GEOLOGIC MAP OF THE KOLOB ARCH QUADRANGLE AND PART OF THE KANARRAVILLE QUADRANGLE, WASHINGTON AND IRON COUNTIES, UTAH

by

Robert F. Bick

2007

BASE MAP FROM U.S. GEOLOGICAL SURVEY

For use at 1:24,000 scale only. The UGS does not under any circumstances for any direct, indirect, Resources, Utah Geological Survey, shall not be liable and should not be interpreted as necessarily

DECLINATION, 2007

UNEDITED REPRODUCTION OF U.S. GEOLOGICAL SURVEY DRAWING

Field work by author 1999-2000

Printed in the U.S.A.
Sinawava Member of the Temple Cap Formation and the tree-covered lower unit of the Co-op Creek Limestone Member of the Carmel Formation (Jccl). Burnt Mountain is at the mouth where erodable, pre-Navajo strata are exposed, and narrowing to a slot canyon in its upper reaches.

promontories of Navajo Sandstone – the “fingers” – that project westward from the plateau, showing that the analogy with a normal human hand, the promontories held up by great cliffs of Navajo Sandstone (figure 3). Depending on how they are counted, however, there are seven or more sheer physiographic regions. In an August 8, 1936 letter to the Acting Assistant Director of the National Park Service, he wrote:

Grant (1987), who mapped part of the Taylor Creek area at a scale of 1:24,000. Cook (1960) mapped the geology of Washington County at a scale of 1:24,000, and the principal sediment supply to Hop Valley from the south end of the basin.

Hecel Valley Lake. A small landslide dammed lake formed at the mouth of Hecel Valley. Flows in the hanging wall near Ash Creek are tilted about 10 degrees toward the fault and show that reverse drag, associated with the fault, is about 1000 years ago.

The Hurricane fault. Flows in the hanging wall near Ash Creek are tilted about 10 degrees toward the fault and show that reverse drag, associated with the fault, is about 1000 years ago. The foot of the fault, just south of the Kolob Canyon Visitor Center, has been exposed by landsliding; a small lake fills the depression formed by the landslide (figure 6). Because they are small and located in small catchment basins, such lakes are common in the Kolob Arch study area.

The Hurricane fault. Flows in the hanging wall near Ash Creek are tilted about 10 degrees toward the fault and show that reverse drag, associated with the fault, is about 1000 years ago. The foot of the fault, just south of the Kolob Canyon Visitor Center, has been exposed by landsliding; a small lake fills the depression formed by the landslide (figure 6).

The foot of the fault, just south of the Kolob Canyon Visitor Center, has been exposed by landsliding; a small lake fills the depression formed by the landslide (figure 6).

The foot of the fault, just south of the Kolob Canyon Visitor Center, has been exposed by landsliding; a small lake fills the depression formed by the landslide (figure 6). Because they are small and located in small catchment basins, such lakes are common in the Kolob Arch study area.

The Hurricane fault. Flows in the hanging wall near Ash Creek are tilted about 10 degrees toward the fault and show that reverse drag, associated with the fault, is about 1000 years ago. The foot of the fault, just south of the Kolob Canyon Visitor Center, has been exposed by landsliding; a small lake fills the depression formed by the landslide (figure 6). Because they are small and located in small catchment basins, such lakes are common in the Kolob Arch study area.

The foot of the fault, just south of the Kolob Canyon Visitor Center, has been exposed by landsliding; a small lake fills the depression formed by the landslide (figure 6). Because they are small and located in small catchment basins, such lakes are common in the Kolob Arch study area.

The foot of the fault, just south of the Kolob Canyon Visitor Center, has been exposed by landsliding; a small lake fills the depression formed by the landslide (figure 6). Because they are small and located in small catchment basins, such lakes are common in the Kolob Arch study area.

The foot of the fault, just south of the Kolob Canyon Visitor Center, has been exposed by landsliding; a small lake fills the depression formed by the landslide (figure 6). Because they are small and located in small catchment basins, such lakes are common in the Kolob Arch study area.

The foot of the fault, just south of the Kolob Canyon Visitor Center, has been exposed by landsliding; a small lake fills the depression formed by the landslide (figure 6). Because they are small and located in small catchment basins, such lakes are common in the Kolob Arch study area.

The foot of the fault, just south of the Kolob Canyon Visitor Center, has been exposed by landsliding; a small lake fills the depression formed by the landslide (figure 6). Because they are small and located in small catchment basins, such lakes are common in the Kolob Arch study area.

The foot of the fault, just south of the Kolob Canyon Visitor Center, has been exposed by landsliding; a small lake fills the depression formed by the landslide (figure 6). Because they are small and located in small catchment basins, such lakes are common in the Kolob Arch study area.

The foot of the fault, just south of the Kolob Canyon Visitor Center, has been exposed by landsliding; a small lake fills the depression formed by the landslide (figure 6). Because they are small and located in small catchment basins, such lakes are common in the Kolob Arch study area.

The foot of the fault, just south of the Kolob Canyon Visitor Center, has been exposed by landsliding; a small lake fills the depression formed by the landslide (figure 6). Because they are small and located in small catchment basins, such lakes are common in the Kolob Arch study area.

The foot of the fault, just south of the Kolob Canyon Visitor Center, has been exposed by landsliding; a small lake fills the depression formed by the landslide (figure 6). Because they are small and located in small catchment basins, such lakes are common in the Kolob Arch study area.

The foot of the fault, just south of the Kolob Canyon Visitor Center, has been exposed by landsliding; a small lake fills the depression formed by the landslide (figure 6). Because they are small and located in small catchment basins, such lakes are common in the Kolob Arch study area.

The foot of the fault, just south of the Kolob Canyon Visitor Center, has been exposed by landsliding; a small lake fills the depression formed by the landslide (figure 6). Because they are small and located in small catchment basins, such lakes are common in the Kolob Arch study area.