		1 1555
28 IX I	14	314 1	N44E	76 SE	: 44	76 ;	76	134	1 1555
29 IX I	6	318 1	N48E	84 SE	1 48	84 1	84	138	1 1555
30 IX I	1	91 1	NIE	89 NW	1 181	89 1	89	271	I 1855
31 IX I	25	294 1	N24E	65 SE	1 24				
						65 1	65	114	I 1A56
	10	300 1	N30E		: 30	80 1	80		1 1A56
33 IX I	30	33 1	N57W	60 SW	1 123	60 1	60		I 1A56
34 IX I	35	275 1	NSE	55 SE	1 5	55 !	55	95	I IA56
35 IX I	59	65 1	N25W	31 SW	155	31 1	31	245	I IA56
36 IX I	68	71 1	M61N	22 SW	1 161	22 1	22	251	I 1A56
37 IX I	65	60 1	NJOW	25 SW	1 150	25 1	25	240	1 IA56
38 IX I	32	288 1	N18E	58 SE	1 18	58 1	58	108	1 1A56
39 IX I	5	316 1	N46E	85 SE	: 46	85 1	85	136	1 1A56
40 IX I	47	286 1	NIGE	43 SE	: 16	43 :	43	106	
41 IX I	22	326 1		68 SE		68 1	68	146	
42 IX I	39	215 1		51 NE		51 1	51	35	
43 IX I	53	67 1		37 SW		37 1	37	247	
44 IX I	52		N84W		1 276	38 1	38		I 1A56
45 IX I	41	186 1			1 276	49 1	49		1 1A56
46 IX I	4	95 1		86 NW		86 1	86	275	
47 IX I	90	75 1	N15W	ØSW	1 165	0 :	0	255	
48 IX I	3	169 1		87 NW		87 :	87	349	
49 IX I	4	67 1							
				86 SW		86 1	86	247	
	4	183 1		86 NE		86 1	86	3	
51 IX I	7	6 :	N84W	83 SW		83 1	83	186	
52 IX I	55		N62E		1 62	35 1	35	152	
53 IX I	25	85		65 SW		65 1	65	265	
54 IX I	10	102 1		80 NW		80 :	80	282	
55 IX I	4	151 1	N61E	86 NW	1 241	86 1	86	331	1 1622

FIELD OBSERVATIONS: Continued

No. ID Ping Trick Dip Aznth Dip Dip	No	. ID	Ping	Trnd	Strik	e Dip	Azmth	Dip	Die		DI	+ Site
S7 IX I 28 I8 I NBW BS W I I71 BS I BS 261 I I622 S8 IX I 45 185 IX SE IX I 15 263 I XVU 75 KE I 155 I 161 I I 1622 G0 IX I 12 349 I N7B I 75 16 I 61 I 1622 G1 IX I 29 251 I N19W 61 NE 371 61 16 1 169 1 1622 G3 IX I 29 251 INSE 18 VI 106 1 1622 13 161 16 1 1622 165 1622 161 13 1622 163 1622 161 161 13 1622 163 1622 163 1622 163 161 13 1622 165 165 <			-									
55 1X 1 22 162 1 62 1 62 1 62 1 62 1 62 1 62 1 62 1 61 1												
59 IX I 45 S 45 I 153 I I622 61 IX I 29 29 I I N98 I N16 I 76 I 77 I I 160 I I 1622 64 IX I 47 320 I N35E I NW I 155 I 160 I 161 I 1622 I 621 I 1659 I I659 I I 1659 I I I I 1659 I 1659 I I I I I I I I I I I I I I I I I </td <td></td>												
60 IX I 15 263 I NTW 75 NE I 75 I 75 I 75 I 15 I												
61 IX I 29 181 I NB9W 61 NE I 271 61 I 61 1 I 1622 62 IX I 29 251 IX NY9E 78 IS 16 61 71 I 1622 63 IX I 29 251 IX IX 147 320 I NS0E 43 IX 143 I44 I 16 61 I 16 171 I 1622 64 IX I 47 320 I NS0E 18 11 19 18 18 18 305 I 1659 65 IBD6 76 126 I NSE 18 184 118 186 18 1659 70 IX I 90 105 I NSE 18 184 184 184 184 184 1659 173 1659 71 IX I 90 105 I <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>												
62 IX I 12 349 I N79E 76 SE I 778 I 768 I 768 I 768 I 778 I 169 I 161 I 161 I 161 I 161 I 161 I 161 I 1622 64 IX I 47 320 I NSEE 18 NW I 143 I 161 I 161 I 163 I 1659 65 IBD61 72 105 I NISE 18 NW I 1216 14 144 144 1659 1659 67 IBD61 76 IZ65 INSE 0 NW I 188 86 186 1659 177 1659 173 I 1659 71 IX I 8 353 I NB3E 61 55 183 61 15 161 173 1659 71 IX I 9 <												
63 IX 1 29 251 I N19W 61 NE I 341 61 I 61 71 I 1622 64 IX I 47 320 I NS0E 43 55 16 143 I 18 18 165 I 1622 65 IBDGI 72 105 I NISE 18 NW I 125 18 I 18 265 I 1659 66 IBDGI 72 105 I NIE 0 126 182 125 18 I 18 265 1659 70 IX 1 9 105 I NIE 0 188 16 1 173 I 1659 73 IX 15 353 I N82E 61 55 185 185 176 1 1659 71 IX 1 4 167 18 183 181 181 181 181 1659 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>												
64 1X 1 47 320 1 NS0E 43 SE 1 50 143 140 1 1622 65 1BD61 72 125 1 N35E 18 Nu 1 215 18 18 18 18 305 1 1659 66 1BD61 76 126 1 N36E 14 NU 1 195 18 18 18 265 1 1659 68 1X 4 98 NAE 66 NW 1 184 82 182 182 82 182 182 1659 173 1 1659 70 1X 1 90 105 1 118 62 183 61 181 181 181 1659 173 1 1659 73 1X 1 9 198 1 70 85 113 86 86 160 12 1659 74 1X 4 1371 1076E 86												
65 IBDGI 72 125 I NJSE IB NW I 215 IB I IB 305 I IGS9 66 IBDGI 72 IQ5 INJSE IB <nw< td=""> I 195 IB I IB IB</nw<>												
66 IBOG I 72 105 I N15E 18 I 18 18 18 285 I 1659 67 IBDG I 76 126 I N36E 14 NU 1216 14 1 14 14 306 I 1659 69 IX I 89 I N4E 82 NW 184 82 I 82 274 I 1659 70 IX I 89 IX IS 80 NW I 184 82 I 82 274 I 1659 71 IX I 8353 I N35E 61 E 83 61 E 1635 1659 73 IX I 9 196 I 77 105 1659 173 1659 173 1659 173 1659 173 1659 1659 1659 1659 1659 1659 1659 1659 1659 1659 1659 1659 1659 1659 1659 1659 1659 1659 <td></td> <td>- C</td> <td></td>											- C	
67 IBDGI 76 126 I N36E 14 NU I 216 14 I 14 306 I I659 68 IX I 98 INBE 86 NU I 188 86 I 86 278 I I659 70 IX I 90 105 I NISE 0 NU I 184 82 I 82 I 62 173 I I659 71 IX I 8 353 I N82E 61 SE I 61 173 I I659 73 IX I 5356 I N86E 85 E I 86 I 81 18 18 18 18 18 1659 I 1659 74 IX I 4 167 I I 1659 I 1659 I I 161 I 1659 I 1659 I I I I I I I I <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>												
68 IX I 4 98 I N8E 86 NW I 184 82 I 82 274 I 1659 70 IX 90 105 I N15E 0 NW I 184 82 I 82 274 I 1659 71 IX I 8353 I N83E 61 SE I 81 61 I 61 173 I 1659 71 IX I 5 353 I N83E 61 SE I 85 I 61 173 I 1659 73 IX I 5 356 I N86E 85 SE I 86 185 185 165 1659 74 IX 4 137 I N7E 86 SE I 70 88 88 160 12 1659 75 IX I 164 I N74E 86 SW I 249 88 88 160 12 1659 79									18		1	
691X18941N4E82NW11848218227411659701X183531NB3E82SE1838218211659711X183531NB3E61SE183611117311659721X153561NB3E61SE1851116117311659731X153561NB3E61SE18618511111659741X191981N70E88SE17088188160121659751X141541N74E86SE17088188160121659761X141541N74E86SE1678618615711659791X121661N76E78NW12567817934611659801X191541N67E78NW12567817934611659811X191541N64E81 </td <td></td> <td></td> <td>: 76</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td>			: 76								1	
70 1X 1 90 105 1 N15E 0 NW 1 195 0 1 0 285 1 1659 71 1X 1 29 353 1 N83E 82 5E 1 83 61 1 61 173 1 1659 73 1X 1 9 198 1 N82E 85 1 85 1 85 1 85 1 1659 74 1X 1 9 198 1 N72W 81 NE 1 288 81 1 81 18 1 18 1 659 75 1X 1 4 157 1 N67E 86 SE 1 70 81 18 1351 1 1559 76 1X 1 4 1357 1 1659 87 11 81 18 1351 1 1659 71 1X 1 1 167 1 1659			4								1	
71 1X 1 8 353 1 N83E 62 52 1 62 173 1 1659 72 1X 1 29 353 1 N85E 61 5E 1 63 61 1 61 173 1 1659 73 1X 1 5 356 1 N86E 85 5E 86 85 1 18 1 659 74 1X 1 4 23 1 N67W 86 86 1 86 1 86 1 86 1 86 1 86 1659 75 1X 1 4 154 1 N7E 86 5E 1 70 88 1 86 157 1 659 76 1X 1 2 159 1 N67E 76 NW 2 256 78 78 346 1 659 81 1X 1 9 154 1 N6E <	69	1X	8	94	N4E	82 NW	184		82		1	1659
72 1X 1 29 353 1 N83E 61 SE 1 61 1 73 1			90		N15E						:	:659
73 1X 1 5 356 1 N66E 85 SE 1 85 1 85 1 85 1 85 1 81 1 81 1 81 1 81 1 81 1 81 1 81 1 81 1 81 1 81 1 81 1 81 1 81 1 81 1 81 1 81 1 81 1 81 1 81 1	71	1X	8	353 1		82 SE	1 83	82 1	82	173	1	1659
74 1X 1 9 198 1 NE 1 288 81 1 81 1 81 1 81 1 81 1 81 1 81 1 81 1 81 1 81 1 81 1 81 1	72	: X	29	353 :	N83E	61 SE	: 83	61 1	61	173	:	1659
75 1X 1 4 23 1 N67W 86 SW 1 113 86 1 86 203 1 1659 76 1X 1 4 164 1 N70E 88 SE 1 70 88 1 86 14 1659 77 1X 1 4 164 1 N74E 86 NW 1 254 86 1 86 157 1 1659 78 1X 1 2 159 1 N51E 81 WI 249 88 1 81 351 1 659 80 1X 1 9 171 1 N81E 81 WI 224 81 81 334 1 659 81 1X 1 6 72 1 N164 81 162 84 1 84 252 1 1664 85 1X 1 6 78 1 173 84 1 84	73	: X	1 5	356 !	N86E	85 SE	: 86	85 :	85	176	1	1659
76 1X 1 2 340 1 N70E 88 SE 1 70 88 1 86 160 12 1659 77 1X 1 4 154 1 N74E 86 NW 1 254 86 1 86 344 1 1659 78 1X 1 4 337 1 N67E 86 SE 1 86 186 351 1 1659 80 1X 1 2 156 1 N76E 78 NW 256 78 1 73 346 1 1659 81 1X 1 341 1 N71E 89 SE 1 189 161 1659 82 1X 1 9 154 1 N64E 81 NW 1256 78 1 73 346 1 1659 84 1X 1 0 1064 WW 162 84 18 252 1664	74	: X	9	198 1	N72W	81 NE	: 288	81 1	81	18	:	:G59
771Xi4164iN74E86NWi25486i86344i1659781X14337iN67E865Ei6786i86157i1659791X12159iN59E88NWi24988i88339i1659801X12166iN76E78NWi25678i78346i1659811X11166iN76E78NWi25678i78346i1659821X11341iN71E89SEi718918161i1659831X9154iN64E81NWi256781484252i1664851X1672iN18W84SWi1738484263i1664861X1683iN7W84SWi1738484263i1664861X10180E9SWi9989i89189i1664861X10180E73E80NWi24776i <td>75</td> <td>: X</td> <td>4</td> <td>23 1</td> <td>N67W</td> <td>86 SW</td> <td>: 113</td> <td>86 1</td> <td>86</td> <td>203</td> <td>1</td> <td>1659</td>	75	: X	4	23 1	N67W	86 SW	: 113	86 1	86	203	1	1659
78 1X 1 4 337 1 N67E 86 SE 1 77 157 1 1659 79 1X 1 2 159 1 N69E 88 NW 1 249 88 1 88 339 1 1659 80 1X 1 9 171 1 N81E 81 NW 1 256 78 1 81 351 1 1659 81 1X 12 166 1 771 89 1 81 334 1 1659 82 1X 1 341 1 N71E 89 1 81 334 1 1659 83 1X 1 9 154 1 N64E 81 NW 1 256 78 1 81 334 1 1659 84 1X 1 8 78 1 162 84 1 84 252 1 1664 85 1X 1 </td <td>76</td> <td>1X</td> <td>1 2</td> <td>340 :</td> <td>N70E</td> <td>88 SE</td> <td>: 70</td> <td>88 ;</td> <td>88</td> <td>160</td> <td>12</td> <td>1659</td>	76	1X	1 2	340 :	N70E	88 SE	: 70	88 ;	88	160	12	1659
78 1X 1 4 337 1 N67E 86 SE 1 57 86 1 57 1 1659 79 1X 1 2 159 1 N69E 88 NW 1 249 38 1 86 339 1 1659 80 1X 1 1 16 1 N76E 78 NW 1 256 78 1 79 346 1 1659 81 1X 1 1 1 1 171 89 189 161 1 1659 82 1X 1 1 341 1 N71E 89 SE 1 162 84 181 341 1 1659 83 1X 6 72 1 N18 85 W 1 162 84 184 263 1 1664 85 1X 1 180 1 N9E SW 173 84 18 1664 86<	77	1 X	4	164 1	N74E	86 NW	1 254	86 1	86	344	1	
79 1X 1 2 159 1 N69E 88 NW 249 88 1 88 339 1 1659 80 1X 1 9 171 1 N81E 81 NW 256 78 1 351 1 1659 81 1X 1 12 166 1 N71E 89 E 71 89 1 81 334 1 1659 82 1X 1 341 1 N71E 89 SE 71 89 161 1 1659 84 1X 6 72 1 N14W 84 SW 1 162 84 184 252 1 1664 85 1X 6 83 1 N7W 84 SW 1 1664 86 127 1 1664 86 1X 1 9 1 N81W 89 SW 199 89 89 161 1664 80 1X	78	1 X	4	337 1	N67E	86 SE	1 67	86 :	86	157	1	
80 1X 1 9 171 1 NB1E 81 NW 1 261 81 3 3 1 1659 81 1X 1 12 166 1 N76E 78 NW 1 256 78 1 78 346 1 1659 82 1X 1 9 154 1 N71E 89 5E 1 71 89 1 81 334 1 1659 83 1X 1 9 154 1 N64E 81 NW 1 244 81 1 81 334 1 1659 84 1X 1 6 72 1 N18W 82 162 182 182 1 1664 85 1X 1 9 1 N12W 82 SW 1 173 84 1 84 243 1 1664 86 1X 1 10 163 1 173 80 NW 1			1 2		N69E							
81 1X 1 12 166 i N76E 78 NW i 256 78 i 78 346 i 1659 82 1X 1 341 i N71E 89 SE i 71 89 i 89 161 i 1659 83 1X 9 154 i N64E 81 NU i 244 81 i 81 334 i 1659 84 1X 6 72 i N18W 84 SW i 162 84 184 263 i 1664 85 1X i 6 83 i N2W 99 89 89 189 i 1664 86 1X i 0 180 i N90E 90 n i 270 90 i 90 i 1664 87 1X 14 157 1875 76 NW i 240 78 179 330 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>												
82 1X 1 341 1 N71E 89 1 89 1 81 1 161 1 1659 83 1X 1 9 154 1 N64E 81 NW 1 244 81 1 81 334 1 1659 84 1X 1 6 72 1 N18W 84 SW 1 162 84 1 84 222 1 1664 85 1X 1 8 78 1 N12W 82 SW 1 168 82 1 82 258 1 1664 86 1X 1 0 180 N90E 90 N 270 90 1 90 0 1 1664 89 1X 1 10 163 1 N73E 80 NW 253 80 1 80 343 1 1664 90 1X 1 14 157 N67E 76 NW 247 </td <td></td>												
83 1X 1 9 154 1 N64E 81 NW 244 81 1 81 334 1 1659 84 1X 1 6 72 1 N18W 84 SW 1 162 84 1 84 252 1 1664 85 1X 1 8 78 1 N12W 82 SW 1 168 82 1 82 258 1 1664 85 1X 1 9 1 N81W 89 SW 1 173 84 1 84 253 1 1664 86 1X 1 180 1 N90E 90 N 1 270 90 1 80 343 1 1664 90 1X 1 14 157 N67E 76 NW 247 76 1 76 337 1 1065 92 1X 1 157 10 65 N50E 79 NW												
84 1X 1 6 72 1 N18W 84 SW 1 162 84 1 84 252 1 1664 85 1X 1 8 78 1 N12W 82 SW 1 168 82 1 82 258 1 1664 86 1X 1 9 1 N81W 89 SW 99 89 1 89 1664 86 1X 1 0 180 1 N90E 90 N 1 270 90 1 90 0 1 1664 89 1X 1 163 1 N73E 80 NW 1 253 80 180 343 1 1664 90 1X 1 14 157 N67E 76 NW 247 76 176 337 1 1654 91 1X 1 157 N67E 76 NW 240 79 179 330 1 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>												
B5 IX I B 78 I N12W B2 SW I 168 B2 I B2 258 I I664 B6 IX I 6 B3 I N7W B4 SW I 173 B4 I B4 263 I I664 B7 IX I 1 9 I N81W 89 SW 99 89 I 89 189 I I664 B8 IX I 0 180 I N90E 90 N I 270 90 I 90 0 I I664 B9 IX I 10 163 I N73E 80 NW I 253 80 I 80 343 I I664 90 IX I 14 157 INCE 78 E 97 76 I 76 337 I Q65 93 IX I 14 145 I N57E												
86 IX I 6 83 I N7W 84 SW I 173 84 I 84 263 I I664 87 IX I 1 9 N81W 89 SW 99 89 I 89 189 I 1664 88 IX I 0 180 I N90E 90 N 270 90 I 90 0 I 1664 89 IX I 10 163 I N73E 80 NW 253 80 I 80 343 I 1664 90 IX I 12 270 I N0E 78 E 0 78 I 76 337 I 1653 91 IX I 14 157 I N57E 76 NW 240 79 I 79 330 I 1065 93 IX I 11 150 I N57E 74 SE 57												
67 IX I 1 9 N N 99 89 I 89 189 I 1664 88 IX I 0 180 N N90E 90 N 1270 90 1 90 0 1 1664 89 IX I 10 163 N73E 80 NW 253 80 1 80 343 1 1664 90 IX I 12 270 NØE 78 E 0 78 I 78 90 1 1664 90 IX I 14 157 NØE 78 E 0 78 I 76 337 I 1065 92 IX I 14 157 NS7E 76 NW 240 79 I 79 330 I 1065 93 IX I 14 145 NS5E 76 NW 235 76 I 76 3251 I 1065												
88 1X 1 0 180 1 N90E 90 N 1 270 90 1 90 0 1 1664 89 1X 1 10 163 1 N73E 80 NW 1 253 80 1 80 343 1 1664 90 1X 1 12 270 1 N0E 78 E 0 78 1 78 90 1 1664 91 1X 1 14 157 1 N67E 76 NW 1 247 76 1 76 337 1 1065 92 1X 1 15 N60E 79 NW 1 240 79 1 79 330 1 1065 93 1X 1 14 145 1 N57E 74 SE 57 74 1 74 147 1 1065 95 1X 1 14 71 N19W 76 SW <td></td> <td>IX</td> <td></td> <td>9 :</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		IX		9 :								
89 1X 1 10 163 1 N73E 80 NW 1 253 80 1 80 343 1 1664 90 1X 1 12 270 1 N0E 78 1 0 78 1 78 90 1 1654 91 1X 1 14 157 1 N67E 76 NW 1 247 76 1 76 337 1 1065 92 1X 1 2 327 1 N57E 88 SE 57 88 188 147 1 1065 93 1X 1 15 327 1 N57E 74 SE 57 74 74 147 1 1065 94 1X 1 14 145 N55E 76 NW 1 235 76 1 76 325 1 1065 95 1X 1 14 71 N19W 71 SW 1	88		0	180 :	N9ØE							
90 1X 1 12 270 1 NØE 78 E 1 0 78 1 78 90 1 1664 91 1X 1 14 157 1 N67E 76 NW 1 247 76 1 76 337 1 1065 92 1X 1 2 327 1 N57E 88 SE 57 88 18 147 1 1065 93 1X 1 15 327 1 N57E 74 57 74 179 330 1 1065 94 1X 1 16 327 1 N57E 74 57 74 147 147 1065 95 1X 1 14 145 1455 80 W 155 80 180 245 1065 95 1X 1 14 71 N19W 71 SW 1171 71 261 1065 98 1X 1		1X	10		N73E							
91 1X 1 14 157 1 N67E 76 NW 1 247 76 1 76 337 1 1065 92 1X 1 2 327 1 N57E 88 SE 1 57 88 1 88 147 1 1065 93 1X 1 11 150 1 N60E 79 NW 1 240 79 1 79 330 1 1065 94 1X 1 16 327 1 N57E 74 SE 57 74 1 74 147 1 1065 95 1X 1 14 145 N55E 76 NW 1 235 76 1 76 325 1 1065 96 1X 1 14 71 N19W 71 SW 1 171 71 261 1 1065 98 1X 1 19 81 N9W 71 SW <td< td=""><td>90</td><td>: X</td><td>12</td><td>270 1</td><td></td><td>78 E</td><td></td><td>78 1</td><td>78</td><td></td><td>1</td><td></td></td<>	90	: X	12	270 1		78 E		78 1	78		1	
92 1X 1 2 327 1 NS7E 88 SE 1 57 88 1 88 147 1 1Q65 93 1X 1 11 150 1 N60E 79 NW 1 240 79 1 79 330 1 1Q65 94 1X 1 16 327 1 NS7E 74 SE 1 74 147 1 Q65 94 1X 1 14 145 NS7E 74 SE 57 74 74 147 1 Q65 95 1X 1 14 145 NS5E 76 NW 1 235 76 76 325 1 Q65 96 1X 1 14 71 N19W 76 SW 1 161 76 251 1 Q65 98 1X 1 16 323 1 NS3E 74 SE 53 74 1 74 143 <td< td=""><td>91</td><td>: X</td><td>14</td><td>157 1</td><td></td><td></td><td>1 247</td><td></td><td>76</td><td></td><td>1</td><td></td></td<>	91	: X	14	157 1			1 247		76		1	
93 1X 1 11 150 1 N60E 79 NW 1 240 79 1 79 330 1 1065 94 1X 1 16 327 1 N57E 74 SE 1 74 147 1 1065 95 1X 1 14 145 1 N55E 76 NW 1 235 76 76 325 1 1065 96 1X 1 14 71 N15W 80 SW 1 155 80 80 245 1065 97 1X 1 14 71 N19W 76 SW 1 161 76 251 1 1065 98 1X 1 19 81 N9W 71 SW 1 171 71 261 1 1065 99 1X 1 16 323 1 N52E 74 SE 53 74 1 74 143 1065	92	:x	1 2	327 1	N57E	88 SE	; 57				1	
94 1X 1 16 327 1 NS7E 74 SE 1 57 74 1 74 147 1 1065 95 1X 1 14 145 1 NS5E 76 NW 1 235 76 76 325 1 1065 96 1X 1 10 65 1 N25W 80 SW 1 155 80 1 80 245 1 1065 97 1X 1 14 71 1 N19W 76 SW 1 161 76 251 1 1065 98 1X 1 19 81 1 N9W 71 SW 1 171 71 261 1 065 99 1X 1 16 323 1 N53E 74 SE 53 74 1 4143 1 065 100 1X 1 73 106 N60E 73 SE 1 60	93	: X	1 11	150 1	NEØE	79 NW	: 240				:	
95 1X 1 14 145 1 NS5E 76 NW 1 235 76 76 325 1 1065 96 1X 1 10 65 1 N25W 80 SW 1 155 80 1 80 245 1 1065 97 1X 1 14 71 1 N19W 76 SW 1 161 76 251 1 1065 98 1X 1 19 81 1 N9W 71 SW 1 171 71 261 1 1065 99 1X 1 16 323 1 NS3E 74 SE 53 74 1 71 143 1065 100 1X 1 73 30 1 N60E 73 SE 1 60 73 1 73 150 1 1065 101 1X 1 23 186 N84W 67 NE 1 280 <	94	1 X	16						74		1	
97 1X 1 14 71 1 N19W 76 SW 1 161 76 251 1 1065 98 1X 1 19 81 1 N9W 71 SW 1 171 71 261 1 1065 99 1X 1 16 323 1 NS3E 74 553 74 1 71 143 1 1065 100 1X 1 17 330 1 N50E 73 SE 1 60 73 1 73 150 1 1065 101 1X 1 24 190 1 N80W 66 NE 1 280 66 1 65 10 1 1065 102 1X 1 23 186 1 N4W 67 NE 1 276 67 1 67 61 1065 103 1X 1 2 318 1 148 88 1 88	95	1X	14	145 :	N55E	76 NW	1 235	76 :	76	325	:	1065
98 1X 1 19 81 1 N9W 71 SW 1 171 71 261 1 1065 99 1X 1 16 323 1 NS3E 74 SE 1 53 74 1 74 143 1 1065 100 1X 1 17 330 1 N50E 73 SE 1 60 73 1 73 150 1 1065 101 1X 1 24 190 1 N80W 66 NE 1 260 66 1 66 10 1 1065 102 1X 1 23 186 1 N84W 67 NE 1 276 67 1 67 61 1065 103 1X 1 2 315 1 N45E 88 SE 1 48 188 138 1 1065 104 1X 1 2 318 1 N48E 88 <t< td=""><td>96</td><td>1 X</td><td>10</td><td>65 1</td><td>N25W</td><td>.80 SM</td><td>1 155</td><td>80 :</td><td>80</td><td>245</td><td>:</td><td>1065</td></t<>	96	1 X	10	65 1	N25W	.80 SM	1 155	80 :	80	245	:	1065
99 1X 1 16 323 1 NS3E 74 SE 1 53 74 1 74 143 1 1065 100 1X 1 17 330 1 N60E 73 SE 1 60 73 1 73 150 1 1065 101 1X 1 24 190 1 N80W 66 NE 1 280 66 1 66 10 1 1065 102 1X 1 23 186 1 N84W 67 NE 1 276 67 1 67 6 1 1065 103 1X 1 2 315 1 N45E 88 SE 1 45 88 1 88 135 1 1065 104 1X 1 2 318 1 N48E 88 SE 1 48 188 138 1 1065 105 1X 1 20 192	97	: X	14	71 1	WEIN	76 SW	1 161	76 :	76	251	:	:065
100 1X 1 17 330 1 N60E 73 SE 1 60 73 1 73 150 1 1065 101 1X 1 24 190 1 N80W 66 NE 1 280 66 1 66 10 1 1065 102 1X 1 23 186 1 N84W 67 NE 1 276 67 67 67 6 1 1065 103 1X 1 2 315 1 N45E 88 SE 1 45 88 1 88 135 1 1065 104 1X 1 2 318 1 N48E 88 SE 1 48 88 1 88 138 1 1065 105 1X 1 20 192 1 N78W 70 NE 1 282 70 1 70 12 1 1065 106 1X 1 2	98	1 X	19	81 1	NOM	71 SW	: 171	71 1	71	261	1	1065
101 1X 1 24 190 1 N80W 65 NE 1 280 66 1 66 10 1 1065 102 1X 1 23 186 1 N84W 67 NE 1 276 67 1 67 6 1 1065 103 1X 1 2 315 1 N45E 88 5E 1 45 88 1 88 135 1 1065 104 1X 1 2 318 1 N45E 88 5E 1 45 88 1 88 138 1 1065 105 1X 1 2 318 1 N50E 85 SE 1 50 85 140 1 1065 106 1X 1 20 192 1 N78W 70 NE 1 282 70 1 70 12 1 1065 106 1X 1 9 93 1 </td <td>99</td> <td>1X</td> <td>16</td> <td>323 1</td> <td>N53E</td> <td>74 SE</td> <td>: 53</td> <td>74 :</td> <td>74</td> <td>143</td> <td>1</td> <td>:065</td>	99	1X	16	323 1	N53E	74 SE	: 53	74 :	74	143	1	:065
101 1X 1 24 190 1 N80W 66 NE 1 280 66 1 66 10 1 1065 102 1X 1 23 186 1 N84W 67 NE 1 276 67 1 67 6 1 1065 103 1X 1 2 315 1 N45E 88 5E 1 45 88 1 88 135 1 1065 104 1X 1 2 318 1 N45E 88 5E 1 45 88 1 88 138 1 1065 105 1X 1 2 318 1 N50E 85 SE 1 50 85 140 1 1065 106 1X 1 20 192 1 N78W 70 NE 1 282 70 1 70 12 1 1065 106 1X 1 9 93 1 </td <td>100</td> <td>1 X</td> <td>17</td> <td>330 1</td> <td>N60E</td> <td>73 SE</td> <td>: 60</td> <td>73 1</td> <td>73</td> <td>150</td> <td>1</td> <td>:065</td>	100	1 X	17	330 1	N60E	73 SE	: 60	73 1	73	150	1	:065
102 1X 1 23 186 1 N84W 67 NE 1 276 67 1 67 6 1 1065 103 1X 1 2 315 1 N45E 88 SE 1 45 88 1 88 135 1 1065 104 1X 1 2 318 1 N45E 88 SE 1 48 88 138 1 1065 104 1X 1 2 318 1 N48E 88 SE 1 48 88 1 88 138 1 1065 105 1X 1 5 320 1 N50E 85 SE 50 85 140 1 1065 106 1X 1 20 192 1 N78W 70 NE 1 282 70 1 70 12 1 1065 107 1X 1 9 93 1 N3E 81 NW	101	: X	24	190 :	N8ØW	66 NE	: 280	66 !	66	10	:	1065
104 1X I 2 318 I N48E 88 SE I 48 88 I 88 138 I IQ65 105 IX I 5 320 I N50E 85 SE I 50 85 I 85 140 I IQ65 106 IX I 20 192 I N78W 70 NE I 282 70 I 70 12 I IQ65 107 IX I 9 93 I N3E 81 NW I 183 81 I 81 273 I IQ65 108 IX I 15 96 I N6E 75 NW I 186 75 I 75 276 I IQ65 109 IX I 6 353 I N83E 84 SE 83 84 I 84 173 I IQ65	102	IX	23	186 1	N84W	67 NE	: 276	67 :	67	Б	1	1065
105 1X I 5 320 I N50E 85 SE I 50 85 I 85 140 I 1Q65 106 IX I 20 192 I N78W 70 NE I 282 70 I 70 12 I IQ65 107 IX I 9 93 I N3E 81 NW I 183 81 I 81 273 I IQ65 108 IX I 15 96 I N6E 75 NW I 186 75 I 75 276 I IQ65 109 IX I 6 353 I N83E 84 SE I 83 84 I 84 173 I IQ65	103	: X	2	315 1	N45E		: 45		88		1	
106 IX I 20 192 I N78W 70 NE I 282 70 I 70 12 I 1Q65 107 IX I 9 93 I N3E 81 NW I 183 81 I 81 273 I IQ65 108 IX I 15 96 I N6E 75 NW I 186 75 I 75 276 I IQ65 109 IX I 6 353 I N83E 84 SE I 83 84 I 84 173 I IQ65		IX			N48E				88	138	1	1065
107 IX I 9 93 I N3E 81 NW I 183 81 I 81 273 I IQ65 108 IX I 15 96 I N6E 75 NW I 186 75 I 75 276 I IQ65 109 IX I 6 353 I N83E 84 SE I 83 84 I 84 173 I IQ65		:X			N50E				85		1	
108 IX 15 96 N6E 75 NW 186 75 75 276 1065 109 IX 6 353 N83E 84 SE 83 84 84 173 1065		IX I	20		N78W			70 1	70		1	1065
109 IX I 6 353 I N83E 84 SE I 83 84 I 84 173 I 1065	107	1X					1 183		81		1	1065
		IX					1 186		75		1	1065
110 X 1 23 186 N84W 67 NE 276 67 67 61 Q65											1	1065
	110	IX I	23	186 1	N84W	67 NE	1 276	67 1	67	6	1	1965

FIELD OBSERVATIONS: Continued

No. ID	Plan Tand	Staile Di-	A++	Die	Die	nn : -	D14 C:1-
No. ID 111 X	Ping Trnd 15 86 1	Strike Dip N4W 75 SW		Dip 75	01p 75	DDir 266	Plt Site 1055
112 IX I	13 81 1	N9W 77 SW		77 1	77	261	1 1065
113 IX I	0 84 1	NGW 90 SW		90 1	90	264	1 1065
114 IX I	15 304 1	N34E 75 SE	1 34	75 1	75	124	1 1966
115 IX I	32 301 1	N31E 58 SE	1 31	58 1	58	121	1 1P66
116 IX I	19 329 1	N59E 71 SE	: 59	71 1	71	149	1 1P66
117 IX I	15 337 1	NETE 75 SE	1 67	75 1	75	157	1 1P66
118 IX I	36 24 1	NEEW 54 SW	1 114	54 1	54	204	I 1P66
119 IX I	27 175 1	N85E 63 NW	1 265	63 1	63	355	1 1P66
120 IX I	31 296 1	N26E 59 SE	: 26	59 ;	59		1 1966
121 IX I	7 101 1	N11E 83 NW	1 191	83 1	83	281	1 1P66
122 IX I	16 330 1	NEØE 74 SE	: 60	74 1	74	150	1 1P66
123 IX I	40 34 1	N56W 50 SW	1 124	50 ;	50	214	I 1P66
124 IX I	27 33 1	N57W 63 SW	1 123	63 1	63		1 1066
125 IX 1	36 215 1	N55W 54 NE	: 305	54 1	54		1 1066
126 IX I	10 338 1		1 68	80 :	80		1 1066
127 IX I	2 336 1	N66E 88 SE	1 66	88 1	88		1 1066
128 IX I	29 331 1		1 61	61 1	61	151	I IKP66
129 IX I	28 335 1	N65E 62 SE	1 65	62 1	62	155	I IKP66
130 IX I	12 283 1	N13E 78 SE	1 13	78 1	78		1 1KP66
131 IX I	0 108 1	N18E 90 NW	1 198	90 1	90		I IKP66
132 IX I	50 169 1	N79E 40 NW	1 259	40 1	40		1 1KP66
133 IX I	48 181 1	N89W 42 NE	1 271	42 1	42	1	1 1KP66
134 IX I	20 325 1	N55E 70 SE	1 55	70 1	70		1 1KP66
135 IX I	21 25 1	N65W 69 SW	1 115	69 1	69		1 1KP66
136 IX I	38 268 1	N2W 52 NE	1 358	52 1	52	88	I IKP66
137 IX I	20 201 1	N69W 70 NE	1 291	70 1	70	21	1 1KP66
138 IX I	54 228 1	N42W 36 NE	1 318	36 1	36	48	1 1P67
139 IX I	35 95 1	NSE 55 NW	1 185	55 1	55		I IP67
140 IX I	51 302 1	N32E 39 SE	1 32	39 1	39		I 1P67
141 IX I	34 5 1	N85W 56 SW	1 95	56 1	56	185	1 1P67
142 IX I	43 30 1	N60W 47 SW	1 120	47 1	47		I 1P67
143 IX I	22 118 1	N28E 68 NW	: 208	68 1	68		I 1P67
144 IX I	57 214 1	N56W 33 NE	1 304	33 1	33	34	1 1P67
145 IX I	17 344 1	N74E 73 SE	1 74	73 1	73	164	1 1P67
146 IX I	10 228 1	N42W 80 NE	: 318	80 1	80	48	I 1P67
147 IX I	30 2 1	N88W 60 SW	1 92	60 1	60	182	I 1P67
148 BDG	58 51 1	N39W 32 SW	1 141	32 1	32	231	1 1668
149 18DG:	42 35 1	N55W 48 5W	: 125	48 1	48	215	1 IG68
150 :BDG:	39 33 1	N57W 51 SW	1 123	51 1	51	213	1 1668
151 IX I	30 148 1	NSBE 60 NW	1 238	50 :	60	328	1 1668
152 IX I	25 198 1	N72W 65 NE		65 !	65	18	1 1668
153 IX I	19 148 1	N58E 71 NW	1 238	71 1	71	328	
154 IX I	44 349 1	N79E 46 SE	1 79	46 1	46	169	1 1668
155 IX I	23 332 1	NEZE 67 SE	1 62	67 1	67	152	: :668
156 IX I	23 246 1	N24W 67 NE	1 336	67 1	67	66	1 1668
157 IX I	26 252 1			64 1	64	72	: :668
158 IX I	15 333 1	NEJE 75 SE	1 63	75 :	75	153	1 1668
159 IX I		N77E 79 NW		79 1	79	347	: :G68
160 IX I		N75E 80 NW		80 :	80	345	
161 IX I	26 349 1			64 1	64	169	
162 (BDG)	64 294 l			26 :	26	114	
163 BDG	72 280 1			18 1	18	100	
164 !BDG:	72 147 1			18 1	18	327	
165 BDG!	64 108 1	N18E 26 NW	1 198	26 1	26	288	1 1A68

No.	. ID	Ping	Trnd	Strik	e Dip	Azmth	Dip	Dip	DDir	Plt Site
166	:x :	16	2 1	N88W	74 SW	: 92	74 1	74	182	1 1A68
167	:X !	46	270 :	NØE	44 E	: 0	44 :	44	90	1 1A68
168	1X 1	19	180 :	N9ØE	71 N	: 270	71 1	71	Ø	1 1A68
169	1X 1	30	345 !	N75E	60 SE	: 75	60 :	60	165	: :A68
170	1X 1	16	5 1	N85W	74 SW	: 95	74 :	74	185	: :A68
171	1X 1	15	13 1	N77W	75 SW	: 103	75 1	75	193	1 1A68
172	1X 1	28	235 1	N35W	62 NE	1 325	62	62	55	I :A68
173	1X 1	16	353 1	N83E	74 SE	: 83	74 :	74	173	1 1A68
174	1X 1	34	226 1	N44W	56 NE	: 316	56 1	56	46	I 1A58
175	1X 1	22	237 1	N33W	68 NE	: 327	68 ;	68	57	1 1A68
176	:X :	17	321 1	N51E	73 SE	1 51	73 :	73	141	I 1A68
177	IBDG:	55	117 :	N27E	35 NW	: 207	35 1	35	297	1 1668
178	BDG:	55	105 :	N15E	35 NW	1 195	35 :	35	285	1 1668
179	BDG:	52	133 1	N43E	38 NW	1 223	38 1	38	313	1 1668
180	BDG!	58	105 1	N15E	32 NW	1 195	32 1	32	285	I 1668
181	BDG:	58	58 1	N32W	32 SW	1 148	32 1	32	238	1 1668
182	1X 1	11	204 :	NGGW	79 NE	: 294	79 :	79	24	1 1668
183	1X 1	26	213 1	N57W	64 NE	: 303	64 1	64	33	1 1668
184	1X 1	26	318 1	N48E	64 SE	48	64 1	64	138	1 1668
185	1X 1	34	320 1	N50E	56 SE	: 50	56 !	56	140	1 1668
186	1X 1	32	315 1	N45E	58 SE	1 45	58 :	58	135	1 1668
187	1X 1	21	186 1	N84W	69 NE	1 276	69 ;	69	6	1 1668
188	IX !	40	280 :	NIØE	50 SE	: 10	50 ;	50	100	: :668
189	1X 1	20	196 1	N74W	70 NE	: 286	70 :	70	16	1 1668
190	:X :	42	275 !	NSE	48 SE	1 5	48 1	48	95	1 1668
191	1X 1	30	323 1	N53E	60 SE	: 53	60 :	60	143	1 1668
192	1X 1	27	22 1	NEBW	63 SW	1 112	63 1	63	202	: :G68
193	1X 1	35	285 1	N15E	55 SE	1 15	55 !	55	105	: :668
194	1X 1	4	243 1	N27W	86 NE	1 333	86 1	86	63	: :669
195	1X 1	42	318 1	N48E	48 SE	: 48	48 1	48	138	1 1669
196	1X :	33	332 1	N62E	57 SE	1 62	57 1	57	152	1 1669
197	1X 1	21	250 1	NZØW	69 NE	: 340	69 1	69	70	: :669
198	1X 1	43	311 1	N41E	47 SE	41	47 1	47	131	: :669
199	1X 1	83	246 1	N24W	7 NE	: 336	7 :	7	66	: :669
200	1X 1	40	214 1	N56W	50 NE	: 304	50 :	50	34	1 1669
201	1X 1	30	198 1	N72W	60 NE	: 288	60 i	60	18	1 1669
202	1X 1	28	344 1	N74E	62 SE	: 74	62 :	62	164	1 1669
203	BD61	46	160 1	N7ØE	44 NW	1 250	44 :	44	340	1 1669
204	BDG:	5	193	N77W	85 NE	1 283	85 1	85	13	1 1669
205	BDG :	28	29 1	NEIW	62 SW	1 119	62 1	62	209	: :669
206	BDG	13	16 1			106	77 :	77		1 1669
207	1X 1	47	181 1	M68N	43 NE	1 271	43 1	43	1	I IA70
208	1X 1	20	51 1	M39W	70 SW	1 141	70 1	70	231	I 1A70
209	1X 1	11	153	N63E	79 NW	1 243	79 1	79	333	I IA70
210	1X 1	10	140 :	N50E	80 NW	1 230	80 1	80	320	I 1A70
211	IX I	15	151 1		75 NW	1 241	75 1	75	331	1 1A70
212	IX I	14	149 1	N59E	76 NW	1 239	76 1	76		1 1A70
213	IX I	20	14 1	N76W	70 SW	1 104	70 1	70	194	1 1A70
	IX I IX I	11	138 1	N48E N6ØE	79 NW	1 228	79 1	79	318	1 1A70
215		35 20	150 l 272 l		55 NW 70 SE	1 240	55 ¦ 70 ¦	55	330	I :A70
215	IX I IX I	20	210 1	N2E N6ØW	70 SE 87 NE	1 2	87 1	70 87	92 30	1 1A70
218		30	354 1	N84E	60 SE	1 84	60 1	60	174	1 1A70 1 1G70
219		49	183 1	N87W	41 NE	1 273	41 1	41	3	1 1670
		40	302 1	N32E	50 SE		50 1	50	122	
-20		40	502 1	HULL	50 50	. 52	50 1	20	122	1010

No. ID	Ping	Trnd	Strik	e D	ip	Azmth	Dip	Dip	DDir	P1	t Site	
221 IX I	25	253	N17W	65		: 343	65 :	65	73	1	1670	
222 IX I	61	266 :	N4W	29	NE	: 356	29 1	29	86	1	1670	
223 IX I	41	300 :	N30E	49	SE	: 30	49 :	49	120	1	:G70	
224 IX I	40	172 1	N82E	50	NW	1 252	50 1	50	352	1	1670	
225 IX I	16	270 :	NØE	74	E	: 0	74 :	74	90	1	1670	
226 IX I	41	162 1	N72E		NW	1 252	49 1	49	342	1	1670	
227 BDG	50	102 1	N12E	40	NW	1 192	40 :	40	282	1	1AG70	
228 BDG	46	44 1	N46W		SW	1 134	44 :	44	224	1	1AG70	
229 BDG	54	93 1	N3E		NW	1 183	36 1	36		1	IAG70	
230 BDG	32	36 1	N54W		SW	1 126	58 1	58		i	:670	
231 BDG	50	33 1	N57W		SW	1 123	40 :	40		1	1670	
232. 1BDG1	59	87 1	NJW			: 177	31 1	31	267	1	:A70	
233 IBDG1	57	71 1	NISW			1 161	33 1	33	251	1	1A70	
234 IX I	10	291 1	N21E		SE	1 21	80 1	80	111	1	1071	
235 IX I	27	72 1	NIBW		SW	1 162	63 1	63		1	1071	
236 IX I	5	98 1	NBE			1 188	85 1	85		1	1071	
237 IX I	5	287 1	N17E			1 17	85 1	85	107	1	1071	
238 IX I	52	16 1	N74W		SW	1 105	38 1	38	196	1	1071	
239 IX I	20	11 1	N79W			1 101	70 1	70	191	1		
240 IX I	30	74	NIGW			1 164				1	1071	
		154 1						60 70			1071	
	60		NG4E		NW		30 1	30		1	1071	
242 IX I	69	159 1	NG 9E		NW	1 249	21 1	21		1	1071	
243 IX I	76	155 1	NESE		NW	1 245	14 1	14	335	1	1Q71	
244 IX I	27	27 1	N63W		SW	1 117	63 1	63	207	1	1071	
245 BDG	32	25 1	NESW			1 115	58 1	58		1	1671	
246 BDG	32	19 1			SW	1 109	58 1	58		1	1671	
247 BDG	2	195 1	N75W		NE	1 285	88 1	88		1	1G71	
248 IX I	35	165 1	N75E		NW	1 255	55 1	55		1	1671	
249 IX I	7	158 1	N68E		NW	1 248	83 1	83	338	1	1671	
250 IX I	5	159 1	N69E		NW	1 249	85 1	85		1	1671	
251 IX I	5	156 1	NEE		NW	1 246	85 1	85		1	IG71	
252 IX I	10	58 1	N32W		SW	148	80 :	80		1	1671	
253 IX I	5	247 1	N23W		NE	1 337	85 1	85		1	1671	
254 IX I	24	295 1	N25E		SE	1 25	66 :	66		1	1671	
255 IX I	5	70 :	N2ØW			1 160	85 !	85		1	1671	
256 IX I	25	280 1	NIØE			: 10	65 I	65		1	1671	
257 IX I	2	345 :	N75E		SE	1 75	88 1	88		1	1671	
258 IX I	43	10 :	N80W		SW	100	47 ;	47	190	1	1072	
259 IX I	45	3 1	N87W		SW	: 93	45 1	45	183	1	1072	
260 IX I	38	5 1	N85W		SW	: 95	52 1	52	185	1	1072	
261 IX I	35	355 :	N855	55		1 85	55 :	55		1	1072	
262 IX I	47	356 !	N86E			: 86	43 1	43		1	1072	
263 IX I	67	227 1	N43W	23	NE	: 317	23 1	23	47	1	1072	
264 IX I	50	205 1	N65W		NE	1 295	30 1	30		1	1072	
265 IX I	64	220 1	N50W		NE	: 310	26 1	26		1	1072	
266 IX I	65	214 1	N56W	25		: 304	25 1	25		1	1072	
267 IX I	16	231 1	M38M		NE	1 321	74 1	74	51	:	1072	
268 IX I	51	181 1			NE	1 27!	39 :	39	1	1	1072	
269 IX I	12	203 1	N67W		NE	1 293	78 :	78		1	1072	
270 IX I	18	195 !	N75W		NE	: 285	72 1	72		1	1072	
271 IX I	15	190 1	N80W			: 280	75 1	75		1	1072	
272 IX I	14	243 1	N27W			: 333	76 1	76	63	1	1072	
273 IX I	29	234 1	N36W		NE	1 324	61 1	61		1	1072	
274 IX I	13	1 1			SW	1 91	77 1	77		1	1072	
275 IX I	17	154 1	N64E	73	NW	1 244	73 1	73	334	1	1072	

	Ing Tand Cha				D14 C
			Azmth Dip	Dip DDir	Plt Site
276 IX I	2 6 I N84		96 88 1		1 1072
	43 350 : N80		80 47 1	47 170	1 1672
	40 346 N76		76 50 1	50 166	1 1672
279 IX I 2	20 343 N73	E 70 SE ;	73 70 1	70 163	1 1672
280 IX I	3 81 I N9W	87 SW 1	171 87 1	87 261	1 1672
281 IX I	5 264 ¦ N6W	85 NE :	354 85 1	85 84	1 1672
282 IX I	15 262 I N8W	75 NE 1	352 75 1	75 82	1 1672
	60 189 N81		279 30 1		1 1672
	61 140 I N50		230 29 1	29 320	1 1672
	58 171 I N81		261 32 1	32 351	1 1672
	63 132 I N42		222 27 1	27 312	1 1672
	55 145 N55		235 35 1	35 325	1 1672
	60 198 N72		288 30 1	30 18	I IP73
289 IX I I	66 189 ¦ N81		279 24 1	24 9	: 1P73
290 IX I	Ø 52 1 N38	W 90 SW !	142 90 1	90 232	1 1P73
291 IX I	3 249 N21	W 87 NE 1	339 87 1	87 69	1 1P73
292 IX I	Ø 67 I N23	W 90 SW :	157 90 1	90 247	I 1P73
293 IX I	7 133 N43		223 83 1	83 313	I IP73
294 IX I	6 149 I N59		239 84 1	84 329	1 1P73
295 IX I	6 6 N84		96 84 1	84 186	1 1P73
	45 198 N72		288 45 1	45 18	1 IP73
	57 309 I N39		39 33 1		
					1 IP73
	38 310 I N40		40 52 1	52 130	I IP73
	28 303 N33		33 62 1		I IP73
	59 189 I N81		279 31 1	31 9	1 1P73
	15 55 I N35		145 75 1	75 235	I IP73
	30 7 I N83		97 60 :	60 187	: :P73
	34 113 I N23	E 56 NW :	203 56 1	56 293	1 IP73
304 IX I I	13 101 N11	E 77 NW 1	191 77 1	77 281	1 1P73
305 IX I	9 197 I N73	W 81 NE 1	287 81 1	81 17	1 1P73
306 IX I 2	25 314 i N44	E 65 SE !	44 65 1	65 134	I IP73
307 IX I	13 240 I N30		330 77 1	77 60	1 1P73
	17 149 N59		239 73 1	73 329	I 1P73
	21 145 I N55		235 69 1		I 1P73
	58 202 I N68		292 32 1	32 22	1 1P73
311 IX I	4 44 I N46		134 86 1		I 1P73
	26 205 I N64				
				64 26	I 1P73
	30 0 I N90		90 60 1	60 180	I IP73
314 IX I	5 346 N76		76 85 1		I IP73
	62 216 I N54		306 28 1	28 36	I IP73
	47 329 N59		59 43 1		1 1P73
	15 346 ¦ N76		76 75 :		1 1P73
318 IX I 4	42 335 ¦ N65	E 48 SE	65 48 I	48 155	1 1P73
319 IX I 3	33 106 ¦ N16	E 57 NW 1	196 57 1	57 286	: :P73
320 IX I 4	44 192 I N78	W 46 NE :	282 46 1	46 12	I IP73
	37 193 I N77		283 53 1	53 13	I 1P73
	46 235 I N35		325 44 1	44 55	I 1P74
	7 174 I N84		264 83 1		I 1P74
	38 47 I N43		137 52 1		
	38 39 I N51		129 52 1		1 1P74
	18 176 I N86		266 72 1		I IP74
	25 322 I N52		52 65 1		I 1P74
	37 315 ¦ N45		45 53 1	53 135	1 1P74
	36 330 ¦ N60		60 54 1		: :P74
330 IX I 3	37 47 I N43	W 53 SW 1	137 53 1	53 227	1 1P74

No. ID	Ping	Trnd	Strik	e Di	p	Azmth	Dip	Dip	DDir	P1	t Site
331 IX I	14	200 1	N7ØW	76 N	IE	290	76 :	76	20	1	:P74
332 IX I	25	122 1	N32E	65 N	W	212	65 1	65	302	:	IP74
333 IX I	20	210 1	NEØW	70 N	IE	300	70 :	70	30	1	1P74
334 IX I	49	198 :	N72W	41 N	1E	288	41 1	41	18	1	1P74
335 IX I		5 1	N85W			95	58 !	58	185	1	IP74
336.1X 1	18	208 1	N62W			298	72 1	72	28	1	:P74
337 IX I	20	351 1	N81E			81	70 1	70	171	1	1P74
338 IX I	30	243 1				333	60 ¦	60	63	1	IP74
339 IX I	24	268 1	NZW		_	358	66 I	66	88	1	:P74
340 1BDG1	39	154 1				244	51 1	51	334	1	1475
341 BDG	36	149 1	N59E			239	54 1	54		1	1A75
342 BDG		149 1	N59E			239	59 1	59		1	1A75
343 BDG	42	153 1	N63E		IW		48 1	49	333	1	1A75
344 IX I		300 1	N30E		SE		40 :	40		1	1A75
345 IX I	20	42 1	N48W			1 132	70 1	70	222	1	1A75
346 IX I		86 1	N4W .			176	60 1	60	266	1	1A75
347 1X 1		58 1	N32W			148	73 1	73	238	1	1A75
348 IX I		68 1	N22W			158	78 1	78	248	1	1A75
349 IX I		25 1	NESW			115	28 1	28	205	1	1475
350 IX I		26 1	N64W			116	28 1	28	206	1	1475
351 IX I 352 IX I		304 ¦ 0 ¦	N34E N90E	54 S 70 S		34 90	64 70	64 70	124 180	1	1A75 1A75
353 IX I		22 1	N68W					35	202	1	1875
354 IX I		302 1	N32E			112	35 65	65	122	1	1475
355 18DG1	76	80 1	NIØW			1 170	14 :	14	260	1	1675a
356 BDG	72	91 1	NIE			181	18 1	18	271	1	1675a
357 BDG	75	95 1	NSE			185	15 1	15	275	i	1675a
358 - 18DG 1		176 :	NSEE			266	20 1	20	356	1	1675a
359 BDG	71	121 1	N31E			1 211	19 1	19	301	1	1675a
360 (BDG)		122 1			W		21 1	21		1	1675a
361 BDG	64	175 1	N85E		W	265	26 :	26	355	1	1675a
362 (BDG)	68	147 1	N57E	22 N	W	237	22 1	22	327	1	:G75a
363 (BDG)	71	184 :	NBEW	19 N	NE	1 274	19 :	19	4	1	:G75a
364 (BDG)	67	59 1	NJIW	23 9	5W	: 149	23 1	23	239	:	:675a
365 BDG	68	58 !	N32W	22 9	SW	148	22 1	22	238	1	1675a
366 IX I	35	313 1	N43E	55 5	SE	43	55 1	55	133	1	1675a
367 IX I	5	129 1	N39E	85 N	W	219	85 1	85	309	1	1675a
368 IX I	9	131 1	N41E	81 N	W	221	81 1	81	311	1	1675a
369 IX I	2	138 1	N48E	88 N	W	1 228	88 ;	88	318	1	1675a
370 IX I	12	116 1	N26E	78 N	W	206	78 1	78	296	1	1675a
371 IX I	18	112 1	N22E	72 N	W	202	72 1	72		1	:G75a
372 IX I	3	354 !			δE		87 1	87		1	1675a
373 IX I	8	348 1			SE		82 1	82		1	1675a
374 IX I	39	210 1				300	51 1	51		1	1675a
375 IX I	44	190 :		46 N		280	46 !	46	10	1	1675a
376 IX I	4	310 :				: 40	86 1	86		1	1675a
377 IX I	2	175 1		88 N		265	88 :	88	355		1675a
378 IX I	13	358 1		77 9		88	77 1	77	178		1675a
379 IX I	28	289 1				19	62 1	62		1	1675a
380 IX I	29	297 1				27	61 1	51	117		1675a
381 IX I	36	244 1				334	54 1	54		1	1675a
382 IX I		273 1				3 35	75 1	75	93	1	1675a
383 IX I		305 1		78 9 74 N			78 74	78 74	125 85	1	1675a
384 IX I	16	265 182	N5W	49 N			49 1	49		1	1675a
385 IX I	41	102 1	N88W	43 N	YC.	1 212	43 1	43	4		1675a

			-		-	-		
No. ID	Ping Tr			Azmth	Dip	Dip		Plt Site
386 IX I	42 195	5 N75W	48 NE	: 285	48 :	48	15	1 1675a
387 IX I	50 262	2 I NBW	40 NE	: 352	40 1	40	82	1675a
388 IX I	20 346	5 ! N76E	70 SE	1 76	70 :	70	166	1 1676
389 IX I	5 85	5 1 N5W	85 SW	1 175	85 :	85	265	1 1676
390 IX I	5 125		85 NW	1 215	85 1	85	305	1 1676
391 IX I	36 333		54 SE	1 63	54 1	54	153	1 1676
392 IX I	18 341		72 SE	1 71	72 1	72	161	I IG76
393 IX I	10 94		80 NW	184	80 1	80	274	1 1676
394 IX I	34 347	7 ¦ N77E	56 SE	1 77	56 1	56	167	: :676
395 IX I	10 85	5 N5W	80 SW	: 175	80 :	80	265	: IG76
396 IX I	35 313	3 N43E	55 SE	: 43	55 :	55	133	I IG76
397 IX I	20 209	S I NEIW	70 NE	: 299	70 :	70	29	1 1676
398 IX I	24 202		66 NE	1 292	66 !	66	22	1 1676
399 IX I	40 205		50 NE	1 295	50 :	50	25	1 1676
400 IX I	14 269		76 NE	: 359	76 1	76	89	1 1676
			85 SE	1 6	85 1		96	
						85		
402 IX I	26 253		64 NE	1 343	64 1	64	73	1 1676
403 IX I	0 183		90 NE	1 273	90 :	90	3	1 1676
404 IX I	0 302		90 SE	1 32	90 1	90	122	1 1676
405 IX I	Б 122		84 NW	1 212	84 :	84	302	1 1676
406 IX I	40 329	9 : N59E	50 SE	: 59	50 1	50	149	1 1G76
407 IX I	54 272	2 N2E	36 SE	: 2	36 !	36	92	: :676
408 :BDG:	66 122	2 1 N32E	24 NW	1 212	24 1	24	302	1 1676
409 (BDG)	51 54		39 SW	1 144	39 1	39	234	1 1676
410 BDG!	66 65		24 SW	1 155	24 1	24	245	1 1676
411 BDG	68 111		ZZ NW	1 201	22 1	22	291	1 1675
412 BDG								
				1 157	31 1	31	247	1 1676
413 BDG	62 103		28 NW	1 193	28 1	28	283	1 1676
414 BDG	59 134		31 NW	1 224	31 1	31	314	1 1676
415 BDG	60 133		30 NW	1 223	30 1	30	313	1 1676
416 BDG	66 126	5 N36E	24 NW	1 216	24 1	24	306	: 1676
417 BDG	61 110	0 N20E	29 NW	1 200	29 :	29	290	1 1676
418 BDG	56 90	3 I NOW	34 W	: 180	34 1	34	270	1 1676
419 [BDG]	61 104	4 : N14E	29 NW	1 194	29 :	29	284	: :676
420 IX I	8 280		82 SE	1 10	82 1	82	100	1 IP77
421 IX I	52 196		38 NE	1 286	38 1	38	16	1 1P77
422 IX I	17 324		73 SE	1 54	73 1	73	144	1 1677
423 IX I	35 169			1 259	55 1			
						55	349	1 1677
424 IX I	25 285		65 SE	1 15	65 1	65	105	1 1677
425 IX I	34 300		56 SE	: 30	56 :	56	120	1 1677
426 IX I		B : N82W	50 NE		50 ;	50		1 1677
427 IX I	15 269	5 : N5W	75 NE	: 355	75 :	75	85	1 1677
428 IX I	31 171	1 N81E	59 NW	1 261	59 1	59	351	1 1677
429 IX I	48 198	B ! N72W	42 NE	: 288	42 1	42	18	: :677
430 IX I	4 264		86 NE	354	86 1	86	84	1 1677
431 IX I	48 201		42 NE	1 291	42 1	42	21	1 1677
432 IX I	8 293		82 SE	1 23	82 1	82	113	1 1677
433 IX I	35 195		55 NE	1 285	55 1	55	15	1 1677
433 IX I	29 272		61 SE	1 2	61 1	61	92	1 1677
				1 19				
435 IX I	31 289					59	109	1 1677
436 IX I	5 80		85 SW	1 170	85 1	85		1 1677
437 IX I	15 255		75 NE	1 345	75 1	75	75	1 1677
438 IX I	42 269		48 NE	: 359	48 1	48	89	1 1677
439 IX I	31 259		59 NE	345	59 !	59	75	1 1677
440 IX I	37 322	2 N52E	53 SE	: 52	53 1	53	142	1 1677

No.	ID	Fing	Trnd	Strik	e Dip	Azmth	Dip	Die	DDir	Plt Site
	X I	49	282 1	N12E	41 SE	1 12	41 1	41		
									102	1 1677
		6		NISE	84 SE	1 15	84 1	84	105	1 1677
	XI	18	284 1	N14E	72 SE	1 14	72 1	72	104	1 1677
	BDGI	56	59 1	NJIW	34 SW	1 149	34 1	34	239	1 1677
	BDG!	66	54 1	NJEW	24 SW	1 144	24 1	24	234	1 1677
	BDGI	63	72 1	NIBW	27 SW	1 162	27 1	27	252	1 1677
	BDGI	65	71 1	N19W	25 SW	1 161	25 1	25	251	1 1677
	BDGI	68	123 1	N33E	22 NW	1 213	22 1	22	303	1 1677
	BDG:	50	40 1	NSØW	40 SW	1 130	40 :	40	220	1 1677
	BDG :	60	55 1	N35W	30 SW	: 145	30 :	30	235	1 1677
	BDGI	67	50 1	N40W	23 SW	1 140	23 1	23	230	1 1677
	BDG	63	36 :	N54W	27 SW	1 126	27 1	27	216	1 1677
453 :	BDG :	47	42 1	N48W	43 SW	1 132	43 1	43	222	1 1677
454 :	BDG :	53	52 1	N38W	37 SW	1 142	37 1	37	232	: 1677
455 :	BDGI	53	50 1	N4ØW	37 SW	: 140	37 1	37	230	1 1677
456 1	BDGI	62	59 1	N31W	28 SW	149	28 :	28	239	1 1677
457 !	X !	5	8 :	N82W	85 SW	: 98	85 1	85	188	1 1P78
458 1	X :	29	22 1	NESW	61 SW	1 112	61 1	61	202	: :P78
459 :	X :	26	205 :	NESW	64 NE	1 295	64 :	64	25	: IP78
450 :	X :	22	193 1	N77W	68 NE	: 283	68 ;	68	13	: IP78
461 :	X I	30	204 1	NEEW	60 NE	1 294	60 :	60	24	1 1P78
462 1	X :	67	211 1	N59W	23 NE	1 301	23 :	23	31	1 IP78
463 1	X I	59	280 :	N10E	31 SE	1 10	31 1	31	100	1 IP78
464 :	X I	32	206 1	N64W	58 NE	1 296	58 :	58	26	1 1P78
465 :	x :	30	201 1	NESW	60 NE	1 291	60 :	60	21	I 1P78
	X I	41	18 1	N72W	49 SW	1 108	49 :	49	198	I 1P78
	X I	33	195 1	N75W	57 NE	: 285	57 1	57	15	I 1P78
	X I	32	306 1	N36E	58 SE	1 36	58 1	58	126	1 1P78
	X I	23	205 1	NESW	67 NE	1 295	67 1	67	25	1 1P78
	XI	25	203 1	N67W	65 NE	1 293	65 1	65	23	1 1P78
	XI	10	108 1	NIBE	80 NW		80 1	80	288	1 IP78
	XI	40	120 1	N30E	50 NW	1 210	50 :	50	300	1 1P78
	XI	45	104 1	N14E	45 NW	1 194	45 1	45	284	1 1P78
474 1		46	113 1	N23E	44 NW	1 203	44 1	43	293	1 1P78
	XI	39	183	N87W	51 NE	1 273			255	
	X	54	207 1	N63W	36 NE	1 297	51 I 36 I	51	27	1 1679 1 1679
	x i	38	347 1	N77E	52 SE	1 77	52 1	36 52	167	1 1679 1 1679
	X	45	197 1	N73W	45 NE	1 287	45 1		17	
	XI	60	197 1	N73W	45 NE 30 NE	1 287	30 1	45		1 1679
	X	33	346 1	N76E	57 SE	1 76	57 1	30 57	17	1 1679
									166	1 1679
		39 39	339 1	N69E	51 SE 51 SE	1 69	51 1	51	159	
	XI		340 1	N7ØE		1 70	51 1	51	160	1 1679
	XI	26	300 1	N3ØE	64 SE	: 30	64 1	64	120	1 1679
	X I X I	61 55	142 1	N52E	29 NW	1 232	29 1 35 1	29	322	1 1679
		50		N80E	35 NW			35	350	1 1679
	X I X I		14 1	N76W	40 SW	1 104	40 1	40	194	1 1679
		22	50 1	N4ØW	68 SW	1 140	68 1	68	230	1 1679
	XI	4.1	18 1	N72W	49 SW	1 108	49 1	49	198	1 1679
	XI	36	30 1	NEOW	54 SW	1 120	54 1	54	210	1 1679
	XI	59	136 1	N46E	31 NW	1 226	31 1	31	316	1 1679
	XI	9	319 1	N49E	81 SE	1 49	81 1	81	139	1 1679
	XI	68	230 1	N4ØW	22 NE	1 320	22 1	22	50	1 1679
	XI	49	8 1	N82W	41 SW	: 98	41 1	41	188	1 1679
	X I	81	97 :	N7E	9 NW	1 187	9 1	9	277	1 1679
495 ;	X I	18	162 1	N72E	72 NW	1 252	72 1	72	342	I IP80

		-				-	-		
No. ID	Ping	Trnd	Strik		Azmth	Dip	Dip	DDir	Plt Site
496 IX I	24	172 1	N82E	66 NW	1 262	66 !	66	352	1 1P80
497 IX I	46	148 1	N58E	44 NW	1 238	44 1	44	328	1 1P80
498 IX I	Ø	150 :	NEØE	90 NW	: 240	90 :	90	330	1 1P80
499 IX I	17	163 1	N73E	73 NW	1 253	73 1	73	343	1 1P80
500 IX I	40	60 ¦	N30W	50 SW	: 150	50 1	50	240	: IP80
501 IX I	10	326 1	NS6E	80 SE	: 56	80 :	80	145	: :P80
502 IX I	11	323 1	N53E	79 SE	: 53	79 1	79	143	: 1P80
503 IX I	15	167 :	N77E	75 NW	1 257	75 :	75	347	1 IP80
504 IX I	15	319 1	N49E	75 SE	: 49	75 :	75	139	
505 IX I	12	151 1	N61E	78 NW	1 241	78 :	78	331	1 IP80
506 IX I	49	289 1	N19E	41 SE	1 19	41 1	41	109	1 1P80
507 IX I	15	152 1	N62E	75 NW	1 242	75 1	75	332	: IP80
508 IX I	46	225 1	N45W	44 NE	: 315	44 1	44	45	1 1P80
509 IX I	35	323 1	N53E	55 SE	: 53	55 1	55		: :P80
510 IX I	36	6 1	N84W	54 SW	1 96	54 :	54	186	
									State of the second sec
511 IX I	15	153 1	N63E	75 NW	1 243	75 1	75		1 1P80
512 IX I	42	280 1	NIØE	48 SE	1 10	48 1	48	100	1 1680
513 IX I	6	331 1	N61E	84 SE	: 61	84 :	84	151	: :680
514 IX I	20	151 1	NG1E	70 NW	: 241	70 1	70	331	1 1680
515 IX I	38	287 1	N17E	52 SE	1 17	52 1	52	107	1 1680
516 IX I	2	162 1	N72E	88 NW	1 252	88 1	88	342	1 1680
517 IX I	10	327 1	N57E	80 SE	1 57	80 1	80	147	: :G8Ø
518 IX I	20	158 1	NESE	70 NW	1 248	70 :	70	338	1 1680
519 IX I	55	220 1	NSØW	35 NE	1 310	35 1	35	40	1 :680
520 IX 1	31	150 1	NEØE	59 NW	: 240	59 1	59	330	1 1680
521 IX I	16	157 1	N67E	74 NW	1 247	74 1	74	337	1 1680
522 IX I	58	238 1	N32W	32 NE	1 328	32 1	32	58	
									1 1680
	30	258 1	NIZW	60 NE	: 348	60 1	60	78	1 1680
524 IX I	38	242 1	N28W	52 NE	1 332	52 1	52	62	1 1680
525 BDG	70	208 1	N62W	20 NE	1 298	20 1	20	28	1 1680
526 !BDG!	70	225 1	N45W	20 NE	1 315	20 1	20	45	: : 680
527 BDG	65	235 1	N35W	25 NE	1 325	25 1	25	55	1 1680
528 BDG	25	218 1	N52W	65 NE	: 308	65 1	65	38	1 1680
529 (BDG)	53	219 1	NSIW	37 NE		37 1		39	
							37		1 1680
530 BDG	76	1 1	MBBM	14 SW	1 91	14 1	14	181	1 1A81a
531 BDG	71	11 :	N79W	19 SW	1 101	19 :	19	191	1 1A81a
532 BDG	77	13 1	N77W	13 SW	103	13 1	13	193	: 1A81a
533 IX I	46	306 :	N36E	44 SE	.1 36	44 1	44	126	l IA81a
534 IX I	47	294 1	N24E	43 SE	1 24	43 1	43	114	1 1A81a
535 IX I	5	191 1	N79W	85 NE	1 281	85 1	85	11	1 1A81a
536 IX I	5	90 1		85 W	1 180	85 1	85		1 1A81a
537 IX I	5	90 1	NØW	85 W	1 180	85 1	85		1 1A81a
538 IX I	10	91 1	NIE	80 NW	1 181	80 1	80		l 1A81a
539 IX I	25	13 1	N77W	65 SW	1 103	65 ;	65	193	1 1A81a
540 IX I	14	132 1	N42E	76 NW	1 222	76	76		: :A81a
541 IX I	18	128		72 NW	1 218	72 1	72	308	
542 IX I	ø	5 1	N85W	90 SW	1 95	90 :	90	185	
543 IX I	Ø	84 1		90 SW	1 174	90 1	90	264	
544 IX I	32	284 1	N14E	58 SE	1 14	58 :	58		1 1A81a
545 IX I	50	32 1	N58W	40 SW	1 122	40 :	40	212	1 1A81b
546 IX I	6	305 :	N35E	84 SE	: 35	84 :	84	125	1 1A81b
547 IX I	4		N85W	86 NE	: 275	86 :	86	5	1 1A81b
548 IX I	6	186 1	N84W	84 NE	1 276	84 1	84	6	1 1A81b
549 IX I	30			60 SE	1 30	60 I	60		I 1A81b
550 IX I	31	312 1	N42E	59 SE	1 42	59 1	59	132	1 1A81b

No.	. ID	Ping	Trnd	Stril	e Dip	Azmth	Dip		DDir	Plt Site
		-						Dip		
551	1X 1	56	46 1	N44W	34 SW	1 136	34 1	34	226	I 1A815
552	1X 1	58	33 1	N57W	32 SW	1 123	32 1	32	213	I IA816
553	IBDGI	55	81 1	MBM	35 SW	1 171	35 !	35	261	I IA82
554	BDG	66	80 1	NIOW	24 SW	1 170	24 1	24	260	1 1A82
555	:BDG:	56	42 1	N48W	34 SW	1 132	34 1	34	222	1 1A82
556	BDG:	55	58 1	N32W	35 SW	: 148	35 1	35	238	1 1A82
557	1X 1	5	38 1	N52W	85 SW	1 128	85 :	85	218	I 1A82
558	1X 1	26	207 1	N63W	64 NE	1 297	64 1	54	27	1 1482
		48	214 1	NSGW	42 NE	: 304	42 1		34	
559								42		
560	1X 1	2	235 1	N35W	88 NE	1 325	88 1	88	55	I 1A82
561	IX I	1	299 1	N29E	89 SE	1 29	89 1	89	119	I IA82
562	1X 1	2	119 1	N29E	88 NW	: 209	88 1	88	299	I 1A82
563	1X 1	4	300 :	N30E	86 SE	1 30	86 1	86	120	1 1A82
564	1X 1	5	240 1	N30W	85 NE	: 330	85 :	85	60	1 1A82
565	IX I	4	67 1	N23W	86 SW	1 157	86 1	86	247	1 1A82
566	1X 1	1	338 :	N68E	89 SE	: 68	89 :	89	158	I 1A82
567	1X 1	Б4	325 1	N55E	26 SE	1 55	26 1	26	145	I 1A82
568	1X 1	28	185 1	N85W	62 NE	1 275	62 1	62	5	1 1A82
569	IX I	50	220 :	NSØW	40 NE	1 310	40 1	40	40	
570	IX I	38	262 1	N8W	52 NE	1 352	52 1	52	82	I 1A82
571	IX I	11	223 1	N47W	79 NE	1 313	79 1	79	43	I 1A82
572	1X 1	28	235 1	N35W	62 NE	1 325	62 1	62	55	I IA82
573	IX I	25	133 1	N43E	65 NW	1 223	65 1	65	313	I IA82
574	1X 1	41	129 1	N39E	49 NW	1 219	49 :	49	309	1 1A82
575	1X 1	14	230 1	N4ØW	76 NE	: 320	76 !	76	50	1 1A82
576	BDG:	47	156 1	NEEE	43 NW	: 245	43 :	43	336	1 1A82
577	:BDG:	51	22 1	NESW	39 SW	1 112	39 :	39	202	1 1A82
578	BDG:	49	33 1	N57W	41 SW	1 123	41 :	41	213	1 1A82
579	1X 1	74	311 1	N41E	16 SE	41	16 -1	16	131	: :P83
580	1X 1	62	330 1	NEØE	28 SE	1 50	28 1	28	150	: 1P83
581	1X 1	70	320 1	NSØE	20 SE	1 50	20 1	20	140	: 1P83
582	IX I	63	328 1	N58E	27 SE	1 58	27 1			
583		67						27	148	1 1P83
				NSSE	23 SE	: 55	23 1	23	145	1 1P83
584		18	120 1	N30E	72 NW	1 210	72 1	72	300	1 1P83
585	1X 1	19	116 1	N26E	71 NW	1 205	71 1	71	296	I IP83
586	:X :	43	135 1	N45E	47 NW	1 225	47 1	47	315	I IP83
587	IX I	42	ØI	N90E	48 S	: 90	48 !	48	180	I IP83
588	1X 1	3	290 :	N2ØE	87 SE	: 20	87 :	87	110	I IP83
589	1X 1	6	225 1	N45W	84 NE	1 315	84 !	84	45	1 1P83
590	1X 1	10	140 :	N50E	80 NW	: 230	80 :	80	320	1 1P83
591	1X 1	19	129 1	N39E	71 NW	1 219	71 1	71	309	1 IP83
592	1X 1	32	167 :	N77E	58 NW	: 257	58 ;	58	347	
593	IX I	22	138 1	N48E	68 NW	1 228	68 1	68	318	I 1P83
594	IX I	64	347 1	N77E	26 SE	1 77	26 1	26	167	
595	1X 1	5	87 1	N3W	85 SW	1 177	85 1	85	267	1 1P83
596										
	1X 1	53		N33W	37 NE		37 1	37	57	1 1P84
597	IX I	20	255 1	N15W	70 NE	: 345	70 1	70	75	I IP84
598	1X 1	22	352 1	N82E	68 SE	: 82	68 1	68	172	I IP84
599	1X 1	32	249 1	NZIW	58 NE	1 339	58 1	58	69	I IP84
600	1X 1	35	263 !	N7W	55 NE	1 353	55 1	55	83	! !P84
601	1X 1	24	173 1	N83E	66 NW	1 263	66 1	66	353	I IP84
602	1X 1	30	32 1	N58W	60 SW	1 122	60 I	60	212	: :P84
603	1X 1	63	179 :	N89E	27 NW	1 269	27 1	27	359	1 IP84
604	1X 1	68	201 :	N69W	22 NE	1 291	22 1	22	21	I 1P84
	1X 1	19	173 1	N83E	71 NW	1 263	71 :	71		I 1P84

No.	ID	Ping	Trnd	Strik	e Dip	Azmth	Dip	Dip	DDir	Plt Site
606	1X 1	17	349 1	N79E	73 SE	: 79	73 1	73	169	1 1P84
607	1X 1	6	91 1	NIE	84 NW	1 181	84 1	84	271	I 1P84
608	1X 1	15	197 1	N73W	75 NE	1 287	75 :	75	17	1 1P84
609	1X 1	10	285 1	N15E	80 SE	1 15	80 1	80	105	I 1P84
610	1X 1	13	330 1	NEØE	77 SE	1 60	77 1	77	150	I 1P84
611	1X 1	45	284 1	N14E	45 SE	1 14	45 :	45	104	1 1P84
612	IX I	10	4 1	NBEW	80 SW	1 94	80 ;	80	184	I 1P84
613	IX I	65	39 1	NSIW	25 SW	1 129	25 1	25	219	1 1P84
614		42	236 1	N34W	48 NE	1 326	48 1		56	
								48		
615	IX I	58	88 1	NZW	32 SW	1 178	32 1	32	268	1 1P84
616	IX I	49	27 1	N63W	41 SW	1 117	41 1	41	207	1 1P84
617	IX I	25	231 1	N39W	65 NE	1 321	65 1	65	51	1 1P84
618	IX I	5、	160 :	N7ØE	85 NW	1 250	85 1	85	340	1 1084
619	1X 1	5	338 1	N68E	85 SE	68	85 1	85	158	1 1084
620	IX I	6	154 1	N64E	84 NW	: 244	84 1	84	334	I 1Q84
621	1X 1	7	160 :	N7ØE	83 NW	1 250	83 I	83	340	1 1084
622	IX I	34	61 1	N29W	56 SW	1 151	56 1	56	241	1 1084
623	1X 1	75	277 1	N7E	15 SE	: 7	15 1	15	97	1 1084
624	1X 1	28	41 :	N49W	62 SW	: 131	62 I	62	221	1 1084
625	IX I	30	23 1	N67W	60 SW	1 113	60 i	60	203	1 1084
626	IX I	10	181 1	MBBM	80 NE	: 271	80 1	80	1	I 1Q84
627	1X 1	14	180 1	N90E	76 N	1 270	76 1	76	Ø	1 1084
628	IX I	6	147 1	N57E	84 NW	237	84 1	84	327	: :Q84
629	1X 1	14	211 1	N59W	76 NE	: 301	76 1	76	31	1 1084
630	1X 1	4	212 1	N58W	86 NE	: 302	86 1	86	32	1 1Q84
631	BDG	37	90 :	NØW	53 W	: 180	53 1	53	270	1 1687
632	BDG	67	279 1	N9E	23 SE	: 9	23 1	23	99	: :687
633	1X 1	25	203 1	N67W	65 NE	293	65 :	65	23	1 1687
634	IX I	25	200 1	N70W	65 NE	1 290	65 1	65	20	1 1687
635	IX I	20	131 1	N41E	70 NW	1 221	70 1	70	311	1 1687
636	1X 1	18	358 !	N88E	72 SE	: 88	72 1	72	178	1 1687
637	1X 1	63	183 1	N87W	27 NE	1 273	27 1	27	3	: IP88
638	1X 1	20	329 1	N59E	70 SE	1 59	70 :	70	149	: :P88
639	1X 1	12	42 1	N48W	78 SW	1 132	78 1	78	222	1 1P88
640	IX I	9	329 1	N59E	81 SE	: 59	81 1	81	149	: :P88
641	IX I	5	245 !	N25W	85 NE	: 335	85 1	85	65	1 1P88
642	1X 1	11	111 1	N21E	79 NW	1 201	79 1	79	291	: IP88
643	IX I	24	94 !	N4E	66 NW	184	66 I	66	274	1 1P88
644	1X 1	21	35 1	N55W	69 SW	1 125	69 1	69	215	1 1P88
645	1X 1	15	51 1		75 SW	1 141	75 :	75	231	1 1P88
646	1X 1	23	137 1	N47E	67 NW	1 227	67 1	67	317	1 1P88
647	1X 1	5	197	N73W	85 NE	1 287	85 1	85	17	1 1P88
648	:X :	10	40 !	N50W	80 SW	1 130	80 :	80	220	I IP88
649	1X 1	45	258 1	N12W	45 NE	: 348	45 1	45		1 IP88
650	1X 1	20	36 1	N54W	70 SW	1 126	70 1	70	216	I IP88
651	1X 1	55	196 1		35 NE	: 286	35 1	35		I IP88
652	1X 1	10	34 1	N56W	80 SW	1 124	80 ;	80	214	I IP88
653	1X 1	9	145 1	NSSE	81 NW	1 235	81 ;	81		I IP89
654	1X 1	37	260 1	NIØW	53 NE	: 350	53 1	53		I IP89
655	1X 1	38	250 :	NZØW	52 NE	: 340	52 !	52	70	1 1P89
656	1X 1	7	149 !	N59E	83 NW	1 239	83 1	83		: :P89
657	1X 1	17	144 !	N54E	73 NW	1 234	73	73	324	: IP89
658	1X 1	26	150 !	NEØE	64 NW	1 240	64 I	64	330	I IP89
	1X 1	4	348 1	N78E	86 SE	1 78	86 1	86		I IP89
660	1X 1	30	308 1	N38E	60 SE	: 38	60 :	60	128	I 1P89

No. ID	Plan	Trnd	Strik	e Dip	Azmth	Dip	Din	DDir	Plt Site
661 IX I	15	153 1		75 NW		75 1	75	333 1	12 1289
662 IX I	15	335 1	NESE	75 SE	1 65	75 1	75	155 1	1289
663 IX I	12	60 1	NJØW	78 SW	1 150	78 1	78	240 1	1289
664 IX I	12	58 1	NJ2W	78 SW	1 148	78 1	78	238 1	1289
665 IX I	10	20 1	N70W	80 SW	1 110	80 1	90	200 1	1289
666 IX I	24	24 1		66 SW	1 114	66 1			1283
				51 SW			66		
667 IX I	39		NESW			51 1 55 1	51 55		1989
668 IX I	35		N45W	55 NE				45 1	1989
669 IX I	72	180 1	N90E	18 N		18 1	18	0 1	1989
670 IX I	45	184 1	N86W	45 NE	1 274	45 1	45	4 1	1989
671 IX I	38	193 1		52 NE	1 283	52 1	52	13 1	1989
672 IX I	62	167 :	N77E	28 NW	1 257	28 1	28	347 1	1P89
673 IX I	43	354 1	N84E	47 SE	1 84	47 1	47	174 1	1989
674 IX I	45	238 1	N32W	45 NE	1 328	45 1	45	58 1	1P89
675 IX I	25	171	N81E	65 NW	1 261	65 1	65	351 1	1P89
676 BDG	63	199 1	N71W	27 NE	1 289	27 1	27	19 1	:G90gen
677 IX I	49	163 !		41 NW	1 253	41 1	41	343 1	1690
678 IX I	10	346 1	N76E	80 SE	1 76	80 1	80	166 1	1690
679 IX I	29	166 1	N76E	61 NW	1 256	61 1	61	346 :	:690
680 IX I	15	168 1	N78E	75 NW	1 258	75 1	75	348 1	1690
681 IX I	45	198 !	N72W	45 NE	1 288	45 1	45	15 1	:690
682 IX I	27	179 :	N89E	63 NW	1 269	63 1	63	359 1	1690
683 IX I	6	334 1	N64E	84 SE	: 64	84 1	84	154 :	1690
684 IX I	30	149 1	N59E	60 NW	: 239	60 1	60	329 1	:690
685 IX I	25	306 :	N36E	65 SE	: 36	65 1	65	126 :	1690
686 IX I	14	168 1	N78E	76 NW	: 258	76 :	76	348 !	1690
687 IX I	28	166 1	N76E	62 NW	1 256	62 1	62	346 :	1690
688 IX I	61	176 1	N86E	29 NW	: 266	29 1	29	356 1	:690
689 IX I	68	191 1	N79W	22 NE	1 281	22 1	22	11 1	1690
690 IX I	72	213 1	N57W	18 NE	: 303	18 :	18	33 1	:690
691 IX I	53	161 1	N71E	37 NW	1 251	37 1	37	341 1	1690
692 IX I	40	144 :	N54E	50 NW	1 234	50 1	50	324 1	1690
693 IX I	35	336 1	NEEE	55 SE	: 66	55 1	55	156 1	1690
694 IX I	46	23 1	N67W	44 SW	1 113	44 1	44	203 1	1690
695 IX I	21	167 :	N77E	69 NW	1 257	69 1	69	347 1	1690
696 IX I	8	56 :	N34W	82 SW	1 146	82 1	82	236 1	1690
697 (BDG)	45	143 1	N53E	45 NW	1 233	45 1	45	323 1	IA91a
698 BDG	40	133 1	N43E	50 NW	1 223	50 1		313 1	(A91a
699 BDG	49	132 1	N42E	41 NW	1 222	41 1	41	312 1	IA91a
700 BDG	38	142 1	N52E	52 NW	1 232	52 1	52	322 1	IASIa
701 BDG	41	141 1		49 NW		49 1	49	321 1	IA91a
702 (BDG)	40	127 1		50 NW		50 1	50	307 1	lASIa
703 BDG	21	145 1		69 NW		69 1	69	325 1	IA91a
704 BDG	35	41 1	N49W	55 SW		55 1	55	221 1	IA916
705 (BDG)	31	39 1	NSIW	59 SW		59 1	59	219 1	14915
706 BDG	40	18 1	N72W	50 SW		50 1	50	198 :	1A915
707 1BDG1	39	21 1	N69W	51 SW		51 1	51	201 1	
708 IX I	19	165 1		71 NW		71 1	71	345 1	
709 IX I	30	184 1	N86W	50 NE		60 :	50	4 1	
710 IX I	30	189 1	N81W	60 NE		60 1	60	9 1	
710 IX I	41	254 1	NIEW	49 NE		49 1	49	74 1	
712 IX I	60	243 1	N27W	30 NE		30 1			1A91
							30	63 1	
	9		N53E	81 SE		81 1	81	143 1	1491
714 IX I	4	296 1	N26E	86 SE		86 1	86	116 1	1A91
715 IX I	10	133 1	N43E	80 NW	1 223	80 :	80	313 1	1491

•

N- 75			T	· ·										
No. ID		-	Trnd	Strik		Dip		Azmth	Dip		DDir		t Site	
716 IX	1	55	196 1	N74W	35		1.		35 1	35	16	1	1891	
717 IX	1	2	151 1	N61E	88	NW	;	241	88 ;	88	331	1	1A91	
718 IX	1	16	313 1	N43E	74	SE	1	43	74 1	74	133	1	1A91	
719 IX	1	9	319 1	N49E	81	SE	1	49	81 1	81	139	1	1A91	
720 IX	1	48	201 :	NE 9W	'42	NE	1	291	42 1	42	21	1	1891	
721. IX	1	3	17 :	N73W	87	SW	1	107	87 :	87	197	1	1A91	
722 IX	;	17	177 1	N87E	73	NW	:	267	73 1	73	357	1	1A91	
723 IX	1	Ø	209 :	NEIW	90	NE	1	299	90 ;	90	29	1	1A91	
724 IX	1	49	156 :	NGGE	41	NW	1	246	41 ;	41	336	1	1A91	
725 IX	1	60	173 1	N83E	30	NW	1	263	30 1	30	353	i	1A91	
726 IX	i	18	148 1	N58E	72	NW	1	238	72 1	72	328	i	1491	
727 IX	i	53	162 1	N72E	37	NW	;	252	37 1	37	342	1	1491	
728 IX	;	40		N70W	50	NE	;	290		50	20		1491	
												1		
729 IX	1	21	170 :	NBØE	69	NW	1	260	69 1	69	350	1	1P92	
730 IX	1	15	169 1	N79E	75	NW	-	259	75 1	75	349	1	1P92	
731 IX	1	32	171 1	NBIE	58	NW	1	261	58 1	58	351	1	1992	
732 IX	1	55	226	N44W	35	NE	1	316	35 1	35	46	1	IP92	
733 IX	1	30	245 1	N25W	60	NE	1	335	60 :	60	65	1	1P92	
734 IX	1	43	110 :	N20E	47	NW	1	200	47 1	47	290	1	1P92	
735 IX	1	42	316 1	N46E	48	SE	1	46	48 !	48	136	1	1P92	
736 IX	1	37	318 1	N48E	53	SE	1	48	53 1	53	138	1	1P92	
737 IX	1	13	58 1	N32W	77	SW	1	148	77 :	77	238	1	1P92	
738 IX	1	10	60 :	NJØW	80	SW	:	150	80 :	80	240	1	1P92	
739 IX	1	4	159 1	N69E	86	NW	1	249	86 1	86	339	1	1P92	
740 IX	1	27	29 1	NEIW	63	SW	:	119	63 1	63	209	1	1P92	
741 IX	1	21	179 !	N89E	69	NW	1	269	69 1	69	359	1	1P92	
742 IX	1	20	171 1	NBIE	70	NW	1	261	70 :	70	351	i	1P92	
743 IX	i	Ø	132 1	N42E	90	NW	:	222	90 1	90	312	i	1P92	
744 IX	i	19	52 1	N38W	71	SW	1	142	71 1	71	232	1	1992	
745 IX	1	6	144 1	N54E	84	NW	:	234	84 :	84	324	ł	1P92	
746 IX	i	35	44 1	N46W	55	SW	:	134	55 1	55	224	;	1992	
747 1X	1	30	28 1	N62W	60	SW	;	118	60 :	60	208	1	1992	
748 IX	i	68	204 1	NEEW	22	NE	1	294	22 1	22	24	i	1992	
749 IX	1	23	170 :	NBØE	67		1		67 1					
	;	29				NW	-	260		67	350	1	1P92	
			163 1	N73E	61	NW	1	253	61 1	61	343	1	1P92	
751 IX	1	50	302 1	N32E	40	SE	1	32	40 1	40	122	1	1P92	
752 IX	1	52	318 1	N48E	38	SE	1	48	38 1	38	138	1	1992	
753 IX	1	40	82 1	N8W	50	SW	1	172	50 1	50	262	1	IP92	
754 ¦X	1	70	199 1	N71W	20	NE	1	289	20 1	20	19	1	1P92	
755 IX	1	30	16 1	N74W	60	SW	1	106	60 I	60	196	1	IP92	
756 ¦X	1	9	168 1	N78E	81	NW	;	258	81 1	81	348	1	1A93	
757 IX	1	1	160 1	N7ØE	89	NW	1	250	89 1	89	340	:	1A93	
758 IX	1	22	319 1	N49E	68	SE	1	49	68 1	68	139	1	1A93	
759 IX	1	5	13 :	N77W		SW	1	103	85 ;	85	193	1	1A93	
760 IX	1	5	315 1	N45E	85	SE	1	45	85 1	85	135	1	1A93	
761 IX	1	22	180 1	N9ØE	68		1	270	68 1	68	0	1	IA93	
762 1X	1	5	319 1	N49E	85	SE	1	49	85 1	85	139	i	1A93	
763 IX	1	2	317 1	N47E	88	SE	i	47	88 1	88	137	i	1A93	
764 IX	;	8	200 :	N7ØW	82	NE	i	290	82 1	82	20	i	1A93	•
765 IX	i	6	195 1	N75W	84	NE	i	285	84 1	84	15	i	1A93	
766 IX	1	34	6 1	N84W	56	SW	1	96	56 1	56	185	1	1493	
767 IX	;	17	274 1	N4E	73	SE	:	4	73 1	73	94			
												1	1A93	
768 IX	1	19	311 1	N41E	71	SE	1	41	71 1	71	131	1	1493	
769 IX	1	26	324 1	N54E	64	SE		54	64 1	64	144	1	1A93	
770 IX	1	6	260 1	NIØW	84	NE	1	350	84 1	84	80	1	1A93	

.

771 IBDG 60 41 N49W 30 5W 131 30 30 221 1 1493 772 IBDG 67 45 N45W 25 W 135 23 225 143 141 14 15 1433 33 <t< th=""><th>No. ID</th><th>Plno</th><th>Trnd</th><th>Strik</th><th>e Dip</th><th>Azmth</th><th>Dip</th><th>Dip</th><th>DDir</th><th>Plt Site</th></t<>	No. ID	Plno	Trnd	Strik	e Dip	Azmth	Dip	Dip	DDir	Plt Site
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-								
773 18D61 67 45 1 N4SW 23 SW 1 155 23 1 23 225 1 1A93 774 18D61 76 336 1 N36E 20 52 1 14 1 14 <	772 [BDG]	62	54 1	N36W						1 1A93
775 IBO61 706 306 I N3EE 20 5E 1 26 1 21 1 103 777 IBD61 1 191 I N79W 87 128 93 11 1 143 777 IBD61 14 16 I N79W 87 W 229 87 187 19 1 A433 777 IBD61 14 16 I N74W 87 W 106 76 19 1 A433 780 IBD61 6 18 I N72W 84 SW 108 84 198 1 A44 198 1 A44 781 IX 2.20 30.1 N30E 51 50 70 140 1 A44 783 IX 2.0 32.0 I N3EE 63 50 10 1.71 1 A44 784 IX 2.6 2.99 I N2E 64 52 12 1.6 1.71 1 A44 786 IX <td>773 :BDG:</td> <td>67</td> <td>45 !</td> <td>N45W</td> <td>23 SW</td> <td>1 135</td> <td></td> <td></td> <td></td> <td>1 1A93</td>	773 :BDG:	67	45 !	N45W	23 SW	1 135				1 1A93
777 IBDGI 76 352 I NS2E 14 SE 1 1 14 172 I A93 777 IBDGI 3 199 I N71W 89 NE 2281 89 1 17 I A933 778 IBDGI 3 199 I N71W 87 E298 87 187 191 I A933 778 IBDGI 14 16 I N74W 76 SW 106 84 189 1493 780 IBDGI 6 18 I N72W 84 SW 106 84 184 193 I A933 781 IX 27 301 I N31E 61 SE 131 61 16 121 I A94 781 IX 20 30 I N37E 54 SE 170 140 1494 784 IX 16 307 I N37E 54 SE 122 12 12 1494 786 IX 16 177 1474 28 163 <td< td=""><td>774 BDG!</td><td>76</td><td>336 !</td><td>NEEE</td><td>14 SE</td><td>: 66</td><td>14 1</td><td>14</td><td>156</td><td>: IA93</td></td<>	774 BDG!	76	336 !	NEEE	14 SE	: 66	14 1	14	156	: IA93
777 IBDGI 1 191 INTSW 09 NE 1 281 89 11 I IA33 778 IBDGI 14 16 IA74W 87 VE 1289 87 187 191 IA33 780 IBDGI 14 16 IA74W 84 SW 106 76 176 192 IA33 781 IX 27 310 IA40E 63 55 64 65 16 16 11 IA93 781 IX 29 301 IA3E 61 55 16 61 61 56 170 140 IA94 782 IX 20 320 INSE 70 52 54 51 54	775 BDG!	70	306 !	N36E	20 SE	1 36	20 :	20	126	1 IA93
778 IBDG: 3 199 INTIW 87 NE I 269 87 I 87 19 IA93 776 IBDG: 14 16 INTAW 75 SW 106 76 176 196 IA93 780 IBDG: 6 18 INTAW 84 SW 108 84 84 184 84 184 184 1493 781 IX 27 310 INAGE 61 55 16 161 11 1494 783 IX 20 201 INSCE 50 70 70 140 1494 784 IX 20 207 INSTE 54 55 160 101 17 1494 785 IX 168 199 INTW 22 129 122 19 1494 786 IX 149 85 NSW 199 63 160 20 19 1494 781 IS0 101 119 1494 19	776 BDG	76	352 1	NB2E	14 SE	1 82	14 1	14	172	I 1A93
779 IBD61 14 16 N74W 76 SW 1 106 76 1 76 196 1 A93 780 IBD61 6 18 N72W 84 SW 1 08 4 184 198 1 A93 780 IX 1 27 310 I N31E 63 SE 1 61 1 121 I A94 781 IX 1 20 320 I NS0E 70 1 61 121 I A94 783 IX 30 297 I NS0E 70 50 51 54 121 I A94 786 IX 26 299 I N32E 64 54 117 I IA94 787 IX 68 199 I N199 63 63 209 I A94 791 IB06 20 49 IN1W 70 SW 130 17 1494	777 :BDG:	1	191 1	N79W	89 NE		89 :	89		I IA93
780 IBDGI 6 18 I N72W 94 SW I 108 84 I 94 198 I A93 781 IX I 27 310 I N31E 61 52 I 40 63 I 64 I 64 I 64 I 64 I 64 I 60 I I 193 I 101 I 193 I 101 I 111 101 I 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111	778 :BDG:	3	199 1	N71W	87 NE	: 289	87 :	87	19	1 1A93
781 1X 1 27 310 1 N40E 63 SE 1 40 63 1 63 1 130 1 1A94 782 1X 1 20 320 1 N31E 61 SE 1 61 1 1 1 1A94 783 1X 1 30 297 1 N27E 60 50 70 1 140 1 A94 784 1X 1 30 297 1 N27E 60 5 1 140 1 A94 785 1X 1 63 307 1 N17E 54 1 41 149 1 1A94 787 1X 1 68 1 175 41 1 1 1 1A94 781 1X 1 30 101 1 111 60 60 60 211 1A94 791 1X 1 30 101 111 147 1A94	779 BDG	14	16 1	N74W	76 SW	1 106	76 :	76	196	I 1A93
782 IX I 29 301 I N31E 61 SE I 61 61 121 I IA94 783 IX I 20 320 I NS0E 70 SE I 60 I17 I IA94 784 IX I 36 307 I N37E 54 SE I 37 54 I 140 I IA94 785 IX I 36 3077 I N37E 54 SE I 37 54 I 140 I IA94 786 IX I 26 299 I N1W 22 NE I 280 I 141 I 265 I A94 798 IX I 49 85 I NSW I 135 65 65 225 I A94 791 IX 10 137 I N47E 80 NW 1227 80 80 317 I	780 BDG	Б	18 !	N72W	84 SW	108	84 :	84	198	I 1A93
783 IX 1 20 320 I NS0E 70 SE I 70 I 140 I IA94 784 IX I 30 297 I N27E 60 SE I 77 60 I 60 I I I IA94 785 IX I 26 307 I N37E S4 I S4 I I IA94 786 IX I 26 299 I N29E C I 29 I IA94 786 IX I 25 INTW I 289 IX I A94 IA94 790 IX I 30 101 INTE 60 NW I 171 I A94 791 IBD6I 20 49 IA1W 70 SW I 135 65 I 65 243 I A94 792 IBD6I 25 G3 IA27 NA4E SW I 15	781 IX I	27	310 :	N4ØE	63 SE	: 40	63 !	63	130	I 1A94
784IXI30297IN27E60SEI2760I60117IIA94785IXI26307IN37E54SEI3754I54I54I64119IIA94786IXI26299IN29EE4SEI2964I64I19IA94787IXI68199IN7IW22NEI28922I2219IA94787IXI68199IN7IW22NEI28922I63289IA94787IXI4985INUI19160I60281IA94790IXI30101IN11E60NWI121A94793IBD6I2565IN27W65SWI13565I65243IA94794IBD6I3664IN26WS4SWI15454244IA94795IXI10137IN47E80NWI22780I80317I694796IXI10137IN47E80NWI227 </td <td>782 IX I</td> <td>29</td> <td>301 1</td> <td>N31E</td> <td>61 SE</td> <td>: 31</td> <td>61 ;</td> <td>61</td> <td>121</td> <td>I IA94</td>	782 IX I	29	301 1	N31E	61 SE	: 31	61 ;	61	121	I IA94
785 IX I 36 307 I N37E S4 SE I 54 I 127 I IA94 786 IX I E8 199 I N71W 22 NE I 249 I I 194 787 IX I E8 199 I N71W 22 NE I 263 I 63 I 194 I <t< td=""><td>783 IX I</td><td>20</td><td>320 !</td><td>N50E</td><td>70 SE</td><td>: 50</td><td>70 :</td><td>70</td><td>140</td><td>1 1A94</td></t<>	783 IX I	20	320 !	N50E	70 SE	: 50	70 :	70	140	1 1A94
786 IX I 26 299 I N29E 64 SE I 64 I 19 I IA94 787 IX I 68 199 I N11W 22 NE I 289 22 I 22 19 I A94 788 IX I 49 SS I NU 199 63 I 63 289 I A94 790 IX I 45 SS I NU 191 60 I 60 281 I A94 791 IBDGI 20 49 I NI FO SW I 153 65 I 65 243 I A94 792 IBDGI 25 63 I NZW E5 SW I 153 65 I 65 243 I A94 793 IBDGI 25 63 I NZW E0 NW I 210 75 NW I <td< td=""><td>784 IX I</td><td>30</td><td>297 1</td><td>N27E</td><td>60 SE</td><td>1 27</td><td>60 :</td><td>60</td><td>117</td><td>: :A94</td></td<>	784 IX I	30	297 1	N27E	60 SE	1 27	60 :	60	117	: :A94
787 1X 1 68 199 1 N71W 22 NE 1 289 22 1 22 19 1 1A94 788 1X 1 27 109 1 N19E 63 W 1 199 63 1 64 14 265 1 A94 790 1X 1 30 101 1 N11E 60 NW 1 91 60 60 281 1 A94 791 18D61 25 45 1 N41W 70 SW 1 35 55 1 65 243 1 A94 793 18D61 25 45 1 N47W 50 1 153 65 1 65 243 1 A94 793 18D61 36 64 N26W 54 W 1 54 1 A16 90 317 1 694 795 1X 1 10 132 N42E 80 W	785 IX I	36	307 :	N37E	54 SE	1 37	54 !	54	127	1 1A94
788 1X 1 27 109 I N19E 63 NW I 199 63 I 63 289 I IA94 790 IX I 49 85 I NSW 4 SW I 175 41 I 41 41 265 I A94 790 IX 30 101 I N11E 60 WI 191 60 60 281 I A94 791 IBDGI 25 45 I N45W 65 SW I 135 65 1 65 225 I A94 793 IX 100 137 I N47E 80 NW I 227 80 80 312 I 694 795 IX 1 10 132 I N42E 80 NW I 227 80 80 312 I 694 795 IX 1 55 44 I N46W 35 W	786 IX I	26	299 !	N29E	64 SE	1 29	64 1	Б4	119	: :A94
789 1X i 49 85 i NSW 41 SW i 175 41 i 41 265 i iA94 790 IX i 30 101 i N11E 60 W i 191 60 i 60 i 60 229 i A94 791 IBD61 20 49 i N45W 65 SW i 139 70 100 i A94 792 IBD61 25 63 i N47W 65 SW i 153 65 i 65 243 i A94 793 IBD61 36 64 i N42E 80 W 1227 80 80 317 i 694 795 IX 1 10 137 i N42E 80 W 1210 75 300 i 694 798 IX 1 55 44 i N46W 35 i 161 25 <td>787 IX I</td> <td>68</td> <td>199 1</td> <td>N71W</td> <td>22 NE</td> <td>1 289</td> <td>22 1</td> <td>22</td> <td>19</td> <td>I 1A94</td>	787 IX I	68	199 1	N71W	22 NE	1 289	22 1	22	19	I 1A94
790 1X 1 30 101 1 N11E 60 NW 1 191 60 1 60 281 1 1A94 791 1BD61 25 45 1 N41W 70 SW 1 135 65 1 65 225 1 1A94 793 1BD61 25 65 1 N27W 65 SW 1 55 65 243 1 A94 794 1BD61 36 64 1 N27W 65 SW 1 54 54 1 54 244 1 A94 795 1X 1 10 137 1 N47E 80 NW 1 227 80 1 80 312 1 694 797 1X 1 55 144 1 N46W 35 W 1 134 35 35 224 1 694 800 1X 1 6 316 1 N46E 84 5E <td>788 IX I</td> <td>27</td> <td>109 ;</td> <td>N19E</td> <td>63 NW</td> <td>1 199</td> <td>63 1</td> <td>63</td> <td>289</td> <td>I 1A94</td>	788 IX I	27	109 ;	N19E	63 NW	1 199	63 1	63	289	I 1A94
791 IBD61 20 49 I N41W 70 SW I 139 70 I 70 229 I A94 792 IBD61 25 45 I N45W 65 SW I 135 65 I 65 225 I A94 793 IBD61 25 63 I N27W 65 SW I 153 65 I 65 243 I A94 794 IBD61 36 64 I N26W 54 SW I 54 54 244 I A94 795 IX I 10 132 I N47E 80 NU 227 80 80 312 I 694 796 IX I 15 120 I N30E 75 WI 210 75 300 I 694 798 IX 1 55 44 N 46W 35 SW I 101 63 I 63 200 I 694 800 IX I 53 16 N46E 84 SE 44 </td <td></td> <td>49</td> <td>85 1</td> <td>NSW</td> <td>41 SW</td> <td>1 175</td> <td>41 1</td> <td>41</td> <td>265</td> <td>I IA94</td>		49	85 1	NSW	41 SW	1 175	41 1	41	265	I IA94
792 18D61 25 45 1 N45W 65 SW 1 135 65 1 65 225 1 A94 793 18D61 36 64 1 N26W 54 SW 1 153 65 1 65 243 1 A94 794 18D61 36 64 1 N26W 54 SW 1 54 1 54 244 1 A94 795 1X 10 137 1 N47E 80 NW 1 227 80 1 80 317 1 694 797 1X 1 55 44 1 N30E 75 NW 1 210 75 300 1 1694 800 1X 1 57 1 N10W 25 SW 1 106 30 130 196 1 694 8001 1X 1 54 12 N70W 36 SW 1 106 30 130										I 1A94
793 IBDG 25 63 I N27W 65 SW I 153 65 I 65 243 I AP4 794 IBDG 36 64 I N26W 54 SW I 154 54 I 54 244 I AP4 795 IX 10 137 I N47E 80 NW I 222 80 80 317 I 694 796 IX 10 132 I N42E 80 NW I 222 80 80 312 I 694 797 IX 15 120 I N30E 75 W 10 63 I 63 224 I 694 800 IX 27 20 I N70W 63 SW I 106 30 I 163 I 694 802 IX 54 12 I 106 30 I 30 I 56 I 694										
794 IBDG1 36 64 I N26W 54 SW I 154 54 I 54 244 I IA94 795 IX I 0 137 I N47E 80 WW 227 80 I 80 317 I I694 795 IX I 0 132 I N42E 80 WW 1222 80 I 80 317 I I694 796 IX I 155 144 IA4EW 80 WW I222 80 I 80 312 I I694 798 IX IS 7 20 I N70W 63 SW I 106 31 63 200 I I694 800 IX IS 57 I IN7W 30 SW I 106 30 I30 196 I 694 801 IX IX IX IX IX IX IS I898 IX <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
795 1X 1 10 137 1 N47E 80 NW 1 227 80 1 80 317 1 1694 796 1X 1 10 132 1 N42E 80 NW 1 222 80 1 80 312 1 1694 797 1X 1 15 120 1 N30E 75 NW 1 210 75 1 75 300 1 1694 798 1X 1 55 44 1 N46E 85 1 134 35 1 35 224 1 694 800 1X 1 65 71 1 194 25 1 161 25 255 1 1 1694 800 1X 6 316 1 N46E 84 56 1 30 1 30 196 1 1694 802 1X 5 41 1 1 1694 102 <										
796 IX 1 10 132 I N42E 80 NW I 222 80 I 80 312 I I694 797 IX I 15 120 I N30E 75 NW I 210 75 I 75 300 I I694 798 IX I 55 44 I N46W 35 SW I 134 35 I 35 224 I I694 799 IX 27 20 I N70W 63 SW I 104 53 I 63 200 I I694 800 IX I 65 71 I N19W 25 SW I 163 I6 I 16 IA I 1694 I804 I84 I84 I84 I36 I I694 802 IX IS0 16 IA IS1 IA IS1 I694 I694 I802 IX IS0 IS1 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>										
797 1X 1 15 120 1 N30E 75 NW 1 210 75 1 75 300 1 1694 798 1X 1 55 44 1 N46W 35 SW 1 134 35 1 35 224 1 1694 799 1X 1 27 20 1 N70W 63 SW 1 106 63 200 1 1694 800 1X 1 65 71 1 N19W 25 SW 1 161 25 1 25 25 251 1 1694 801 1X 1 60 16 1 N74W 30 SW 1 106 30 1 30 192 1 694 802 1X 1 2 318 1 N48E 88 88 188 188 1 1694 805 IBD61 23 202 1 N68W 64 1										
798 IX 55 44 I N46W 35 SW I 134 35 I 35 224 I I694 799 IX 27 20 I N70W 63 SW I 110 63 I 63 200 I I694 800 IX I 65 71 I N19W 25 SW I 161 25 I 25 251 I I694 801 IX I 60 16 I N74W 30 SW I 106 30 I 30 196 I I694 802 IX I 60 16 I N74W 30 SW I 106 30 I 30 196 I (694 803 IBD6I 25 198 I N72W 65 NE I 288 65 I 67 18 I 694 805 IBD6I 25 198 I N72W 65 NE I 292 64 I 64 22 I 694 807 IBD6I 26 202 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
799 1X 1 27 20 1 N70W 63 SW 1 110 63 1 63 200 1 1694 800 1X 1 65 71 1 N19W 25 SW 1 161 25 1 25 25 251 1 1694 801 1X 1 6 316 1 N46E 84 SE 1 46 84 1 84 136 1 1694 802 1X 1 60 16 1 N74W 30 SW 1 105 30 1 30 196 1 694 803 1X 2 318 1 N48E 88 SE 1 48 88 188 138 1 694 805 1BD61 25 198 1 N72W 65 NE 292 67 1 67 22 1 1694 807 1BD61 26 202 1 N68W										
800 1X 1 65 71 1 N19W 25 SW 1 161 25 1 25 25 251 1 1694 801 1X 1 6 316 1 N46E 84 5E 1 46 84 1 84 136 1 1694 802 1X 1 50 16 1 N74W 30 SW 1 105 30 1 30 196 1 694 803 1X 1 2 318 1 N74W 30 SW 1 102 36 1 30 196 1 694 804 1X 1 2 318 1 N48E 88 SE 1 48 182 1694 88 18 188 138 1694 805 IBD61 25 198 1 N72W 65 NE 292 64 64 122 1694 807 IBD61 25 201 1<										
801 1X 1 6 316 1 N46E 84 SE 1 46 84 1 84 136 1 1694 802 1X 1 50 16 1 N74W 30 SW 1 106 30 1 30 196 1 1694 803 1X 1 54 12 1 N78W 36 SW 1 102 36 1 36 192 1 1694 804 1X 1 2 318 1 N48E 88 SE 1 48 88 188 138 1 1694 805 IBDG1 25 198 1 N72W 65 NE 288 65 1 67 22 1 1694 806 IBDG1 25 202 1 N68W 64 NE 292 64 1 64 22 1 1694 809 IBDG1 42 199 N71W 48 NE										
B02 IX I 60 16 I N74W 30 SW I 106 30 I 30 196 I I694 803 IX I 54 12 I N78W 36 SW I 102 36 I 36 192 I I694 804 IX I 2 318 I N48E 88 SE I 48 88 I88 138 I I694 805 IBD6I 25 198 I N72W 65 NE I 288 65 I 65 18 I I694 806 IBD6I 23 202 I N68W 64 NE I 292 64 I 64 22 I I694 807 IBD6I 42 199 I N71W 48 NE I 279 72 I 72 9 I I694 809 IBD6I 42 199 I N71W <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>										
803 1X 54 12 1 N78W 36 SW 1 102 36 1 36 192 1 1694 804 1X 2 318 1 N48E 88 SE 48 88 188 138 1 1694 805 1BDG1 23 202 1 N68W 67 NE 1 292 67 1 67 22 1 1694 806 1BDG1 23 202 1 N68W 67 NE 1 292 64 1 64 22 1 1694 807 1BDG1 26 202 1 N68W 64 NE 1 292 64 1 64 22 1 1694 808 1BDG1 18 189 1 N1W 72 NE 1 279 72 72 72 9 1 694 809 1BDG1 42 199 1 N71W 48 NE 1289 48										
804 1X 1 2 318 1 N48E 88 SE 1 48 88 1 88 1 188 1 1694 805 IBDG1 25 198 I N72W 65 NE 1 288 65 1 65 18 1 1694 806 IBDG1 23 202 I N68W 67 NE 1 292 67 1 67 22 1 1694 807 IBDG1 26 202 I N68W 64 NE 1 292 64 1 64 22 1 1694 808 IBDG1 42 199 I N71W 48 NE 2291 55 1 55 21 1 1694 810 IBDG1 35 201 I N69W 55 NE 1 291 55 1 55 21 1 1694 811 1X 45 1689 57 SW 1										
805 IBDG1 25 198 I N72W 65 NE I 288 65 I 65 18 I I694 806 IBDG1 23 202 I N68W 67 NE I 292 67 I 67 22 I I694 807 IBDG1 26 202 I N68W 64 NE I 292 64 64 22 I I694 808 IBDG1 18 189 I N81W 72 NE I 279 72 I 72 9 I I694 809 IBDG1 42 199 I N71W 48 NE I 289 48 48 19 I 1694 810 IBDG1 35 201 I N69W 55 NE I 291 55 55 21 I I694 811 1X 45 168 N78E 45 NW 1256 45 145 34										
806 IBDG1 23 202 I N68W 67 NE I 292 67 I 67 22 I I694 807 IBDG1 26 202 I N68W 64 NE I 292 64 64 22 I I694 808 IBDG1 18 189 I N81W 72 NE I 279 72 72 9 I I694 809 IBDG1 42 199 I N71W 48 NE 289 48 48 19 I I694 810 IBDG1 35 201 I N69W 55 NE I 291 55 1 1594 811 IX 45 168 I N78E 45 NW 1258 45 145 348 I P95 812 IX 33 27 I N63W 57 SW 117 57 207 I P95 813 IX										
807 18D61 26 202 1 N68W 64 NE 1 292 64 1 64 22 1 1694 808 18D61 18 189 1 N81W 72 NE 1 279 72 1 72 9 1 1694 809 18D61 42 199 1 N71W 48 NE 1 289 48 1 48 19 1 1694 810 18D61 35 201 1 N69W 55 NE 1 291 55 1 55 21 1 1694 811 1X 45 168 N78E 45 NW 258 45 45 348 1 195 812 1X 33 27 1 N63W 57 SW 1 102 64 164 192 1 195 813 1X 26 12 1 N78E 67 NW 195 67 67 202										
808 IBDG! 18 189 I N81W 72 NE I 279 72 I 72 9 I IG94 809 IBDG! 42 199 I N71W 48 NE I 289 48 I 48 19 I IG94 810 IBDG! 35 201 I N69W S5 NE I 291 55 I 55 21 I I694 811 IX I 45 168 N78E 45 NW I 258 45 I 45 348 I P95 812 IX I 33 27 I N63W 57 SW I 117 57 I 57 207 I IP95 813 IX I 26 12 I N78W 64 SW I 102 64 192 I P95 814 IX I 70 202 I N68W 20 NE										
809 IBDG1 42 199 I N71W 48 NE I 289 48 I 48 19 I IG94 810 IBDG1 35 201 I N69W 55 NE I 291 55 I 55 21 I IG94 811 IX I 45 168 I N78E 45 NW I 256 45 I 45 348 I P95 812 IX I 33 27 I N63W 57 SW I 117 57 I 57 207 I P95 813 IX I 26 12 I N78W 64 SW I 102 64 I 67 202 I P95 815 IX I 70 202 I N68W 20 NE I 29 20 I 20 22 I IP95 816 IX I 40 145 N55E 50										
810 IBD6! 35 201 I N69W 55 NE I 291 55 I 55 21 I I694 811 IX I 45 168 I N78E 45 NW I 258 45 I 45 348 I IP95 812 IX I 33 27 I N63W 57 SW I 117 57 I 57 207 I IP95 813 IX I 26 12 I N78W 64 SW I 102 64 I 64 192 I IP95 814 IX I 23 105 I N15E 67 NW I 195 67 I 67 202 I 20 22 I IP95 815 IX I 70 202 I N68W 20 NE 292 20 I 20 22 I IP95 816 IX										
811 1X 1 45 168 1 N78E 45 NW 1 258 45 1 45 348 1 IP95 812 IX 1 33 27 1 N63W 57 SW 1 117 57 1 57 207 1 IP95 813 IX 1 26 12 1 N78W 64 SW 1 102 64 1 64 192 1 IP95 814 IX 1 23 105 1 N15E 67 NW 1 195 67 67 202 1 P95 815 IX 1 70 202 1 N68W 20 NE 1 292 20 1 20 22 1 P95 816 IX 1 20 9 1 N15E 50 NW 1 235 50 1 50 325 1 195 817 IX 1 40										
812 IX I 33 27 I N63W 57 SW I 117 57 I 57 207 I IP95 813 IX I 26 12 I N78W 64 SW I 102 64 I 64 192 I IP95 814 IX I 23 105 I N15E 67 IW I 195 67 I 67 285 I IP95 815 IX I 70 202 I N68W 20 NE I 292 20 I 20 22 I IP95 816 IX I 20 9 I N81W 70 SW I 99 70 I 70 189 I IP95 817 IX I 40 145 INSEE S0 NW I 235 S0 I 50 325 I IP95 818 IX I 46 <										
813 IX I 26 12 I N78W 64 SW I 102 64 I 64 192 I IP95 814 IX I 23 105 I N15E 67 NW I 195 67 I 67 285 I IP95 815 IX I 70 202 I N68W 20 NE I 292 20 I 20 22 I IP95 816 IX I 20 9 I N81W 70 SW I 99 70 I 70 189 I IP95 817 IX I 40 145 I N55E 50 NW I 235 50 I 50 325 I IP95 818 IX I 46 359 I N89E 44 SE 89 44 I 44 179 I IP95 819 IX I 15 <t< td=""><td></td><td></td><td>27 1</td><td>N63W</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>			27 1	N63W						
814 1X 1 23 105 1 N15E 67 NW 1 195 67 1 67 285 1 1P95 815 1X 1 70 202 1 N68W 20 NE 1 292 20 1 20 22 1 1P95 816 1X 1 20 9 1 N81W 70 SW 99 70 1 70 189 1 1P95 817 1X 1 40 145 1 N55E 50 NW 1 235 50 1 50 325 1 1P95 818 1X 1 46 359 1 N89E 44 SE 89 44 1 44 179 1 1P95 818 1X 1 15 41 1 N49W 75 SW 1 131 75 1 75 221 1 1P95 820 1X 1 15 1 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
815 IX I 70 202 I N68W 20 NE I 292 20 I 20 22 I IP95 816 IX I 20 9 I N81W 70 SW I 99 70 I 70 189 I IP95 817 IX I 40 145 I N55E 50 NW I 235 50 I 50 325 I IP95 818 IX I 46 359 I N89E 44 SE I 89 44 I 44 179 I IP95 819 IX I 15 41 I N49W 75 SW I 131 75 I 79 235 I IP95 820 IX I 1' 55 I N35W 79 SW I 145 79 I 79 235 I IP95 821 IX I			105 1							
816 IX I 20 9 I N81W 70 SW I 99 70 I 70 189 I IP95 817 IX I 40 145 I N55E 50 NW I 235 50 I 50 325 I IP95 818 IX I 46 359 I N89E 44 SE I 89 44 I 44 179 I IP95 819 IX I 15 41 I N49W 75 SW I 131 75 I 75 221 I IP95 820 IX I 1' 55 I N35W 79 SW I 145 79 I 79 235 I IP95 820 IX I 1' 55 I N51W 64 SW I 195 821 IX I 15 36 I N54W 55 SW	815 IX I									
818 IX I 46 359 I N89E 44 SE I 89 44 I 44 179 I IP95 819 IX I 15 41 I N49W 75 SW I 131 75 I 75 221 I IP95 820 IX I 11 55 I N35W 79 SW I 145 79 I 79 235 I IP95 820 IX I 11 55 I N35W 79 SW I 145 79 I 79 235 I IP95 821 IX I 105 29 I N61W 64 SW I 119 64 I 64 209 I IP95 822 IX I 35 36 I N54W 55 SW I 126 55 I 55 216 I IP95 823 IX I <t< td=""><td>816 IX I</td><td>20</td><td>9 1</td><td>NBIW</td><td>70 SW</td><td></td><td></td><td></td><td></td><td></td></t<>	816 IX I	20	9 1	NBIW	70 SW					
819 IX I 15 41 I N49W 75 SW I 131 75 I 75 221 I IP95 820 IX I 11 55 I N35W 79 SW I 145 79 I 79 235 I IP95 821 IX I 26 29 I N61W 64 SW I 119 64 I 64 209 I IP95 822 IX I 35 36 I N54W 55 SW I 126 55 I 55 216 I IP95 823 IX I 43 54 I N36W 47 SW I 144 47 I 47 234 I IP95 824 IX I 0 323 I N53E 90 SE I 90 143 I IP95	817 IX I	40	145 1	N55E	50 NW	1 235	50 :	50	325	1. IP95
820 1X 1 11 55 1 N35W 79 SW 1 145 79 1 79 235 1 IP95 821 IX 1 155 29 1 N61W 64 SW 1 119 64 1 64 209 1 IP95 822 IX 1 35 36 1 N54W 55 SW 1 126 55 1 55 216 1 IP95 823 IX 1 43 54 1 N36W 47 SW 1 144 47 1 47 234 1 IP95 824 IX 1 0 323 1 N53E 90 SE 1 53 90 1 90 143 1 IP95	818 IX I			N89E			44 :	44	179	
821 IX I 23 I N61W 64 SW I 119 64 I 64 209 I IP95 822 IX I 35 36 I N54W 55 SW I 126 55 I 55 216 I IP95 823 IX I 43 54 I N36W 47 SW I 144 47 I 47 234 I IP95 824 IX I 0 323 I N53E 90 SE I 53 90 I 90 143 I IP95	819 IX I			N49W		1 131		75		I IP95
822 IX I 35 36 I N54W 55 SW I 126 55 I 55 216 I IP95 823 IX I 43 54 I N36W 47 SW I 144 47 I 47 234 I IP95 824 IX I 0 323 I N53E 90 SE I 53 90 I 90 143 I IP95				N35W		145		79		
823 IX I 43 54 I N36W 47 SW I 144 47 I 47 234 I IP95 824 IX I 0 323 I N53E 90 SE I 53 90 I 90 143 I IP95		26								
824 IX I 0 323 I N53E 90 SE I 53 90 I 90 143 I IP95										
825 IX I 2 88 I N2W 88 SW I 178 88 I 88 268 I 1995										
	825 IX I	2	88 1	N2W	88 SW	178	88 1	88	268	I 1P95

No. ID	Ping Tru	nd Strik	e Dip	Azmth	Dip	Die		Plt Site
	-						DDir	
826 IX I			61 SW	1 138	61 1	61	228	I IP95
827 IX I	44 168	8 N78E	46 NW	: 258	46 !	46	348	I IP95
828 IX I	48 175	5 N85E	42 NW	265	42 1	42	355	1 1P95
829 IX I	20 38	8 ! N52W	70 SW	: 128	70 1	70	218	1 IP96
830 IX I	25 6	7 N23W	65 SW	1 157	65 1	65	247	: :P96
831 IX I			89 SE	1 33	89 :	89	123	I IP96
832 IX I			72 SW	1 133	72 1	72	223	I IP96
833 IX I			26 SW	1 146	26 1	26	236	
834 IX I	- /		36 SW	1 142	36 1	36	232	1 IP96
835 IX I			59 SW	1 142	59 1	59	232	: :P96
836 IX I	4 140		86 NW	1 230	86 1	86	320	: IP96
837 IX I			27 SW	1 148	27 1	27	238	: IP96
838 IX I	63 44	4 : N46W	27 SW	1 134	27 1	27	224	: :P96
839 IX I	0 298	B N28E	90 SE	1 28	90 :	90	118	: IP96
840 IX I	2 116	5 1 N26E	88 NW	1 206	88 !	88	296	1 1P96
841 IX I			71 SW	1 125	71 1	71	215	1 IP96
842 IX I			65 SW	1 114	65 1	65	204	I IP96
843 IX I			65 SW	1 131	65 1	65	221	1 1996
844 IX I			45 NW	1 190	45 1	45		1 1P96
845 IX I			67 NW	1 190	67 !	67	280	I IP96
846 IX I			79 NW	: 199	79 1	79		1 1P96
847 IX I	14 93	2 N2E	76 NW	1 182	76 !	76	272	: IP96
848 IX I	30 39	9 I N51W	60 SW	1 129	60 1	60	219	1 IP96
849 IX I	16 329	9 : N59E	74 SE	: 59	74 :	74	149	: IP96
850 IX I	7 25	7 ! N13W	83 NE	1 347	83 1	83	77	: :P96
851 IX I	20	7 1 N83W	70 SW	1 97	70 1	70	187	: :P96
852 IX I			65 SW	1 121	65 1	65	211	I IP96
853 IX I	24 356		66 SE	1 86	66 1	66	176	I IP96
854 IX I	33 52		57 SW	1 142	57 1	57		I IP96
855 IX I			65 SE	1 59	65 1	65		1 1P96
856 1X 1	24 326		66 SE					
				1 56	66 1	66	146	I IP96
857 IX I			80 NW	1 204	80 1	80	294	I IP97
858 IX I	2 113		88 NW	203	88 :	88	293	I IP97
859 IX I			56 NE	1 355	56 !	56	85	I IP97
860 IX I	15 148		75 NW	: 238	75 1	75	328	1 1P97
861 IX I	20 29	1 N21E	70 SE	1 21	70 :	70	111	1 IP97
862 IX I	30 4'	7 : N43W	60 SW	1 137	60 :	60	227	! !P97
863 IX I	15 14	7 : N57E	75 NW	: 237	75 :	75	327	I IP97
864 IX I			72 NW	1 239	72 1	72	329	I IP97
865 IX I			68 SE	: 61	68 1	68	151	1 1997
866 IX I			58 NE	: 334	58 1	58		1 1997
867 IX I	25 250		65 NE	: 340	65 1	65		I 1P97
868 IX I			80 NW	1 195			286	
						80		
869 IX I			38 NW	1 190	38 1	38		1 1P97
870 IX I			56 NE	1 283	56 1	56		I IP97
871 IX I			80 SE	: 60	80 1	80	150	I IP97
872 IX I			72 NE	1 312	72 1	72	42	I IP97
873 IX I			48 NW	: 242	48 1	48	332	I IP97
874 IX I			57 SE	1 58	57 !	57	148	1 1P97
875 IX I		4 : N74E	65 NW	: 254	65 1	65	344	1 1P97
876 IX I	25 103	3 N13E	65 NW	1 193	65 1	65	283	1 1P97
877 IX I	30 169	9 ! N79E	60 NW	: 259	60 I	60	349	I IP97
878 IX I	15 160		75 NW	: 250	75 1	75		I 1P97
879 IX I	5 194		85 NE	1 284	85 1	85		1 IP97
880 IX I			75 NW		75 1	75		1 1P97
000 1/1			10 11	. 200		15	555	

	No. 881	. ID IX I	Plng 10	Trnd 165	Strik N75E	e (80	Dip NW	1	Azmth 255	Dip 80 :	Dip 80	DDir 345	P1	t Site ¦P97
	882	BDG	38	54 ;	N36W	52	SW		144	52 1	52	234	1	1097
	883	BDG	26	66 1	N24W	64	SW	1	156	64 :	64	246	;	1097
	884	IBDG I	32	53 1	N37W	58	SW	1	143	56 :	58	233	i	1097
•	885	BDGI	25	55 1	N35W	65	SW	1	145	65 1	65	235	i	1097
	886	BDG :	28	35 1	NSSW	62	SW	1	125	62 1	62	215	i.	1097
	887	BDGI	26	44 1	N46W	64	SW	1	134	64 1	64	224	1	1097
	888	BDG :	47	44 1	N46W	43	SW	1	134	43 1	43	224	i	1097
	889	BDG	49	31 1	N59W	41	SW	1	121	41 1	41	211	1	1697
	890	IX I	57	217 1	N53W	33	NE	1	307	33 1	33	37	1	1097
	891	IX I	66	244 1	NZEW	24	NE	i	334	24 1	24	64	;	1097
	892	IX I	46	280 1	NIØE	44	SE	1	10	44 1	44	100	i	1097
	893	IX I	16	157 1	N67E	74	NW		247	74 1	74	337	i	:097
	894	IX I	32	188 1	N82W	58	NE	1	278	58 :	58	8	-	1097
	895	IX I	25	175 1	N85E	65	NW	1	265	65 1	65	355	i	1097
	896	IX I	8	355 1	NBSE	82	SE	;	85	82 1	82	175	i	1097
	897	IX I	18	158 1	N68E	72	NW	i	248	72 1	72	338	i	1097
	898	IX I	10	163 1	N73E	80	NW	1	253	80 :	80	343	i	1097
	899	IX I	8	134 1	N44E	82	NW	1	224	82 1	82	314	i	1097
	900	1X 1	ø	328 1	N58E	90	SE	1	58	90 :	90	148	i	1097
	901	IX I	ø	333 1	N63E	90	SE	i	63	90 1	90	153	;	1097
	902	1X 1	4	155 1	NESE	86	NW		245	86 1	86	335	i	1097
	903	IBDGI	70	224 1	N46W	20	NE	1	314	20 1	20	44	i	16100
	904	BDG	76	141 1	NSIE	14	NW	1	231	14 :	14	321		16100
	905	BDG	65	235 1	N35W	25	NE	1	325	25 1	25	55	i	16100
	906	BDG	30	228 1	N42W	60	NE	1	318	60 1	60	48	1	1G100
	907	IX I	10	310 1	N4ØE	80	SE	;	40	80 :	80	130	i	16100
	908	1X 1	21	83 1	N7W	69	SW	:	173	69 1	69	263	1	16100
	909	1X 1	7	348 1	N78E	83	SE	1	78	83 1	83	168	i	16100
	910	1X 1	9	346 1	N76E	81	SE	1	76	81 1	81	166	1	16100
	911	1X 1	21	303 1	N33E	69	SE	1	33	69 1	69	123	1	1G100
	912	1X 1	31	76 1	N14W	59	SW	1	166	59 ;	59	256	1	1G100
	913	1X 1	9	316 1	N46E	81	SE	1	46	81 1	81	135	1	16100
	914	1X 1	12	89 :	NIW	78	SW	1	179	78 ;	78	269	1	16101
	915	1X 1	11	340 :	N7ØE	79	SE	:	70	79 :	79	160	1	1G101
	916	:X :	11	113 1	N23E	79	NW	1	203	79 :	79	293	1	IG101
	917	1X 1	13	110 :	N20E	77	NW	1	200	77 :	77	290	1	16101
	918	1X 1	13	278 1	NBE	77	SE	:	8	77 1	77	98	1	:G101
	919	:X :	25	295 1	N25E	65	SE	!	25	65 !	65	115	1	:G101
	920	1X 1	21	335 !	NESE	69	SE	1	65	69 I	69	155	1	IG101
	921	1X 1	18	109 1	N19E	72	NW	1	199	72 1	72	289	1	:G101
	922	1X 1	38	294 1	N24E	52	SE	1	24	52 1	52	114	1	16101
	923	1X 1	32	306 :	N3GE	58	SE	1	36	58 :	58	126	:	16101
	924	:BDG:	63	226 1	N44W	27	NE	1	316	27 1	27	46	1	IG101
	925	BDG:	70	255 1	N15W	20	NE	1	345	20 1	20	75	1	:G101
	926	BDG:	72	244 1	N26W		NE	ł	334	18 :	18	64	1	16101
	927	IBDG !	62	252 1	N18W	28		;	342	28 1	28	72	1	IG101
	928	1X 1	68	224 1	N45W	22	NE	:	314	22 1	22	44	1	16101a
	929	IX I	75	235 1	N35W		NE	1	325	15 1	15	55	1	1G101a
	930	IX I	64	213 1	N57W	26	NE	1	303	26 1	26	33	1	(G101a
	931	1X 1	76	224 1	N46W	14	NE	1	314	14 1	14	44	1	1G101a
	932	1X 1	10	349 1	N79E	80	SE	1	79	80 1	80		1	16101a
	933	IX I	13	156 1	NEE	77		1	246	77 1	77	336	1	1G101a
	934	IX I	6	159 1	N69E		NW	1	249	84 1	84	339	1	16101a
	935	IX I	18	158 !	N68E	72	NW	1	248	72 1	72	338	1	1G101a

No.	ID	Ping	Trnd	Strik	e l	Dip		Azmth	Dip	5	Dip	DDir	P	lt Site
936 :)	X I	18	233 :	N37W	72	NE	1	323	72	1	72	53	1	16101a
937 1)	X I	6	95 1	NSE	84	NW	;	185	84	1	84	275	1	:G101a
938 1)	X I	15	265 1	NSW	75	NE	1	355	75	:	75	85	1	16101a
939 ()	X I	5	335 :	NESE	85	SE	1	65	85	1	85	155	:	16101a
940 1)		5	231 1	M39M	85	NE	1	321	85	;	85	51	1	16101a
941 11	BDG:	44	31 1	N59W	46	SW	ł	121	46	:	46	211	;	16101a
942 18	BDGI	58	16 1		32	SW	1	106	32	;	32	196	1	16101a
943 11	BDG:	50	35 !	N55W	40	SW	;	125	40	1	40	215	1	16101a
944 18	BDGI	50	45 1	N45W	40	SW	:	135	40	1	40	225	1	16101a
945 11	BDGI	45	30 :	NEØW	45	SW	1	120	45	1	45	210	1	16101a
946 !)	X I	13	299 1	N29E	77	SE	:	29	77	:	77	119	1	:G105
947 1	X I	70	292 1	N22E	20	SE	1	22	20	:	20	112	1	16105
948 1	X I	65	222 1	N48W	25	NE	1	312	25	1	25	42	1	IG105
949 12	X I	20	293 1		70	SE	1	23	70	:	70	113	1	:G105
950 1)	X I	22	86 ;	N4W	68	SW	1	176	68	1	68	266	1	16105
951 12	X I	16	294 :	N24E	74	SE	1	24	74	1	74	114	1	16105
952 1)	X I	18	154 1	NG4E	72	NW	1	244	72	1	72	334	1	16105
953 1)	X I	15	288 1	N18E	75	SE	1	18	75	1	75	108	:	16105
954 1)	X I	8	297 1	N27E	82	SE	:	27	82	:	82	117	1	:G105
955 12	х :	29	156 !	NEEE	61	NW	1	246	61	1	Б1	336	1	16105
956 !)	X I	24	89 1	NIW	66	SW	1	179	66	:	66	269	1	16105
957 !)	X I	14	310 :	N4ØE	76	SE	1	40	76	1	76	130	1	16105
958 ()		11	299 1	N29E	79	SE	1	29	79	1	79	119	1	1G105
959 !)		19	178 1		71	NW	1	268	71	;	71	358	1	1G105
960 !>		30	161 1	N71E	60	NW	1	251	60	1	60	341	1	16105
	BDGI	Ø	209 1		90	NE	1	299	90	1	90	29	1	:G105
	BDGI	0	205 1	NESW	90	NE	1	295	90	1	90	25	1	16105
	BDGI	Ø	205 1		90	NE		295	90	1	90	25	1	16105
	BDGI	9	205 1		81	NE	1	295	81		81		1	IG105
	BDGI	10	203 1	N67W	80	NE	1	293		1	80		1	16105
	BDGI	15	203 1	N67W.	75	NE	1	293	75	1	75	23	1	16105
	BDGI	80	95 1	NSE	10	NW	1	185	10	1	10	275	1	16105a
	BDG :	36	182 1	N88W	54	NE	1	272	54	-	54	2	1	16105a
	BDG : BDG :	61 1	143 : 182 :	N53E N88W	29 89	NW NE	1	233 272	29	1	29	323	1	16105a
	BDGI	8	195 1		82	NE	1	285	89 82	1	89 82	2 15	1	16105a 16105a
	BDG I	34	181 1	N89W	56	NE	;	271	56	;	56	13	1	16105a
	BDGI	40	178 1		50	NW	;	268	50	-	50	358	1	16105a
974 1)		44	107 1		46	NW	;	197	46	-	46	287	-	A107
975 1)		39	110 :	N20E	51	NW	;	200	51	1	51	290	1	1A107
976 1)		28	122 1			NW	;	212		1	62	302		1A107
977 1)		28	125 1			NW	;	215		i	62	305		1A107
978 1)		21	127 1			NW	-	217		1	69	307		1A107
979 ()		31	14 1			SW	1	104		1	59	194		:A107
980 1)		35	3 1	N87W		SW	i	93		i	55	183		IA107
981 1)		40	10 1			SW	i	100		:	50	190		1A107
982 1)		15	19 1			SW	1	109	75		75	199		1A107

No comment attached to this file. From file WASATCHII on WASTCH Created at 16:44:22 on 31 Aug 1988 Last Modified at 12:47:18 on 5 Sep 1988 Printed on: 15 Jul 1990 at: 20:14:53 URSATCH3

No. ID	Plng	Trnd	Strik	e Dip	Azmth	Dip		DDir	Plt Site
1 IX I	68	196 1	N74W	22 NE	1 286	22 1	22	16	I IG108
2 IX I	35	238 1	N32W	55 NE	1 328	55 1	55	58	: :G108
3 1X 1	15	148 1	N58E	75 NW	: 238	75 :	75	328	I IG108
4 1X 1	52	147 ;	N57E		1 237	38 1	38		1 16108
5 1X 1	40	151 1	NGIE	50 NW	1 241	50 1	50	331	: :G108
6 IX I	2	357 1	N87E		1 87	88 1	88	177	1 1G108
7 IX I	14	204 1	NGGW	76 NE	1 294	76 1	76	24	1 16108
8 IX I	21	206 1	N64W	69 NE	1 296	69 ;	69	26	1 16108
9 IX I	18	200 1	N7ØW	72 NE	1 290	72 1	72	20	1 16108
10 IX I	25	201 1	N69W	65 NE	1 291	65 :	65	21	: :G108
11 IX I	18	208 1	N62W	72 NE	1 298	72 :	72	28	: IG108
12 IX I	25	208 1	N62W	65 NE	1 298	65 1	65	28	1 16108
13 IX I	40	177 1	N87E	50 NW	1 267	50 :	50		1 16108
			N20W						
	54	250 1		36 NE	1 340	36 1	36	70	I IG108
15 IX I	38	245 1	N25W	52 NE	1 335	52 1	52	65	1 16108
16 IX I	5	175 :	N85E	85 NW	: 265	85 :	85		1 16108
17 IX I	18	210 1	NEØW		1 300	72 1	72	30	I IG108
18 IX I	21	220 1	N50W	69 NE	1 310	69 1	69	40	1 16108
19 IX I	8	137 1	N47E	82 NW	1 227	82 1	82	317	1 16108
20 IX I	68	196	N74W	22 NE	1 286	22 1	22	16	1 16108
21 IX I	35	238 1	N32W	55 NE	1 328	55 1	55	58	1 16108
22 IBDG1	47	21 1	NESW		1 111	43 1	43	201	
23 BDG	40	19 1							
			N71W		1 109	50 1	50	199	1 1G108
24 IBDGI	47	22 1	N68W		1 112	43 :	43	202	1 16108
25 IBDGI	30	33 1	N57W		1 123	60 :	60	213	1 16108
26 IBDG1	52	33 1	N57W	38 SW	1 123	38 1	38	213	I IG108
27 IX I	30	75 !	NISW	60 SW	1 165	60 1	60	255	I IA109
28 IX I	60	237 1	N33W	30 NE	1 327	30 1	30	57	: :A109
29 IX I	12	160 :	N7ØE	78 NW	: 250	78 1	78	340	: IA109
30 IX I	36	111 1	N21E	54 NW	1 201	54 1	54	291	: :A109
31 IX I	54	115 :	N25E	36 NW	1 205	36 1	36	295	I :A109
32 IX I	59	219 1	NSIW	31 NE	1 309	31 1	31	39	I IA109
33 IX I	35	75 1	NISW	55 SW	1 165	55 1	55	255	I IA109
34 IX I		236 1							
	59		N34W	31 NE	1 326	31 1	31	56	1 IA109
35 IX I	34	101 1	NIIE		1 191	56 1	56	281	: IA109
36 IX I	51	226	N44W	39 NE	1 316	39 1	39	46	I IA109
37 IX I	34	26 1	N64W	56 SW	1 116	56 1	56	206	1 1A109
38 IX I	4	281 1	N11E	86 SE	1 11	86 1	86	101	: :A109
39 IX I	48	108 1	N18E	42 NW	1 198	42 1	42	288	: :A109
40 IX I	38		NSE	52 NW		52 1		279	
41 IX I	49	103 1		41 NW		41 1	41	283	
42 1X 1	12	220 1			1 310	78 1	78	40	
	40								
						50 1	50	239	
44 1X 1	25	78 :		65 SW		65 1	65	258	
45 IX I	33	336 1			1 66	57 1	57		I IG111
46 IX I	69	192			1 282	21 1	21		1 - 16111
47 IX I	72	182 1			1 272	18 !	18		I IG111
48 !X !	55		N24E		1 24	35 1	35	114	I 1G111
49 IX I	56		N25E	34 SE	1 25	34 :	34		I IG111
50 IX :	7	98 !	N8E	83 NW	1 188	83 !	83	278	
51 IX I	18	98 1	NBE		1 188	72 1	72	278	
52 IX I	6	275 1	NSE		: 5	84 :	84	95	
53 IX I	37	297 1			1 27	53 1	53	117	
54 IX I	2		NIØE	88 NW		88 1	88	280	
55 IX I		102 1		83 NW				282	
33 14 1	1	102 1	NIZE	WW CO	1 132	83 1	83	202	I IG111

No	. ID	Plac	Trnd	Strik		Dip		Azmth	Dip	Die	DDir	P1	t Site
56	1X 1	19	290 1		71		1	20	71 1	71			
57		19			71							1	1G111
			169 1	N79E		NW	1	259	71 1	71	349	1	1G111
58	IX I	69	304 1	N34E	21	SE	1	34	21 1	21	124	1	16111
59	IX I	55	284 1	N14E	35		1	14	35 1	35	104	1	1G111
60	IX I	55	288 1	NIBE	35	SE	1	18	35 1	35	108	1	IG111
61	IX I	39	288 1		51	SE	1	18	51 1	51	108	1	16111
62	IX I	57	294 1	N24E	33	SE	1	24	33 1	33	114	1	IG111
63	1X 1	15	97 !	N7E		NW	1	187	75 1	75	277	1	IG111
64	IX I	12	166	N76E	78	NW	;	256	78 1	78	346	1	IG111
65	1X 1	43	209 1	NGIW		NE	1	299	47 :	47	29	1	IG111
66	1X 1	35	229 1	N41W		NE	1	319	55 1	55	49	:	IG111
67	IX I	35	212 1		55		1	302	55 1	55	32	1	IG111
68	IX I	11	173 1	N83E		NW	1	263	79 1	79	353	1	16111
69	1X 1	15	170 1			NW	1	260	75 1	75	350	1	IG111
70	1X 1	4	9 1	N81W	86	SW	1	99	86 1	86	189	1	IG111
71	BDG !	17	199	N71W	73	NE	1	289	73 1	73	19	1	16111
72	BDGI	9	197 1	N73W	81	NE	ł	287	81 1	81		1	1G111
73	BDG:	11	28 1	NEZW	79	SW	:	118	79 :	79	208	1	(G111
74	BDG	16	17 :	N73W	74	SW	1	107	74 :	74	197	1	16111
75	: BDG :	23	25 1	N65W	67	SW	1	115	67 1	67	205	1	IG111
76	BDG :	Б	202 :	N68W	84	NE	ł	292	84 ;	84	22	1	16111
77	BDGI	58	44 :	N46W	32	SW	1	134	32 1	32	224	1	IG111
78	BDG	45	39 :		45	SW	1	129	45 ;	45	219	1	IG111
79	BDG	71	85 :	N5W	19	SW	:	175	19 1	19	265	1	:G111
80	BDGI	49	40 1	NSØW	41	SW	1	130	41 1	41	220	1	IG111
81	1X 1	34	309 :	N39E	56	SE	:	39	56 1	56	129	1	16112
82	1X 1	51	176 1	N86E	39	NW	:	266	39 1	39	356	1	IG112
83	1X 1	47	179 :	N89E	43	NW	1	269	43 1	43	359	1	IG112
84	1X 1	8	108 1	NISE	82	NW	1	198	82 1	82	288	1	IG112
85	1X 1	10	95 ¦	NSE	80	NW	1	185	80 1	80	275	1	16112
86	1X 1	35	75 !	N15W	55	SW	:	165	55 1	55	255	1	IG112
87	IX I	8	108 :	N18E	82	NW	:	198	82 1	82	288	:	16112
88	1X 1	30	303 1	N33E	60	SE	1	33	60 :	60	123	1	16112
89	1X 1	14	93	N3E		NW	:	183	76 1	76	273	1	IG112
90	1X 1	52	215	N55W	38	NE	:	305	38 :	38	35	1	IG112
91	1X 1	28	301 1	N31E	62	SE	:	31	62 1	62	121	1	IG112
92	1X 1	30	300 :		60	SE	1	30	60 1	60	120	1	IG112
93	1X 1	26	308 1		64	SE	;	38	64 1	64	128	1	16112
94	1X 1	34	304 :	N34E	55	SE	1	34	56 1	56	124	1	IG112
95	1X 1	4	95 1	NSE		NW	1	185	86 :	86	275	1	1G112
96	1X 1	8	86 ;		82	SW	:	176	82 1	82	266	1	IG112
97	1X 1	4	78 1	NIZW	86	SW		168	86 1	86	258	1	IG112
98	1X 1	6	95 1	NSE		NW		185	84 1	84	275	1	IG112
99	1X 1	54	200 1	N7ØW	36	NE	1	290	36 1	36	20	1	16112
100	1X 1	48	194 1	N76W .		NE	:	284	42 1	42	14	1	1G112
101	IBDG !	64	53 1	N37W	26	SW	1	143	26 1	26	233	1	1112
102	BDG	49	48 1	N42W	41	SW	1	138	41 1	41	228	1	1112
103	IBDG !	22	30 :	NEØW	68		1	120	68 1	68	210	1	1112
104	BDGI	32	39 1	N51W	58		;	129	58 1	58	219	1	1112
105	IBDGI	56	56 1	N34W	34		1	145	34 1	34	236	1	1112
106	IBDG :	53	66 1	N24W	37	SW	1	156	37 1	37	246	1	1112
107	1X 1	2	333 1	N63E	88	SE	1	63	88 1	88	153	1	1AG113
108	1X 1	32	139 1	N49E	58		1	229	58 1	58	319	1	AG113
109	1X 1	Ø	291 1	NZIE		SE	1	21	90 1	90	111	1	1AG113
110	1X 1	34	310 1	N4ØE	56		1	40	56 1	56	130	i	1AG113
1997	101											32	

No. I 111 1X 112 X 113 X 114 X 115 X 115 X 115 X 115 X 116 X 117 X 118 X 119 X 120 X 121 X 122 X 123 X		5 32 35 30 0 32 0 32 40 30 40 31 2 15	03 24 25 06 34 7 34 7 34 37 33	Strik N55E N33E N54E N36E N40E N40E N40E N73W N24E N77E N30E N30E N60E	e 1 85 50 90 50 85 50 85 50 85 50 85 50 85 50 85 50 85 50 85 50 85 50 85 50 85 50 85 50 85 50 85 50 85 50 80 50 80 50 80 50 80 50 80 50 80 80 80 80 80 80 80 80 80 80 80 80 80	DIP SE SE SE SE SE SE SE SE SE SE SE SE SE		Azmth 55 33 54 55 40 244 107 24 77 30 243 240	Di 85 90 90 50 88 56 55 81 58 70 89		Dip 85 55 90 50 50 50 50 50 50 50 50 50 50 50 50 50	DDir 145 123 144 145 126 130 334 197 114 167 120 333 330	P	1t Site AG113 AG113
124 IX 125 IX		7 12		N39E N31E	83 73	NW SE	1	219 31	83 73	1	83 73	309 121	1	1AG113 1AG113
126 IX	1	9 35	51 1	N81E	81	SE	:	81	81	;	81	171	1	1AG113
127 IX 128 IX		30 32 23 31		N50E N46E	60 67	SE SE	1	50 46	60 67	1	60 67	140 136	1	1AG113 1AG113
129 IX	1	6 17		N83E	84	NW	;	263	84	1	84	353	i	1AG113
			1 1	N49W	76	SW	ł	131	76	1	76	221	1	1AG113
			4 1	N46W	75	SW	1	134	75	1	75	224	1	1AG113
	DGI DGI		3	N47W N43W	82 85	SW SW		133 137	82 85	1	82 85	223 227	1	1AG113 1AG113
			5 1	NSSW	74	SW	;	125	74	1	74	215	;	1AG113
135 IB	DG:		3 1	N57W	83	SW	1	123	83	:	83	213	1	1AG113
	DGI	6 20		NE8W	84	NE	1	292	84	1	84	22	1	1AG113
			7 1	N63W	80	SW	-	117	80	1	80	207	1	1AG113
138 HB		21 2 40 21	Ø	N62W N60W	69 50	SW NE	1	118 300	69 50	1	69 50	208 30	1	1AG113 1SCH44
140 IX		15 21		N59W	45	NE	:	301	45	-	45	31	1	ISCH44
141 IX		4 20		N7ØW	46	NE	1	290	46	1	46	20	1	ISCH44
142 IX	1	5 18		NSEW	85	NE	1	274	85	:	85	4	:	ISCH44
143 IX		51 16		N77E	59	NW	1	257	59	1	59	347	1	ISCH44
144 ¦X 145 ¦X		11 15 13 20		N67E N67W	49 47	NW NE	1	247 293	49 47	1	49 47	337 23	1	ISCH44
145 IX		0 20		N69W	80	NE	;	291	80	-	80	25	1	ISCH44
147 IX	i	2	5 1	N85W	88	SW	1	95	88	1	88	185	1	SCH44
148 IX	1 4	18 35		N83E	42	SE	:	83	42	1	42	173	1	SCH44
149 IX		59 20		NEEW	51	NE	1	294	51	1	51	24	;	ISCH44
150 IX		12	0 1	N90E	48	S	-	90	48	1	48	180	1	SCH44
151 IX 152 IX			2 1	NBW N18W		SW SW	1	172 162	45 49	1	45 49		1	1645 1645
153 IX			8 1	NZZW	51			158	51	1	51		i	1645
154 IX	1 1	8 35	0 1	N8ØE		SE	;	80	72	1	72		:	1645
155 IX		61 32		N52E		SE	1	52	29	1	29		1	:G45
156 IX				N52W		SW	1	128	73	1	73		1	1PG46
157 IX 158 IX		20 14 30 35		N54E N85E		NW SE		234 85	70 60	1	70 60	324 175		IPG46
159 IX		20 30					1	38	70	:	70	128		1647
160 IX		17 30	6 1	N36E	73	SE	:	36	73	1	73		1	1647
161 IX		10 29		N26E	50		ł	26	50	:	50		1	:647
162 IX		24 31		N49E	66		1	49	66	1	66	139		1647
163 IX 164 IX		8 33 2 32		N66E N57E	72	SE	1	66 57	72 88	1	72 88	156 147	1	1647 1P48
165 IX		1 27				SE	:	5	79	;	79	95		1P48

No	. ID		Plng	Trnd	Strik	e Di	-	Azmth	Dip	Dip	DDir	DI	Site
166	1X	;	15	42 1	N48W	75 SI		132	75 1	75	222	1	1P48
167	X	;	15		N42W								
168		:	4	228 1				318	75 1	75	48	1	1P48
169	1 X 1 X	-	21	57 43	N33W N47W	86 SI		147 133	86 ¦ 69 ¦	86	237	1	1P48 1P48
170		1								69	223	1	
171	IX	;	6 20	335 1	N65E N82W	84 SE		65	84 ¦ 70 ¦	84	155	1	1P48
172		;	41	188 I 201 I		70 NI 49 NI		278		70	8	1	1P48
173	ix	;			NESW			291		49	21		1P48
			40	288 1	N18E	50 SI		18		50	108	1	1649
174	X	1	39	282 1	N12E	51 56		12	51 1	51	102	1	1649
175	1 X	1	24	338 1	N68E	65 SI		68	66 1	66	158	1	1649
176	1 X	1	20	348 1	N78E	70 SE		78	70 1	70	168	1	¦G49
177	1X	1	31	254 1	NIGW	59 N		344	59 1	59	74	1	1649
178	1 X	1	40	112 1	N22E	50 N		202	50 1	50	292	1	:G49
179	1 X	1	25	314 1	N44E	65 SE		44	65 1	65	134	1	1649
180	: X	1	25	325 !	NSSE	65 SE		55	65 1	65	145	1	IG49
181	: X	1	20	334 1	N64E	70 SE		64	70 :	70	154	1	1649
182	1X	;	24	326 1	N56E	66 SE	E I	56	66 :	66	146	1	1649
183	1X	1	20	92 1	N2E	70 N	ω :	182	70 1	70	272	1	1649
184	:X	:	26	78 1	NIZW	64 SI	W :	168	64 1	64	258	1	1649
185	1X	:	5	117 1	N27E	85 NI	ω ;	207	85 1	85	297	:	1650
186	1 X	:	14	114 1	N24E	76 NI	ω ;	204	76 :	76	294	1	1650
187	: X	1	48	310 1	N4ØE	42 SI	E I	40	42 1	42	130	1	1650
188	1X	1	42	83 :	N7W	48 50	W 1	173	48 :	48	263	1	:650
189	: X	:	51	301 1	N31E	39 SI	EI	31	39 :	39	121	1	:650
190	:X	1	20	336 !	NGGE	70 SE	E I	66	70 :	70	156	1	1650
191	: X	:	24	329 1	N59E	66 SI	E I	59	66 :	66	149	1	1650
192	1X	1	40	326 :	NSGE	50 SE		56	50 1	50	145	1	1G50
193	: X	:	24	337 :	N67E	66 SE		67	66 1	66	157	1	1650
194	1 X 1	:	41	289 :	N19E	49 SE		19	49 1	49	109	1	:650
195	:X	:	4	169 1	N79E	86 N		259	86 1	86	349	1	1650
196	:X	1	46	40 :	NSØW	44 SL	W :	130	44 :	44	220	1	1650
197	:X	:	40	42 1	N48W	50 SI		132	50 :	50	222	i	1650
198	1 X 1	1	40	291 1	N21E	50 SE		21	50 1	50	111	i	1650
199	IX	1	13	323 1	N53E	77 SE		53	77 :	77	143	1	1651
200	X	1	40	280 1	NIØE	50 56		10	50 1	50	100	i	1651
201	1X	1	30	222 1	N48W	60 N		312	60 1	60	42		1651
202	X	1	25	322 1	N52E	65 SI		52	65 1	65	142	1	1651
203	1X	1	28	281 1	NILE	62 SI		11	62 1	62	101	;	1651
204	IX	i	8	65 1	N25W	82 51		155	82 1	82	245		1651
205	ix	-	24	318 :	N48E	66 SI		48	66 1	66	138	1	1651
206	IX	i	18	324 1	N54E	72 5		54	72 1	72	144		1651
207	X	;	32	281 1	NILE	58 SI		11	58 1	58		1	1651
208	ix	1	14		NESE	76 5		65					
200	1X	;				75 SI			76 1	76		1	1651
210			15		N48E			48	75 1	75	138	1	1651
	IX	1	5		NBW	85 N		352	85 1	85	82	1	1651
211	IX	1	34	54 1		56 SI		144	56 1	56	234	1	1651
212	IX	-	35	53 1	N37W	55 SI		143	55 1	55		1.	1651
213	X	1	31	288 1	N18E	59 SI		18	59 1	59	108	1	1651
214	1X	1	10	119 1	N29E	80 NI		209	80 1	80	299	1	1651
215	1 X	1	11	43 1	N47W	79 SI		133	79 1	79	223		1651
216	IX	1	20	302 1	N32E	70 SE			70 1	70		1	1A52
217	IX	1	23	300 1	N30E	67 SE		30	67 1	67	120	1	1452
218	1X	1	30	300 1	N30E	60 SE		30	60 1	60	120	1	1A52
219	X	1	16	85 1	N5W	74 SI		175	74 !	74	265	1	IA52
220	1X	1	19	80 1	NIØW	71 50	W . I	170	71 1	71	260	1	1A52

						-	-		
No. ID	Ping		Strik		Azmth	Dip		DDir	Plt Site
221 IX I	22	77 1			1 167	68 ;	68		I 1A52
222 IX I	75	72 1	N18W	15 SW	1 162	15 1	15	252	1 1A52
223 IX I	80	146 1	N56E	10 NW	: 236	10 :	10	326	1 1A52
224 IX I	41	324 1	N54E	49 SE	1 54	49 :	49	144	1 1A52
225 IX I	84	25 1	NESW	6 SW	1 115	6 1	6	205	I 1A52
226 IX I		299 1	N29E	73 SE	1 29	73 1	73		1 1A52
227 IX I	70	8 1	N82W	20 50	1 98	20 1	20	188	I 1A52
228 IX I		301 1	N31E	65 SE	1 31	65 1	65	121	I 1A52
229 IX I	76	40 1	NSØW	14 SW	1 130	14 1	14	220	I 1A52
230 IX I		189 !	NBIW	70 NE	1 279	70 1	70	9	1 1652
231 IX I	20	50 !	N40W	70 SW	: 140	70 1	70		1 1652
232 IX I	5 .	335	NESE	85 SE	1 65	85 I	85	155	1 1652
233 IX I	26	184 :	N86W	64 NE	1 274	64 :	64	4	1 1652
234 IX I	25	76 1	N14W	65 SW	: 166	65 1	65	256	1 1652
235 IX I	35	66 1	N24W	55 SW	1 156	55 !	55	246	1 1652
236 IX I		289 1	N19E	60 SE	1 19	60 I	60	109	1 1652
237 IX I		172 1	N82E	59 NW	1 262	59 1	59	352	1 1652
238 IX I	17	34 1	NSEW	73 SW	1 124				
							73	214	1 1652
239 IX I		152 1	N62E	89 NW	1 242	89 1	89	332	1 1652
240 IX I	18	66 1	N24W	72 SW	: 156	72 1	72	246	1 1652
241 IX I		164 1	N74E	87 NW	1 254	87 1	87	344	1 1652
242 IX I	7	154 1	N64E	83 NW	: 244	83 1	83	334	1 1636
243 IX I	5	128 1	N38E	85 NW	1 218	85 :	85	308	I 1636
244 IX I	48 3	344 1	N74E	42 SE	: 74	42 1	42	164	: :636
245 IX I	11	155 :	NGSE	79 NW	: 245	79 1	79	335	1 1636
246 IX 1		325 1	NSSE	49 SE	: 55	49 1	49		1 1636
247 IX 1		301 :	N31E	86 SE	1 31	86 1	86	121	1 1636
248 IX I		185 1	NBSW	89 NE	1 275	89 1	89	5	1 1636
249 IX I	60	96 1	NEE	30 NW	1 186	30 :	30		1 1636
250 IX I	49	50 1	N4ØW	41 SW	1 140	41 1	41		
251 IX I		215 1	N55W	55 NE	: 305	55 1	55	35	I IG36
252 IX I		324 1	N54E	42 SE	: 54	42 1	42	144	1 1A36
253 IX I		321 1	N51E	59 SE	: 51	59 :	59	141	I IA36
254 IX I	Ø	175	N85E	90 NW	1 265	90 1	90	355	1 1A36
255 IX I	15	62 1	N28W	75 SW	1 152	75 1	75	242	I 1A36
256 IX I	35 3	332 1	N62E	55 SE	1 62	55 1	55	152	1 1A36
257 IX I	17 3	326 1	N56E	73 SE	1 56	73 1	73	146	1 1A36
258 IX ;		118 1	N28E	75 NW	1 208	75 :	75		I 1A36
259 IX I		125 1	N35E	75 NW	1 215	75 1	75		1 1A36
260 IX I	14	16 1	N74W	76 SW	1 106	76 1	76	196	I 1A36
261 IX I		108 1		30 NW		30 1	30	288	
262 BDG!	1	33 1	N57W	89 SW	1 123	89 1	89		I 1A36
263 BDG	4	37 !	N53W		1 127	86 1	86	217	
264 IX I		274	N4E	58 SE	1 4	58 1	58	94	1 IA34
265 IX I	19 2	237 1	N33W	71 NE	1 327	71 1	71	57	1 1A34
266 IX I	16 2	234 1	N36W	74 NE	: 324	74 1	74	54	1 1A34
267 IX I	21	3 1	N87W	69 SW	: 93	69	69	183	1 1A34
268 IX I		246 1	N24W	62 NE	: 336	62 1	62		I 1A34
269 IX I		268 1	NZW	64 NE	: 358	64 1	64		I 1A34
270 IX I		228 1	N42W	64 NE	: 318	64 I	64		I 1A34
270 IX I	60	5 1	N85W	30 SW	1 95	30 1	30		1 1A34
			NESW	43 SW					
	47				1 111		43		
273 IX I		355	N85E	53 SE	1 85	53 1	53		I 1A34
274 IX I		268 1	N2W	60 NE	: 358	60 1	60	88	
275 IX I	29 2	290 1	N20E	61 SE	1 20	61 1	61	110	1 1A34

		T 1	C1		0 - 11	D.:	0	00.		
No. ID	Plng	Trnd	Strik		Azmth	Dip		DDir	Plt Site	
276 IX I	28	222 1	N48W	62 NE	1 312	62 1	62	42	1 1A34	
277 IX I	38	15 1	N75W	52 SW	105	52 1	52	195	1 IA34	
278 IX I	53	110 :	N2ØE	37 NW	: 200	37 :	37	290	1 1035	
279 IX I	29	253 1	N17W	61 NE	1 343	61 1	61	73	: :035	
280 IX I	27	11 1	N79W	63 SW	: 101	63 1	63	191	1 1035	
281 IX I	56	129 1		34 NW	1 219	34 1	34	309	1 1035	
282 IX I			N47E					317		
	0					90 1	90		1 1035	
283 IX I	1	181 1	N83M	89 NE	1 271	89 1	89	1	I 1Q35	
284 IX I	27	249 1	N21W	63 NE	: 339	63 1	63	69	1 1035	
285 IX I	8	332 1	N62E	82 SE	: 62	82 1	82	152	: :035	
286 IX I	62	129 1	N39E	28 NW	1 219	28 1	28	309	: :035	
267 IX I	4	183 1	N87W	86 NE	1 273	86 1	86	3	: :Q35	
288 IX I	2	180 :	N9ØE	88 N	1 270	88 :	88	Ø	1 1035	
289 IX I	10	15 1	N75W	80 SW	1 105	80 :	80	195	1 1035	
290 IX I	46	99 1	NSE	44 NW	1 189	44 1	44	279	1 1035	
291 IX I	38	240 :	NJØW	52 NE	1 330	52 1	52	60	1 1035	
292 IBDG1	17	63 1	NZ7W	73 SW	: 153	73 1	73	243	1 1035	
	34	13 1	N77W	56 SW	103	56 :	56	193	1 1035	
294 IX I	20	330 :	NEØE	70 SE	: 60	70 :	70	150	1 1635	
295 IX I	20	330 1	NEØE	70 SE	: 60	70 1	70	150	1 1635	
296 IX I	14	326 1	N56E	76 SE	: 56	76 1	76	146	I IG35	
297 IX I	31	296	N26E	59 SE	1 26	59 1	59	116	1 1635	
298 IX I	36	294 1	N24E	54 SE	1 24	54 1	54	114	: IG35	
299 IX I	31	310 1	N40E	59 SE	: 40	59 1	59	130	1 1G35	
300 IX I	3	165 !	N75E	87 NW	: 255	87 :	87	345	: :635	
301 IX I	13	86 :	N4W	77 SW	: 176	77 1	77	266	1 1635	
302 IX 1	10	164 :	N74E	80 NW	1 254	80 :	80	344	1 1635	
303 IX I	15	355 1	N85E	75 SE	1 85	75 1	75	175	1 1635	
304 IX I	72	120 1	N3ØE	18 NW	: 210	18 1	18	300	I IP35	
305 IX I	14	160 1	N7ØE	76 NW	1 250	76 1	76	340	I 1P35	
306 IX I	5	152 ;	N62E	85 NW		85 1				
							85	332	1 1P35	
307 IX I	43	165 1	N75E	47 NW	1 255	47 1	47	345	1 1P35	
308 IX I	2	35 1	N55W	88 SW.	1 125	88 1	88	215	I 1P35	
309 IX I	Ø	330 :	NEØE	90 SE	: 60	90 1	90	150	I IP35	
310 IX I	7	225 1	N45W	83 NE	1 315	83 1	83	45	I IP35	
311 IX I	5	150 1	NEØE	85 NW	1 240	85 1	85	330	1 1P35	
312 IX I	18	151 1	NEIE	72 NW	1 241	72 1	72	331	I IP35	
313 IX I	14	335 1	NESE	76 SE	1 65	76 1	76	155	1 IP35	
314 BDG!	43	41 1	N49W	47 SW	1 131	47 :	47	221	: 1GP35	
315 1BDG1	1	201 1	N6 9W	89 NE	1 291	89 1	89	21	1 1GP35	
316 BDG!	70	84 1	NEW	20 SW	1 174	20 :	20	264	: 1GP35	
317 :BDG:	71	89 ;	NIW	19 SW	1 179	19 1	19	269		
318 BDG	71	118 1	N28E	19 NW	1 208	19 1	19	298	1 1GP35	
319 (BDG)	43	29 1	NEIW	47 SW	: 119	47 1	47	209	: :GP35	
320 IBDG1	53	39 1	NSIW	37 SW	1 129	37 1	37	219	1 16P35	
321 IBDG1	39	182 1		51 NE	1 272	51 1	51			
		171 1								
	49		N81E		1 261		41	351	1 10P35	
323 1BDG1	50	170 1	NBØE	40 NW	1 260	40 1	40	350	1 10P35	
324 IX I	1	103 :	N13E	89 NW	1 193	89 1	89		1 1QP35	
325 IX I	15	271 1	N1E	75 SE	1 1	75 1	75	91	1 1QP35	
326 IX I	Ø	288 1	N18E	90 SE	1 18	90 1	90	108	1 1QP35	
327 IX I	9	279 1	N9E	81 SE	: 9	81 1	81	99	1 1QP35	
328 IX I	10	200 1	N7ØW	80 NE	: 290	80 :	80	20	1 1QP35	i
329 IX I	Ø	103 1	N13E	90 NW	: 193	90 1	90	283	1 1QP35	i
330 IX I	14	88 1	NZW	76 SW	1 178	76 1	76	268		
			-							

No 331	. ID	1	Ping 10	Trnd 290 :	Strik N20E	e Di 80 S		Azmth 20	Dip 80 ¦	Dip 80	DDir 110	P1	t Site IQP35
332	BD		60	200 1	NTØW	30 N			30 1	30	20	-	1A25
333	X	1	48	30 1	NEØW	42 S			42 1	42	210	i -	1425
334	1X	1	10	321 1	N51E	80 S		51	80 :	80	141	1	1A25
335	: X	1	5	340 1	N7ØE	85 5	E I		85 1	85	160	1	1A25
336	: X	1	52	20 :	N7ØW	38 S		110	38 1	38	200	1	1A25
337	:X	1	55	23 1	N67W	35 S		113	35 1	35	203	1	1A25
338	X	1	50	25 1	NESW	40 S		115	40 1	40	205	1	1A25
339	X	1	42	209 1	NEIW	48 N		299	48 1	48	29	1	1A25
340	X	1	63	201 1	NESW	27 N			27 1	27	21	1	1A25
341 342	1 X 1 X	-	15 14	322 I 121 I	N52E N31E	75 SI 76 N			75 76	75 76	142 301		1A25 1A25
343	ix	1	18	121 1	N31E	72 N		211	72 1	72	301	1	1A25
344	IX	i	56	54 1	N36W	34 SI		144	34 1	34	234	i	1A26
345	1X	1	63	53 1	N37W	27 SI			27 1	27	233	i	1A26
346	: X	1	56	56 1	N34W	34 S		145	34 1	34	236	1	1A26
347	1 X	1	61	51 1	N39W	29 SI	ω :	141	29 1	29	231	1	1A26
348	!X	1	9	185 1	N85W	81 N	E ;	275	81 ;	81	5	:	1A26
349	: X	1	4	131 1	N41E	86 N	W I	221	86 1	86	311	1	1A26
350	:X	:	8	275 1	NSE	82 SI		5	82 1	82	95	1	1A26
351	X	:	Ø	278 1	NBE	90 SI		8	90 1	90	98	1	1A26
352	X	1	5	5 1	N85W	85 5		95	85 1	85	185	1	1A26
353	IX	1	16	206 1	N64W	74 N		296	74 1	74	26	1	1P27
354 355	IX IX	1	22 7	219 1 203 1	N51W	68 N			68 1	68	39	1	1P27
356	ix	;	14	210 1	N67W N60W	83 NI 76 NI			83 76	83 76	23 30	1	1P27 1P27
357	X	i	74	118 1	NZ8E	16 N			16 1	16	298	i	1P27
358	IX	1	80	53 1	N37W	10 5		143	10 :	10	233	i	1P27
359	1 X 1	1	84	4 1	N86W	6 SW		94	6 1	6	184	1	1P27
360	:X	1	1	96 1	NEE	89 N			89 :	89	276	1	1P27
361	1X	:	11	262 1	N8W	79 N	E I	352	79 :	79	82	1	1P27
362	X	1	35	63 1	N27W	55 SI	W I	153	55 :	55	243	1	1027a
363	1 X	1	31	57 1	N33W	59 SI		147	59 1	59	237	1	1Q27a
364	1 X	1	48	265 1	N5W	42 N		355	42 1	42	85	1	1Q27a
365	1X	1	56	246 1	N24W	34 N		336	34 !	34	66	1	1Q27a
366	X	1	44	268 1	N2W	46 N			46 1	46	88	1	1027a
367	X	1	19	17 23	N73W	71 SI 74 SI			71 1	71	197	:	1027a
368 369	: X : X	1	16 32	23 1	N67W N67E	74 SI 58 N		113 247	74 58	74 58	203 337	1	1Q27a 1Q27a
370	ix	;	5	172 1	N82E		W - 1	262	85 1	85	352	;	1027a
371	X	i	20	180 1		70 N			70 :	70	0	i	1P28
372	1X	1	Ø	185 1	N85W	90 N			90 :	90	5	i	1P28
373	:X	;	5	180 :	N90E	85 N			85 :	85	Ø	1	1P28
374	:X	1	5	287 :	N17E	85 SI		17	85 1	85	107	1	1P28
375	1X	1	6	288 1	N18E	84 SI		18	84 :	84	108	1	1P28
376	X	1	10	284 1	N14E	80 S			80 :	80	104	1	1P28
377	X	!	18	352 1	N82E	72 5			72 1	72	172	1	1P28
378 379	1 X 1 X	1	31 12	351 330	N81E N60E	59 S 78 S			59 ¦ 78 ¦	59 78	171 150	1	1P28
380	ix	1	5	22 1	NESW	85 5			85 1	85		1	1P28 1P28
381	IX	i	4	269 1	NIW	86 N			86 1	86	89	i	1P28a
382	IX	i	5	255 1	NISW	85 N			85 1	85	75	i	IP28a
383	IX	1	4	182 1	N88W	86 N		272	86 1	85	2	1	IP28a
384	1 X	1	11	3 1	N87W	79 S	W :	93	79 :	79	183	1	:P28a
385	:X	1	8	355 !	N85E	82 S	E I	85	82 1	82	175	1	IP28a

No. ID	Plng	Trnd	Strik	e Dip	Azmth	Dip	Din	DDir	Plt Site
386 IX	1 6	353 1	N83E	84 SE	1 83	84 :	84	173	I IP28a
387 IX	1 7	355 1	N85E	83 SE	1 85	83 1	83	175	I IP28a
388 IX	1 3	304 1	N34E	87 SE	1 34	87 1	67	124	1 1P28a
389 IX	: 39	200 :	NTOW	51 NE	1 290	51 1	51	20	1 1P28a
390 IX	: 48	55 1	N35W	42 SW	1 145	42 1	42	235	1 1A29
391 IX	: 44	57 1	N33W	45 SW	1 147	46 1	46	237	I 1A29
392 IX	1 62	54 1	N36W	28 SW	: 144	28 1	28	234	I 1A29
393 IX	: 64	45 :	N45W	26 SW	1 135	26 1	26	225	I 1A29
394 IX	1 1	4 1	NSGW	89 SW	: 94	89 ;	89	184	I 1A29
395 IX	: 8	21 1	N6 9W	82 SW	1 111	82 1	82	201	I 1A29
396 IX	1 11	305 1	N35E	79 SE	1 35	79 1	79	125	I 1A29
397 IX	1 7	308 :	N38E	83 SE	: 38	83 1	83	128	1 1A29
398 IX	: 35	346 1	N76E	55 SE	1 76	55 1	55	166	1 1A29
399 IX	: 50	6 :	N84W	40 SW	: 96	40 1	40	186	1 1A29
400 !X	1 16	202 1	N68W	74 NE	1 292	74 1	74	22	1 1030
401 IX	: 8	203 1	N67W	82 NE	1 293	82 1	82	23	1 :030
402 IX	1 73	114 1	N24E	17 NW	1 204	17 :	17	294	1 1030
403 IX	1 72	109 :	N19E	18 NW	1 199	18 :	18	289	1 1030
404 :X	: 37	201 1	N69W	53 NE	1 291	53 1	53	21	1 1030
405 IX	: 44	211 1	N59W	45 NE	: 301	46 1	46	31	1 1030
406 IX	: 50	223 1	N47W	40 NE	1 313	40 ;	40	43	1 1A30
407 IX	: 34	213 1	N57W	56 NE	: 303	56 1	56	33	1 1A30
408 IX	1 46	218 1	N52W	44 NE	1 308	44 1	44	38	1 1A30
409 !X	: 5	345 1	N75E	85 SE	: 75	85 1	85	165	1 1A30
410 IX	: 5	8 1	N82W	85 SW	1 98	85 1	85	188	1 1A30
411 1X	1 12	1 1	W68N	78 SW	1 91	78 1	78	181	1 IA30
412 IX	1 15	325 !	N55E	75 SE	: 55	75 :	75	145	1 1A30
413 IX	: 30	64 :	N26W	60 SW	1 154	60 !	60	244	1 1A30
414 ¦X	1 33	109 1	N19E	57 NW	1 199	57 1	57	289	1 IA30
415 IX	: 44	354 1	N84E	46 SE	1 84	46 1	46	174	1 1A30
416 IX	1 1	213 1	N57W	89 NE	: 303	89 1	89	33	I IA30
417 IX	1 4	342 1	N72E	86 SE	1 72	86 !	86	162	1 1030
418 IX	1 19	346 1	N76E	71 SE	1 76	71 1	71	166	1 1030
419 IX	1 13	337 1	N67E	77 SE	1 67	77 1	77	157	1 1030
420 IX	1 0	315 1	N45E	90 SE	: 45	90 ;	90	135	1 1030
421 IX	1 24	214 1	NSEW	66 NE	: 304	66 !	66	34	1 1030
422 IX	1 27	215	N55W	63 NE	1 305	63 1	63	35	1 1030
423 IX	1 50	47 1	N43W	40 SW	1 137	40 1	40	227	1 1030
424 IX	1 66	119 1	N29E	24 NW	: 209	24 1	24	299	1030
425 IX	1 28	325 1	NSSE	62 SE	1 55	62 1	62	145	1 1A25
426 IX	1 50	30 1	NEØW	40 SW	1 120	40 1	40		1 1A25
427 IX	1 58	24 1	NEEW	32 SW	1 114	32 1	32		1 1A25
428 IX	1 62	30 1	NEØW	28 SW	1 120	28 1	28	210	I 1A25
429 IX	: 30	110 1	N20E	60 NW	1 200	60 1	60	290	I 1A25
430 IX	1.30	320 1	NSØE	60 SE	: 50	60 1	50		1 1A25
431 IX	1 0	305 1	N35E	90 SE	1 35	90 1	90		1 1A25
432 IX	1 14	40 1	NSOW	76 SW 75 NW	1 130	76 1	76	220	I 1A25
433 ¦X 434 ¦X	1 15	122 110	N32E N20E	75 NW 62 NW	1 212	75 62	75 62	302 290	1 1A25 1 1A25
434 IX 435 IX	1 28	125 1	N35E	78 NW	1 215	78 1			
435 IX 436 IX	1 10	275 1	NSE	80 SE	1 215	80 1	78 80	305 95	I 1A25 I 1A26
436 IX 437 IX	1 60	50 1	N40W	30 SW	140	30 1	30	230	I IA26
437 IX 438 IX	1 30	176 1	N86E	50 SW	1 266	50 I	50	356	I IA26
438 IX 439 IX	1 36	212 1	N58W	54 NE	: 302	54 1	54		
435 IX 440 IX	1 15	280 1		54 NE 75 SE	1 10	75 1	54 75		
	1 13	200 1	NIVE	13 32	1 10	15 1	15	100	I 1A26

			Trnd	C 1		0		n ·			
No.				Stril		Azmth	Dip		DDir	Plt Sit	e
441	1 X	1 40	230 1	N40W	50 NE	: 320	50 :	50	50	I 1A26	
442	IX	1 10	320 1	N50E	80 SE	1 50	80 1	80	140	1 1A26	
443	IX	1 26	220 1	NSØW	64 NE	1 310	64 1	64	40	I 1P27	
444	1 X	1 26	70 1	NZØW	64 SW	1 160	64 1	64	250	1 1P27	
445	X	: 70	150 1	NEØE	20 NW	: 240	20 1	20	330	1 1P27	
446	IX	1 10	210 1	NEØW	80 NE	1 300	80 1	80	30	1 1P27	
447	1X	1 2	230 1	N4ØW	88 NE	1 320	88 1	88	50	1 1P27	
448	IX	1 10	214 1	NSGW	80 NE	: 304	80 1	80	34	1 1P27	
449	1X	1 25	250 1	NZØW	65 NE	: 340	65 1	65	70	1 1027	
450	X	1 26	182	N88M	64 NE	1 272	64 I	64	2	1 1027	
451	XI	1 10	188 ;	N82W	80 NE		80 :	80	8	1 1027	
452	:X	: Ø	352 1	N82E	90 SE	1 82	90 :	90	172	1 1027	Е
453	1X	1 14	70 :	NZØW	76 SW	1 160	76 1	76	250	1 1027	а
454	1X	: 30	270 :	NØE	60 E	: Ø	60 :	60	90	1 1P28	
455	XI	1 2	294 1	N24E	88 SE	1 24	88 1	88	114	1 IP28	
456	1X	: 0	290 1	N2ØE	90 SE	: 20	90 1	90	110	1 1P28	
457	:X	1 2	292 1	N22E	88 SE	1 22	88 1	88	112	: 1P28	
458	: X	: 0	30 :	NEØW	90 SW	1 120	90 :	90	210	1 1P28	
459	IX	1 0	10 1	NBOW	90 SW	: 100	90 :	90	190	I 1P28	
460	IX	1 10	280 1	NIØE	80 SE	1 10	80 1	80	100	1 1P28	
461	IX	1 1	0 1	N90E	89 S	1 90	89 1	89	180	1 1P28	
462	IX	1 2	325 1	NSSE	88 SE	: 55	88 1	88	145	1 1P28	
463	X	: 0	356 1	N86E	90 SE	1 86	90 ;	90	176	1 1P28	
464	X	: 0	350 1	NBØE	90 SE	1 80	90 :	90	170	1 1P28	
465	X	: 50	230 1	N4ØW	40 NE	1 320	40 1	40	50	I 1P28	
466	X	1 16	0 1	N90E	74 S	1 90	74 1	74	180	1 1P28	
467	IX	1 20	80 :	NIØW	70 SW	1 170	70 1	70	260	1 1P28	
468	X	: 0	305 1	N35E	90 SE	: 35	90 1	90	125	1 1A29	2
469	X	1 1	304 1	N34E	89 SE	1 34					
400	X	: 38						89	124	I 1A29	
470	X			N70W			52 1	52	20	1 1A29	
		1 50	195 1	N75W	40 NE	1 285	40 1	40	15	I 1A29	
472	X	1 10	115 1	N25E	80 NW	: 205	80 1	80	295	I 1A29	
473	X	: 30	200 1	N7ØW	60 NE	1 290	60 1	60	20	I 1A29	
474	X	: 0	5 1	N85W	90 SW	: 95	90 1	90	185	I 1A29	
475	BDG		200 1	N7ØW	52 NE	1 290	52 1	52	20	1 1030	
476	BDG		210 1	NEØW	60 NE	1 300	60 1	60	30	1 1030	
477	BDG		204	NEEW	56 NE	1 294	56 1	56	24	1030	
478	BDG		200 1	N7ØW	56 NE	1 290	56 1	56	20	1 1030	
479	X	: 60	70 :	N2ØW	30 SW	1 160	30 1	30	250	: :030	
480	X	1 62	56 1	N34W	28 SW	146	28 1	28	236	: :030	
481	X	: 58	60 1	N30W	32 SW	: 150	32 1	32	240	1 1030	
482	X	1 32	0 1	N9ØE	58 S	: 90	58 1	58	180	1 1A30	
483	1 X	1 32	15 1		58 SW	105	58 1	58	195	: :A30	
484	X	: 40	208 1	N62W	50 NE	1 298	50 :	50	28	I IA30	
485	:X	1 12	332 1	N62E	78 SE	62	78 ¦	78	152	: IA30	
486	:X	: 60	190 1	NSØW	30 NE	: 280	30 1	30	10	1 IA30	
487	1 X	1 28	170 1	N8ØE	62 NW	1 260	62 1	62	350	I 1A30	
488	1X	1 10	112 1	N22E	80 NW	1 202	80 1	80	292	1 1A30	
489	: X	1 55	190 ;	N8ØW	35 NE	: 280	35 1	35	10	I :A30	
490	1X	: 18	337 1	N67E	72 SE	1 67	72 1	72	157	: :030	
491	: X	: 30	210 1	NEØW	60 NE	: 300	60 I	60	30	1 1030	
492	: X	: 0	322 1	N52E	90 SE	1 52	90 :	90	142	1 1030	

No comment attached to this file. From file WASATCH3 on WASTCH Created at 16:53:40 on 7 Sep 1988

WHOLEOUTCROP

No. ID PI	Trad Ch		011	D:- D.		
	lng Trnd Str 24 314 ¦ N44	rike Dip 4E 66 SE	Azmth 1 44	Dip Di 66 6	p DDir 6 134	Plt Site ¦ ¦647*
2 IX I	3 160 I N70		1 250	87 1 8		1 1659
	50 254 I NIE		1 344	60 1 6		1 1A34
	57 192 N78		1 282	53 1 5		
						1 127
			1 154	64 1 6		1 127
	1 222 I N48		1 312	19 1 1		1 16101s
	5 40 I N50		1 130	75 : 7		I IP88
	29 202 I N68		1 292	61 1 6		I IP78
	35 284 ¦ N14		1 14	55 5		1 1651
	25 330 ! NG		: 60	65 1 6		I 1649
	57 317 ¦ N4'		1 47	53 5	3 137	1 1650
13 IX I 4	11 358 N88		: 88	49 1 4		1 1679
14 IX I 1	6 308 I N38	BE 74 SE	: 38	74 1 7	4 128	: :694
15 IX I 2	27 42 1 N48	3W 63 SW	1 132	63 1 6	3 222	1 IP92
	20 164 N74	1E 70 NW	: 254	70 1 7		1 1P92
	7 154 I N64	1E 83 NW	1 244	83 8	3 334	1 180
18 IX I 6	0 201 I N69	30 NE	: 291	30 3	0 21	1 172
19 IX I 2	0 332 N62	2E 70 SE	1 62	70 1 7	0 152	1 166
20 IX I	7 78 I N12	2W 83 SW	1 168	83 8	3 258	I 1664
21 IX I 6	0 68 1 N22	W 30 SW	: 158	30 1 3	0 248	1 1A56
22 IX I 4	1 75 I N15	5W 49 5W	1 165	49 1 4	9 255	1 1645
23 IX I 6	6 78 I N12	2W 24 SW	168	24 1 2	4 258	: :30
24 IX I 3	38 209 I NG	W 52 NE	1 299	52 5		: :30
25 IX I	2 306 : N38		1 36	88 : 8		I 1A29
26 IX I	5 288 I N18		1 18	85 1 8		1 128
27 IX I	9 278 I N88		: 8	81 ! 8		1 1A26
28 IX I 5	5 29 I NG		1 119	35 1 3		1 1A25
29 1X 1 2	3 118 1 N28		: 208	67 1 6		I 1A25
	7 228 I N42		: 318	33 1 3		: IA109
31 IX I 4	0 90 1 NOU		1 180 .	50 : 5		1 1A109
	51 176 I N86		: 266	39 1 3		1 155
	2 307 I N3		1 37	48 1 4		1 155
	4 145 ! N55		1 235	76 1 7		1 170
	6 166 I N76		1 256	54 1 5		1 1690
	0 207 I N53		1 297	70 1 7		1 16108
	3 158 I N68		1 248	87 1 8		I 135 ·
	0 116 I N20		1 206	30 1 3		1 135
39 IX I	3 308 I N38		: 38	87 1 8		I IAG113
	17 181 I N8		1 271	43 1 4		I IA91
	0 300 I N30			50 1 5		
	4 87 I N31			86 1 8		
	6 280 I N10		: 10	64 1 6		1 1677
	0 183 I N8		1 273	50 1 5		1 1677
	Ø 319 I N4		1 49	80 1 8		
	4 155 I N6		1 245	76 1 7		
	50 31 I N5			60 I 6		1 197 1 1P95
	13 162 N7					
	9 320 I N50		1 252	47 1 4 71 7		1 1P95
	38 357 I N8		87	52 1 5		
	54 197 I N73		1 287	36 1 3		1 1P73
52 IX I	9 0 1 N90		1 90	81 8		1 128
	0 56 I N34		1 146	30 1 3		
54 IX I	3 159 I N6			87 1 8		
	30 53 I N3				0 233	
	50 35 i NS	10 JW	140		2,22	11132

WHOLEOUTCROP: Continued

No.	ID		Ping	Trn	ł	Strike	e 1	Dip	1	Azmth	Dip	נ	Dip	DDir	P1	t Site	
56	!X	1	20	81	;	NOW	70	SW	1	171	70	1	70	261	1	1A52	
57	:X	1	25	300	1	N3ØE	65	SE	1	30	65	1	65	120	1	1A52	
58	: X	1	31	338	1	N68E	59	SE	1	68	59	1	59	158	1	:AG113	
59	:X	1	32	185	1	N85W	58	NE	1	275	58	1	58	5	1	1622	
60	! X	1	42	172	1	N82E	48	NW	;	262	48	1	48	352	:	170	
61	!X	1	60	23	1	N67W	30	SW	ł	113	30	1	30	203	1	:A75	
62	: X	:	17	208	1	N62W	73	NE	1	298	73	1	73	28	1	1669	
63	1X	1	30	305	:	N35E	60	SE	1	35	60	1	60	125	1	16112	
64	1 X	1	10	93	;	N3E	80	NW	;	183	80	1	80	273	1	16112	
65	1X	1	51	190	1	N80W	39	NE	1	280	39	1	39	10	1	IG112	
66	: X	1	4	97	;	N7E	86	NW	1	187	86	;	86	277	1	IG111	
67	:X	:	52	290	1	N2ØE	38	SE	1	20	38	;	38	110	1	IG111	
68	: X	1	37	326	1	NSEE	53	SE	:	56	53	;	53	146	1	136	

No comment attached to this file. From file WHOLOUTCRP on DISC6 Created at 13:00:37 on 1 Feb 1990 Last Modified at 13:22:28 on 23 Apr 1990 Printed on: 15 Jul 1990 at: 20:25:28

MEAN POLES TO BEDDING

No.	ID		Ping	Trnd	Strik	e D	ip	+	Azmth	Dip)	Dip	DDir	P	lt Site
1	: X	1	6	37 1	N53W	84	SW	1	127	84	;	84	217	1	1AG113
2	: X	;	50	48 1	N42W	40	SW	1	138	40	;	40	228	:	1112
3	1X	:	57	50 :	N40W	33	SW	1	140	33	1	33	230	1	1A82
4	1X	:	50	28 1		40	SW	1	118	40	:	40	208	1	1668
5	X	1	55	118 1	N28E	35	NW	1	208	35	:	35	298	1	1658
6	X	;	48	173 1	N83E	42	NW	1	263	42	;	42	353	:	135
7	:X	:	70	100 :	NIØE	20	NW	1	190	20	!	20	280	!	135
8	1X	:	46	35 1	NSSW	44	SW	1	125	44	1	44	215	1	135
9	X	:	36	180 :	N9ØE	54	N	1	270	54	1	54	Ø	1	1G105s
10	X	;	7	202 1	NESW	83	NE	1	292	83	1	83	22	1	161055
11	1 X	1	2	34 1	N56W		SW	:	124	88	:	88	214	1	1A36 *
12	1X	:	57	221 1	N49W		NE	1	311	33	;	33	41	:	:G8Ø*
13	:X	1	74	22 1	NESW			1	112		1	16	202	:	1A93*
14	! X	:	29	200 :	N70W	61	NE	1	290	61	:	61	20	1	1694
15	X	:	61	56 !	N34W	29	SW	1	146	29	:	29	236	1	:G77*
16	1X	1	40	139 1	N49E	50	NW	:	229	50	:	50	319	1	IA91a
17	XI	:	30	37 1	N53W	60	SW	:	127	60	1	60	217	1	1A91b
18	1X	1	53	64 :	N26W	37	SW	1	154	37	1	37	244	1	:70*
19	1 X	;	61	156 1	NEEE	29	NW	1	246	29	1	29	336	1	1672*
20	:X	1	9	20 1	N70W	81	SW	1	110	81	1	81	200	1	1669
21	: X	1	64	101 1	N11E	26	NW	1	191	26	1	26	281	1	1G75 *
22	X	1	60	200 :	N70W	30	NE	1	290	30	1	30	20	1	1A25
23	1 X	1	64	221 1	N49W	26	NE	1	311	26	;	26	41	1	:G100*
24	1X	:	37	151 1	NG1E	53	NW	1	241	53	:	53	331	1	:A75*
25	1 X	:	76	121 1	N31E	14	NW	:	211	14	:	14	301	1	:G75a*
26	X	:	43	26 :	N64W	47	SW	1	116	47	:	47	205	1	:G108*
27	:X	1	3	21 1	NE9W	87	SW	;	111	87	:	87	201	1	(G111
28	X	:	52	42 :	N48W	38	SW	:	132	38	:	38	222	1	1G111
29	1X	;	34	48 1	N42W	56	SW	1	138	56	1	56	228	1	:97*
30	:X	1	34	204 :	NEEW	56	NE	1	294	56	1	56	24	1	1030*
31	! X	1	49	32 1	N58W	41	SW	;	122	41	1	41	212	1	16101a
32	X	1	67	244 1				1	334	23	1	23	64	1	IG101
33	1 X	:	15	190 1	NSØW		NE	.1	280		1	75	10	1	1555
34	: X	1	70	125 1	N35E			1	215	20	1	20	305	1	1A68
35	X	1	69	267 1	N3W		NE	1	357	21	1	21		1	1A68
36	:X	:	74	118 1	N28E	16		1	208	16	1	16	298	1	:659*
37	X	1	20	19 1	N71W	70	SW	1	109	70	1	70	199	1	1671
No d	o comment attached to this file.														

No comment attached to this file. From file MEANPLBDG on DISC6 Created at 20:58:03 on 12 Feb 1990 Last Modified at 21:35:32 on 4 Jun 1990 Printed on: 15 Jul 1990 at: 20:27:17

APPENDIX 5

ORIGINAL CONDUCTIVITY DATA MEASURED BY WADI

X (m) Y (m) ECD Quad. ECD-avg. Quad.-avg.

20	120	-2.5	-0.5 -1.42001	0 100
30	120	1	0.5 - 1.42001 0 2.07999	0.168
40	120	6	-3 7.07999	0.668 - 2.332
50	120	-6	-3 -4.92001	-2.332
60	120	-11	1 -9.92001	1.668
70	120	1	0.5 2.07999	1.168
80	120	-3.5	-1 - 2.42001	-0.332
90	120	-4.5	-2 -3.42001	-1.332
100	120	1	0 2.07999	0.668
110	120	0.0001	-1.5 1.08009	-0.832
120	120	-1	-0.5 0.07999	
130	120	0.5	0.5 1.57999	0.168 1.168
140	120	0.5	1 1.57999	1.668
150	120	1	2.5 2.07999	3.168
160	120	1.5	2 2.57999	2.668
170	120	-0.5	0 0.57999	0.668
180	120	3.5	-1 4.57999	-0.332
190	120	-0.5	-1 0.57999	-0.332
200	120	-4	1 -2.92001	1.668
210	120	9.5	9 10.58	9.668
220	120	2.5	4 3.57999	
230	120	-9.5	-3.5 -8.42001	4.668
240	120	-6	-0.5 - 4.92001	-2.832
250	120	-5		0.168
260	120	-3.5		-3.332
270	120	-3.5	-1.5 -2.42001	-0.832
280	120		0.5 0.07999	1.168
290	120	-2.5 -1	-1.5 -1.42001	-0.832
300	120		-1.5 0.07999	-0.832
310	120	-1.5	-1.5 -0.42001	-0.832
320	120	-0.5	0 0.57999	0.668
20		-1	-0.5 0.07999	0.168
	90	-3	-3 -1.92001	-2.332
30	90	1	-1 2.07999	-0.332

<u>X (m)</u>	<u>Y (m)</u>	ECD	Quad. ECD-avg. Quadavg.
$\begin{array}{c} 40\\ 50\\ 60\\ 70\\ 80\\ 90\\ 100\\ 110\\ 120\\ 128\\ 134\\ 142\\ 150\\ 160\\ 170\\ 180\\ 190\\ 200\\ 210\\ 220\\ 230\\ 240\\ 250\\ 230\\ 240\\ 250\\ 230\\ 240\\ 250\\ 230\\ 240\\ 250\\ 230\\ 200\\ 300\\ 310\\ 320\\ 20\\ 300\\ 310\\ 320\\ 20\\ 300\\ 310\\ 320\\ 20\\ 300\\ 310\\ 310\\ 300\\ 310\\ 300\\ 310\\ 300\\ 310\\ 300\\ 310\\ 300\\ 310\\ 300\\ 310\\ 300\\ 310\\ 300\\ 310\\ 300\\ 310\\ 300\\ 310\\ 300\\ 310\\ 300\\ 310\\ 300\\ 310\\ 300\\ 310\\ 300\\ 310\\ 300\\ 310\\ 300\\ 310\\ 300\\ 310\\ 300\\ 30$	90 90 90 90 90 90 90 90 90 90 90 90 90 9	$\begin{array}{c} 3.5\\ 5\\ -1.5\\ -14\\ -2\\ 4\\ 2.5\\ 0\\ -4.5\\ -2\\ 2.5\\ 5.5\\ -1.5\\ -4.5\\ 0.5\\ 5.5\\ -1.5\\ -4.5\\ 0.5\\ -3.5\\ -5.5\\ 8\\ 3\\ -5.5\\ -5.5\\ 8\\ 3\\ -5.5\\ -7\\ -6.5\\ 0\\ -0.5\\ -1\\ 0\\ -0.5\\ -1\\ 0\\ -1\\ 1\end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
		1	1 2.07999 1.668

<u>X (m)</u>	<u>Y (m)</u>	ECD	Quad.	ECD-avg.	<u>Quadavg.</u>
$\begin{array}{c} 150\\ 160\\ 170\\ 180\\ 190\\ 200\\ 210\\ 220\\ 230\\ 240\\ 250\\ 260\\ 270\\ 280\\ 290\\ 300\\ 310\\ 320\\ 20\\ 300\\ 310\\ 320\\ 200\\ 300\\ 100\\ 120\\ 130\\ 140\\ 150\\ 160\\ 170\\ 180\\ 190\\ 200\\ 210\\ 220\\ 230\\ 240\\ 250\\ 260\end{array}$	$\begin{array}{c} 6 \\ 0 \\ 6 \\ 0 \\ 6 \\ 0 \\ 6 \\ 0 \\ 6 \\ 0 \\ 6 \\ 0 \\ 6 \\ 0 \\ 6 \\ 0 \\ 6 \\ 0 \\ 6 \\ 0 \\ 6 \\ 0 \\ 6 \\ 0 \\ 6 \\ 0 \\ 6 \\ 0 \\ 0$	$\begin{array}{c} 3.5 \\ -3 \\ -2 \\ -4 \\ -6 \\ -5 \\ -1.5 \\ -3.5 \\ -1.5 \\ -3.5 \\ -1.5 \\ -1.5 \\ -1.5 \\ -1.5 \\ -1.5 \\ -1.5 \\ -1.5 \\ -1.5 \\ -1.5 \\ -1.5 \\ -1.5 \\ -3.5 \\ -1.5 \\ -3.5 \\ -3.5 \\ -1.5 \\ -3.5 \\ -3.5 \\ -1.5 \\ -2.2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 $	$\begin{array}{c} -0.5 \\ -1.5 \\ -2 \\ -3 \\ -1 \\ -3 \\ -2 \\ 0.5 \\ -11 \\ -1 \\ 0 \\ -0.5 \\ 15 \\ -10 \\ -6.5 \\ -5.5 \\ -10 \\ -6.5 \\ -5.5 \\ -12.5 \\ -6.5 \\ -12.5 \\ -10 \\ -9 \\ -2.5 \\ -1.5 \\ 0.5 \\ \end{array}$	$\begin{array}{c} -3.92001\\ -0.42001\\ -2.42001\\ -2.42001\\ -2.42001\\ -0.42001\\ 0.57999\\ -0.42001\\ 0.57999\\ -0.42001\\ 0.07999\\ 1.07999\\ 1.07999\\ 1.07999\\ 1.07999\\ -1.07999\\ -9.42001\\ -4.42001\\ -2.42001\\ -2.42001\\ -2.42001\\ -2.42001\\ -2.42001\\ -2.42001\\ -2.57999\\ 3.07999\\ 4.07999\\ -2.57999\\ -2.57999\\ -2.57999\\ -2.57999\\ -2.57999\\ -1.92001\\ -5.42001\\ -9.92001\\ -3.42001\\ -2.92001\\ -3.42001\\ -3.42001\\ -3.92001$	2.668 3.668 1.168 -0.832 -1.332 -2.332 -2.332 -0.332 -1.332 -1.332 -1.332 -0.332 -0.332 -0.332 -0.332 -0.332 -0.332 -0.332 -0.332 -0.332 -0.332 -0.332 -0.332 -0.668 1.668 1.668 5.668 -9.332 -5.832 -4.832 0.168 3.668 -0.832 -1.832 -1.832 -1.832 -9.332 -1.832 -0.332 -0.832 -0
240 250	30 30	-2 2	-1.5	-0.92001	-0.832

<u>X(m)</u>	<u>Y (m)</u>	ECD	Quad.	ECD-avg.	Quadavg.
270	30	-3.5	-4	-2.42001	-3.332
280	30	-0.5	-1	0.57999	-0.332
290	30	3.5	3	4.57999	3.668
300	30	6	6	7.07999	6.668
310	30	4	3	5.07999	3.668
320	30	-1.5	-1	-0.42001	-0.332

X(in.) Y(in.) ECD Quad. ECD-avg. Quad.-avg.

0.9 1.38 1.87 2.35 2.84 3.34 3.8 1.13 1.64 2.1 2.61 3.07 3.59 4.04 1.36 1.88 2.33 2.82 3.3 3.78	$ \begin{array}{c} 5.54 \\ 8.82 \\ 8.7 \\ 8.58 \\ 8.46 \\ 8.35 \\ 8.22 \\ 7.84 \\ 7.73 \\ 7.62 \\ 7.49 \\ 7.38 \\ 7.26 \\ 7.14 \\ 6.77 \\ 6.64 \\ 6.53 \\ 6.41 \\ 6.3 \\ 6.17 \\ \end{array} $	$\begin{array}{c} 0.5 \\ 6.5 \\ 8 \\ 4 \\ -7 \\ -2 \\ -3 \\ 3.5 \\ 5 \\ 1.5 \\ 0.00001 \\ -0.6 \\ 0.5 \\ -4.5 \\ 1 \\ 1.5 \\ 7 \\ 3.5 \\ -4.5 \\ -1 \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c} 4.27\\ 1.7\\ 2.24\\ 2.79\\ 3.32\\ 3.84\\ 4.4\\ 1.6\\ 2.1\\ 2.58\\ 3.07\\ 3.55\\ 4.3\\ 4.5\end{array}$	$\begin{array}{c} 6.05\\ 6.18\\ 6.04\\ 5.9\\ 5.77\\ 5.64\\ 5.5\\ 5.67\\ 5.55\\ 5.43\\ 5.31\\ 5.19\\ 5.08\\ 4.95 \end{array}$	$\begin{array}{c} 0.\ 00001\\ 11.\ 5\\ -9.\ 5\\ -2\\ 1.\ 5\\ 3.\ 5\\ -3\\ -4\\ 0.\ 00001\\ 8\\ 8\\ -6\\ -7.\ 5 \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

<u>X(in.)</u>	<u>Y(in.)</u>	ECD	Quad. ECD-avg. Quadavg
1.95	5.07	9.5	-1 8.78209 -0.6791Ī
2.5	4.93	-2	-0.5 -2.71791 -0.17911
3.02	4.81	-15	0.5 -15.7179 0.82089
3.57	4.67	-4.5	0 -5.21791 0.32089
4.1	4.53	-4	0 - 4.71791 0.32089
4.61	4.4	-2.5	-0.5 -3.21791 -0.17911
1.84	4.58	-5	0 -5.71791 0.32089
2.32 2.81	4.46	4.5	-1 3.78209 -0.67911
3.29	4.35	-3	-0.5 -3.71791 -0.17911
3.78	4.22	-13.5	0.5 - 14.2179 0.82089
4.28	4.11 3.99	4.5	-1 3.78209 -0.67911
4.73	3.87	-3 -5.5	0 -3.71791 0.32089
2.32	3.44	0.5	0 -6.21791 0.32089
2.86		00001	-1 -0.21791 -0.67911 0.5 -0.71790 0.82089
3.4	3.17	1	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
3.91	3.04	3	0 2.28209 0.32089
4.45		00001	-0.5 -0.71790 -0.17911
4.98	2.78	-0.5	0.5 - 1.21791 0.82089
2.52	2.36	1	-1 0.282088 -0.67911
3.06	2.22	2.2	-1 1.48209 -0.67911
3.58	2.09	4.5	-1 3.78209 0.67911
4.13		00001	0 -0.71790 0.32089
4.65	1.83	-4.5	1 -5.21791 1.32089
5.19	1.69	-1.5	0.5 - 2.21791 0.82089
2.04 2.54	1.45	6.5	-4.5 5.78209 -4.17911
2.54	1.33 1.2	12.5	-2 11.7821 -1.67911
3.5	1.1	14 8.5	1.5 13.2821 1.82089
3.98	0.97	-2.5	-0.5 7.78209 -0.17911
4.48	0.84	1.5	1 - 3.21791 1.32089 1 0.782088 .1.32089
4.95	0.73	8.5	1 7.78209 1.32089
5.44	0.6	2.5	0 1.78209 0.32089
6	8.1	-17.5	-29 -17.2785 -29.3038
6.48	8.2	-22.5	-28 -22.2785 -28.3038
1.15	8.31	0	0.5 0.22151 0.196202
2.3	8.42	4	0 4.22151 -0.30379
2.8	8.52	3.5	-1 3.72151 -1.3038
3.35	8.63	-1	-1.5 - 0.77849 - 1.8038
3.9 4.45	8.72 8.81	3	-1.5 3.22151 -1.8038
4.45	8.91	3	-1.5 3.22151 -1.8038
1.00	0.01	4	-3 2.22151 -3.3038

<u>X(in.)</u>	<u>Y(in.)</u>	ECD	Quad. ECD-avg. Quadavg.
5.55	9.09	5	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
6.05	9.13	-3	
6.6	9.24	-7.5	

X(in.)	<u>Y(in.)</u>	ECD	Quad.	ECD-avg.	Quadavg.

1.46	0.1	2.5	-19.5 2.72151 -19.8038
1.95	0.21	4.5	-18 4.72151 -18.3038
2.45	0.3	4.5	1 4.72151 0.696202
2.94	0.4	4.5	3 4.72151 2.6962
1.3	1.1	5.5	-1 5.72151 -1.3038
1.8	1.2	13.5	-4 13.7215 -4.3038
2.3	1.3	6	-3 6.22151 -3.3038
2.79	1.4	-14.5	-7.5 -14.2785 -7.8038
3.28	1.49	-19.5	-20 -19.2785 -20.3038
3.78	1.59	-24.5	41 -24.2785 40.6962
4.26	1.68	-29.5	46 -29.2785 45.6962
1.9	2.15	3.5	0 3.72151 -0.30379
2.05	2.26	4.5	0.5 4.72151 0.196202
2.6	2.38	3.5	1.5 3.72151 1.1962
3.3	2.5	5	2 5.22151 1.6962
3.96	2.62	0.5	2.5 0.72151 2.1962
4.6	2.75	-2.5	2.5 -2.27849 2.1962
0.7	3.03	-7	0.5 -6.77849 0.196202
1.26	3.12	-10	3.5 -9.77849 3.1962
1.88	3.24	-5	3 -4.77849 2.6962
2.48	3.36	1	-1 1.22151 -1.3038
3.05	3.47	4	-2 4.22151 -2.3038
3.63	3.58	2.5	1 2.72151 0.696202
4.21	3.69	6	2.5 6.22151 2.1962
4.82	3.8	2.5	2.5 2.72151 2.1962
5.4	3.91	-6	1.5 -5.77849 1.1962
1	4.1	-4	1.5 -3.77849 1.1962
1.59	4.2	1	2.5 1.22151 2.1962
2.18	4.3	5	3.5 5.22151 3.1962
2.25	4.42	4	2 4.22151 1.6962
3.35	4.55	6.5	-0.5 6.72151 -0.80379
3.85	4.66	-1.5	2 -1.27849 1.6962
4.54	4.77	2.5	1 2.72151 0.696202
5.11	4.88	12.5	-1.5 12.7215 -1.8038

<u>X(in.)</u>	<u>¥(in.)</u>	ECD	<u>Quad.</u> ECD-avg. Quadavg.
5.71 6.25 1.3 1.8 2.4 2.92 3.46 4.55 5.15 5.71 6.35 0.64 1.11 1.6 2.5 3.48 3.95 4.45 5.47 5.94 6.4 1.6 2.22 2.75 3.38 4.925 5.47 5.94 6.4 1.6 2.22 2.75 3.38 4.925 5.45 6.48 1.15 2.3 2.8 3.98 4.45 4.98 3.98	5 5.1 5.19 5.28 5.39 5.48 5.69 5.8 5.9 6.11 6.08 6.26 6.32 6.41 6.51 6.6 6.99 7.08 7.49 7.6 7.7 7.8 7.9 8.12 8.52 8.63 8.91 8.91	$\begin{array}{c} 3\\ -3\\ 1.5\\ 12\\ 11\\ -5.5\\ -4\\ 4.5\\ 4.5\\ 5.5\\ 1.5\\ -6\\ -2\\ 3.5\\ 2.5\\ 6\\ 1\\ -1.5\\ -2\\ 3.5\\ 2.5\\ 6\\ 1\\ -1.5\\ -3\\ -0.5\\ -1\\ 0\\ 0\\ -1\\ 1.5\\ 3.5\\ 1\\ -5\\ -12.5\\ -12.5\\ -12.5\\ -12.5\\ -12.5\\ -22.5\\ 0\\ 4\\ 3.5\\ -1\\ 3\\ 3\\ 2\end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

<u>X(in.)</u>	<u>Y(in.)</u>	<u>ECD</u>	Quad.	ECD-avg.	Quadavg.
5.55	9.09	5	1.5	5.22151	-3.8038
6.05	9.13	-3		-2.77849	1.1962
6.6	9.24	-7.5		-7.27849	3.6962

VITA

Souren Nariman Ala was born on April 4, 1960, in the County of Surrey, England. He is the second of three children of Ann Pelham Sealy and Fereydoun Abolghassem Ala. After graduating from Edinburgh Academy, Scotland, he enrolled in Princeton University in September 1977. He received a Bachelor of Arts degree in Geology from Princeton University in June 1981. From October 1981 to May 1986 he worked as a well site geologist in petroleum and natural gas exploration. In September 1986, he enrolled in the Geology program at Texas A&M University. He was married to Natalyn Louise Kraemer on March 16, 1990. He received a Master of Science degree in Geology from Texas A&M University in December 1990. His permanent address is:

> c/o Ala Hall Farm Weatheroak Hill Alvechurch Birmingham England B48 7EG

VITA

Souren Nariman Ala was born on April 4, 1960, in the County of Surrey, England. He is the second of three children of Ann Pelham Sealy and Fereydoun Abolghassem Ala. After graduating from Edinburgh Academy, Scotland, he enrolled in Princeton University in September 1977. He received a Bachelor of Arts degree in Geology from Princeton University in June 1981. From October 1981 to May 1986 he worked as a well site geologist in petroleum and natural gas exploration. In September 1986, he enrolled in the Geology program at Texas A&M University. He was married to Natalyn Louise Kraemer on March 16, 1990. He received a Master of Science degree in Geology from Texas A&M University in December 1990. His permanent address is:

> c/o Ala Hall Farm Weatheroak Hill Alvechurch Birmingham England B48 7EG

236