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DESCRIPTION OF MAP UNITS

QUATERNARY

Alluvial deposits

Qal1
Younger stream alluvium (upper Holocene) – Clast-supported, moderately to well-sorted pebble 

and cobble gravel, gravelly sand, and silty sand deposited in modern channels and floodplains; 
clasts subangular to rounded; deposited where fluvial processes are currently or episodically 
active; locally includes minor alluvial-fan, colluvial, and terrace deposits; thickness generally 
less than 6 meters (20 ft).

Qal2
Older stream alluvium (middle Holocene to upper Pleistocene) – Clast-supported, moderately 

sorted pebble and cobble gravel, gravelly sand, and silty sand deposited along inactive 
floodplains 1 to 3 meters (3-10 ft) above modern stream level; clasts subangular to rounded; 
mapped along Haight Creek and adjacent drainages in the northern part of the quadrangle where 
fluvial processes are generally no longer active; thickness generally less than 6 meters (20 ft).

Qalp
Stream alluvium related to the Provo shoreline and regressive phase of Lake Bonneville (upper 

Pleistocene) – Clast-supported, moderately to well-sorted pebble and cobble gravel, gravelly 
sand, and silty sand; deposited along inactive floodplains more than 3 meters (10 ft) above 
modern stream level; mapped where fluvial processes are generally no longer active; exposed 
thickness less than 6 meters (20 ft).

Qaf
1

Younger alluvial-fan deposits (upper Holocene) – Mixture of gravel and sand deposited by 
streams, and diamicton deposited by debris flows; forms fans, locally with distinct levees and 
channels, at mouths of mountain-front canyons; exposed thickness less than 6 meters (20 ft).

Qaf
2

Older alluvial-fan deposits (middle Holocene to upper Pleistocene) – Mixture of gravel and sand 
deposited by streams, and diamicton deposited by debris flows; forms fans that are slightly 
incised by modern stream channels; exposed thickness less than 6 meters (20 ft).

Qafp Alluvial-fan deposits related to the Provo shoreline and regressive phase of Lake Bonneville 
(upper Pleistocene) – Mixture of gravel and sand deposited by streams, and diamicton deposited 
by debris flows; forms fans graded approximately to the Provo level of Lake Bonneville that are 
incised by modern stream channels; exposed thickness less than 6 meters (20 ft).

Artificial deposits

Qfd Fill and disturbed land (historical) – Land disturbed and excavated through aggregate (sand and 
gravel) operations and construction of Interstate highways, highway interchanges, and Farming-
ton Bay dikes. 

Colluvial deposits

Qc Colluvium (Holocene to middle Pleistocene) – Weakly to non-layered, variably sorted, matrix- to 
clast-supported silt, sand, clay, and minor gravel of local origin; deposits formed mostly by creep 
and slope wash; includes hill-slope deposits of angular cobble to pebble-sized clasts of 
Farmington Canyon Complex float; thickness probably less than 3 meters (10 ft) in most areas.

Wetland and marsh deposits

Qsm
Wetland and marsh deposits (Holocene) – Wet, fine-grained, organic-rich sediment associated 

with springs, wetlands, ponds and seeps; thickness probably less than 1 meter (3 ft) in most areas.

Mass-movement deposits

Qmf
1

Qmf
2

Qml
2

Qml
3

Qms
1

Qms
2

Debris-flow deposits (upper Holocene) – Matrix- to clast-supported cobble and boulder gravel, 
with variable amounts of sand, silt, and clay matrix; surfaces variably rubbly and commonly 
have levees and channels; thickness probably less than 9 meters (30 ft).

Older debris-flow deposits (middle to lower Holocene) – Matrix- to clast-supported cobble and 
boulder gravel, with variable amounts of sand, silt, and clay matrix; surfaces variably rubbly and 
commonly have levees and channels; includes multiple events graded to various levels above 
modern channels; unit grades into alluvial fans at mouths of canyons; thickness probably less 
than 9 meters (30 ft).

Liquefaction-induced landslide deposits (Holocene) – Mixture of silt, fine sand, and minor gravel 
redeposited in flow slides and lateral spreads (the northern part of the Farmington Siding 
landslide complex) as a result of liquefaction during large earthquakes; deposits display 
landslide-related lineaments, scarps, and hummocky topography; disrupted bedding and 
sand-filled cracks (injection features) are present in the deposits in the subsurface (Hylland and 
Lowe, 1998; Harty and Lowe, 2003); thickness generally less than 22 meters (70 ft). Most recent 
movement between 2700 and 4500 cal yr B.P.

Older landslide deposits (middle to lower Holocene) – Unsorted, unstratified mixtures of mostly 
sand, silt, and clay redeposited by single to multiple slides, slumps, and flows; deposits display 
hummocky topography but lack fresh scarps and are mostly inactive; thickness generally less 
than 15 meters (50 ft).

Older liquefaction-induced landslide deposits (lower Holocene to upper Pleistocene) – Mixture 
of silt, fine sand, and minor gravel redeposited in flow slides and lateral spreads (the southern 
part of the Farmington Siding landslide complex) as a result of liquefaction during large 
earthquakes; deposits display landslide-related lineaments, scarps, and hummocky topography 
that are more subdued than similar features found in the northern part of the landslide complex 
(Hylland and Lowe, 1998; Harty and Lowe, 2003); thickness less than 22 meters (70 ft).  Most 
recent movement between 11,500 and 13,000 cal yr B.P.

Landslide deposits (upper Holocene) – Unsorted, unstratified mixtures of gravel, sand, silt, and 
clay redeposited by slides, slumps, and flows; deposits display distinctly hummocky topography 
and fresh scarps, and are currently or have been recently active; thickness generally less than 15 
meters (50 ft).

Lacustrine deposits

Qlf

Qlgb

Qlgbp

Qli

Qlsbp

Qlsp

Lacustrine silt and clay deposits (Holocene) – Silt and clay with minor sand deposited in mud 
flats and exposed by fluctuating Great Salt Lake levels; may contain gypsum, halite, and other 
salts; thickness typically less than 3 meters (10 ft).

Lacustrine fine-grained deposits (upper Pleistocene) – Intervals of mixed fine-grained sediment, 
clay to silt, and intervals of rhythmically interbedded fine to medium sand deposited in 
low-energy, generally offshore environments at elevations below the Provo shoreline; thickness 
typically less than 6 meters (20 ft).

Lacustrine sand-bearing deposits related to the Provo shoreline and regressive phase of Lake 
Bonneville (upper Pleistocene) – Moderately to well-sorted gravelly sand, interlayered with 
some silt and sand; deposited and reworked in higher energy environments along the Provo and 
regressive shorelines near the mountain front; mapped at elevations below Provo shoreline; 
thickness typically less than 6 meters (20 ft).

Lacustrine sand-bearing deposits related to transgressive and regressive phases of Lake 
Bonneville (upper Pleistocene) – Moderately to well-sorted gravelly sand, interlayered with 
some silt and sand; deposited and reworked in higher energy environments near the mountain 
front; mapped at elevations below Provo shoreline; thickness typically less than 6 meters (20 ft).

Lacustrine gravel-bearing deposits related to transgressive and regressive phases of Lake 
Bonneville (upper Pleistocene) – Sand and clast-supported, moderately sorted pebble to cobble 
gravel, mapped below the Provo shoreline; gravels contain rounded to subrounded clasts, and 
some subangular clasts derived from reworking of mass-movement and alluvial-fan deposits; 
deposited in higher energy environments along shorelines; thickness generally less than 9 meters 
(30 ft).

Lacustrine gravel-bearing deposits related to the Bonneville shoreline and transgressive 
phase of Lake Bonneville (upper Pleistocene) – Clast-supported, moderately to well-sorted 
pebble to cobble gravel, with some silt to sand in interfluve areas and away from mountain front; 
gravels contain rounded to subrounded clasts, and some subangular clasts derived from 
reworking of mass-movement and alluvial-fan deposits; deposited in higher energy 
environments along shorelines during Lake Bonneville transgression; thickness generally less 
than 9 meters (30 ft).

Mixed-environment deposits

Qas

Q

Qb

Tb

Mixed alluvial and marsh deposits (Holocene) – Predominantly fine-grained sediment (sand, silt, 
and clay) deposited by low-gradient streams and in marshes; total thickness typically less than 6 
meters (20 ft).

Quaternary unconsolidated basin fill (Holocene to Pleistocene) – Unconsolidated mixture of 
lacustrine and alluvial clay, silt, sand, gravel, marl, and tuffaceous layers; shown only on cross 
sections; up to 150 meters (500 ft) thick.

Quaternary basin fill (Pleistocene) – Weakly consolidated mixture of lacustrine and alluvial clay, 
silt, sand, gravel, marl, and tuffaceous layers; shown only on cross sections; up to 400 meters 
(1300 ft) thick.

Tertiary basin fill (Tertiary) – Weakly to strongly consolidated mixture of conglomerate, 
sandstone, mudstone, tuffaceous sandstone, tuff, and lacustrine limestone; shown only on cross 
sections; up to 2400 meters (8000 ft) thick.

PALEOPROTEROZOIC

Xfcg

Xfcm

Xfc

Farmington Canyon Complex quartz-rich gneiss (Paleoproterozoic) – Medium- to light-gray, 
moderately foliated and layered, quartzo-feldspathic gneiss. Unit is characterized by quartz, 
feldspar, hornblende, and biotite gneiss, with garnet porphyroblasts; unit also contains zones of 
migmatite, pegmatitic dikes, amphibolite layers, biotite-rich schist, and mylonite. Unit forms 
rubble-strewn cliffs and steep slopes along Farmington Canyon and to the south along the 
mountain front. Age of metamorphism is ~1700 Ma (Nelson and others, 2002; Mueller and 
others, 2011; Nelson and others, 2011).

Farmington Canyon Complex pegmatitic gneiss (Paleoproterozoic) – Light-gray, weakly to 
moderately foliated, pegmatitic gneiss. Unit consists of quartzo-feldspathic pegmatite gneiss 
with minor biotite mica and secondary chloritic alteration. Unit may contain relatively unfoliated 
pegmatite bands and pods, and zones of moderately foliated interlayered pegmatite and 
quartz-rich gneiss. Unit is inset in quartz-rich gneiss (Xfcg) exposures south of Farmington 
Canyon. Age of metamorphism is ~1700 Ma (Nelson and others, 2002; Mueller and others, 2011; 
Nelson and others, 2011). 

Farmington Canyon Complex, undifferentiated (Paleoproterozoic) – Medium- to light-gray, 
moderately foliated and layered, quartzo-feldspathic gneiss and quartzo-feldspathic pegmatite 
gneiss; shown only on cross sections.
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Table 2. Ages of major shoreline occupations of Lake Bonneville, Gilbert episode, and Great Salt Lake with shoreline elevations in the Farmington quadrangle. 

 
Lake Cycle and Phase Shoreline 

(map symbol) 
Age Shoreline Elevation 

feet (meters) radiocarbon years 
 (14C yr B.P.)  

calibrated years  
(cal yr B.P.)1 

Lake Bonneville 
 Transgressive phase Stansbury shorelines 22,000–20,0002  Not recognized3 

Bonneville (B)     
 Overflowing phase Provo (P)   
 Regressive phase Regressive shorelines (r, I)    
Gilbert episode  Gilbert (G)   ~4250 (1295) 
Great Salt Lake 
 early Holocene highstand  Not recognized 
 late Holocene highstand    
 

Historical highstand 
  late 1860s to early 1870s 

and 1986–879 4212 (1284)
 

 

flood 

1All calibrations made using OxCal 14C calibration and analysis software (version 4.3.2; Bronk Ramsey, 2009; using the IntCal13 calibration curve of
Reimer and others, 2013), rounded to the nearest 500 years.
2 Oviatt and others (1990)
3The Stansbury shoreline formed at elevations of about 4440 to 4450 feet (1350–1360 m), which are present in the quadrangle, but the shoreline was either 
weakly developed or poorly preserved and cannot be identified.
4Oviatt (2015), Miller (2016), and references therein
5Godsey and others (2005, 2011), Oviatt (2015), Miller (2016) for the timing of the occupation of the Provo shoreline and subsequent regression of Lake 
Bonneville to near Great Salt Lake level.  Alternatively, data in Godsey and others (2005) may suggest that regression began earlier, shortly after 16.5 cal 
ka (see sample Beta-153158, with an age of 13,660 ± 50 14C yr B.P. [16.5 cal ka] from 1.5 m below the Provo shoreline).  Also, lacustrine carbonate deposits 
in caves reported by McGee and others (2012) seem to support an earlier Lake Bonneville regression beginning around 16.4 cal ka.
6Gilbert-episode highstand may have been very short lived; age represents lake culmination (Oviatt and others, 2005; Oviatt, 2014).
7Murchison (1989), Currey and James (1982)
8Miller and others (2005)
9Arnow and Stephens (1990)

~15,200–15,0004

~15,000–12,6005

~12,600–11,5005

10,0006

9700–94007

4200–21008

26,000–24,000
~18,500–18,000

18,000–15,000
15,000–13,000

11,500

11,000–10,500
5000–2000

5180–5200 (1580–1585)
4820–4860 (1470–1482)
4380–4820 (1335–1470)

4217–4221 (1285–1287)

A
B
C
D

Table 1.  Well location is shown on geologic map. Depth is the total depth of well in feet. WR location corresponds to the water right 
location in the Utah Division of Water Rights database available at http://www.waterrights.utah.gov/wellinfo/default.asp. API number 
corresponds to petroleum well logs available at http://www.ogm.utah.gov/. Location data projection: UTM 12 N NAD 1927.

WELL DATA

3525
985
910
520

111°55'47.711" W 40°57'29.605" N
111°56'35.31" W 40°59'59.341" N
111°54'1.207" W 40°59'41.708" N
111°52'36.133" W 40°52'37.861" N

4301110041
S840 E1334 NW 15 T3N R1W
N100 W2579 E4 13 T3N R1W
S2485 W1525 NE 30 T2N R1E

Well ID Depth (ft)
Tertiary basin fill

unconsolidated deposits
unconsolidated deposits
unconsolidated deposits

Location API or WR Location Bottom Lithology

Rise and fall of Lake Bonneville between about 28 and 13.5 ka, and of Great Salt Lake (modified from Oviatt, 1997; 
Murchison and Mulvey, 2000; and Godsey and others, 2005). Elevations have been adjusted to remove effects of isostatic 
rebound. Holocene portion of hydrograph is largely schematic.  
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