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QUATERNARY

Alluvial deposits

Stream deposits (Holocene) – Stratified, moderately to well-sorted sand,
silt, clay, and pebble to boulder gravel in river channels and flood
plains; locally includes small alluvial-fan and colluvial deposits, and
minor terraces as much as 10 feet (3 m) above current stream level;
generally 0 to 20 feet (0-6 m) thick.

Stream-terrace deposits (Holocene and upper Pleistocene) –  Stratified,
moderately to well-sorted sand, silt, and pebble to boulder gravel that
forms level to gently sloping terraces about 10 to 30 feet (3-9 m)
above Deep Creek and Crystal Creek; because incision rates differ
along the length of these streams throughout and beyond the quadrangle,
age equivalency of Qat2 deposits throughout the Zion National Park
area is not known; deposited in river-channel and flood-plain envi-
ronments; locally includes colluvial and alluvial-fan deposits too
small to map separately; 0 to 30 feet (0-9 m) thick.

Old stream deposits (middle to lower Pleistocene) – Yellowish-brown,
moderately sorted sand, silt, and pebble to boulder gravel that forms
isolated deposits as much as 1000 feet (300 m) above Deep Creek;
prominent clasts include subrounded cobbles and boulders of Creta-
ceous fossiliferous sandstone, recycled, rounded pebbles and small
cobbles of Precambrian and Cambrian quartzite, subrounded cobbles
and boulders of basalt, uncommon, subrounded cobbles and boulders
of early Tertiary Claron Formation limestone, and, locally, cobbles
of Carmel Formation limestone; query indicates uncertain designation
due to poor exposures and remote location; deposited in stream-
channel environment; 0 to about 60 feet (0-20 m) thick.

Alluvial-fan deposits (Holocene to upper Pleistocene) – Poorly to
moderately sorted, poorly stratified, boulder- to clay-size sediment
deposited as small alluvial fans along major drainages; level 1 deposits
form active depositional surfaces, although locally the fan’s master
stream is deeply entrenched; level 2 deposits form deeply incised
inactive surfaces as much as 50 feet (15 m) above active drainages;
typically overlies and includes stream deposits (Qal1) at the toe of
the fans, and locally includes minor slope wash and talus along the
upslope margins of the fans; generally 0 to 40 feet (0-12 m) thick.

Artificial-fill deposits

Artificial-fill deposits (historical) – Fill used to create a small stock
pond in the west-central part of the quadrangle and a landing strip at
Burnt Flat; as much as 25 feet (8 m) thick.

Colluvial deposits

Colluvial deposits (Holocene to upper Pleistocene) – Poorly sorted,
angular, clay- to boulder-size, locally derived sediment deposited
principally by slope wash and soil creep; gradational with talus deposits
and mixed alluvial and colluvial deposits; locally includes talus on
slopes where colluvium and talus form a thin mantle that grades from
one deposit to another; older colluvial deposits are mapped only at
the south end of Miners Peak and consist of reworked old boulder
gravel deposits; generally less than 20 feet (6 m) thick.

Eolian deposits

Eolian sand deposits (Holocene) – Well- to very well sorted, fine- to
medium-grained, well-rounded, frosted quartz sand derived from the
Navajo Sandstone; mapped only on top of the Volcano Knoll lava
flow near Virgin Flats; 0 to 6 feet (0-2 m) thick.

Mass-movement deposits

Landslide deposits, undivided (Holocene to middle[?] Pleistocene) –
Mass-movement complexes similar to both younger (Qmsy) and older
(Qmso) mass-movement deposits, but not readily distinguishable; 0
to 200 feet (0-60+ m) or more thick.

Landslide deposits (Historical to middle[?] Pleistocene) – Very poorly
sorted, clay- to boulder-size, locally derived material deposited by
rotational and translational landslide movement; characterized by
hummocky topography, numerous internal scarps, and chaotic bedding
attitudes; basal slip surfaces most commonly form in the lower unit
of the Co-op Creek Limestone Member of the Carmel Formation, the
Cedar Mountain Formation, the Dakota Formation, and the upper unit
of the Straight Cliffs Formation, and the slides incorporate these and
overlying map units; the Dakota Formation especially forms very
large, complex mass movements; Qmsh denotes slides having historical
movement; younger landslides (Qmsy) may have historical movement,
but typically are characterized by slightly more subdued landslide
features indicative of early Holocene to late Pleistocene age; older
landslides (Qmso) are deeply incised and their main scarps and
hummocky topography have been extensively modified by erosion,
suggestive of late to possibly middle(?) Pleistocene age, but they too
may be locally active; query indicates uncertain designation; Qmso
(Kd) denotes large, relatively coherent bedrock blocks of the Dakota
Formation as much as 200 feet (60 m) thick that slumped downslope
under the influence of gravity and that are likely late to possibly
middle(?) Pleistocene age.

Talus deposits (Holocene to upper Pleistocene) – Very poorly sorted,
angular boulders and finer grained interstitial sediment deposited
principally by rock fall on and at the base of steep slopes; typically
grades downslope into colluvial deposits and may include colluvial
deposits where impractical to differentiate the two; includes a thin,
unmapped ribbon of alluvial deposits in the upper reaches of Deep
Creek and West Fork; generally less than 30 feet (9 m) thick.

Mixed-environment deposits

Alluvial and colluvial deposits (Holocene to upper Pleistocene) – Poorly
to moderately sorted, generally poorly stratified, clay- to boulder-
size, locally derived sediments deposited principally in swales, small
drainages, and the upper reaches of large streams by fluvial, slope-
wash, and creep processes; gradational with both alluvial and colluvial
deposits; Qac deposits form active depositional surfaces and are
generally less than 20 feet (6 m) thick; Qaco deposits are deeply
incised and of similar thickness.

Alluvial and eolian deposits (Holocene to Pleistocene) – Locally derived,
fine- to coarse-grained sand and silt with subangular to subrounded
gravel; deposited in topographic depressions by slope wash and wind;
includes small alluvial fans and colluvium along margins of deposits;
locally conceals the Virgin Flats and Volcano Knoll flows; 0 to 20
feet (0-6 m) thick.

Eolian and alluvial deposits (Holocene to Pleistocene) – Locally derived,
fine- to medium-grained sand and silt with minor coarse sand and
subangular to subrounded gravel; deposited in topographic depressions
by wind and slope wash; includes small alluvial fans and colluvium
along margins of deposits; locally conceals the Volcano Knoll flow;
0 to 20 feet (0-6 m) thick.

Residual and eolian deposits (Holocene to Pleistocene) – Reddish-
orange to pale-yellowish-gray, residual silt and fine sand with scattered
residual, subangular gravel; forms discontinuous mantle over the Co-
op Creek Limestone; locally reworked by eolian processes; generally
0 to 10 feet (0-3 m) thick.

Stacked-unit deposits

Hornet Point lava flow and eolian sand deposits (Holocene to Pleis-
tocene) – Hornet Point lava flow that is partly covered by a mantle
of eolian sand and silt; eolian deposits are generally 0 to 10 feet (0-
3 m) thick.

Volcanic rocks

Major- and trace-element geochemistry and 40Ar/39Ar raw data are
available on the Utah Geological Survey Web site (http://geology.
utah.gov/online/analytical_data.htm); rock names are after LeBas and
others (1986).

Three Creeks lava flow (middle Pleistocene) – Medium to dark-gray,
fine-grained olivine basalt lava flow; not dated, but probably less than
300,000 years old based on amount of incision adjacent to flow;
erupted from one or more vents in the adjacent Webster Flat and
Navajo Lake quadrangles; as much as 35 feet (11 m) thick.

Volcano Knoll lava flow and cinder cone (middle Pleistocene) –
Medium- to dark-gray, fine-grained olivine basalt lava flow; sample
CP71900-6 yielded 40Ar/39Ar plateau age of 0.34 ± 0.03 Ma; consists
of as many as seven cooling units that total as much as 300 feet (90
m) thick where it blocked the ancestral Deep Creek channel; erupted
from vent at Volcano Knoll cinder cone (Qbvkc).

Virgin Flats lava flow and cinder cone (middle Pleistocene) – Medium-
 to dark-gray, fine-grained olivine basalt lava flow; sample CP71900-
1 yielded 40Ar/39Ar plateau age of 0.37 ± 0.02 Ma; erupted from vent
at unnamed cinder cone (Qbvfc) at the common border of sections
16 and 17, T. 39 S., R. 10 W.; maximum exposed thickness is about
100 feet (30 m).

Hornet Point lava flow (middle Pleistocene) – Medium- to dark-gray,
medium- to coarse-grained olivine basalt to trachybasalt lava flow;
contains abundant pyroxene phenocrysts; locally deeply weathered
to gruss-like soils and boulders typically have concentric weathering
rinds; sample CP83100-3 yielded 40Ar/39Ar isochron age of 0.74 ±
0.05 Ma; erupted from vent at deeply weathered cinder cone at Hornet
Point in the Kolob Reservoir quadrangle (Biek, 2007a); as much as
200 feet (60 m) thick in this quadrangle.

Horse Knoll lava flow and cinder cones (lower Pleistocene) – Medium-
 to dark-gray, fine-grained olivine basaltic trachyandesite to trachybasalt
lava flow; yielded a K-Ar age of 0.81 ± 0.05 Ma (Best and others,
1980); locally consists of at least eight cooling units that total about
300 feet (90 m) thick; erupted from vents at Horse Knoll and Pine
Knoll in the adjacent Straight Canyon quadrangle and at least two
smaller vents marked by cinder cones (Qbhkc) in this quadrangle.

unconformity

TERTIARY

Old boulder gravel deposits (Miocene) – Unconsolidated, very poorly
sorted, clay- to very large boulder-size sediment characterized by
very large quartz monzonite boulders; quartz monzonite boulders as
much as about 30 feet (10 m) in diameter constitute about 90% of the
deposits; clasts also include large boulders of Claron Formation
limestone to 18 feet (6 m) long, recycled, rounded pebbles and small
cobbles of Precambrian and Cambrian quartzite, lesser Cretaceous
sandstone boulders, and rare cobbles and boulders of pebbly sandstone
of uncertain origin; except for the quartzite, most clasts are subangular
to subrounded; caps Miners Peak in the northwest part of the quad-
rangle; probably deposited by debris flows originating in the ancestral
Pine Valley Mountains (see Biek, 2007a, b, and references therein for
a discussion of the provenance and age of these unusual deposits); 0-
90 feet (0-27 m) thick.

unconformity

CRETACEOUS

Straight Cliffs Formation

Upper unit (Upper Cretaceous, Santonian to Turonian) – Slope-
forming, grayish-orange to yellowish-brown, thin- to thick-bedded,
fine-grained subarkosic sandstone and gray mudstone and shale;
contains a few thin coal beds, common carbonaceous shale, and
several thin bivalve coquina beds; forms broad, rounded hills
typically mantled with unmapped colluvium; east of Deep Creek,
the ground surface is locally covered with a residual pebble lag
presumably derived from a weathered conglomerate bed in the
lower part of the unit; believed to be equivalent to the Smoky
Hollow Member and possibly John Henry Member of the Straight
Cliffs Formation of the Kaiparowits Plateau (see, for example,
Eaton and others, 2001); deposited in fluvial, flood-plain, and
lagoonal environments of a coastal plain (Eaton and others, 2001);
at least 600 feet (180 m) thick in the quadrangle, but upper contact
not preserved.

Tibbet Canyon Member (Upper Cretaceous, Turonian) – Grayish-
orange to yellowish-brown, generally medium- to thick-bedded,
planar-bedded, fine- to medium-grained quartzose sandstone and
lesser interbedded, grayish-orange to gray mudstone and siltstone;
locally contains pelecypods, gastropods, and thin to thick beds of
oyster coquina; typically forms bold cliffs; upper contact corresponds
to a break in slope and is placed at the top of a coquinoid oyster

bed that caps the member; deposited in shoreface, lagoonal, estuarine,
and flood-plain environments of a coastal plain (Laurin and Sageman,
2001; Tibert and others, 2003); about 450 to 550 feet (135-170 m)
thick.

Tropic Shale (Upper Cretaceous, Turonian to Cenomanian) – Yellowish-
brown and gray, slope-forming mudstone, fine-grained sandstone,
and silty sandstone; basal mudstone locally characterized by a lag of
septarian nodules; locally contains Inoceramus sp. fossils indicative
of open shallow-marine environment (see, for example, Eaton and
others, 2001); very poorly exposed, but forms subtle, vegetated slope
at the base of the Straight Cliffs Formation and above the prominent
“sugarledge sandstone” (Cashion, 1961) at the top of the Dakota
Formation; upper contact placed at the base of the cliff-forming,
planar beds of the Straight Cliffs Formation; deposited in shallow-
marine environment dominated by fine-grained clastic sediment (Tibert
and others, 2003); thins westward across the quadrangle, from about
200 feet (60 m) thick near Cogswell Point to about 40 feet (12 m)
thick south of Miners Peak; query indicates uncertain designation at
Thorley Point where Tropic strata, if present, may be a few feet thick.

Dakota Formation (Upper Cretaceous, Cenomanian) – Interbedded,
slope- and ledge-forming sandstone, siltstone, mudstone, claystone,
carbonaceous shale, coal, and marl; sandstone is yellowish brown or
locally white, thin to very thick bedded, fine to medium grained;
includes two prominent cliff-forming sandstone beds each several
tens of feet thick in the upper part of the formation, the upper one of
which may correspond to the “sugarledge sandstone” of Cashion
(1961); mudstone and claystone are gray to yellowish brown and
commonly smectitic; oyster coquina beds, clams, and gastropods,
including large Craginia sp., are common, especially in the upper
part of the section; thin marl beds above the “sugarledge sandstone”
locally contain small, distinctive gastropods with beaded edge Adme-
topsis n. sp. indicative of a latest Cenomanian brackish environment
(Eaton and others, 2001) (for example, sample CPF61901-1 in section
35, T. 38 S., R. 10 W.); Dakota strata are typically poorly exposed
and involved in large landslides; large blocks involved in rotational
landslides are labeled Qmso(Kd); upper contact placed at the top of
the thin marl beds overlying the “sugarledge sandstone”; deposited
in a variety of flood-plain, estuarine, lagoonal, and swamp environments
(Gustason, 1989; Laurin and Sageman, 2001; Tibert and others, 2003);
invertebrate and palynomorph fossil assemblages indicate shallow-
marine, brackish, and fresh-water deposits of Cenomanian age (Nichols,
1995); about 700 to 900 feet (210-275 m) thick.

unconformity

Cedar Mountain Formation

Cedar Mountain Formation, undivided (Cretaceous, Cenomanian
to Albian) – Gray to variegated smectitic mudstone with minor
light-gray to yellowish-gray fine-grained sandstone; near the base
of this predominantly mudstone interval there is a distinctive, 1- to
4-foot-thick (0.3-1.2 m), locally ledge-forming, pale-olive to greenish-
gray, thin- to medium-bedded, fine- to medium-grained sandstone
containing subangular, reddish-brown chert granules; east of Crystal
Creek and Deep Creek, includes the basal conglomerate member
(Kcmc), a 10-to 15-foot-thick (3-5 m), ledge-forming conglomerate
that is generally too thin to depict separately in this area; except for
thin conglomerate ledge at base, weathers to generally poorly
exposed slopes covered with debris from the overlying Dakota
Formation; upper contact is poorly exposed and corresponds to a
color and lithologic change, from comparatively brightly colored
smectitic mudstone below to gray and light-yellowish-brown
mudstone and fine-grained sandstone above; regionally, the Cedar
Mountain Formation is unconformably overlain by the Dakota
Formation (see, for example, Kirkland and others, 1997); we obtained
a single-crystal 40Ar/39Ar age of 97.9 ± 0.5 Ma on sanidine from
a volcanic ash in Cedar Mountain mudstones in the Straight Canyon
quadrangle to the east; recent pollen analyses indicate an Albian or
older age for these beds (Doelling and Davis, 1989; Hylland, 2000);
deposited in flood-plain environment of a broad coastal plain
(Tschudy and others, 1984; Kirkland and others, 1997); previously
mapped as the lower part of the Dakota Formation, but the lithology,
age, and stratigraphic position of these beds suggest correlation to
the Cedar Mountain Formation; 0 to 100 feet (0-30 m) thick.

Conglomerate member (Cretaceous, Cenomanian to Albian) – Thick-
 to very thick bedded, yellowish-brown, channel-form conglomerate,
pebbly sandstone, and pebbly gritstone; clasts are subrounded to
rounded, pebble- to small-cobble-size quartzite, chert, limestone,
and rare, reworked petrified wood; locally stained reddish-brown
to dark-yellowish-brown; west of Volcano Knoll consists of a basal,
ledge-forming pebbly conglomerate 10 to 15 feet (3-5 m) thick that
grades upward to a grayish-orange to very pale-orange, non-
calcareous, fine- to medium-grained quartzose sandstone and pebbly
sandstone that has a “sugary” texture; this generally poorly cemented
sandstone is characterized by low-angle cross-stratification with
pebbles concentrated along cross-bed surfaces, and it contains a
few thin, poorly exposed mudstone and siltstone intervals near the
top of the unit; west of Crystal Creek and Deep Creek upper contact
is poorly exposed and upper Cedar Mountain mudstone unit may
be missing, but marks a change from yellowish-brown pebbly
conglomerate or very pale-orange pebbly sandstone below (Kcmc)
to yellowish-brown to gray mudstone and fine-grained sandstone
above (Kd); east of these creeks, the contact between the thin lower
conglomerate unit (Kcmc) and the upper mudstone unit (Kcm) is
sharp, but this contact is not mapped due to problems of scale;
deposited in river-channel environment on broad coastal plain
(Tschudy and others, 1984; Kirkland and others, 1997); about 10
to 180 feet (3-55 m) thick.

unconformity (K)

JURASSIC

Carmel Formation

Winsor Member (Middle Jurassic) – Light-reddish-brown, very fine
to medium-grained sandstone and siltstone; uppermost beds typically
bleached white; poorly cemented and so weathers to densely
vegetated slopes, or, locally, badland topography; upper contact is
the basal Cretaceous unconformity and in this quadrangle Winsor
strata are everywhere overlain by pebbly conglomerate; deposited
on a broad, sandy mudflat (Imlay, 1980; Blakey and others, 1983);
about 200 to 240 feet (60-73 m) thick.

Paria River Member (Middle Jurassic) – Laminated to very thin
bedded, light-gray argillaceous limestone and micritic limestone,
and, locally, a basal, thick, white, alabaster gypsum bed; limestone
weathers to small chips and plates, forms steep, ledgy slopes, and
locally contains small pelecypod fossils; upper contact is sharp and
planar; deposited in shallow-marine and coastal-sabkha environments
(Imlay, 1980; Blakey and others, 1983); about 40 to 110 feet (12-
35 m) thick.

Crystal Creek Member (Middle Jurassic) – Thin- to medium-bedded,
reddish-brown, gypsiferous siltstone, mudstone, and very fine to
medium-grained sandstone; typically friable and weakly cemented
with gypsum; forms vegetated, poorly exposed slopes; upper contact
is sharp and broadly wavy and corresponds to the base of a thick
Paria River gypsum bed or argillaceous limestone interval; deposited
in coastal-sabkha and tidal-flat environments (Imlay, 1980; Blakey
and others, 1983); about 150 to 200 feet (45-60 m) thick.

Co-op Creek Limestone Member (Middle Jurassic) – Thin- to
medium-bedded, light-gray micritic limestone and calcareous shale;
locally contains Isocrinus sp. columnals, pelecypods, and gastropods;
deposited in a shallow-marine environment (Imlay, 1980; Blakey
and others, 1983).

Upper unit – Thin- to medium-bedded, light-gray micritic limestone;
locally oolitic and sandy; forms sparsely vegetated, ledgy slopes
and cliffs; upper contact is sharp and planar; about 80 to 120 feet
(24-37 m) thick.

Lower unit – Mostly thinly laminated to thin-bedded, light-gray
calcareous shale and platy limestone; forms steep, vegetated
slopes; contact with upper unit is gradational and corresponds to
a subtle break in slope and vegetation patterns; about 200 to 240
feet (60-73 m) thick.

unconformity (J-2)

Temple Cap Formation

White Throne Member (Middle Jurassic) – Very thick bedded,
yellowish-gray to pale-orange, well-sorted, fine-grained quartz
sandstone with large high-angle cross-beds; similar to the Navajo
Sandstone; upper contact is sharp and planar and corresponds to
the J-2 unconformity; deposited in coastal dune field (Blakey, 1994;
Peterson, 1994); about 120 to 160 feet (37-50 m) thick.

Sinawava Member (Middle Jurassic) – Interbedded, slope-forming,
moderate-reddish-brown mudstone, siltstone, and very fine grained
silty sandstone; forms narrow, but prominent, deep-reddish-brown,
vegetated slope at the top of the Navajo Sandstone; upper contact
is gradational and interfingering with the White Throne Member;
deposited in coastal-sabkha and tidal-flat environments (Blakey,
1994; Peterson, 1994); about 40 feet (12 m) thick.

unconformity (J-1)

Navajo Sandstone (Lower Jurassic) – Massively cross-bedded, poorly
to moderately well-cemented sandstone that consists of well-rounded,
fine- to medium-grained, frosted quartz; typically very light gray or
white because of alteration and remobilization of limonitic and
hematitic cement; locally moderate-reddish-orange to moderate-
orange-pink; contains rare planar interdune deposits; forms spectacular,
sheer cliffs and is locally prominently jointed; upper, unconformable
contact is sharp and planar and corresponds to a prominent break in
slope, with cliff-forming, cross-bedded sandstone below and reddish-
brown mudstone above; generally equivalent to the “white Navajo”
as mapped in the Temple of Sinawava quadrangle (Doelling, 2002);
deposited in a vast coastal and inland dune field with prevailing winds
principally from the north (Blakey, 1994; Peterson, 1994); only the
upper 840 feet (255 m) is exposed in the quadrangle, but the formation
is about 2100 to 2200 feet (640-670 m) thick in the Zion National
Park area.

Kayenta Formation

Marzolf (1994) and Blakey (1994) presented evidence to restrict the
Moenave Formation to the Dinosaur Canyon and Whitmore Point
Members, with a major regional unconformity at the base of the
Springdale Sandstone.  Further work supports this evidence, indicating
that the Springdale Sandstone is more closely related to the Kayenta
Formation and should be made its basal member (see, for example,
Lucas and Heckert, 2001; Molina-Garza and others, 2003; Steiner,
2005).  We anticipate that this change will be formalized, and so here
informally reassign the Springdale Sandstone as the basal member of
the Kayenta Formation.

Upper unit (Lower Jurassic) – Shown on cross section only; about
700 to 1000 feet (210-300 m) thick (Doelling, 2002; Willis and
Hylland, 2002; Biek, 2007b).

Springdale Sandstone Member (Lower Jurassic) – Shown on cross
section only; about 100 to 150 feet (30-45 m) thick (Willis and
Hylland, 2002; Biek, 2007b).

unconformity

JURASSIC AND TRIASSIC

Moenave Formation, undivided (Lower Jurassic to Upper Triassic) –
Shown on cross section only; age from Lucas and others (2005); about
200 to 350 feet (60-105 m) thick (Willis and Hylland, 2002; Biek,
2007b).

J-0 unconformity

TRIASSIC

Chinle Formation, undivided (Upper Triassic) – Shown on cross section
only; about 450 to 650 feet (135-200 m) thick (Willis and Hylland,
2002; Biek, 2007b).

TR-3 unconformity

Moenkopi Formation, undivided (Middle to Lower Triassic) – Shown
on cross section only; about 1700 to 1800 feet (520-550 m) thick
(Willis and Hylland, 2002; Biek, 2007b).

View east across the Crystal Creek and Deep Creek drainages from below Thorley Point.  The Tropic Shale (Kt) forms a westward-thinning, heavily vegetated slope at the base of the
Tibbet Canyon Member of the Straight Cliffs Formation (Kst).  The Dakota Formation (Kd) is locally exposed at the base of the cliffs, but typically forms large landslide complexes that
cover most of the lowlands below.  Sample CPF61901-1 from a thin marl bed at the top of the Dakota Formation yielded small, distinctive gastropods with a beaded edge (Admetopsis
n. sp.) indicative of a latest Cenomanian brackish environment.  The 800,000-year-old Horse Knoll basaltic lava flow (Qbhk) forms a classic inverted valley east of Deep Creek.  The
upper unit of the Straight Cliffs Formation (Ksu) is also shown.  On the skyline northeast of the Cogswell Point quadrangle, the Tertiary Claron Formation forms the Pink Cliffs of the
Markagunt Plateau.

View north-northeast to the Winsor Member of the Carmel Formation (Jcw) and newly identified Cedar Mountain Formation
(Kcmc and Kcm) along Crystal Creek in the south-central part of section 2, T. 39 S., R. 10 W.  The poorly cemented Winsor Member
locally weathers to badland topography and its uppermost part is typically bleached white to light gray.  The Cedar Mountain
Formation includes a thin basal pebbly conglomerate member (Kcmc) with rounded quartzite and chert clasts that is overlain by
gray to variegated smectitic mudstone (Kcm).  The heavily vegetated Dakota Formation (Kd) unconformably overlies Cedar
Mountain strata and typically forms large complex landslides.  The Tibbet Canyon Member of the Straights Cliffs Formation forms
the bold cliffs on the skyline.

Close-up of Cedar Mountain conglomerate mem-
ber (Kcmc) showing pebbly conglomerate, gritstone,
and thin sandstone interbeds that collectively total
about 15 feet (5 m) thick.  Underlying Winsor strata
(Jcw) and overlying Cedar Mountain mudstone
(Kcm) are also shown.

Contact

Normal fault, dashed where approximately located, dotted
where concealed; bar and ball on downthrown side

Structure contour on top of Navajo Sandstone (near south
border) and on top of Tibbet Canyon Member (north
and central parts of map); short dash where projected,
long dash where control is poor; interval 100 feet

Landslide or slump scarp, hachures on down-dropped side

Approximate strike and dip of inclined bedding determined
photogrammetrically
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Selected geologic maps available for the Zion National Park area
In addition to the 1:24,000-scale geologic quadrangle maps listed below, Hamilton
(1978) provided a 1:31,680-scale geologic map of Zion National Park.  See index
map on plate 1 for quadrangle locations.

Cedar Mountain Averitt (1962)
Clear Creek Mountain Hylland (2000)
Elephant Butte Sable and Doelling (1990)
Hildale Sable (1995)
Kanarraville Averitt (1967)
Kolob Reservoir Biek (2007a)
Navajo Lake Moore and others (2004)
Kolob Arch Biek (2007b)
Little Creek Mountain Hayden (2004)
Smith Mesa Sable and others (in preparation)
Smithsonian Butte Moore and Sable (2001)
Springdale East Doelling and others (2002)
Springdale West Willis and others (2002)
Straight Canyon Cashion (1967)
Temple of Sinawava Doelling (2002)
The Barracks Sable and Doelling (1993)
The Guardian Angels Willis and Hylland (2002)
Virgin Hayden (in preparation)
Webster Flat Doelling and Graham (1972)
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