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DESCRIPTION OF MAP UNITS

QUATERNARY

Alluvial Deposits

Stream alluvium (Holocene to upper Pleistocene) – Generally stratified, moderately 
to well-sorted sand, silt, clay, and pebble to boulder gravel in channels and flood-
plains; locally includes small alluvial-fan, debris-flow, and colluvial deposits too 
small to map separately.  Younger stream alluvium (Qaly) includes terraces as much 
as 10 feet (3 m) above modern stream level; older stream alluvium (Qalo) forms 
incised, level to gently sloping surfaces 10 to 30 feet (3–9 m) above modern 
channels and may include inset deposits of younger stream alluvium too small to 
map separately; undifferentiated stream alluvium (Qal) mapped where deposit age is 
uncertain.  Thickness 0 to 30 feet (0–9 m).

Fan alluvium (Holocene to upper Pleistocene) – Poorly stratified, poorly to moder-
ately well sorted, boulder- to clay-sized sediment deposited as relatively small 
alluvial fans along major drainages; deposited by intermittent streams, debris flows, 
and debris floods graded to or slightly above modern stream level; locally includes 
minor colluvium and talus along upslope margins of the fans, and grades into stream 
alluvium at fan toes.  Younger fan alluvium (Qafy) forms active depositional 
surfaces and grades into younger stream alluvium (Qaly) at toes of the fans; older 
fan alluvium (Qafo) forms deeply incised, generally inactive surfaces as much as 30 
feet (9 m) above modern stream channels.  Thickness 0 to 40 feet (0–12 m).

Lacustrine and alluvial basin-fill deposits (Holocene to upper Pleistocene) – Strati-
fied, thin-bedded, light-brown to gray silt and clay with interbeds and lenses of fine 
to coarse sand and fine gravel; locally abundant organic matter.  Location of these 
deposits along Clear Creek (Willow Canyon) and Meadow Creek upstream of 
landslide deposits suggests accumulation in quiet water behind landslide dams; 
these “lakes” probably held water only during brief wet periods and were probably 
more like shallow ponds or swampy alluvial plains; deposits are similar to those of 
numerous Holocene and Pleistocene lakes in Zion National Park (see discussion in 
Biek and others, 2003).  Thickness 0 to 50 feet (0–15 m).

Artificial-Fill Deposits

Artificial fill (historical) – Primarily road-embankment fill used in the construction of 
State Route 9; other deposits, too small to map separately, are scattered across the 
quadrangle and include stock-pond embankments and waste-rock piles at uranium 
and coal mines and prospects; 0 to 60 feet (0–18 m) thick.

Colluvial Deposits

Colluvium (Holocene to upper Pleistocene) – Unsorted, nonstratified, locally derived 
sand and silt with subangular to angular gravel, cobbles, and boulders; color and 
clast composition vary with parent material; deposited primarily by creep and slope 
wash, but some deposits, particularly on the upper unit of the Straight Cliffs Forma-
tion, may also result in part from shallow landsliding; gradational with and locally 
includes talus and mixed alluvial and colluvial deposits; estimated to be less than 10 
feet (3 m) thick.

Mass-Movement Deposits

Landslide deposits (Holocene to middle[?] Pleistocene) – Poorly sorted masses of 
rock and unconsolidated material that have undergone translational and/or rotational 
downslope movement; deposits display hummocky topography, internal scarps, 
back-tilted geomorphic surfaces, and chaotic bedding attitudes; typically associated 
with low-strength clay in the Cedar Mountain, Dakota, and Tropic  Formations.  
Some of the deposits form large complexes of contiguous but separate landslides 
having different movement histories and directions; where discernible, individual 
landslides are delineated on the basis of drainages and other geomorphic features 
that indicate landslide flanks and toes.  Geomorphically youthful scarps and 
hummocky topography indicate new or reactivated movement, whereas geomorphi-
cally subtle landslide features and/or surfaces that are deeply incised by stream 
channels may indicate relatively old initiation of movement; however, very slow 
movement may be occurring in some landslide areas that lack obvious geomorphic 
evidence of recent movement.  Formation symbol in parentheses denotes large block 
of bedrock that has been displaced by landsliding, but internal stratigraphy has 
remained relatively intact (Toreva block).  Historical landslides (Qmsh) have 
landslide features such as scarps and slide blocks that are morphologically distinct, 
as well as clear evidence of historical movement (i.e., disturbed vegetation, 
damaged cultural features such as roads and culverts); the Meadow Creek landslide, 
crossed by Utah Highway 9, presents ongoing road maintenance issues (see 
Stouffer, 1964; Doelling and Davis, 1989; Ashland and others, 2009).  Thickness of 
landslide deposits is highly variable; the larger slides are possibly hundreds of feet 
(100 m ±) thick.

The Meadow Creek landslide was the subject of survey-grade Global Positioning 
System (GPS) monitoring between October 2005 and October 2008 (Ashland and 
others, 2009; Ashland and McDonald, in press).  In the area crossed by Highway 9 
mapped as Qmsh, measured horizontal displacement ranged from 24 to 64 inches 
(61–163 cm) (Ashland and McDonald, in press).  With the exception of a few moni-
toring stations, movement was not detected elsewhere in the Meadow Creek 
landslide (areas mapped as Qms); where movement was detected (mostly near High-
way 9), horizontal displacement ranged from 6 to 10 inches (15–25 cm) (Ashland 
and McDonald, in press).

Talus (Holocene to upper[?] Pleistocene) – Very poorly sorted, angular, gravel- to 
boulder-sized sandstone blocks and finer grained interstitial sediment on steep 
slopes below ledges and cliffs of the Straight Cliffs Formation; deposited primarily 
by rock fall, but creep and slope wash also involved; locally includes undifferenti-
ated colluvium; generally 0 to 20 feet (0–6 m) thick.

Spring Deposits

Spring mud (Holocene) – Brown and greenish-gray clay and organic mud with white 
evaporitic surface encrustation (efflorescence); deposited immediately downslope 
of small, active springs in the southeastern part of the quadrangle (NW1/4 section 
33, T. 40 S., R. 8 W., SLBLM); highly susceptible to piping and erosion; estimated 
to be less than 15 feet (5 m) thick.

Spring tufa (Holocene) – Gray, white, and tan, blocky, porous, calcareous sinter that 
forms small, earthy mounds; contains abundant root casts; associated with presently 
inactive springs; two small deposits are mapped in the southeastern part of the 
quadrangle (NE1/4 section 36, T. 40 S., R. 9 W., and NW1/4 section 5, T. 41 S., R. 8 
W., SLBLM); thickness uncertain, but probably less than 10 feet (3 m).

Mixed-Environment Deposits

Alluvial and colluvial deposits (Holocene to upper Pleistocene) – Poorly to moder-
ately sorted, generally poorly stratified sand, silt, and clay with scattered, subangular 
to angular gravel and cobbles; deposited in minor drainages and topographic depres-
sions primarily by fluvial, debris-flow, slope-wash, and creep processes; commonly 
scattered across landslide deposits where displaced bedrock blocks, back-tilted 
surfaces, and closed depressions form sediment traps; thickness less than 20 feet (6 
m).

Eolian and residual deposits (Holocene to upper[?] Pleistocene) – Well-sorted fine 
sand with scattered, subrounded to subangular gravel and cobbles of sandstone 
derived from the Straight Cliffs Formation; deposited by wind and in-place weather-
ing of bedrock; forms discontinuous fill in shallow topographic depressions on mesa 
tops; 0 to 5 feet (0–1.5 m) thick.

Residual and eolian deposits (Holocene to upper[?] Pleistocene) – Reddish-brown 
silt and fine sand with scattered subangular gravel derived from the Crystal Creek 
Member of the Carmel Formation; deposited by in-place weathering of bedrock and 
partly reworked by the wind; forms a thin (0 to 2 feet [0–0.6 m]), discontinuous 
mantle on top of the Co-op Creek Limestone.

unconformity

CRETACEOUS

Straight Cliffs Formation – Shown undivided where one or more members form 
bedrock blocks displaced by landsliding, but internal stratigraphy has remained 
relatively intact (see “Landslide deposits”).

Upper unit (Upper Cretaceous, Santonian to Turonian) – Slope- and ledge-forming 
sandstone, siltstone, shale, and minor conglomerate; sandstone is subarkosic, light 
gray, brown, and pale orange, typically trough cross-bedded; variegated shale near 
top of unit is maroon and greenish gray.  Limonite-stained pebble conglomerate and 
gritstone with clasts of quartzite and chert is poorly exposed locally in the lower 200 
feet (60 m) of the unit; the conglomerate likely comprises multiple beds, one or more 
of which may be correlative with the Calico bed of Peterson (1969a).  Deposited in 
fluvial, floodplain, and lagoonal environments of a coastal plain (Eaton and others, 
2001); interpreted to be correlative with Smoky Hollow Member and possibly John 
Henry Member of the Straight Cliffs Formation of the Kaiparowits Plateau (see, for 
example, Eaton and others, 2001).  At least 700 feet (210 m) thick in the quadrangle, 
but upper contact not preserved.

 Tibbet Canyon Member (Upper Cretaceous, Turonian) – Predominantly 
cliff-forming sandstone, quartzose, light gray to grayish orange, medium to thick 
bedded with local low-angle cross-beds; interbedded with minor shale, mudstone, 
and siltstone; locally contains pelecypods, ammonoids, and bioturbation features.  
Upper contact corresponds to a break in slope and is placed at top of coquinoid 
oyster bed that caps the member.  Deposited in shoreface, lagoonal, estuarine, and 
floodplain environments of a coastal plain (Laurin and Sageman, 2001, 2007; Tibert 
and others, 2003).  About 240 to 440 feet (75–135 m) thick.

Tropic Shale (Upper Cretaceous, Turonian to Cenomanian) – Slope-forming, 
thin-bedded, sandy shale and mudstone with minor fine-grained sandstone and 
limestone; brown to gray, weathers to yellowish gray; septarian nodules 
(concretions containing angular, mineral-filled cavities or cracks) weather out of 
thin limestone bed near base; locally includes sandstone of overlying Straight Cliffs 
Formation that grades into and intertongues with upper part of Tropic Shale (e.g., in 
the main scarp of the Meadow Creek landslide).  Upper contact gradational, placed 
at base of lowermost, laterally continuous, cliff-forming Tibbet Canyon sandstone.  
Deposited in shallow-marine environment dominated by fine-grained clastic 
sediment (Elder and others, 1994; Tibert and others, 2003; Laurin and Sageman, 
2007).  About 240 to 500 feet (75–150 m) thick; thickness decreases northward and 
westward, thinning dramatically to perhaps just a few feet thick in the western part 
of the adjacent Cogswell Point quadrangle (Biek and Hylland, 2007).

In 1990, a partial skeleton of a large, long-necked plesiosaur (marine reptile) was 
discovered about 3 miles (5 km) east of the Clear Creek Mountain quadrangle during 
excavations at a septarian nodule mine in the Muddy Creek drainage.  The fossil 
bones, primarily consisting of vertebrae, were in the Sciponoceras gracile Ammo-
noid Biozone at the base of the Tropic Shale and were the first documented occur-
rence of plesiosaur remains from the Tropic Shale in Utah (Gillette and others, 
1999).

Dakota Formation – Shown undivided where one or more members form bedrock 
blocks displaced by landsliding, but internal stratigraphy has remained relatively 
intact (see “Landslide deposits”).  In southwestern Utah, the Dakota Formation has 
traditionally been subdivided into three informal members (see, for example, 
Doelling and Davis, 1989; Gustason, 1989), following the convention established 
for the Dakota on the Kaiparowits Plateau (Peterson, 1969b).  On the Kolob Terrace, 
the lower member has recently been reassigned to the Cedar Mountain Formation 
(Biek and others, 2003; Biek, 2007a, 2007b; Biek and Hylland, 2007; but see Titus 
and others, 2005) on the basis of lithologic and age similarities with the Mussen-
tuchit Member (see Kirkland and others, 1997; Kirkland and Madsen, 2007), and 
that convention is followed on this map.

Upper member (Upper Cretaceous, Cenomanian) – Slope- and ledge-forming, 
interbedded sandstone, siltstone, mudstone, shale, marl, and minor coal; sandstone 
is light brown, gray, and white, arkosic to quartzose, thin to thick bedded, planar; 
siltstone, mudstone, and shale are gray to dark gray, typically with disseminated 
organic debris; coal occurs as scattered seams 1 to 2 feet (0.3–0.6 m) thick; abundant 
gastropod (Craginia) and pelecypod (Crassostrea and Inoceramus pictus) fossils in 
upper part of unit, bioturbation features (Ophiomorpha) in lower part.  White, 
ledge-forming sandstone 25 to 50 feet (8–15 m) thick at top of unit correlates to the 
“sugarledge sandstone” of Cashion (1961).  Upper contact placed at top of thin (4 
feet [1.2 m]) coal-sandstone couplet that directly overlies the sugarledge sandstone; 
the coal contains a palynomorph assemblage indicating an age at least as old as 
Turonian (sample CCM4093-1).  Below the sugarledge sandstone, organic 
mudstone and carbonaceous shale yielded pollen indicating an age of early to late 
Cenomanian (samples CCM4093-4 and CCM4093-2, respectively).  Deposited in 
shoreface, lagoonal, and estuarine environments of a coastal plain (Gustason, 1989; 
am Ende, 1991; Elder and others, 1994; Laurin and Sageman, 2001, 2007; Tibert and 
others, 2003).  About 200 to 290 feet (60–90 m) thick.

 
Middle member (Upper Cretaceous, Cenomanian) – Slope-forming, interbedded 

mudstone, claystone, siltstone, shale, coal, and lignite, and ledge-forming 
sandstone; mudstone and claystone are gray to brown, commonly smectitic; 
siltstone is dark brown to black, typically with abundant organic debris; shale is gray 
to dark gray, locally smectitic or carbonaceous; sandstone is light brown to gray, 
resistant, locally trough cross-bedded.  Coal occurs within two laterally persistent 
zones at the top and base of the unit (upper and lower coal zones, respectively, of 
Cashion, 1961, 1967; see also Doelling and Graham, 1972); upper contact placed at 
top of upper coal zone.  Middle member of the Dakota is poorly exposed and 
involved in widespread landsliding.  Deposited in estuarine, floodplain, swamp, and 
lacustrine environments (Gustason, 1989; am Ende, 1991; Laurin and Sageman, 
2001, 2007).  About 280 to 480 feet (85–145 m) thick.

Dakota coal in the Clear Creek Mountain quadrangle is part of the Kolob 
coalfield; regionally the coal rank varies between subbituminous A and high-volatile 
bituminous B (Grose and others, 1967; Doelling and Davis, 1989), and the coal has 
relatively high ash and sulfur contents (Doelling and Graham, 1972).  Three mines 
in the southeast part of the quadrangle were probably active from about 1930 to 
1950 (Doelling and Graham, 1972); production from these mines is unknown, but 
the largest (Meeks-Carrol mine) had underground workings that extended over 12 
acres (5 ha) (Grose and others, 1967).  Based on measurements reported by Cashion 
(1961) and Doelling and Graham (1972) and collected during this mapping, cumula-
tive coal thickness in the upper coal zone within the quadrangle ranges from 2.5 to 
10.0 feet (0.8–3.0 m) and averages 6.8 feet (2.1 m), and maximum individual bed 
thickness is 8.0 feet (2.4 m); cumulative coal thickness in the lower coal zone ranges 
from 2.8 to 11.9 feet (0.9–3.6 m) and averages 6.4 feet (1.9 m), and maximum 
individual bed thickness is 7.0 feet (2.1 m).  Doelling and Davis (1989) correlated 
the upper and lower coal zones with the Smirl and Bald Knoll coal zones, respec-
tively, of the Alton coalfield to the east.  

unconformity

Cedar Mountain Formation

Cedar Mountain Formation, undivided (Cretaceous, Cenomanian to Albian) – Gray 
to variegated mudstone and minor lignite overlying interbedded pebble conglomer-
ate and conglomeratic sandstone; basal conglomerate is mapped separately (Kcmc) 
in some areas; slope-forming mudstone is smectitic and locally contains white 
carbonate nodules and interbedded altered volcanic ash; upper contact placed at base 
of Dakota lower coal zone.  Conglomerate is typically cliff-forming and contains 
well-rounded clasts of quartzite, chert, and limestone, as well as clay lenses, carbon-
ized wood fragments, and petrified wood that includes silicified logs; local uranium 
mineralization; basal contact with the Winsor Member of the Carmel Formation is 
sharp and uneven.  Organic mudstone yielded pollen indicating an age of late Albian 
(sample CCM40910-1), and pollen analyses by Doelling and Davis (1989) indicate 
an Albian age of the underlying conglomerate.  Single-crystal 40Ar/39Ar age of 97.9 
± 0.5 Ma obtained from ash layer in mudstone near the North Fork Virgin River in 
the Straight Canyon quadrangle, about 1 mile (1.5 km) north of the Clear Creek 
Mountain quadrangle, suggests correlation with ash in Mussentuchit Member of the 
Cedar Mountain Formation in east-central Utah (see Cifelli and others, 1997; Garri-
son and others, 2007); geochronologic analysis of detrital zircon from the basal 
Cretaceous conglomerate near Kolob Reservoir, 10 miles (6 km) northwest of the 
Clear Creek Mountain quadrangle, indicates a correlation with the informally named 
Short Canyon conglomerate (G.J. Hunt, New Mexico State University, verbal 
communication, 2008) within the Cedar Mountain section on the west side of the 
San Rafael Swell (Doelling and Kuehne, in preparation).  Deposited in floodplain, 
lacustrine, and fluvial-channel environments of a coastal plain (Tschudy and others, 
1984; Kirkland and others, 1997; Garrison and others, 2007; Kirkland and Madsen, 
2007).  About 80 to 220 feet (25–65 m) thick.

Uranium mineralization occurs along the Cedar Mountain–Winsor contact on 
both sides of Orderville Gulch (Bulloch group of claims; sections 8, 9, 16, and 21, 
T. 40 S., R. 9 W., SLBLM), where abnormal radioactivity has been detected along 
4000 feet (1200 m) of outcrop (Beroni and others, 1953); the largest exposure of 
uranium-bearing rock, at the mine location shown in the NE¼ section 21 (Lynn No. 
3 claim), has a weighted average ore grade of 0.13% U3O8 (Beroni and others, 1953).  
Dasch (1967) estimated that between 100 and 1000 tons of ore was mined from the 
Bulloch claims between 1949 and 1962; Doelling and Davis (1989) reported no 
production since 1973, and by 1995 all of the claims were closed (Bureau of Land 
Management, 2009).

Conglomerate member (Lower Cretaceous, Albian) – Basal conglomerate is mapped 
separately where outcrop thickness and extent allow; 8 to 120 feet (2–35 m) thick.

unconformity (K)

JURASSIC

Carmel Formation – Shown undivided where one or more members form a bedrock 
block displaced by landsliding (NE¼SW¼ section 7, T. 41 S., R. 8 W., SLBLM), but 
internal stratigraphy has remained relatively intact (see “Landslide deposits”).

Winsor Member (Middle Jurassic, Callovian to Bathonian) – Slope-forming, mostly 
reddish-brown, fine-grained sandstone, siltstone, and minor shale; upper part of 
member is pale-yellow, friable, fine-grained silty sandstone.  Upper contact is the 
basal Cretaceous (K) unconformity.  Deposited on a broad, sandy mud flat (Imlay, 
1980; Blakey and others, 1983).  Thickness 180 to 280 feet (55–85 m).

Paria River Member (Middle Jurassic, Bathonian) – Slope-forming, light-gray to 
yellowish-gray, thin-bedded, platy limestone underlain by shaly limestone and 
sandstone, in turn underlain by ledge-forming, white gypsum bed.  Upper contact is 
sharp and planar.  Deposited in shallow-marine and coastal-sabkha environments 
(Imlay, 1980; Blakey and others, 1983).  Thickness 60 to 100 feet (20–30 m).

Crystal Creek Member (Middle Jurassic, Bathonian) – Slope-forming, thin- to 
medium-bedded, “banded” reddish-brown and light-gray, fine-grained sandstone 
and siltstone; local gypsum veinlets and thin beds, and minor volcanic ash; upper 
contact is sharp and broadly undulating and corresponds to the base of the Paria 
River gypsum bed; about 166–167 Ma based on radiometric dating of ash interbeds 
in southwestern Utah (Kowallis and others, 2001).  Deposited in coastal-sabkha and 
tidal-flat environments (Imlay, 1980; Blakey and others, 1983).  Thickness 160 to 
220 feet (50–65 m).

Co-op Creek Limestone Member (Middle Jurassic, Bathonian to Bajocian) – 
Interbedded, micritic to oolitic, thin- to thick-bedded limestone, calcareous and 
argillaceous shale, platy limestone, and minor dolomite, sandstone, and volcanic 
ash; locally fossiliferous, including pelecypods, gastropods, and crinoid columnals 
(Isocrinus nicoleti); about 167–168 Ma based on radiometric dating of ash interbeds 
in southwestern Utah (Kowallis and others, 2001).  Deposited in a shallow-marine 
environment (Imlay, 1980; Blakey and others, 1983).

Upper unit – Ledge-forming, thin- to medium-bedded, white-weathering, micritic 
limestone and minor shale; upper contact is sharp and planar; 80 to 110 feet (25–35 
m) thick.

Lower unit – Slope-forming, light-gray, calcareous and argillaceous shale and platy 
limestone with sandstone and thick-bedded limestone; about 8 feet (2.4 m) of 
reddish to purplish shale and thin-bedded sandstone at base; upper contact is grada-
tional and corresponds to a break in slope; 160 to 220 feet (50–65 m) thick.

unconformity (J-2) (?)

The boundary between the Carmel Formation and Temple Cap Formation has 
traditionally been interpreted as part of a regionally extensive erosional unconfor-
mity (Pipiringos and O’Sullivan, 1978; Peterson and Pipiringos, 1979); however, the 
queried designation reflects ongoing work involving regional stratigraphic correla-
tion, palynology, and radiometric dating that preliminarily indicates this unconfor-
mity may not exist or may represent only a brief hiatus (D. Sprinkel, UGS, verbal 
communication, 2009; see also Sprinkel and others, 2009); exposures of the 
Carmel–Temple Cap contact in the Clear Creek Mountain quadrangle show no 
unambiguous evidence of a major unconformity.

Temple Cap Formation (Middle Jurassic, Bajocian) – Shown undivided on cross 
section only; about 169–174 Ma based on radiometric dating of volcanic ash 
interbeds in southwestern Utah (Kowallis and others, 2001; Dickinson and others, 
2009; D. Sprinkel, UGS, written communication, 2009).

White Throne Member – Cliff-forming, light-gray to pale-orange sandstone with 
high-angle, thick cross-bed sets; sandstone is quartzose, well sorted, fine grained; 
similar to the Navajo Sandstone; upper contact is sharp and planar, marked by red 
shaly zone at base of Co-op Creek Limestone.  Deposited in coastal dune field 
(Blakey, 1994; Peterson, 1994).  Thickness 60 to 165 feet (20–50 m).

Recent work involving regional stratigraphic correlation, palynology, and radio-
metric dating suggests that the red shaly zone at the base of the Co-op Creek Lime-
stone should perhaps be more appropriately designated the upper part of the Temple 
Cap Formation (D. Sprinkel, UGS, verbal communication, 2009).

Sinawava Member – Slope-forming, interbedded sandstone, siltstone, and mudstone; 
forms relatively thin but prominent reddish-orange to reddish-brown slope at top of 
the Navajo Sandstone.  Upper contact is gradational and interfingering with the 
White Throne Member.  Deposited in coastal-sabkha and tidal-flat environments 
(Blakey, 1994; Peterson, 1994).  Thickness 40 to 90 feet (15–25 m).

unconformity (J-1)

Navajo Sandstone (Lower Jurassic, Toarcian to Pliensbachian) – Cliff-forming, light 
yellowish-gray to pale-orange sandstone with large-scale tabular- and wedge-planar 
cross-beds and thick cross-bed sets; sandstone is quartzose, well sorted, fine to 
medium grained; locally prominently jointed.  Upper contact is sharp and planar, 
corresponds to prominent break in slope at top of Navajo cliff.  Deposited in a vast 
coastal and inland dune field (Blakey, 1994; Peterson, 1994).  Only upper 200 feet 
(60 m) exposed in quadrangle, but formation is 1800 to 2200 feet (550–670 m) thick 
in the Zion National Park area (Gregory, 1950; Biek and others, 2003).
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In addition to geologic mapping (mostly 1:24:000 scale) of the 7.5′ quadrangles 
listed below, Hamilton (1978) provided a 1:31,680-scale geologic map of Zion 
National Park.  See index map for quadrangle locations.
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View looking north to Table Bench (in middle ground) near the northern border of the 
Clear Creek Mountain quadrangle. Table Bench’s western slope, above the dirt road, 
reveals a remarkably complete exposure of the middle Cretaceous section from the upper 
Dakota Formation to the lower Straight Cliffs Formation. The Tibbet Canyon Member 
forms the prominent cliff-forming sandstone doublet. Tertiary strata of the Pink Cliffs form 
the southern margin of the Markagunt Plateau on the skyline.
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