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Major shorelines of the Bonneville lake cycle
and related lakes (see table 2) –   

Bonneville shoreline

Provo shoreline

Shambip shoreline (regressional)

Smelter shoreline (regressional)

Stansbury shoreline

Cedar Valley shoreline (undetermined)

Lake Bonneville crest of barrier ridge or delta ridge

Delta distributary channel crest (on map unit Qlf/Qls in Skull Valley)

Holocene shoreline of Rush Lake 
Strike and dip of bedding (black-this study and six Kirby 7.5’ quadrangles, 
red-prior mapping; refer to index to mapping sources) – 

Inclined

Inclined approximate, approximate dip included where known 

   Vertical
   Overturned

Sand and gravel pit

Mine or quarry

Adit

Shaft

Drill holes/wells (see table 1) –

Radiometric age sample (see table 7)

Geochemical/radiometric age samples (see tables 6, 7)

Tephrochronology sample (see table 4)

U-Pb zircon age sample (see table 5) 

Fossil age sample (see table 8)

Palynology age sample (see table 9) 

Stacked unit – Indicates thin cover of the 
first unit overlying the second unit 

Qei/Qlf

S

Sm

Sh

20

H

B

P

30

% % % % % %

Contact − Angled where scratch

Geomorphic surface (Stockton Bar and Cedar Valley Lake outlet)

High-angle normal fault – Dashed where 
approximately located, dotted where concealed, queried 
where uncertain; bar and ball on down-thrown side

Normal fault, geophysical, gravity – Located from gravity data,
   concealed and very approximately located; bar and ball on 
   downthrown side
Strike-slip or oblique-slip fault – Dashed where 

approximately located, dotted where concealed; 
arrows and bar and ball indicate relative 
displacement; T for toward, A for away on cross sections

Fault, unknown geometry and offset – Dashed where approximately
located, dotted where concealed; queried where uncertain

Thrust fault – Dashed where inferred, dotted where 
concealed; queried where uncertain; teeth on hanging 
wall; bar and ball where later normal offset

Low-angle fault – Dotted where concealed; boxes 
on hanging wall

Low-angle normal fault – Dashed where approximately located, 
dotted where concealed; boxes on hanging wall

Lineament – From aerial photo interpretation

Igneous dike (map units Tiqlp, Tdmo, Tipqm, and Tir)

Igneous dike (map unit Tido)

Axial trace of anticline – Dashed where 
approximately located, dotted where concealed; 
arrow shows plunge

Axial trace of overturned anticline − Dashed where 
approximately located, dotted where concealed; 
queried where uncertain; arrow shows plunge

Axial trace of syncline – Dashed where 
approximately located, dotted where concealed; 
arrow shows plunge

Axial trace of overturned syncline − Dashed where 
approximately located, dotted where concealed; 
arrow shows plunge

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! G ! ! ! ! ! ! ! ! ! !

! ! ! ! ! ! !

?

Axial trace of monocline - Dotted where concealed

CV

Spring

Areas of mine waste rock (Bingham mine)

A A' Line of cross section

Gravity data (see GIS data) –  
 
Points/station

Glacial cirque headwall
Nivation hollow headwall and adjacent ridge crests

-170 Contour lines
New Quaternary faults (see GIS data)

•

Unconformity (on cross sections)

GEOLOGIC SYMBOLS

G
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Water well
Drill hole

Oil/Gas well, dry hole

Oil/Gas well, abandoned

š

   Inclined, approximate, photo-interpreted

  Volcanic foliation, inclined 
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`

"

H

J

X X X

D D D

X

D

X

D

Axial trace of asymmetric anticline - Dashed where
    approximately located, dotted where concealed;
    arrow shows plunge; double arrows on steep limb

J

Geochemical sample (see table 6)

Water boundary
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Qafy Younger fan alluvium, post-Lake Bonneville

Qe/Qlf Eolian deposits over lacustrine fine-grained deposits

Qpm/Ql Playa mud over undivided lacustrine deposits over older
    lacustrine deposits

Qed/Qla Eolian dune sand over lacustrine and alluvial deposits

Qed/Qlf Eolian dune sand over lacustrine fine-grained deposits

Qed/Tac
Eolian dune sand over andesitic and dacitic rocks of 
    southern Cedar Mountains

Qes/Qafo Eolian sheet sand over older fan alluvium

Qes/Qla Eolian sheet sand over lacustrine and alluvial deposits

Qes/Qlf Eolian sheet sand over lacustrine fine-grained deposits

Qlf/Qls Lacustrine fine-grained deposits over lacustrine sand deposits

Andesitic intrusions of southern Cedar Mountains

Tso Older Tertiary strata
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Tim Monzonite intrusions

Tiqmp

Tvfou Older intermediate lava flows
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Tipqm Porphyritic quartz monzonite intrusions

Andesitic intrusionTia

Tir Rhyolitic intrusions

Trf Rhyolitic lava flows of Tickville Gulch

Tvbb Block-and-ash flows and lahars of Black Ridge

Tvfb Intermediate lava flows of Black Ridge

Tvfs Younger lava flows

Tvbs Younger volcanic breccia

Tvbo Older block-and-ash flows and lahars

Tdmo Mafic dikes [see symbols]

Tido Dacitic dike [see symbols]
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Zcc

Trdc Rhyodacite of Cherry Springs

Trj Rhyolite of Judd Creek

Tlg Latite of Government Creek

Rhyolite of Rydalch Canyon area

Tid Dacitic intrusions of Little Granite Mountain and White Rock

Tac Andesitic and dacitic rocks of southern Cedar Mountains

Tvs Rhyolitic to andesitic volcanic rocks of Stansbury Mountains

Quartz monzonite porphyry intrusion

Tiqlp Quartz latite porphyry dikes and sills

Qal Stream alluvium

Qam Alluvial mud

Qafb Fan alluvium, graded to Lake Bonneville

Qafo Older fan alluvium, pre-Lake Bonneville

QTaf High-level fan alluvium

Taf Tertiary fan alluvium

Qsm Spring and marsh deposits

Qe Eolian deposits, undivided

Qes Eolian sheet sand deposits

Qed Eolian dune sand deposits

Qpm Playa mud

Qlfy Younger lacustrine fine-grained deposits

Qlsy Younger lacustrine sand deposits

Qdg Deltaic gravel, Lake Bonneville

Qlg Lacustrine gravel, Lake Bonneville

Qls Lacustrine sand, Lake Bonneville

Qlf Lacustrine fine-grained deposits, Lake Bonneville

Qgt Glacial till

Qc Colluvium

Qmtc Talus and colluvium

Qms Landslide deposits

Qla Lacustrine and alluvial deposits, undivided

Qac Alluvial and colluvial deposits, undivided

Qh Human disturbance

Qhm Mine dumps [see symbols]

Qei/Qal Eolian silt over stream alluvium

Qei/Qlf Eolian silt over lacustrine fine-grained deposits

Qes/Qafy Eolian sheet sand over younger fan alluvium

Ql/Tv Lacustrine deposits over undivided Tertiary volcanic rocks

Qlg/rx Lacustrine gravel over undivided bedrock

QTaf/
Tslc High-level fan alluvium over Salt Lake Fm., conglomerate lithosome

Tbav Basaltic andesite

Trv Rhyolite

Tdv Dacite

Tb Mosida Basalt

Tfb Shoshonite of Broad Canyon

Tdm Mafic dikes

Tvm Minette of Black Rock Canyon

Tpc Pinyon Creek Conglomerate

Tlsl Laguna Springs Volcanic Group, lava flow unit

Tlsa Laguna Springs Volcanic Group, tuff unit

Tsw Soldiers Pass Formation, White Knoll Member

Tsb Soldiers Pass Formation, breccia member

Soldiers Pass Formation, tuff of Twelvemile Pass member

Soldiers Pass Formation, Chimney Rock Pass Tuff Member

Ttlr Tintic Mountain Volcanic Group, Latite Ridge Latite

Tp Packard Quartz Latite, undivided

^tw Thaynes Formation and Woodside Formation, undivided

Ppfm Park City Formation, Franson Member and Phosphoria Formation, 
     Meade Peak Member, undivided

Ppg Park City Formation, Grandeur Member

Psl Permian sandstone, limestone and dolomite

Pdk Diamond Creek Sandstone and Kirkman Formation, undivided

Pofc Oquirrh Group, Freeman Peak and Curry Peak Formations, undivided

Pofp Oquirrh Group, Freeman Peak Formation

Pocp Oquirrh Group, Curry Peak Formation

*ob Oquirrh Group, Bingham Mine and Butterfield Peaks Formations, 
     undivided

*obm Oquirrh Group, Bingham Mine Formation, undivided

*obmu Oquirrh Group, Bingham Mine Formation, upper member

*obml Oquirrh Group, Bingham Mine Formation, lower member

*obw
Oquirrh Group, Butterfield Peaks Formation and West Canyon 
     Limestone, undivided

*obp Oquirrh Group, Butterfield Peaks Formation

*owc Oquirrh Group, West Canyon Limestone

*olc Oquirrh Group, limestone unit, Cedar thrust sheet

Mmc Manning Canyon Formation

Mgb Great Blue Limestone, undivided

Mgbus Great Blue Limestone, upper limestone and shale member

Mgbu Great Blue Limestone, upper limestone member

Mgbs Great Blue Limestone, shale member

Mgbl Great Blue Limestone, lower limestone member

Mhd? Humbug Formation and Deseret Limestone, undivided?

Mh Humbug Formation

Md Deseret Limestone

MDgs Gardison Limestone, Fitchville Formation, Pinyon Peak Limestone, 
     Stansbury Formation, undivided

Mg Gardison Limestone

MDfs Fitchville Formation, Pinyon Peak Limestone, Stansbury Formation,
     undivided

MDfp Fitchville Formation and Pinyon Peak Limestone, undivided

Dst Stansbury Formation

DOu
Guilmette Formation?, Simonson, Sevy, Laketown, and Ely Springs Dolomites, 
     undivided

Dg Guilmette Formation

Dsi Simonson Dolomite

Dsy Sevy Dolomite

SOu Laketown Dolomite and Ely Springs Dolomite, undivided

Sl Laketown Dolomite

Oe Eureka Quartzite

O_u Lower Ordovician and Upper-Middle Cambrian strata, 
     undivided

Opk Pogonip Group, Kanosh Shale

Op Pogonip Group, undivided

_u Upper Cambrian strata, undivided

_um Upper and Middle Cambrian strata, undivided

Notch Peak Formation

Orr Formation

Orr Formation, upper part

_ob Orr Formation, Big Horse Limestone Member

_l Lamb Dolomite

_m Middle Cambrian strata, undivided

Trippe Limestone

Pierson Cove Formation

_ww Wheeler Formation, Swasey Limestone, Whirlwind Formation, 
     undivided

_dh Dome Limestone, Chisholm Formation, Howell Limestone, 
      undivided

_p Pioche Formation

_pm Prospect Mountain Quartzite

Zm Mutual Formation

Inkom Formation

Caddy Canyon Quartzite

_ly Lynch Dolomite

_b Bowman Limestone

_h Hartmann Limestone

_op Ophir Formation

_t Tintic Quartzite

MDf Fitchville Formation

Dpv Pinyon Peak Limestone and Victoria Formation, undivided

DOb Bluebell Dolomite

Od Ordovician dolomite

Oo Opohonga Limestone

_ao Ajax Dolomite and Opex Formation, undivided

_c Cole Canyon Dolomite

_bh Bluebird Dolomite and Herkimer Limestone, undivided

_dt Dagmar Dolomite and Teutonic Limestone, undivided

Zbc Big Cottonwood Formation

Water

Tstp

Tsc
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0.0117

Qlo Older lacustrine deposits [subsurface only]

Tj Jasperoid Tsa Soldiers Pass Formation, andesite member Ou Ordovician strata, undivided

Oes Ely Springs Dolomite

Note - Repeated queried labels not included here, see Description
           of Map Units in booklet
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AND SALT LAKE COUNTIES, UTAH
by Donald L. Clark, Stefan M. Kirby, and Charles G. Oviatt

ABSTRACT

The Rush Valley 30' x 60' quadrangle extends southwest and 
west from the greater Salt Lake City–Provo metropolitan area 
with land use varied between public, military, Indian reserva-
tion, and private. This 1:62,500-scale geologic map will aid the 
proper management of land, water, and other resources. The 
map area lies within the eastern Basin and Range Province. 
Mountain ranges are composed of unexposed basement rocks 
overlain by exposed Neoproterozoic through Triassic rocks that 
are about 10.4 miles (16.8 km) thick, and by numerous Tertiary 
sedimentary and volcanic units (~47 to 20 Ma). The intervening 
valleys include bedrock covered with Miocene-Pliocene? rocks 
(~11 to 4 Ma) and Neogene-Quaternary surficial deposits. The 
map area is on the southern flank of the Uinta-Tooele structural 
zone. This area is in the Charleston-Nebo (Provo) salient of the 
Sevier fold-thrust belt and some thrust faults are exposed, but 
the overall Sevier belt geometry is obscured by extensive Ce-
nozoic cover and later faulting. Following Sevier deformation, 
calk-alkaline volcanism occurred from several Paleogene vol-
canic centers (42 to 25 Ma). Extensional tectonism created the 
distinctive basin and range topography from about 20 Ma to 
the present. Early extensional basin fill includes Miocene sedi-
mentary and volcanic rocks followed by Pliocene-Holocene 
surficial deposits primarily from lacustrine and alluvial depo-
sitional environments. Valley areas were covered by late Pleis-
tocene Lake Bonneville, and deposits are associated with three 
levels of regional shorelines. Normal faults cut the ranges and 
are known to bound some valley margins where not concealed. 
Although deep drill hole data are relatively sparse, gravity data 
were used to help constrain basin geometries.

INTRODUCTION

The Rush Valley 30' x 60' quadrangle is located southwest 
of Salt Lake City, in Tooele, Utah, and Salt Lake Counties, 
northwest Utah. The quadrangle is within the eastern Basin 
and Range Province and includes several mainly north-south-
trending ranges and intervening valleys (plates 1, 2, 3; fig-
ure 1). The map area is sparsely populated and includes the 
towns of Dugway, Stockton, Vernon, Fairfield, Cedar Fort, 
and Eagle Mountain, but parts of Tooele, Rush, and Cedar 
Valleys are rapidly urbanizing. Land use is varied between 
public, military, Indian reservation, and private. Public lands 
are administered by the U.S. Bureau of Land Management 

(including the Cedar Mountains Wilderness), the U.S. Forest 
Service (Uinta-Wasatch-Cache National Forest including De-
seret Peak Wilderness), and the State of Utah (SITLA–School 
and Institutional Trust Lands Administration). Military in-
stallations include parts of Dugway Proving Ground (DPG), 
Tooele Army Depot (TAD North and South areas), and Camp 
Williams Military Reservation (Utah National Guard). The 
TAD South area (a.k.a. Deseret Chemical Depot) was closed 
in 2013. A Goshute Indian reservation is in Skull Valley. Pri-
vate lands are mostly in the eastern half of the quadrangle.

The impetus for this mapping was two-fold: (1) a joint U.S. 
Geological Survey (USGS) and Utah Geological Survey 
(UGS) hydrogeologic study in Rush Valley conducted on be-
half of the Utah Division of Water Resources (Gardner and 
Kirby, 2011), and (2) the need to complete additional inter-
mediate-scale geologic mapping in northwestern Utah (see 
Willis, 2017). Other key groundwater studies were conducted 
in Cedar Valley (Hurlow, 2004; Jordan and Sabbah, 2013; Jor-
dan, 2013). The map area contains other significant economic 
resources including metals mining districts (Bingham, Stock-
ton, Ophir, Mercur, East Tintic), industrial mineral localities 
(sand and gravel, limestone, clay, volcanic ash), and other po-
tential or undeveloped resources (see, for example, Stein and 
others, 1989; Tripp and others, 1989). Our geologic mapping 
also aided environmental and hydrogeologic studies at DPG 
and TAD. In addition, our mapping connects with recent map-
ping projects on the west (DPG area, Clark and others, 2016), 
east (Provo 30' x 60' quadrangle, Constenius and others, 2011, 
in preparation), north (Tooele 30' x 60' quadrangle, Clark and 
others, 2020b), and northwest (Bonneville Salt Flats 30' x 60' 
quadrangle, Clark and others, 2020a). Older adjacent mapping 
to the south is by Pampeyan (1989, 2005). We benefitted from 
the prior regional-scale (1:250,000) geologic maps of this area 
by Stokes (1963) and Moore and Sorensen (1979).

This geologic map was compiled and modified from several 
sources. The primary mapping sources are indicated in the map 
explanation (plate 2), but numerous other sources were evalu-
ated that are referenced throughout the text. The main sources 
include the eastern part of the DPG area map, a map of Skull 
Valley, eleven 7.5' quadrangles in the eastern half of the quad-
rangle, and several maps of the southern Oquirrh Mountains. 
Kirby conducted detailed mapping in six of the 7.5' quadrangles 
covering Rush Valley in conjunction with the USGS ground-
water framework study. For intervening areas, we revised prior 
mapping using aerial photograph interpretation and interme-
diate-scale geologic mapping in the field. Oviatt substantially 
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contributed to the DPG area map and assisted with mapping 
of Quaternary surficial deposits in the remainder of the map 
area. We collected field data with recreational-grade Global Po-
sitioning System (GPS) devices and geologic-grade compasses. 
We mapped on a patchwork of stereo aerial photographs (U.S. 
Department of Agriculture NAIP, U.S. Forest Service, and U.S. 
Bureau of Land Management, various scales and years) and 
digital orthophotographs, and compiled data in CAD (Com-
puter Aided Design) and GIS (geographic information sys-
tem) software. Spring and gravel pit, and selected mine, adit, 
and quarry data were taken from topographic basemaps. Kent 
Brown (UGS) managed the GIS data over the project’s entirety.

The mapping was conducted over three years (2008–09, 
2009–10, 2010–11), with interim (progress report) geologic 
maps prepared each year (UGS Open-File Reports 555, 568, 
and 593). We presented a poster of the map at the May 2011 
Geological Society of America meeting in Logan, Utah (Kirby 
and Clark, 2011). We conducted a field review of the map area 
October 18–19, 2011. We submitted a STATEMAP Contract 
Deliverable of the map and GIS data to the USGS in Septem-
ber 2013. Clark’s other mapping priorities in northwest Utah 
led to delays in final map publication. This map and GIS data 
supersedes the open-file reports and contract deliverable. The 
geology is intended for use at 1:62,500 scale.
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Figure 1. Primary geographic features in the Rush Valley 30' x 60' quadrangle (blue rectangle), and hydrogeologic study area (Gardner and Kirby, 2011).  TAD is the Tooele Army Depot.
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GEOLOGIC OVERVIEW

The quadrangle contains exposed rocks from late Precambrian 
(Neoproterozoic) to Neogene (Miocene) age that are mantled 
by late Tertiary and Quaternary surficial deposits. Although 
no basement rocks are exposed here, rocks of the Mojave and 
Yavapai provinces were accreted onto the older continental 
core consisting of the Grouse Creek block, Farmington zone, 
and Wyoming province about 1.7 billion years ago, presum-
ably along an east-west-trending suture zone near the latitude 
of Salt Lake City and near the northern margin of the map area 
(Yonkee and others, 2014; see also Willis, 2021).

Sedimentary rocks from Neoproterozoic through Triassic age 
crop out in the ranges and cumulatively are roughly 55,000 feet 
(10.4 mi, 16.8 km) thick. These rocks were deposited over a 
span of about 500 million years (~770 to 247 Ma), initially in 
basins and rifting environments (Neoproterozoic to Early Cam-
brian), followed by largely marine environments along a subsid-
ing passive margin (miogeocline) west of the Wasatch hingeline 
(Stokes, 1986; Hintze and Kowallis, 2009; Yonkee and Weil, 
2011). Mississippian to Permian strata were deposited in the 
Oquirrh basin located between the Antler orogenic belt on the 
west and Ancestral Rocky Mountains on the east (Jordan and 
Douglass, 1980; Hintze and Kowallis, 2009). Paleozoic strata 
were affected by tectonic features coincident with reactivation 
of the basement suture zone (this suture zone is known by sev-
eral names; we call it the Uinta-Tooele structural zone [Clark, 
2020]). This recurring tectonic reactivation included the Ordovi-
cian Tooele arch (Webb, 1958; Hintze, 1959), Devonian Stans-
bury uplift (Rigby, 1959a), Uinta-Cottonwood arch (Tooker, 
1983, 1999; Bradley and Bruhn, 1988; Presnell, 1997; Paulsen 
and Marshak, 1999), and aligned Tertiary igneous rocks and 
mineralization (John, 1989; Rowley, 1998; Tooker, 1999).

Utah lies within the Cordilleran orogenic belt of North Amer-
ica (DeCelles, 2004; Yonkee and Weil, 2011). Northern Utah 
contained a hinterland metamorphic belt on the west and an 
eastern transitional zone (Jurassic and Cretaceous), with a 
frontal thrust belt farther east (Early Cretaceous to Eocene, 
about 145 to 50 Ma) (Miller and others, 1992; DeCelles, 
2004; DeCelles and Coogan, 2006; Yonkee and Weil, 2011). 
The map area lies in the Charleston-Nebo (Provo) salient of 
the Sevier fold-thrust belt (DeCelles, 2004; Kwon and Mitra, 
2004). Discordant lithofacies in Paleozoic rocks across Rush 
Valley are attributed to the western and eastern thrust systems, 
each carrying distinctive rock packages on different thrust 
sheets (see Yonkee and others, 2014).

Low-angle normal faults in this map area are related to post-
compressional collapse or relaxation of the Sevier orogenic 
belt (Constenius, 1996; Constenius and others, 2003). Local 
basins developed during this early phase of extension and 
collected sediment deposited in alluvial, floodplain, and la-
custrine environments during the Eocene (~47 to 39 Ma) and 
possibly from the Paleocene to Oligocene.

Eocene to Oligocene (42 to 25 Ma) volcanic rocks and in-
trusions are present across the map area. They are part of an 
episode of middle Cenozoic volcanism that swept from north 
to south across the western U.S. and that is related to a change 
in subduction at the western margin of North America (see, 
for example, Lipman and others, 1972; Christiansen and Lip-
man, 1972; Best and Christiansen, 1991). Geochemical data 
indicate these rock units are largely intermediate to silicic in 
composition, although a few mafic units occur.

Basin and Range extension began about 20 Ma (Miocene) 
and continues to the present; it is characterized by its distinc-
tive topography (north-trending ranges and basins) and bi-
modal volcanism (see, for example, Christiansen and McKee, 
1978; Zoback, 1983). Numerous normal faults in the ranges 
and exposed and inferred along the valley margins are related 
to this Neogene extension. The basins in northern Utah pre-
serve sedimentary and volcanic rocks of the Miocene-Plio-
cene Salt Lake Formation; some of these rocks (~11 to 4 Ma) 
are present in Skull and Rush Valleys and the Stansbury and 
Oquirrh Mountains.

Extensive late Tertiary to Quaternary surficial deposits blanket 
the area. Basins contain Pliocene and Pleistocene deposits that 
are generally not well understood since they are typically deep-
ly buried. Three levels of alluvial fans are considered to pre-
date Lake Bonneville because they are higher than, or eroded 
by, the lake. Another level of fans was graded to the lake level.

Late Pleistocene Lake Bonneville was the youngest and deep-
est of several large pluvial lakes in northern Utah (Oviatt and 
others, 1992, 1999; Oviatt, 2015; Oviatt and Shroder, 2016). 
Threshold control was maintained at Red Rock Pass, Idaho. 
The lake generally increased in size (transgressive phase) from 
about 30,000 to 18,000 calendar calibrated years before present 
(cal yr B.P.) (figure 2). The Stansbury shoreline and shoreline 
zone were formed during lake oscillations near 25,000 cal yr 
B.P. Subsequently, after transgressing up to its highest level, 
the lake quickly fell (Bonneville flood) from its greatest extent 
(Bonneville shoreline) to establish the Provo shoreline (18,000 
to 15,000 cal yr B.P.) (overflowing phase), and then continued 
to regress (regressive phase) until about 13,000 cal yr B.P. After 
about 13,000 cal yr B.P., the level of Great Salt Lake averaged 
close to the modern elevation (4200 feet, 1280 m), and the Gil-
bert episode lake peaked at about 11,500 cal yr B.P. (Oviatt, 
2014, 2015). Evidence of Lake Bonneville is recorded in lake 
deposits (mud, marl, sand, and gravel), and shoreline remnants, 
including the Stansbury, Bonneville, and Provo shorelines. 
The deepest part of Lake Bonneville, and the center of post-
Bonneville isostatic rebound, was centered to the north near 
the Lakeside Mountains (Crittenden, 1963; Currey, 1982; Ad-
ams and Bills, 2016). Lake water overflowed northward from 
the Sevier basin (Lake Gunnison) to the Great Salt Lake basin 
(Lake Bonneville) along the Old River Bed (river valley) in 
the southwestern part of the map area. This drainage formed a 
delta at the Lake Bonneville margin that has been dated at about 
10,000 to 13,000 cal yr B.P. (Oviatt and others, 2003).
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A unique lacustrine feature of the quadrangle is Stockton Bar, 
a transverse barrier bar and spit complex between Tooele and 
Rush Valleys. Construction of the bar caused the lake in Rush 
Valley to become isolated from the main body of Lake Bonn-
eville. During the regression from the Bonneville highstand, 
the lake level in Rush Valley varied independently of the level 
in the rest of the Bonneville basin. Two shorelines in Rush 
Valley (Shambip and Smelter Knolls) record this variation 
(Gilbert, 1890; Burr and Currey, 1988, 1992; Nelson, 2012). 
Similarly, a lake existed in Cedar Valley below the Bonneville 
highstand with local threshold control (McKean, 2020).

Coeval with Lake Bonneville, small alpine glaciers occupied 
cirque basins and valleys in the higher elevations of the Stans-
bury and Oquirrh Mountains during the Last Glacial Maxi-
mum at 21 ± 2 ka (Laabs and Monroe, 2016). These Pleisto-
cene glacial deposits are primarily of Angel Lake or Pinedale 
age (~24 to 12 ka), but limited older deposits are probably 
Lamoille or Bull Lake in age (Marine Oxygen Isotope Stage 
6, ~190 to 130 ka) (Laabs and Carson, 2005; Laabs and Mon-
roe, 2016; Pierce and others, 2018).

Holocene deposition included sediments largely of alluvial 
and eolian environments. Younger alluvial fans continued to 
develop. Eolian silt and sand deposits likely emanated from 
the Great Salt Lake Desert and locally from Lake Bonneville 
deposits. Sediments from spring, colluvial, mass movement, 
and mixed depositional environments also occur.

Some Basin and Range faults have developed Quaternary-age 
scarps along the margins and within several major valleys. 

These faults and other unobserved faults present potential 
seismic risk. Some areas of the quadrangle have undergone 
human disturbance.

NOTES ON STRATIGRAPHY

Several stratigraphic issues warrant further discussion, par-
ticularly to clarify where we have departed from prior work. 
These issues relate to ages, Paleozoic nomenclature, Cam-
brian strata, Mississippian units, the Permian-Pennsylvanian 
Oquirrh Group, and Tertiary volcanic rocks.

Although U-Pb detrital zircon analyses were conducted on 
several Cambrian and Neoproterozoic geologic units in north-
ern Utah (see, for example, Yonkee and others, 2014), few 
have yielded younger grains for maximum depositional ages 
(to constrain formation ages).

For selected Cambrian through Devonian strata of Camels 
Back Ridge, we apply regional stratigraphic names of Hin-
tze and Robison (1975) and Hintze (1980). This terminology 
departs from the prior use of local names from the Dugway 
Range by Staatz and Carr (1964) and Staatz (1972).

Clark and Kirby (2009) reevaluated Cambrian stratigraphy 
of the Stansbury and northern Sheeprock Mountains. All 
sections of Cambrian rock are incomplete due to structural 
disturbance, but we evaluated sections in South Broons 
Canyon (Stansbury Mountains, north of map area) and 

Figure 2. Simplified Lake Bonneville and Great Salt Lake hydrograph and chronology (based on Oviatt, 2015; Oviatt and others, 2021). 
Elevations are adjusted for isostatic rebound. T is Transgressive Phase, O is Overflowing Phase, and R is Regressive Phase for Lake 
Bonneville. GSL is Great Salt Lake. See Oviatt (2014) for information about the Gilbert-episode lake. Another GSL lake rise to about 4230 
feet (~1289 m) has been documented at Locomotive Springs with a maximum age of 11,000 years BP (Oviatt and others, 2015). Dashed line 
labeled “Sevier basin” represents the altitude of the overflowing lake in that basin during the regressive phase; overflow to the Great Salt 
Lake Desert stopped after the Gilbert episode.
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on Red Pine Mountain (Sheeprock Mountains). Although 
we have no new biostratigraphic age control, lithofacies 
sequences closely resemble western Utah strata (western 
thrust system; see, for example, Hintze and Robison, 1975) 
rather than the East Tintic Mountains section (eastern thrust 
system) as initially applied by Rigby (1958) and perpetu-
ated by subsequent mappers in the Stansbury Mountains, 
and the “mixed” stratigraphic nomenclature used by Cohe-
nour (1957, 1959) in the Sheeprock Mountains (figure 3). 
Our revised terminology is indicated in the map explana-
tion and figure 3. We lumped Middle Cambrian map units 
in a similar fashion to Hintze and Davis (2003) and Clark 
and others (2020b).

Cambrian rock units are also exposed in the core of the Ophir 
anticline of the southwestern Oquirrh Mountains. Gilluly 
(1932) noted the lithologic similarities of Cambrian strata 
in the Oquirrh Mountains to the East Tintic Mountains area 
but was unsure of direct correlations and thus applied local 
names; these names were later used by Tooker (1987, 1999). 
Rigby (1959b) used East Tintic terminology for the Cambri-
an rock units in the Oquirrh Mountains, and this terminology 
was also used on Laes and others’ (1997) map. We conclude 
that although there are similarities to the East Tintic section, 
the lithofacies present warrant use of the local names of Gil-
luly (1932), and correlation to the East Tintic section needs 
further study.

Figure 3. Comparison of Cambrian stratigraphic nomenclature of the Stansbury Mountains.
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We re-evaluated the stratigraphic nomenclature of the Great 
Blue Limestone in the southern Oquirrh and northern East 
Tintic Mountains. Based on limitations of the exposures and 
age control in the East Tintic Mountains and Topliff Hill–Ten-
mile Pass area, lithofacies relationships over a broader area, 
and limited new palynology data, we include strata previously 
mapped by Disbrow (1957, 1961) and Morris and Lovering 
(1961) as the Poker Knoll Limestone and Chiulos Members 
of the Great Blue with the Manning Canyon Formation, and 
the locally used Paymaster Member and Topliff Limestone 
Member as the Great Blue Limestone, undivided. We applied 
similar nomenclature to the northern Sheeprock Mountains 
and Davis Mountain areas mapped by Cohenour (1957, 1959) 
and Moore and Sorensen (1977). We included an additional 
member of the Great Blue near Fivemile Pass (unit Mgbus) 
that appears to be associated with a different structural block, 
an interpretation similar to Tooker (1987).

One of the largest challenges of this mapping project was the 
Oquirrh Group rocks. Geologists have struggled for decades 
with the thick, monotonous, and structurally deformed unit 
for which formational nomenclature has been slow to become 
established (see, for example, Hintze and Kowallis, 2009). We 
applied a consistent nomenclature across the quadrangle based 
on lithofacies successions and fossil age data. This nomencla-
ture builds on prior work in the Cedar Mountains (Maurer, 
1970; Clark and others, 2016) (figure 4), Stansbury and Ona-
qui Mountains (Wright, 1961; Armin, 1979; Jordan, 1979a, 
1979b; Armin and Moore, 1981), Oquirrh Mountains/South 
Mountain/western Traverse Mountains (Welsh and James, 
1961, 1998; Tooker and Roberts, 1970, 1998; Moore, 1973c; 
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Figure 4. Comparison of Oquirrh Group strata nomenclature of the southern Cedar Mountains. The 
nomenclature used on this map for the lower Permian (Wolfcampian) and Pennsylvanian formations is 
largely based on that of the Oquirrh Mountains/Bingham mining district.

Figure 4. Comparison of Oquirrh Group strata nomenclature of the southern Cedar Mountains. The nomenclature used on this map for the 
lower Permian (Wolfcampian) and Pennsylvanian formations is largely based on that of the Oquirrh Mountains/Bingham mining district.

Swenson, 1975; Jordan, 1979a, 1979b; Tooker, 1999; Biek and 
others, 2005), and Thorpe Hills (Disbrow, 1957). The Perm-
ian-Pennsylvanian rocks of the southern Oquirrh Mountains 
are referred to as part of the Bingham sequence (Tooker and 
Roberts, 1970). Considering regional relations and following 
Laes and others (1997), we combine Lower Permian (Cur-
ry Peak and Freeman Peak Formations) and Pennsylvanian 
formations from the Bingham area with the Oquirrh Group. 
This scenario makes similar sections of Oquirrh Group strata 
in the southern Oquirrh Mountains and the Wasatch Range 
stratigraphically equivalent (figure 5). This nomenclature dif-
fers from terminology established in the Oquirrh Mountains 
(Welsh and James, 1961; Tooker and Roberts, 1970), which 
restricted the Oquirrh Group to strata of Pennsylvanian age. 
Oquirrh Group rocks of the southern Oquirrh Mountains total 
nearly 20,000 feet (6100 m) thick (Tooker and Roberts, 1970; 
Swenson, 1975), while equivalent strata in the Wasatch Range 
total approximately 29,000 feet (8850 m) thick (Baker, 1976; 
Constenius and others, 2011, in preparation).

Although we applied this consistent stratigraphic nomen-
clature to the Oquirrh Group based on lithostratigraphy and 
age relations (paleontologic data), we recognize that differ-
ent parts of the Oquirrh basin are juxtaposed against one an-
other in structural blocks of the Sevier fold-thrust belt. The 
presence of these different structural blocks led Tooker and 
Roberts (1998) to use different stratigraphic nomenclature in 
each block. Sequence stratigraphic work of Scott Ritter and 
Brigham Young University students (Shoore and Ritter, 2007; 
Derenthal, 2011) has begun to reveal more details on Oquirrh 
Group stratigraphy.
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Figure 5. Comparison of Permian-Pennsylvanian nomenclature of the Oquirrh Group/Formation and other units used on this map and in 
adjacent areas. Grassy Mountains modified from Doelling (1964) and Jordan (1979a, 1979b). See Clark and others (2020b) for Oquirrh, 
Stansbury, and Cedar Mountains. See Constenius and others (2011) for Wasatch Range.
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Figure 5. Comparison of Permian-Pennsylvanian nomenclature of the Oquirrh Group/Formation and other units 
used on this map and in adjacent areas. Grassy Mountains modified from Doelling (1964) and Jordan (1979a, 
1979b). See Clark and others (2020) for Oquirrh, Stansbury, and Cedar Mountains. See Constenius and others 
(2011) for Wasatch Range.

Interpretations on Tertiary volcanic rocks of the quadrangle 
were updated from the prior work of Moore and McKee 
(1983), with new radiometric ages and whole-rock geo-
chemical data. These new data assist with local and some 
regional correlations. Figures 6 and 7 summarize age and 
geochemical data for Tertiary volcanic rocks in the Rush 
Valley quadrangle. Volcanic centers and deposits are lo-
cated at the Cedar Mountains and Skull Valley, northern 
Simpson Mountains, southern Stansbury Mountains, south-

ern Oquirrh Mountains and western Traverse Mountains, 
Vernon Hills, and northern East Tintic Mountains. Most of 
these Tertiary rocks have informal names, except for some 
in the northern East Tintic Mountains.

On the geologic map, several map units in Quaternary-Tertia-
ry surficial deposits and older bedrock units are locally que-
ried. The queries indicate uncertainties due to poor exposures, 
lack of field checking, and difficulties with unit assignments.
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Figure 6. Selected geochemical data depicted on the total alkali-silica diagram of Middlemost (1994) for igneous rocks in the Rush Valley 
quadrangle. Axes in weight percent. Complete sample geochemical data are presented in table A6.

NOTES ON STRUCTURE

Geologic structure of the map area is largely related to epi-
sodes of compression (Sevier orogeny) and extension (Se-
vier belt collapse/relaxation, Basin and Range normal fault-
ing). Interpretation of Sevier thrust belt architecture was 
challenging considering disruption by later Cenozoic fault-
ing and concealment by valleys of the Basin and Range. In 
addition, linking thrust geometries and timing in the Provo 
(Charleston-Nebo) salient northward to the Wyoming salient 
of the Sevier belt, across the Uinta-Tooele structural zone, 
has been problematic (see, for example, Coogan and Con-
stenius, 2003; DeCelles, 2004). We omit speculative thrust 
fault extensions and connections on this geologic map (plate 
1) but include a sketch of potential thrust geometries on fig-
ure 8. Likewise, basin structure is not well known. Some 
valley margins are bounded by normal faults, but other steep 
range fronts show no surface or geophysical evidence of 
faulting (plate 1, figure 8).

Some of the structure in the southern Stansbury Mountains 
could be related to the Devonian Stansbury uplift associated 
with reactivation of the Tooele arch (see Rigby, 1959a; Foose, 
1989; Cashman, 1992). Complications lead us to lump Cam-
brian map units there. Further mapping and structure evalua-
tion work are needed.

There are several significant Sevier-age thrust faults with older-
on-younger relations in the map area. These are internal thrust 
sheets of the Provo (Charleston-Nebo) salient (Makul and Mi-
tra, 1998; Kwon and Mitra, 2004; McKean and others, 2011). 
Our map and cross sections reinterpret some of the prior thrust 
belt geometry (see, for example, Tooker, 1983, Morris, 1987; 
Kwon and Mitra, 2004). The main thrusts include the Cedar, 
Skull Valley, Government Creek, East Stansbury, Stockton, 
Beef Hollow, and Pinyon Peak (figure 8). Clark and others 
(2020b) discussed the Cedar thrust in more detail. We interpret 
the Skull Valley fault as a thrust with later normal offset. The 
Government Creek thrust is enigmatic considering its east-west 
orientation, which may be related to the complicated structure 
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in the Sheeprock and Simpson Mountains. The East Stansbury 
thrust (called Tintic Valley by many workers) is a significant 
structure that separates disparate lithofacies successions on 
the west and east and is the leading edge of the western thrust 
system (see, for example, Yonkee and others, 2014). There are 
some differences between the structural interpretations of our 
Rush Valley map and those of the Lynndyl 30' x 60' quadrangle 
(Pampeyan, 1989) and Makul and Mitra’s map (1998). Makul 
and Mitra (1998) did not include the North Sheeprock thrust 
(figure 8, unnumbered thrust north of Sheeprock Mountains); 
we are uncertain of its location to the east. Kirby thinks Makul 
and Mitra’s (1998) Sabie Mountain thrust may be a detachment 
fault based on map relations and topography. Kroko and Bruhn 
(1992) discussed the structure of the Mercur area, southern 
Oquirrh Mountains, as related to a blind thrust. Locally, west-
directed backthrusting is also evident based on map relations. 
Several Sevier-related strike-slip and oblique-slip faults exist 
that helped to accommodate slip of the various thrust sheets 
(figure 8) (see McKean and others, 2011). The Onaqui fault and 
Cedar Valley fault could be transverse faults bounding different 
thrust sheets.

We mapped low-angle faults (called attenuation faults by 
some) associated with the Manning Canyon Formation. These 
include the Manning Canyon fault, Tenmile Pass fault, south 
part of the Big Hollow fault, and South Vernon Hills fault. 
These faults omit stratigraphic section and may have been 

involved in compression and/or extension during formation, 
realignment, or relaxation of the Sevier fold-thrust belt.

Low-angle normal faults with younger-on-older relations are 
interpreted to be a result of extensional collapse of the Sevier 
belt , although some prior Sevier compressional history is pos-
sible. Some of these faults were previously mapped as thrust 
faults. These include the Dry Canyon fault, Hell Hole Canyon 
fault, East Faust fault, Burnt Canyon fault, Sheeprock–Lion Hill 
fault, Sheeprock-Harker fault, and other unnamed faults. Chris-
tie-Blick (1983) reported on faults in the Sheeprock Mountains.

Several faults apparently had complicated histories, probably 
with dual or multiple senses of movement, and some likely 
reused preexisting Sevier structures. Examples are indicated 
on figure 8 and some are reported by McKean and others 
(2011). The Big Hollow fault (southern Stansbury Mountains) 
has been particularly enigmatic with several names and inter-
pretations (Rigby, 1958; Tooker and Roberts, 1971; Sorensen, 
1982; Tooker, 1983; Taylor, 1992; Cashman, 1992; Copfer 
and Evans, 2005), and it is likely a different structure than the 
Broad Canyon fault to the north (this study; Clark and others, 
2020b). We interpret the Big Hollow fault as an east-dipping 
(and in part folded) structure that detached or separated at the 
Manning Canyon interval and allowed for differential folding 
of sections above and below. The Onaqui fault and Vernon 
Hills fault may also have had a similar history.
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Figure 8. Tectonic map schematic showing the possible structural architecture of the Rush Valley quadrangle. Note for simplicity all faults 
and folds are depicted as solid lines.
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Numerous high-angle normal faults developed through Basin 
and Range extension, which has shaped the current topogra-
phy. Extension formed the large valleys, but also affected the 
range blocks, as they are cut by normal faults of generally 
smaller displacement and different trend. Quaternary normal 
faults and scarps occur along the margins of many major val-
leys and within the valleys (see, for example, Bucknam, 1977; 
Barnhard and Dodge, 1988; Black and others, 1999, 2003). 
Quaternary normal faults bound Tooele Valley (Oquirrh fault 
zone), Skull Valley (East Cedar Mountains fault, Skull Valley 
mid-valley faults, Stansbury fault zone, West Onaqui fault), 
Rush Valley (St. John Station fault zone, Clover fault zone, 
Grasshopper Ridge fault, East Vernon Hills fault zone, South-
ern Oquirrh Mountains fault zone including Mercur fault 
and West Eagle Hills fault, Topliff Hill fault zone, and North 
Sheeprock fault zone), and Cedar Valley (West Cedar Valley 
fault and East Cedar Valley fault zone). In the quadrangle, pa-
leoseismic studies on the Mercur fault indicate at least one 
Holocene rupture, with the most recent faulting occurring at 
4600 ± 200 cal yr B.P. (URS Greiner Woodward Clyde, 2001). 
This result concurs with other trenching and mapping studies 
(Everitt and Kaliser, 1980; Barnhard and Dodge, 1988; Olig 
and others, 1999; Kirby, 2012). Other studies on the Mercur 
fault include those by Wu and Bruhn (1994) and Mattson 
(2004). More recently, a preliminary, unpublished paleoseis-
mic investigation by Toke and students at Utah Valley Univer-
sity was conducted at the Topliff Hills area (Ward and others, 
2019). In 2018, lidar was flown over the Tooele and Rush Val-
leys area. These data were subsequently evaluated, and faults 
mapped (1:10,000 scale or greater) by UGS geologists (see 
Hiscock and others, 2021). However, this detailed fault data 
will need to be merged with updated geologic mapping in the 

future. We provide the fault mapping from lidar (Hiscock and 
others, 2021) in the GIS data for this map. The observed nor-
mal faults and scarps and other concealed normal faults pres-
ent potential seismic risk (Everitt and Kaliser, 1980; Black 
and others, 1999; Geomatrix, 2001; WGUEP, Wong and oth-
ers, 2016).

Many folds are mapped throughout the quadrangle (plate 1, 
figure 8). Most of the folding is related to the generally east-
ward-directed Sevier compressional regime. Some of these 
folds are expressions of deeper thrust faults and other struc-
tural elements. Dramatic folds include the Deseret anticline 
and Martin Fork syncline, the series of folds in the Oquirrh 
Mountains, and the North Tintic anticline. In addition, there is 
folding in the older Tertiary strata of the Vernon Hills which 
may be related to Sevier belt relaxation. The folded Salt Lake 
Formation in southern Rush Valley is due to Miocene Basin 
and Range extensional tectonics.

Geophysical data aided in structural interpretations (see, for 
example, Stein and others, 1989). Bouguer gravity data (John-
son and Cook, 1957; Cook and others, 1989; Pan-American 
Center for Earth and Environmental Studies [PACES], 2012) 
and data from Saltus and Jachens (1995) formed the primary 
basis for interpretation of subsurface structure and basin ge-
ometry. Unfortunately, there are only a few deep drill holes in 
the east part of the quadrangle to calibrate basin depths with 
gravity data (table A1). Gravity lows are associated with the 
primary valleys and show the deeper parts of the basins. Grav-
ity data from PACES (2012) are included in the GIS geodata-
base; a simplified gravity map is included as figure 9. Some 
concealed faults were mapped from the gravity data (see, for 

Figure 9. Simplified isostatic gravity map of the Rush Valley quadrangle; data from Bankey and others (1998). Color ramp in milligals. 
Cooler colors depict the extent of basins, while warmer colors depict ranges.
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example, Zoback, 1983; Saltus and Blakely, 2011). In addi-
tion, aeromagnetic data are available (Stein and others, 1989; 
Raines and others, 1996; Bankey and others, 1998; K. Krahu-
lec, UGS, written communication on the Stockton-Ophir area, 
October 24, 2012), but no new data were obtained for this 
project. Magnetic highs are associated with the Bingham and 
Stockton volcanic centers, under Tintic Valley (between the 
Vernon Hills and East Tintic Mountains), and in the southern-
most Cedar Mountains and central Skull Valley. These highs 
are presumed to be associated with magnetic volcanic rocks, 
some of which are only subsurface expressions. Although 
some seismic reflection data were reportedly collected in the 
quadrangle (K.N. Constenius, verbal communication, August 
2008), they were not available for our review. Rowley (1998) 
reported on the Payson transverse zone just south of the map 
area extending from near Payson to the Deep Creek Moun-
tains in Utah. This zone was based on geophysical and geo-
logic data.

DESCRIPTION OF MAP UNITS

QUATERNARY-TERTIARY SURFICIAL 
DEPOSITS

Q  Quaternary surficial deposits, undivided – Cross sec-
tions only.

QT  Quaternary-Tertiary surficial deposits and rocks, un-
divided – Cross sections only.

Alluvial Deposits

Qal  Stream alluvium (Holocene) – Clay, silt, and sand 
with some gravel lenses deposited by streams in 
channels and broad drainages; locally merges with 
alluvial-fan deposits; locally includes alluvial-fan, 
colluvial, low-level terrace, and eolian deposits; 
thickness generally less than about 20 feet (6 m).

Qam Alluvial mud (Holocene to upper Pleistocene?) – 
Silt, clay, some sand, and minor gravel deposited by 
streams and sheet wash within former lagoonal ar-
eas related to Lake Bonneville shorelines; bottom of 
lagoonal basins may include unexposed, thin, fine-
grained lacustrine deposits; thickness less than about 
20 feet (6 m).

Qafy Younger fan alluvium, post-Lake Bonneville (Ho-
locene to uppermost Pleistocene) – Poorly sorted 
gravel with sand, silt, and clay; deposited by streams, 
debris flows, and flash floods on alluvial fans and in 
mountain valleys; includes alluvium and colluvium 
in mountain valleys; merges with unit Qal; may 
include areas of eolian deposits and lacustrine fine-

grained deposits below the Bonneville shoreline; in-
cludes active and inactive fans younger than Lake 
Bonneville, but may also include some older depos-
its above the Bonneville shoreline; locally, unit Qafy 
spreads out along the lake terraces and, due to limi-
tations of map scale, is shown to abut Lake Bonn-
eville shorelines, even though it is not cut by these 
shorelines; unit Qafy also drapes over but does not 
completely conceal shorelines; thickness variable, to 
50 feet (15 m) or more.

Qafb Fan alluvium, graded to Lake Bonneville (up-
per Pleistocene) – Poorly sorted gravel with sand, 
silt, and clay in alluvial fans that are graded to the 
Bonneville-level shoreline (transgressive) and lower 
(regressive) shorelines, and the Cedar Valley Lake 
shoreline; may include small areas of eolian and col-
luvial deposits; incised by younger alluvial deposits; 
thickness variable, to 100 feet (30 m) or more.

Qafo, Qafo?

  Older fan alluvium, pre-Lake Bonneville (up-
per to middle? Pleistocene) – Poorly sorted gravel 
with sand, silt, and clay; similar to unit Qafy, but 
forms higher level incised deposits that predate Lake 
Bonneville; includes fan surfaces of different levels; 
fans are incised by younger alluvial deposits and 
locally etched by Lake Bonneville; may locally in-
clude small areas of lacustrine or eolian deposits and 
younger alluvium; thickness variable, to 100 feet (30 
m) or more.

QTaf High-level fan alluvium (lower Pleistocene? to 
Pliocene?) – Poorly sorted gravel with sand, silt, 
and clay; unconsolidated to semiconsolidated with 
calcic soil development on upper surfaces; forms 
high-level deposits incised by younger alluvial de-
posits and locally etched by Lake Bonneville; may 
locally include small areas of lacustrine or younger 
alluvial deposits; thickness variable, to 100 feet (30 
m) or more.

Taf, Taf?

  Tertiary fan alluvium (Pliocene? to Miocene?) – 
Highest level of fan deposits; exposed along west 
flank of Sheeprock Mountains and near Little Val-
ley; lower part contains limestone clasts whereas up-
per part contains solely quartzite clasts, suggesting 
erosional unroofing of the Sheeprock Mountains; 
lower part of unit is semiconsolidated; in Sheeprock 
Mountains unit overlies the rhyolite of Judd Creek 
(unit Trj), and is lapped onto and incised by younger 
alluvial deposits; unit Taf? also mapped at Fivemile 
Pass, southern Oquirrh Mountains; exposed thick-
ness is greater than 1200 feet (365 m).
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Spring Deposits

Qsm Spring and marsh deposits (Holocene) – Clay, silt, 
and sand that is variably organic-rich, calcareous, or 
saline; present in ephemerally or perennially saturat-
ed (marshy) areas near springs and seeps; mapped in 
several valleys; thickness as much as 30 feet (10 m).

Eolian Deposits

Qe  Eolian deposits, undivided (Holocene) – Wind-
blown sand and silt in sheet and dune forms; mapped 
at Skull Valley, Rush Valley, and Cedar Valley; up to 
20 feet (6 m) thick.

Qei  Eolian silt deposits (Holocene) – Windblown silt 
and minor sand mapped solely in stacked units.

Qes Eolian sheet sand deposits (Holocene) – Wind-
blown sand and silt deposited as sheets rather than 
well-developed dunes; generally thin with no distinct 
bedding; mostly silty, well-sorted, fine-grained quartz 
sand; only thicker deposits mapped; also mapped in 
stacked units; less than 15 feet (5 m) thick.

Qed Eolian dune sand deposits (Holocene) – Well-sorted 
sand in dunes and dune fields; mostly fine-grained 
quartz sand but also aggregates of clay, silt, and sand; 
present as parabolic, linear, dome, lunette, and shrub-
coppice dunes (see Dean, 1978); larger dune fields 
may include a thin fringe of unmapped sheet sand; also 
mapped in stacked units; thickness to 50 feet (15 m).

Playa Deposits

Qpm Playa mud (Holocene) – Clay, silt, and small 
amounts of sand with local accumulations of gyp-
sum, halite, and other salts; locally reworked by allu-
vial and eolian processes; probably overlies unit Qlf; 
present within the playa lake bed of Rush Lake and 
one other area in central Rush Valley; also present as 
thin upper part of stacked unit Qpm/Ql comprising 
mudflats of the Great Salt Lake Desert; thickness is 
unknown, may be from an inch to a few feet.

Lacustrine Deposits (post-Bonneville lake cycle)

Qlfy Younger lacustrine fine-grained deposits (Holo-
cene) – Clay, silt, and small amounts of sand adja-
cent to Rush Lake playa; deposited by fluctuations of 
Holocene Rush Lake; thickness probably 15 feet (5 
m) or less.

Qlsy Younger lacustrine sand deposits (Holocene) – 
Sand with minor gravel adjacent to Rush Lake playa; 

deposited by fluctuations of Holocene Rush Lake; 
thickness probably 15 feet (5 m) or less.

Lacustrine and Deltaic Deposits (Bonneville lake cycle)

Lake Bonneville shoreline elevation ranges (table A2) were 
determined from 1:24,000-scale topographic maps. These ele-
vations generally increase from southeast to northwest across 
the map area due to isostatic rebound after regression of Lake 
Bonneville. Crittenden (1963), Currey (1982), and Chen and 
Maloof (2017) provided regional data on shoreline elevations 
and isostatic rebound. Radiocarbon age data are summarized 
in table A3. Several prominent erosional and depositional 
landforms related to Lake Bonneville exist in the map area, 
described below. Lake Bonneville was succeeded by a lake 
during the Gilbert episode (figure 2), but these deposits are 
localized, generally thin, and difficult to recognize.

Oviatt and Nash (2014) reported on the Pony Express basal-
tic ash, observed at two locations on Camels Back Ridge in 
the map area. This ash is a key stratigraphic marker in trans-
gressive-phase Lake Bonneville deposits (~20,000 14C yr B.P. 
[~24,000 cal yr B.P.]).

A small part of the Old River Bed crosses the southwest cor-
ner of the map area. The Old River Bed is an abandoned river 
valley present on the south part of Dugway Proving Ground 
extending southward to the Sevier River southwest of Delta, 
Utah. This feature formed during the most recent episode of 
overflow from the Sevier basin (Lake Gunnison) northward 
to the Great Salt Lake basin (Lake Bonneville) (Oviatt, 1987; 
Oviatt and others, 1994). Where the river entered Lake Bonn-
eville, a delta formed with numerous distributary channels 
(mapped by Clark and others, 2016); radiocarbon dating of 
the channels ranges from 8800 to 12,500 14C yr B.P. (about 
10,000 to 13,000 cal yr B.P.) (Oviatt and others, 2003).

In the north-central part of the quadrangle, the Stockton Bar 
developed as a transverse barrier bar and spit complex be-
tween Tooele and Rush Valleys (Gilbert, 1890; Burr and Cur-
rey, 1988, 1992). Geomorphic surface lines on plate 1 help 
show the extent of the landforms. Rush Valley contains the 
Bonneville-level shoreline and two sets of regressive-phase 
shorelines. These shorelines were described by Burr and Cur-
rey (1988, 1992) in conjunction with the Stockton Bar. The 
construction of the Stockton Bar (during the Bonneville trans-
gression) caused the lake in Rush Valley to be isolated from 
the main body of Lake Bonneville. During the regression from 
the Bonneville highstand, the lake level in Rush Valley var-
ied independently of the level in the rest of the Bonneville 
basin. The higher elevation shorelines present in Rush Val-
ley are attributed to Lake Shambip, about 5050 feet (1540 m) 
in elevation, and Lake Smelter, about 5010 feet (1527 m) in 
elevation (Burr and Curry, 1988, 1992), but do not coincide 
in elevation with the Provo level of Lake Bonneville or the 
Gilbert episode. These shorelines are higher than the possible 
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equivalents in the main lake and radiocarbon dating by Nelson 
(2012) indicates that the Lake Shambip level is partially time-
equivalent to the Provo lake level. There is no direct age con-
straint on the Lake Smelter level, but based on map relations 
this shoreline is developed on regressive deposits that indicate 
at least a post-Lake Shambip (or Provo level) age.

In Cedar Valley, McKean (2020) reported a Cedar Valley 
shoreline below the Bonneville highstand shoreline at an el-
evation of about 4900 feet (1494 m). Impounded lake water 
drained through outlets on the north and south ends of that 
valley. Currently, there are few age constraints. Geomorphic 
surface lines on plate 1 show the probable lake outlet.

Qdg Deltaic gravel (upper Pleistocene) – Sand and grav-
el deposited near the mouth of the Sevier River in the 
Old River Bed area during the Bonneville lake cycle; 
well-sorted pebbly sand containing volcanic and 
sedimentary pebbles; cross-bedded and very thick 
bedded; regressive deposits were locally reworked 
by waves into a thin sheet with delta ridge crests; 
thickness to 50 feet (15 m).

Ql  Lacustrine deposits, undivided (upper Pleisto-
cene) – Lacustrine sand, silt, clay, and pebble gravel 
mapped solely as stacked unit Ql/Tv.

Qlg  Lacustrine gravel (upper Pleistocene) – Sandy 
gravel to boulders composed of locally derived rock 
fragments deposited in shore zones of transgressive 
and regressive phases of Lake Bonneville and related 
lakes; clasts are typically well rounded and sorted; 
locally tufa-cemented (especially the Provo shore-
line, figure 2) and draped on bedrock; thickness vari-
able, to 100 feet (30 m) or more.

Qls  Lacustrine sand (upper Pleistocene) – Sand and silt 
deposited by transgressive and regressive phases of 
Lake Bonneville; generally thick bedded and well 
sorted; typically grades downslope to finer-grained la-
custrine deposits; thickness to 100 feet (30 m) or more.

Qlf  Lacustrine fine-grained deposits (upper Pleisto-
cene) – Sand, silt, marl, and calcareous clay of Lake 
Bonneville; thin to very thick bedded; may include 
ostracode- and gastropod-rich layers; locally in-
cludes the white marl of Gilbert (1890); locally may 
include small areas of sand and gravel; can include 
thin eolian sand deposits at surface; thickness to 100 
feet (30 m) or more.

Lacustrine Deposits (pre-Lake Bonneville)

Qlo  Older lacustrine deposits (middle and lower Pleis-
tocene) – Subsurface only and lower part of stacked 
unit Qpm/Ql; mud and sand; Qlo contains lacus-

trine ostracodes (Limnocythere staplini); present in 
sediment core GG-19A located southwest of Wild-
cat Mountain on UTTR-S (C.G. Oviatt, unpublished 
data, November 25, 2020) and also from a Parsons 
core (PM-11) near the Carr facility on Dugway Prov-
ing Ground (per Oviatt); also present to the northwest 
in several sediment cores in the Bonneville Salt Flats 
30' x 60' quadrangle (Oviatt and Thompson, July 25, 
1995, unpublished evaluation of Knolls and Wendo-
ver cores; Oviatt and others, 2020; Clark and others, 
2020a); Williams (1994) reported ash beds from this 
unit that provide age control from about 0.2 to 1.15 
Ma; may overlie Pliocene? deposits, Pliocene-Mio-
cene Salt Lake Formation, and other Tertiary rock 
units; incomplete thickness in core GG-19A is 2 feet 
(0.6 m) (Oviatt, unpublished data), greater than 560 
feet (170 m) thick in the Wendover core, and greater 
than 495 feet (151 m) thick in the Knolls core (Oviatt 
and Thompson, July 25, 1995, unpublished evalua-
tion of Wendover and Knolls cores).

Glacial Deposits

Qgt, Qgt?

  Glacial till (upper to middle? Pleistocene) – Poor-
ly sorted, angular, boulder to pebble gravel, sand, 
and mud in eroded moraines within and just below 
cirque basins in the southern Stansbury Mountains 
and southern Oquirrh Mountains; locally includes 
glacial outwash, unmapped landslides, and some 
small areas of younger alluvium and colluvium; de-
posits are undated, but till is likely associated with 
the younger Pinedale/Angel Lake glaciation, ~12 
to 24 ka, and possibly the older Bull Lake/Lamoille 
glaciation (associated with Marine Oxygen Isotope 
Stage 6), ~ 130 to 190 ka (Lisiecki and Raymo, 2005; 
Laabs and Monroe, 2016; Pierce and others, 2018; 
Quirk and others, 2018, 2020); older till may be pres-
ent downslope of the younger till; Osborn and Bevis 
(2001) reported on glacial deposits at the Stansbury 
and Oquirrh Mountains, and also see Rigby (1958), 
Valora (1968), Sorensen (1982), Mulvey (1985), and 
Laabs and others (2011); nivation hollows are pres-
ent in the northern Simpson Mountains, but no ob-
vious glacial deposits were noted there; note above 
that different glacial terminology has been used in 
the Great Basin versus the Middle Rocky Mountains 
Province; probably as much as 50 feet (15 m) thick.

Colluvial Deposits

Qc  Colluvium (Holocene to upper Pleistocene) – Fine- 
to coarse-grained sediment derived from local bed-
rock; commonly includes talus in upper parts of 
deposits; may locally include lacustrine, alluvial, or 
eolian deposits; thickness to 20 feet (6 m) or more.
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Mass-Movement Deposits

Qmtc Talus and colluvium (Holocene to upper Pleisto-
cene) – Mixed talus and colluvium locally present 
on Tabbys Peak of Cedar Mountains, Camels Back 
Ridge, and the Stansbury and Oquirrh Mountains; 
thickness to 15 feet (5 m) or more.

Qms, Qms?

  Landslide deposits (Holocene to middle? Pleisto-
cene) – Poorly sorted clay- to boulder-size debris, 
and large, displaced bedrock blocks; generally char-
acterized by hummocky topography, main and inter-
nal scarps, and chaotic bedding in displaced bedrock; 
undivided as to inferred age because research has 
shown that even landslides with subdued morphol-
ogy (suggesting they are older and have not moved 
recently) may continue to creep or are capable of re-
newed movement (Ashland, 2003); age and stability 
determinations require detailed geotechnical investi-
gations; thickness highly variable.

Mixed-Environment Deposits

Qla, Qla?

  Lacustrine and alluvial deposits, undivided (Ho-
locene to upper Pleistocene) – Sand, gravel, silt, and 
clay; consists of alluvial deposits reworked by lakes, 
lacustrine deposits reworked by streams and slope-
wash, and alluvial and lacustrine deposits that cannot 
be readily differentiated at map scale; grade into other 
lacustrine and alluvial deposits; locally includes areas 
of thicker alluvial-fan deposits at surface in western 
Skull Valley; thickness locally exceeds 30 feet (10 m).

Qac Alluvial and colluvial deposits, undivided (Holo-
cene to upper Pleistocene) – Primarily gravel, with 
sand, silt, and clay; present within upland valleys and 
along bases of slopes; also forms aprons of mixed 
alluvial-fan and colluvial surfaces that grade into 
alluvial-fan deposits; locally grades into other de-
posits; thickness generally less than 20 feet (6 m).

Human-Derived Deposits

Qh  Human disturbance (historical) – Deposits and dis-
turbed areas from development; includes several dis-
turbed areas at Dugway Proving Ground and Tooele 
Army Depot (South Area); also mapped at landfills 
on Skull Valley Indian Reservation and at Cedar Val-
ley, several pits and quarries, tailings area north of 
Stockton Bar, and disturbances associated with min-
ing districts (including Stockton, Bald Mountain, 
Ophir, Mercur, Fivemile Pass, East Tintic); many 
smaller or less prominent disturbed areas are not 
shown; thickness highly variable.

Qhm Mine dumps (historical) – Unconsolidated mine 
waste rock at the south end of the Kennecott/Rio 
Tinto Bingham Canyon mine; these mine dump ar-
eas are depicted on the map as patterned polygons 
(see geologic symbols) to show the underlying geol-
ogy; mine dumps are principally coarse rock frag-
ments with lesser sand- and silt-size particles; locally 
includes small disturbed areas; other smaller mine 
dumps and mining-disturbed areas are included in 
unit Qh; mine dump thickness is highly variable, but 
locally exceeds 200 feet (60 m).

Stacked-Unit Deposits

Consist of thin surficial deposits covering underlying sur-
ficial and bedrock map units. The stacked units are limited 
here due to map scale considerations. Thin surficial deposits 
may also be present on other geologic units throughout the 
map area.

Qei/unit (Qei/Qal, Qei/Qlf)

  Eolian silt over unit (Holocene over Holocene 
to upper Pleistocene) – Eolian silt and minor sand 
forming a mantle on other surficial deposits, particu-
larly at Dugway Proving Ground; Qei/Qlf surface 
commonly contains distinctive vegetation stripes of 
uncertain origin but that are characteristic landforms 
of sheetflow plains in arid to semiarid regions (Oviatt 
and others, 2003); cover unit thickness typically less 
than 10 feet (3 m).

Qes/unit (Qes/Qafy, Qes/Qafo, Qes/Qlf, Qes/Qla)

  Eolian sheet sand over unit (Holocene over Holo-
cene to upper to middle? Pleistocene) – Eolian sheet 
sand forming a mantle on other surficial deposits, 
particularly at Dugway Proving Ground and Skull 
Valley; cover unit thickness typically less than 15 
feet (5 m).

Qed/unit (Qed/Qlf, Qed/Qla, Qed/Tac)

  Eolian dune sand over unit (Holocene over up-
per Pleistocene, middle Eocene) – Eolian dune sand 
forming a mantle on other surficial deposits and 
rock units near Dugway Proving Ground; cover unit 
thickness typically less than 15 feet (5 m).

Qe/Qlf

  Eolian deposits over lacustrine fine-grained de-
posits (Holocene over upper Pleistocene) – Wind-
blown sand and silt deposited in sheets and dunes 
overlying lacustrine silt, clay, marl, and some sand; 
present at Skull and Cedar Valleys; cover unit thick-
ness typically less than 10 feet (3 m) thick.
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Qpm/Ql 

  Playa mud over undivided lacustrine deposits (Lake 
Bonneville) over older lacustrine (pre-Bonneville) de-
posits (Holocene over upper Pleistocene over Pleisto-
cene) – Three stacked subunits that generally comprise 
the extensive mudflats of the Great Salt Lake Desert, and 
here mapped at one small area on the west edge of the 
map area in the Government Creek basin; upper playa 
deposits of silt, mud and calcareous mud (commonly 
mixed eolian, alluvial, and mudflat environments) cov-
ering lacustrine marl and fine-grained deposits of Lake 
Bonneville (unit Qlf), which collectively overlie pre-
Bonneville deposits of lacustrine mud and sand (unit 
Qlo); playa deposits are mud that is locally saline or 
gypsiferous and locally covers post-Lake Bonneville 
alluvial channels (see Clark and others, 2016, 2020a); 
the Lake Bonneville fines (Qlf) subunit was differenti-
ated by lithologies and ostracode fauna (C.G. Oviatt, 
November 25, 2020, unpublished data from sediment 
cores WB-19A and GG-19A located about 7 miles [11 
km] southwest of Wildcat Mountain on UTTR-South); 
the pre-Bonneville subunit (Qlo) was differentiated by 
lithologies and ostracode fauna (Oviatt, unpublished 
data on core GG-19A; Oviatt and others, 2020; Clark 
and others, 2020a); an unconformity may exist be-
tween subunits Qlf and Qlo; unit Qpm/Ql was previ-
ously mapped in adjacent areas as eolian and alluvial 
deposits over lacustrine fines (Clark and others, 2016); 
subunit thicknesses include playa mud of about 1 inch 
(3 cm), Lake Bonneville fines of 5.6 feet (1.7 m), and 
incomplete pre-Bonneville deposits that exceed 2 feet 
(0.6 m) (Oviatt, unpublished data from core GG-19A); 
unit Qpm/Ql thickness locally exceeds 560 feet (170 
m) several miles to the northwest near the Bonneville 
Salt Flats (Clark and others, 2020a).

Qlf/Qls Lacustrine fine-grained deposits over lacustrine 
sand deposits (upper Pleistocene over upper Pleis-
tocene) – Thin marl and reworked marl overlying 
deltaic sediments of mostly sand and some fine 
gravel deposited near the Stansbury shoreline; 
sandy beach ridges (distributary mouth bars) were 
formed by longshore sediment transport (Currey, 
1996, in Geomatrix, 2001), and were previously 
mapped as faults by Sack (1993); mapped in one 
area at the north side of Hickman Knolls on the 
Skull Valley Indian Reservation; cover unit thick-
ness to 6 feet (2 m) or more.

Ql/Tv Lacustrine deposits over undivided Tertiary volca-
nic rocks (upper Pleistocene over Miocene to Oligo-
cene) – Lacustrine (Lake Bonneville) sand, silt, clay, 
and pebble gravel over subangular to rounded pebble 
to boulder float dominated by Mosida Basalt and Sol-
diers Pass Formation lava, breccia, limestone, traver-
tine, and sedimentary clasts; cover unit of undivided 
lacustrine deposits is 0 to 20 feet (6 m) thick.

Qlg/rx Lacustrine gravel over undivided bedrock (upper 
Pleistocene over Miocene? to Cambrian?) – Sandy 
and pebbly gravel overlying various bedrock units 
at the southern Cedar Mountains and Camels Back 
Ridge; locally includes small bedrock exposures; 
cover unit thickness typically less than 15 feet (5 m).

QTaf/Tslc

  High-level fan alluvium over Salt Lake Forma-
tion, conglomerate lithosome (lower Pleistocene? 
to Pliocene? over Pliocene? to Miocene) – Quartzite-
clast gravel overlying conglomerate unit (described 
below) at east flank of southern Stansbury Moun-
tains at the north edge of the map area; difficult to 
differentiate units readily at this map scale; thickness 
of cover unit QTaf increases eastward and is from 0 
to about 350 feet (105 m).

TERTIARY (NEOGENE-PALEOGENE)  
ROCK UNITS 

Tv  Tertiary volcanic rocks, undivided – Cross sec-
tions only.

Tj  Jasperoid (Tertiary) – Siliceous breccia, commonly 
dark red to dark reddish brown or moderate gray; 
probably formed as hydrothermal fluids associated 
with older Tertiary volcanism altered host rocks; typ-
ically occurs as ledges, pods, and rubbly exposures; 
only larger exposures mapped at Davis Mountain, 
northern Sheeprock Mountains, Vernon Hills, north-
ern East Tintic Mountains, and southern Oquirrh 
Mountains; variable thickness.

Tsl, Tsl?, Tslc

  Salt Lake Formation (Pliocene? to Miocene) – Ter-
tiary rocks mapped at four areas: (1) southern Skull 
Valley, (2) South Willow Canyon area of the Stans-
bury Mountains, (3) central Rush Valley, and (4) Tick-
ville Gulch, west Traverse Mountains. Skull Valley, 
map unit is queried in a single outcrop of charophytic 
marl and limestone along State Road 196 north of 
Dugway, with an exposed thickness of 30 feet (10 m); 
to the north at the proposed Private Fuel Storage site 
(located on Skull Valley Indian Reservation north of 
Hickman Knolls) trenching exposed predominantly 
claystone and tuffaceous siltstone with interbeds of 
siliceous vitric ash (tuff) and minor gravelly sand-
stone with ash correlation ages of about 3 to 4 Ma 
and 6 Ma (unknown tephras; younger tephras may 
not be related to Tsl) and 6.31 ± 0.04 Ma (Walcott 
tuff) (Stone & Webster Engineering Corporation, 
1997; Geomatrix, 2001; M.E. Perkins, University of 
Utah, written communication, November 18, 2009) 
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(table A4); maximum subsurface thickness encoun-
tered in Skull Valley is about 90 feet (27 m), and total 
thickness is unknown, but may be up to several thou-
sand feet. Southern Stansbury Mountains, South 
Willow Canyon (unit Tslc, conglomerate lithosome; 
mapped as QTaf/Tslc) exposures are interbedded 
conglomerate and tuffaceous sandstone that weather 
rusty orange to light gray with carbonate, igneous, 
and quartzite pebbles in a fine sandy calcareous ma-
trix (Rigby, 1958; Copfer and Evans, 2005); poorly 
exposed except in steep south canyon wall; Slentz 
(1955) measured sections in South Willow Canyon 
and Davenport Canyon (north of map area); Perkins 
and others (1998) geochemically correlated a tephra 
there to the Cougar Point Tuff unit XIII ash, which 
has an 40Ar/39Ar age of 10.94 ± 0.03 Ma (table A4); 
exposed thickness to about 1000 feet (300 m) (Cop-
fer and Evans, 2005), but total thickness is unknown. 
Rush Valley outcrops include varied lithologies of 
tan, pale-gray, and white interbedded tuffaceous 
sandstone, limestone, calcareous sandstone, gritty or 
pebbly sandstone, sandy mudstone, siltstone, marl 
and claystone; locally the tuffaceous sandstone is 
poorly consolidated water-lain sandy ash in intervals 
60 to 100 feet (23–30 m) thick; forms mostly slopes 
with some ledges; yielded several tephra correlation 
and interpolation ages from 6.31 to 9.8 Ma (table A4) 
(Perkins and others, 1998); new U-Pb detrital zircon 
age from a sample in southern Rush Valley yielded 
an age of 6.49 ± 0.38 Ma (table A4) (Kirby, 2013b; 
Utah Geological Survey and Apatite to Zircon, Inc. 
[UGS and AtoZ], 2013); unit is up to 4200 feet (1280 
m) thick in Rush Valley (Kirby, 2010a, 2013c). Tick-
ville Gulch exposures include areas with two sam-
ples of Walcott ash (unit QTaf of Biek and others, 
2005) (table A4); thickness unknown. Regional ages 
of the Salt Lake Formation extend from about 4 to 16 
Ma (Oaks and others, 1999; Perkins and Nash, 2002; 
M.E. Perkins, formerly University of Utah, written 
communication, August 2, 2010;). Unit Tsl is uncon-
formable on Tertiary volcanic and sedimentary rocks 
and older bedrock strata.

Tso, Tso?

  Older Tertiary strata (upper? to middle Eocene) 
– Lithologically diverse Eocene sedimentary strata 
mapped as patchy exposures across the quadrangle; 
interbedded conglomerate, sandstone, mudstone, 
siltstone, limestone, and tuffaceous sandstone in 
various shades of red, orange, tan, brown, and gray; 
conglomerate contains rounded to subangular peb-
bles, cobbles, and boulders of quartzite, sandstone, 
carbonate, and black chert, and is commonly crudely 
bedded; limestone is micritic and locally oncolitic; 
unit is locally silicified; includes small exposure of 
Oquirrh Group breccia at the Vernon Hills (Kirby, 

2010a); crops out as slopes and ledges; unit Tso is 
interlayered with volcanic units Tvfou and Tvlo (~39 
Ma) near Butterfield Canyon in southern Oquirrh 
Mountains; new U-Pb detrital zircon ages of 46.77 
± 1.28 Ma from Davis Knolls and 38.70 +0.28/-0.62 
Ma from Vernon Hills (table A5) (UGS and AtoZ, 
2013) indicate maximum depositional ages for the 
unit there; unit is queried in other areas with no age 
control; Clark and others (2020b) obtained a 40 Ma 
detrital zircon age at the northern Oquirrh Moun-
tains; unit Tso is unconformable on older bedrock 
units; thickness variable, but locally exceeds 2200 
feet (>670 m) thick at Davis Knolls (Disbrow, 1961; 
Harrill, 1962; Moore and Sorensen, 1977; Biek and 
others, 2005; Copfer and Evans, 2005; Biek, 2006a; 
Kirby, 2010a, 2010b; Clark and others, 2016, 2020b; 
this study).

Igneous Rocks

We mapped 44 Tertiary volcanic rock units which we separate 
into four groups by geographic location for descriptive pur-
poses: (1) western area – includes southern Cedar Mountains, 
Simpson Springs, southern Stansbury Mountains, (2) north-
eastern area – includes southern Oquirrh Mountains, South 
Mountain, and western Traverse Mountains, (3) Vernon Hills, 
and (4) northern East Tintic Mountains. Geochemical and ra-
diometric age data are discussed as follows.

Igneous rock types, based on total alkali-silica concentra-
tions (see classifications of Le Bas and others, 1986; Middle-
most, 1994), range from rhyolite to basalt and trachybasalt 
through trachydacite (table A6, figure 6). The igneous rocks 
of the western area range in composition from andesite and 
trachyandesite to rhyolite. Igneous rocks of the northeastern 
area are trachyandesite and andesite to rhyolite with signifi-
cantly less basalt and basaltic andesite. Igneous rocks at the 
Vernon Hills are mostly rhyolite with additional units that also 
include dacite and basaltic andesite. The igneous rocks at the 
northern East Tintic Mountains span a range of geochemistry 
that includes basalt or trachybasalt to rhyolite. Geochemical 
data from past research in the map area are voluminous and 
compilation of all the data is beyond the scope of this project. 
Therefore, we present selected (representative) geochemical 
data for the map area in table A6 and figure 6. For additional 
data, refer to Davis (1959), Waite and others (1997), Biek 
(2006b), and McKean and others (2013).

The ages of igneous rocks in the Rush Valley quadrangle (ex-
cluding unit Tsl) range from 41.1 to 19.6 Ma (Eocene to Mio-
cene, table A7). Ages for rock units are shown on figure 7 
and symbolized by area; sample age is plotted west-to-east to 
show spatial trends in volcanic activity across the quadrangle. 
The oldest dated volcanic rocks in the quadrangle are in the 
Cedar Mountains area in the western part of the quadrangle. 
The youngest dated volcanic rocks are at the northern East 
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Tintic Mountains. Igneous rocks in the East Tintic area also 
span the greatest age range extending back to approximately 
36 Ma. Ages partially overlap for many of the igneous rock 
units at the Vernon Hills, East Tintic, Bingham-Mercur-Ophir-
Stockton, and Stansbury areas.

For additional information on the volcanic history of parts of 
the map area see Moore (1973b), Moore and McKee (1983), 
Swenson (1975), Deino and Keith (1997), Waite and others 
(1997), Maughan and others (2002), Krahulec (2005), Biek, 
(2006a, 2006b), Christiansen and others (2007), Clark (2008, 
2015), McKean (2011), Allen (2012), Christiansen and others 
(2013), McKean and others (2013), Clark and others (2016, 
2020b), and references therein.

Volcanic Rocks of the Southern Cedar Mountains, 
Davis Knolls, Northern Simpson Mountains, North-
ern Sheeprock Mountains, and Southern Stansbury 
Mountains (Western Area)

Trdc Rhyodacite of Cherry Springs (upper Eocene) – 
Light-green dacitic ash-flow tuff that is moderately 
welded with phenocrysts (~30%) of plagioclase, 
quartz, sanidine, and biotite, and also pumice la-
pilli and volcanic rock fragments to 2 inches (5 cm) 
diameter; poorly exposed near Simpson Springs, 
northwestern Simpson Mountains; correlates geo-
chemically to rhyodacite of Cherry Springs (Yam-
brick, 1990) (table A6); Yambrick (1990) reported 
an 40Ar/39Ar plateau age of 35.05 ± 0.15 Ma on K-
feldspar; unit also includes small exposures of prob-
able andesite lava near Simpson Springs; maximum 
exposed thickness is about 100 feet (30 m).

Trj, Trj?

  Rhyolite of Judd Creek (upper Eocene) – Light-
gray to light-pink and locally light-green rhyolitic 
ash-flow tuff that is moderately to densely welded 
with phenocrysts (~25%) of plagioclase, quartz, and 
biotite; forms blocky exposures at Simpson Canyon, 
northwestern Simpson Mountains; underlies unit Taf 
just south of the quadrangle along the southwest flank 
of the Sheeprock Mountains; we correlate geochemi-
cally to rhyolite of Judd Creek (Yambrick, 1990) (ta-
ble A6); Yambrick (1990) reported 40Ar/39Ar plateau 
ages of 35.46 ± 0.15 and 35.88 ± 0.15 Ma on biotite; 
maximum exposed thickness is 210 feet (65 m).

Tlg, Tlg?

  Latite of Government Creek (upper to middle 
Eocene?) – Moderate-gray, latitic lava flow that is 
aphanitic with a few percent plagioclase and biotite 
phenocrysts; upper part is locally vesicular in a rub-
bly matrix; some blocky outcrops near Government 

Creek between Davis Mountain and Simpson Moun-
tains; does not appear to geochemically correlate to 
rocks of the eastern Simpson Mountains area (Yam-
brick, 1990) (table A6); no age data, but may underlie 
unit Trj; exposed thickness is 40 feet (12 m) or less.

Trr  Rhyolite of Rydalch Canyon area (middle Eocene) 
– Light-gray and very pale orange rhyolitic ash-flow 
tuff and intrusion exposed south and east of Rydalch 
Canyon in southern Cedar Mountains; contains about 
25% phenocrysts of plagioclase, sanidine, quartz, 
hornblende, and biotite; forms slopes and blocky to 
ledgy exposures; K.A. Krahulec (UGS, verbal com-
munication, 2014) reported the central part of expo-
sure may be a stock; 40Ar/39Ar age of 39.18 ± 0.06 Ma 
on sanidine (Utah Geological Survey and Nevada Iso-
tope Geochronology Lab [UGS and NIGL], 2012b); 
exposed tuff thickness to 650 feet (200 m) (Clark and 
others, 2016).

Tid  Dacitic intrusions of Little Granite Mountain and 
White Rock (middle Eocene) – Light-gray weath-
ering to white and yellowish-gray porphyritic dacite 
stock and plugs with phenocrysts (~25%) of plagio-
clase, quartz, biotite, and amphibole (0.5–2 mm long 
average); groundmass is intergrowth of plagioclase, 
potassium feldspar, and quartz (Maurer, 1970; Moore 
and Sorensen, 1977); 40Ar/39Ar ages of 38.69 ± 0.10 
Ma (sanidine) for White Rock, and 39.56 ± 0.10 Ma 
(biotite) and 40.95 ± 0.32 Ma (hornblende) for Little 
Granite Mountain (Utah Geological Survey and New 
Mexico Geochronology Research Laboratory [UGS 
and NMGRL], 2009a, 2009b); exposures to 9500 
feet (2900 m) across (Clark and others, 2016).

Tac  Andesitic and dacitic rocks of southern Cedar 
Mountains (middle Eocene) – Dark- to light-gray and 
pale-red lava flows interlayered with lahars, block-
and-ash flows, and tuffs; lava flows are porphyritic to 
aphanitic, with phenocrysts of plagioclase, quartz, and 
biotite; lahars and block-and-ash flows contain clasts 
of intermediate volcanic rocks up to 4 feet (1 m) across; 
variably welded ash-flow tuffs contain phenocrysts of 
plagioclase, hornblende, and biotite; calc-alkaline af-
finities are similar to those of other Oligocene-Eocene 
rocks in the region (Clark, 2008, 2015); forms slopes 
to cliffs; erupted from local vents mapped as Tiac; 
40Ar/39Ar age of 38.17 ± 0.47, and ages (from adjacent 
map area) of 40.66 ± 0.45 (groundmass) and 41.73 ± 
0.24 Ma (hornblende) (UGS and NMGRL, 2009b; 
Clark and others, 2016); exposed thickness to 1200 
feet (370 m) (Clark and others, 2016).

Tiac Andesitic intrusions of southern Cedar Moun-
tains (middle Eocene) – Dark-gray porphyritic to 
aphanitic andesitic intrusions associated with local 
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vents for extrusive calc-alkaline volcanic rocks (unit 
Tac); contains phenocrysts of plagioclase, horn-
blende, and lesser biotite; columnar jointing of ex-
posures common; 40Ar/39Ar age of 40.61 ± 0.78 Ma 
(groundmass) from Tabbys Peak (UGS and NMGRL, 
2009b); exposures to 1600 feet (490 m) across (Clark 
and others, 2016).

Tvs  Rhyolitic to andesitic volcanic rocks of Stansbury 
Mountains (middle Eocene) – Interlayered volca-
nic and volcaniclastic rocks including gray to red 
to brown lava flows, ash-flow tuffs, block-and-ash 
flows, lahars, and tuffaceous sandstone; coarser de-
posits contain clasts of intermediate volcanic rocks 
(see Davis, 1959; Clark and others, 2020b); previ-
ously called latite volcanic series (Rigby, 1958) and 
andesites and associated rocks (Davis, 1959); unit 
Tvs forms slopes, ledges, and cliffs in South Willow 
Canyon area of Stansbury Mountains; new geochem-
ical data show a compositional range from rhyolite 
to dacite, trachydacite, andesite, and latite (table A6) 
(Clark and Biek, 2017); radiometric ages (K-Ar and 
40Ar/39Ar) from 39.4 to 41.8 Ma were obtained north 
of the map area (Moore and McKee, 1983; UGS and 
NIGL, 2017); exposed thickness to about 800 feet 
(245 m) in map area.

Volcanic Rocks of the Southern Oquirrh Mountains, 
South Mountain, and Western Traverse Mountains 
(Northeastern Area)

These rocks are present at and near the Bingham, Stockton 
(Rush Valley), Ophir, and Mercur mining districts. Bingham 
district rocks were divided into four informal composition-
al suites by Waite (1996) and Waite and others (1997): (1) 
younger volcanic suite, (2) older volcanic suite, (3) nepheline 
minette-shoshonite suite (within the older volcanic suite), and 
(4) Bingham intrusive suite. Biek and others (2005) and Biek 
(2006a) informally referred to the younger suite as the “vol-
canic and intrusive rocks of the west Traverse Mountains,” 
and combined the latter three suites as the “volcanic and in-
trusive rocks of the Bingham Canyon Suite.” We also group 
the igneous rocks into younger and older suites, and further 
separate the suites into extrusive and sedimentary rocks, and 
intrusive rocks. Older suite rocks are largely comagmatic with 
the Bingham intrusive complex (Waite and others, 1997) and 
contain significantly higher chromium and barium concen-
trations and more magnetic minerals than the younger suite 
(Pulsifer, 2000). The terminology for the intrusive rocks of 
the Bingham district (after Lanier and others, 1978) is based 
on historical usage at the Bingham mine (for the purpose of 
separating similar rock units); it is entrenched and does not 
necessarily reflect their geochemical compositions and newer 
geochemical-based rock classifications. For geochemical and 
age data, see Moore (1973a, 1973b), Waite (1996), Waite and 
others (1997), Pulsifer (2000), Maughan (2001), Maughan 

and others (2002), Biek and others (2005), and Biek (2006b); 
also refer to tables A6 and A7.

Younger Volcanic and Intrusive Suite (lower Oligocene to 
upper Eocene, ~30–37 Ma)

Younger Extrusive and Sedimentary Rocks

Tvbs Younger volcanic breccia (lower Oligocene) – 
Dark-gray to black, angular to subangular, pebble- to 
boulder-size clasts of monolithic, intermediate-com-
position volcanic rocks set in a well-lithified matrix of 
reddish-brown devitrified glass and lithic and crystal 
fragments (called block and ash-fall tuff by Biek and 
others, 2005); clasts generally make up more than 50% 
of the rock and contain phenocrysts of plagioclase, 
hornblende, and biotite in dark-gray to black glassy 
matrix; forms broad sloping surface of South Moun-
tain and Black Ridge at the west Traverse Mountains; 
K-Ar age on clast of 30.7 ± 0.9 Ma (Moore, 1973a); 
thickness to 300 feet (90 m) (Biek and others, 2005).

Tvfs Younger lava flows (lower Oligocene) – Intermediate-
composition lava flows that are strongly flow foliated 
(typically subvertical indicating possible vent area) 
with reddish-brown and dark-gray to black layering; 
underlies and compositionally identical to volcanic 
breccia unit (Tvbs) at South Mountain in the west 
Traverse Mountains; no radiometric age data, but un-
derlies unit Tvbs; maximum exposed thickness likely 
exceeds 1000 feet (300 m) (Biek and others, 2005).

Tvfb Intermediate lava flows of Black Ridge (lower 
Oligocene) – Dark-gray to pinkish-gray, porphyritic, 
intermediate-composition lava flows with common 
phenocrysts of plagioclase and rare to common biotite 
and hornblende; locally flow banded; forms boulder-
covered slopes; likely derived from volcanic centers 
of west Traverse Mountains including South Moun-
tain, Step Mountain, and nearby smaller vents; no ra-
diometric age data, but overlies unit Tvbb; exposed 
thickness may exceed 600 feet (180 m) (Biek and oth-
ers, 2005).

Tvbb Block-and-ash flows and lahars of Black Ridge 
(lower Oligocene) – Pebbles to boulders of interme-
diate-composition volcanic rocks and uncommon 
quartzite pebbles in a matrix of white to light-gray 
crystal lithic tuff; contains some thin, poorly exposed 
lava flows; forms poorly exposed slopes covered with 
resistant volcanic clasts at Black Ridge area of west 
Traverse Mountains; 40Ar/39Ar ages from near base 
of unit are 31.68 ± 0.24 Ma from adjacent map area 
(Biek, 2005) and 32.12 ± 0.14 Ma (Deino and Keith, 
1997); maximum thickness likely exceeds 1000 feet 
(300 m) (Biek and others, 2005).
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Trf  Rhyolitic lava flows of Tickville Gulch (lower Oli-
gocene) – Rhyolite lava flows with vitrophyres and 
lesser blocky flow breccia of green, pink, white, and 
black colors; lava flows contain phenocrysts of biotite 
and plagioclase in a glassy groundmass and are locally 
altered and chalky; probably erupted from concealed 
vent near Tickville Wash; K-Ar age of 31.2 ± 0.9 
Ma (Moore and others, 1968; Moore, 1973a); thick-
ness may exceed 1500 feet (460 m) (Biek and others, 
2005).

Tvfa Basaltic andesite lava flow (lower Oligocene) – 
Dark-gray, very fine grained basaltic andesite flow 
with abundant reddish-brown cinders and local volca-
nic bombs; contains small olivine phenocrysts altered 
to iddingsite; forms deeply eroded vent area at Camp 
Williams; somewhat disturbed 40Ar/39Ar age of 32.86 
± 0.48 Ma (Biek and others, 2005); exposed thickness 
to 120 feet (35 m) (Biek and others, 2005).

Younger Intrusive Rocks

Tido Dacitic dike (early Oligocene) – Light-gray dacite 
porphyry with phenocrysts of plagioclase, hornblende, 
and biotite in a fine-grained matrix; present near Oak 
Springs Hollow of western Traverse Mountains; 
40Ar/39Ar age of 32.05 ± 0.13 Ma on biotite (Biek and 
others, 2005); 75 to 90 feet (23–27 m) thick (Biek and 
others, 2005).

Tir  Rhyolitic intrusions (early Oligocene? to middle Eo-
cene) – Rhyolitic intrusions of Shaggy Peak (Rose–
Butterfield Canyon area), Tickville Gulch area, Mer-
cur (Eagle Hill area), and Ophir–Bald Mountain area. 
Shaggy Peak plug or dome is light- to medium-gray 
porphyritic rhyolite that contains a border phase with 
abundant plagioclase, quartz, and biotite phenocrysts 
and generally near-vertical flow foliations, and an in-
terior phase with slightly larger phenocrysts and little 
or no flow foliation (Biek, 2006a); 40Ar/39Ar age of 
35.49 ± 0.13 Ma on sanidine (Biek and others, 2005). 
Tickville Gulch intrusion is white, altered and chalky 
weathering, with common phenocrysts of quartz. Mer-
cur and Ophir area Eagle Hill Rhyolite and rhyolite 
of Ophir–Bald Mountain area is white, tan, and pink 
rhyolite and rhyolite porphyry that is usually aphanitic 
with <20% phenocrysts of quartz, plagioclase, and 
rare biotite; locally flow banded and brecciated; oc-
curs as stocks, necks, dikes and sills (Gilluly, 1932; 
Mako, 1999); geochemical data suggests Mercur and 
Ophir area rhyolites are different (E.H. Christiansen, 
Brigham Young University, written communication, 
May 13, 2014); new 40Ar/39Ar isochron age on biotite 
of 32.38 ± 0.10 Ma from Mercur (UGS and NIGL, 
2012b); U-Pb zircon age for a rhyolite dike is 36.46 ± 
1.40 Ma from Ophir (table A5) (Kirby, 2012).

Tia  Andesitic intrusion (late Eocene) – Medium-gray 
andesite porphyry with abundant plagioclase pheno-
crysts and common hornblende and minor biotite in a 
medium-grained matrix; forms resistant plug that in-
cludes two dikes with subhorizontal, columnar cool-
ing joints at Step Mountain near mouth of Rose Can-
yon (Biek, 2006a); 40Ar/39Ar age of 36.26 ± 0.18 Ma 
(Biek and others, 2005).

Older Volcanic and Intrusive Suite (middle Eocene, ~37–41 Ma)

Older Extrusive and Sedimentary Rocks

Tvfo Nepheline minette and shoshonite lava flows (up-
per to middle Eocene) – Dark-gray minette lava flows 
that vary from including abundant phenocrysts of ol-
ivine and minor phlogopite and pyroxene to includ-
ing minor olivine and more abundant phlogopite and 
pyroxene; also includes pale-red, aa-type, shoshonite 
and olivine latite lava flows with abundant small phe-
nocrysts of olivine, pyroxene, and biotite (Maughan 
and others, 2002; Biek and others, 2005); poorly 
exposed near the Rose–Butterfield Canyon area of 
Oquirrh Mountains; minette 40Ar/39Ar age of 37.82 ± 
0.14 Ma (Deino and Keith, 1997); exposed thickness 
to 150 feet (45 m) (Biek and others, 2005).

Tvfou Older intermediate lava flows (middle Eocene) 
– Dark-gray lava flows of intermediate composi-
tion derived from Bingham intrusive complex; may 
locally include small areas of lahars and fluvial de-
posits; interlayered with and difficult to differentiate 
from unit Tvbo; present between Butterfield and Rose 
Canyons; geochemical data in Clark and Biek (2017); 
interlayered with unit Tso near Butterfield Canyon, 
and 40Ar/39Ar age of 38.17 ± 0.09 Ma from recycled 
volcanic clast (Deino and Keith, 1997), but no direct 
age data; exposed thickness likely exceeds 1000 feet 
(300 m) (Biek and others, 2005).

Tvbo Older block-and-ash flows and lahars (middle 
Eocene) – Gray to white pebbles to boulders of 
intermediate-composition volcanic rocks in a ma-
trix of lithic and crystal fragments; locally con-
tains mostly mafic clasts or lenses of quartzitic and 
calcareous sandstone clasts derived from Oquirrh 
Group strata; contains some thin, discontinuous 
lava flows of intermediate composition (Maughan 
and others, 2002; Biek and others, 2005); generally 
forms rubbly slopes between Butterfield and Rose 
Canyons and along the south flank of the Bingham 
mine, and on the northeast flank of South Moun-
tain (western Traverse Mountains); Bingham area 
40Ar/39Ar ages of 38.68 ± 0.13 Ma from water-lain 
tuff near top of unit (Maughan, 2001) and 39.18 ± 
0.11 Ma from clast near base of unit (Deino and 
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Keith, 1997); also interlayered with unit Tso near 
Butterfield Canyon; called debris avalanche and la-
har deposits by Waite and others (1997) and older 
lahars and debris avalanches by Clark and others 
(2020b); thickness may exceed 4000 feet (1200 m) 
(Biek and others, 2005).

Older Intrusive Rocks

Tdmo Mafic dikes (late or middle Eocene?) – Two heav-
ily altered and poorly exposed lamprophyre dikes at 
Lion Hill near Ophir; Gilluly (1932) described sam-
ples from mine workings that consist primarily of 
altered biotite and olivine; no geochemical or direct 
age data exist; dikes have a north-south orientation; 
based on cross-cutting relations, unit Tdmo is older 
than Tir dikes; dikes are 1 to 4 feet (0.3–1 m) wide 
(Kirby, 2012).

Tipqm Porphyritic quartz monzonite intrusions (late to 
middle? Eocene) – Intrusions at the former Lark 
townsite and Porphyry Hill area. Lark intrusion is 
light- to medium-gray dacite (granodiorite) porphy-
ry (porphyritic amphibole-biotite quartz monzonite) 
with abundant phenocrysts of plagioclase, ortho-
clase, biotite, and lesser hornblende in a fine-grained 
groundmass; typically weathers to grussy or clayey 
soils; present near mouth of Butterfield Canyon near 
former Lark townsite (Laes and others, 1997; Biek 
and others, 2005, 2007); geochemical data in Clark 
and Biek (2017); prior K-Ar ages from Bingham tun-
nel portal (adjacent to map area) of 36.9 ± 0.9 Ma 
(hornblende) and 36.9 ± 1.0 Ma (biotite) (Moore 
and others, 1968). Porphyry Hill area intrusions are 
medium-gray quartz monzonite porphyry with small 
phenocrysts of K-feldspar, plagioclase, biotite, and 
quartz in a fine-grained groundmass of predomi-
nantly K-feldspar; present as small dikes and sills at 
Porphyry Hill and Porphyry Knob north of Mercur 
(Mako, 1999); K-Ar age of 36.7 ± 0.5 Ma from Por-
phyry Hill (Moore and McKee, 1983).

Tiqmp Quartz monzonite porphyry intrusion (middle 
Eocene?) – Altered part of the Soldier Canyon stock 
that is a grayish-brown granitic porphyry with K-
feldspar and quartz phenocrysts and limonite stain-
ing throughout (Lufkin, 1965); no radiometric age; 
Laes and others (1997) suggested intrusion may be 
related to Bingham stock, which has a K-Ar age of 
37.6 ± 0.07 Ma (Moore, 1973a) and U-Pb zircon age 
of 37.94 ± 0.08 Ma (von Quadt and others, 2011).

Tim  Monzonite intrusions (late to middle Eocene) – 
Monzonite intrusions of the Stockton/Rush Val-
ley district (Spring Gulch and Soldier Canyon) and 
Bingham district (Last Chance and Bingham stocks). 

Medium- to dark-gray, augite-biotite-amphibole 
(quartz) monzonite; where altered, augite is replaced 
by actinolite, chlorite, phlogopite, and quartz, where-
as plagioclase is replaced by orthoclase; contains py-
rite, chalcopyrite, bornite, and molybdenite mineral-
ization; original magnetite is replaced by sulfide min-
erals; main Bingham ore host (Kennecott Utah Cop-
per Corporation [KUCC], 2009); the Spring Gulch 
monzonite crops out just north of the Calumet mine 
east of Stockton (Krahulec, 2005); unit Tim is also 
present at the Soldier Canyon stock (Lufkin, 1965) 
and near the axis of Long Ridge anticline (Tooker, 
1992, Laes and others, 1997); monzonite porphyry 
stock of the Calumet mine area yielded an 40Ar/39Ar 
age on K-feldspar of 41.06 ± 0.21 Ma (UGS and 
NIGL, 2012b); the monzonites of the Stockton/Rush 
Valley district are similar in appearance and compo-
sition to the Last Chance stock in the Bingham dis-
trict (Krahulec, 2005), which has a U-Pb zircon age 
of 38.55 ± 0.19 Ma and 40Ar/39Ar age of 38.40 ± 0.16 
Ma (Parry and others, 2001).

Tilp  Latite to dacite porphyry sills and dikes (middle 
Eocene) – Light- to dark-gray, latite to dacite por-
phyry (hornblende-augite-biotite quartz latite por-
phyry) with abundant phenocrysts of plagioclase and 
hornblende and lesser biotite (Laes and others, 1997; 
Biek and others, 2005; KUCC, 2009); geochemical 
data in Clark and Biek (2017); present north of But-
terfield and Middle Canyons within Oquirrh Group 
strata of south flank of Bingham mine area; 40Ar/39Ar 
age of 38.84 ± 0.19 Ma (Deino and Keith, 1997) ) 
and U-Pb zircon age of 37.94 ± 0.13 Ma (von Quadt 
and others, 2011); up to about 400 feet (120 m) 
across (Biek and others, 2005).

Tiqlp Quartz latite porphyry dikes and sills (middle 
Eocene) – Medium-brown and light-greenish-gray, 
hornblende-biotite quartz latite porphyry; distin-
guished from other latitic dikes and sills by the pres-
ence of relatively large quartz phenocrysts and higher 
percentage of aphanitic groundmass (KUCC, 2009); 
newer geochemical data in Clark and Biek (2017); 
named the Raddatz porphyry (along Continental 
fault) at the Stockton/Rush Valley district where it 
forms dikes (Krahulec, 2005); 40Ar/39Ar age on Rad-
datz dike of 39.4 ± 0.34 Ma (Kennecott, unpublished 
date in Krahulec, 2005).

Tib  Basalt sill (middle Eocene) – Dark-gray basalt sill 
intruding Oquirrh Group strata on South Moun-
tain; may be related to unit Tvfo; K-Ar age of 40.1 
± 0.5 Ma (Moore and McKee, 1983); previously 
called a nepheline basalt (Gilluly, 1932; Moore 
and McKee, 1983); only largest sill mapped, about 
50 feet (15 m) thick.
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Volcanic Rocks of the Vernon Hills

Tbav, Tbav?

  Basaltic andesite (Oligocene?, Eocene?) – Dark-
gray basaltic andesite lava flow with olivine phe-
nocrysts; weathered and poorly exposed; no direct 
age data but unit overlies and postdates map unit 
Trv; exposed thickness is 40 feet (13 m) (Kirby, 
2010a, 2010b).

Trv  Rhyolite (upper Eocene) – White to light-gray and 
locally dark-gray, rhyolitic ash-flow tuff; ranges from 
densely welded to unwelded and ashy; contains about 
15% phenocrysts of quartz, also with angular and sub-
angular lithic fragments of older volcanic rocks (to 10 
mm) and black vitrophyre (to 20 mm); also includes 
pale-red to gray, porphyritic, densely welded tuff with 
30% phenocrysts of plagioclase, biotite, and horn-
blende; forms low hills and small blocky outcrops; 
40Ar/39Ar ages on sanidine of 35.33 ± 0.05 Ma and 
on plagioclase of 35.58 ± 0.29 Ma (UGS and NIGL, 
2012a); exposed thickness is 40 to 100 feet (12–30 m) 
(Kirby, 2010a, 2010b).

Tdv  Dacite (upper Eocene) – Light-gray to reddish-brown 
porphyritic dacite and trachydacite lava flows that 
contain phenocrysts (30%) of plagioclase and minor 
hornblende; forms low hills and small blocky out-
crops; 40Ar/39Ar age on plagioclase of 36.63 ± 0.16 
Ma (UGS and NIGL, 2012a); maximum exposed 
thickness is 30 feet (10 m) (Kirby, 2010a, 2010b).

Volcanic Rocks of the Northern East Tintic Mountains

Tb  Mosida Basalt (Miocene) – Medium-dark-gray, 
porphyritic, trachybasalt lava flow with phenocrysts 
(10%–20%) of olivine, plagioclase, and clinopyrox-
ene; forms blocky exposures; vent is not exposed, but 
is located near Soldiers Pass at southern Lake Moun-
tains (east of map area) (Christiansen and others, 
2007; Biek and others, 2009); 40Ar/39Ar ages of 19.47 
± 0.17 and 19.65 ± 0.15 Ma (Christiansen and others, 
2007), and 19.74 ± 0.05 Ma (Christiansen and others, 
2013); likely associated with the onset of initial Ba-
sin and Range-type extension (Christiansen and oth-
ers, 2007); 0 to 40 feet (12 m) thick (McKean, 2011, 
2020; McKean and others, 2020); thicker to east of 
map area.

Tfb  Shoshonite of Broad Canyon (upper Oligocene) – 
Light-gray to black, vesicular to dense, porphyritic to 
aphanitic, shoshonitic lava flow with 10% megacrysts 
of anorthoclase, and 15%–20% phenocrysts of high-
ly altered amphibole (replaced with Fe-Ti oxides), 
clinopyroxene, olivine, magnetite, and apatite; forms 

blocky exposures; 40Ar/39Ar age of 25.33 ± 0.03 Ma 
(Christiansen and others, 2013); thickness is 30 to 130 
feet (10–40 m) (Allen, 2012).

Tdm Mafic dikes (late Oligocene) – Gray to black, dense, 
aphanitic intrusions of basalt and trachybasalt with 
10%–20% phenocrysts of plagioclase, pyroxene, al-
tered olivine, apatite, and Fe-Ti oxides; forms three 
small exposures in the Boulter Peak quadrangle; 
40Ar/39Ar age of 25.40 ± 0.20 Ma from dike at Gardi-
son Ridge (Allen, 2012; Christiansen and others, 
2013); exposed thickness less than 15 feet (5 m) (Al-
len, 2012).

Tvm Minette of Black Rock Canyon (Oligocene) – Yel-
low to dark-brown, deeply weathered intrusion with 
minette-like characteristics in a few small exposures 
near Black Rock Canyon, Boulter Peak quadrangle; 
contains 30%–40% phenocrysts of brassy hexago-
nal phlogopite; in thin section includes phenocrysts 
of clinopyroxene, apatite, and magnetite; secondary 
calcite occurs in veins and fractures; 40Ar/39Ar age on 
phlogopite of 28.72 ± 0.06 Ma (Allen, 2012; Chris-
tiansen and others, 2013); exposed width less than 6 
feet (2 m) (Allen, 2012).

Tpc  Pinyon Creek Conglomerate (Oligocene) – Volca-
nic conglomerate with reddish-brown to gray clasts 
up to boulder size probably derived from the Laguna 
Springs Volcanic Group; distinctly bedded (beds 1.5 
to 10 feet [0.5–3 m] thick) with some beds of nearly 
all fine ash and small volcanic fragments and others 
with both fine and coarse volcanic fragments (Morris 
and Lovering, 1979); unit appears to include a dark-
gray pillow lava breccia (shoshonite) and a basaltic 
dike in two small exposures near Chimney Rock 
Pass (unit Tpcb of McKean and others, 2020); forms 
rubble-strewn exposures; field relations indicate unit 
Tpc is younger than Laguna Spring Volcanic Group 
units and older than the Mosida Basalt, but no di-
rect age data; may have a thin lacustrine and alluvial 
cover below the Bonneville shoreline; thickness is 
greater than 150 feet (50 m) (McKean, 2011; McK-
ean and others, 2020).

Laguna Springs Volcanic Group includes several units after 
Morris and Lovering (1979), not all present in the map area. 
Divided into the following informal members after McKean 
(2011) and McKean and others (2020):

Tlsl  Laguna Springs Volcanic Group, lava flow unit 
(lower Oligocene) – Reddish-brown, purplish-gray 
and gray andesite to trachyandesite lava flows; lavas 
are dense and commonly vitrophyric, with large phe-
nocrysts (30%–40%) of plagioclase, sanidine, biotite, 
hornblende, and clinopyroxene; ledge to cliff former; 
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40Ar/39Ar sanidine age of 32.66 ± 0.03 Ma (Chris-
tiansen and others, 2013; McKean and others, 2020;); 
exposed thickness to 650 feet (200 m) (McKean and 
others, 2020; this study).

Tlsa Laguna Springs Volcanic Group, tuff unit (low-
er Oligocene) – A heterogeneous unit composed 
mostly of ash and tuffaceous sediment of varying 
grain and clast sizes; dark-reddish-brown andesite 
to trachyandesite tuffs contain phenocrysts (10%–
20%) of plagioclase, biotite, and hornblende; typi-
cally forms poorly exposed rubbly exposures; no 
age data but underlies unit Tlsl; exposed thickness 
to 300 feet (100 m) (McKean and others, 2020; 
this study).

Soldiers Pass Formation divided into the following mem-
bers after Christiansen and others (2007), Biek and others 
(2009), McKean (2011, 2020), Allen (2012), and McKean 
and others (2020):

Tsw Soldiers Pass Formation, White Knoll Member 
(lower Oligocene to upper Eocene) – White and pale-
yellowish-orange limestone that weathers yellowish 
gray, with interbedded very pale orange, white, and 
pale-red claystone; ledge and slope former; partly 
coeval with map unit Tsb, but probably spans a rela-
tively large age range (Biek and others, 2009); thick-
ness is as much as 80 feet (25 m) (McKean, 2020; 
McKean and others, 2020), but much thicker in adja-
cent areas.

Tsb  Soldiers Pass Formation, breccia member (lower 
Oligocene to upper Eocene) – Gray, white, brown, 
and pale-red shoshonite lava flow; exposed mostly 
as distinctive, carbonate-impregnated lava breccia, 
but also occurs as gray and pale-red, locally vesicular 
lava flow; interfingers with and partly overlain by the 
White Knoll Member (Tsw) (Biek and others, 2009); 
forms ledges and rounded knobs; 40Ar/39Ar age of 
33.73 ± 0.65 Ma from east of map area (Christiansen 
and others, 2007); exposed thickness as much as 170 
feet (50 m) (McKean, 2020).

Tsa  Soldiers Pass Formation, andesite member (lower 
Oligocene to upper Eocene) – Medium-gray vesicular 
andesitic lava flow with no phenocrysts (see Biek and 
others, 2009); locally contains lithic clasts of rounded 
sandstone; mapped in one location where only weath-
ered clasts of the flow remain; geochemically is an-
desite (table A6); 40Ar/39Ar isochron groundmass age 
is an imprecise 34.90 ± 4.20 Ma (Christiansen and 
others, 2007), whereas McKee and others (1993) re-
ported a K-Ar age of 32.6 ± 1.0 Ma, both samples 
from east of map area; thickness estimated at over 10 
feet (3 m) (McKean, 2020), and thicker to east.

Tstp, Tstp?

  Soldiers Pass Formation, tuff of Twelvemile Pass 
member (upper Eocene) – Reddish-brown to dark-
reddish-brown, densely welded, dacitic to trachydacit-
ic tuff with phenocrysts (10%–20%) of plagioclase, 
biotite, hornblende, and clinopyroxene, and flattened 
pumice lapilli (5%–10%) (lapilli typically 1–2 cm in 
diameter, locally 6–20 cm); Allen (2012) included 
this unit in the Laguna Springs Volcanic Group, but is 
older and geochemically more similar to the Soldiers 
Pass Formation (A.P. McKean, UGS, verbal commu-
nication, May 2013); forms rounded knobs; 40Ar/39Ar 
age of 34.62 ± 0.17 Ma from west of Chimney Rock 
Pass (Christiansen and others, 2013; McKean and oth-
ers, 2020); exposed thickness to 50 feet (15 m) (Allen, 
2012; McKean and others, 2020).

Tsc  Soldiers Pass Formation, Chimney Rock Pass 
Tuff Member (upper Eocene) –Gray to light-gray, 
porphyritic, rhyolitic ash-flow tuff; contains about 
10% small phenocrysts of quartz, plagioclase, sani-
dine, biotite, and Fe-Ti oxides; also contains con-
spicuous pumice (~15%, 1–5 cm) and lithic fragments 
(<5%, 1.0–4.5 cm); vent unknown, but may be near 
Black Point at southern Lake Mountains (east of map 
area) (Biek and others, 2009); forms ledgy exposures; 
40Ar/39Ar ages of 34.70 ± 0.07 and 34.73 ± 0.08 Ma 
(Christiansen and others, 2007; Biek and others, 2009) 
and 34.61 ± 0.02 Ma (Christiansen and others, 2013; 
McKean and others, 2020); exposed thickness to 80 
feet (25 m) (Allen, 2012; McKean and others, 2020).

Tintic Mountain Volcanic Group includes several units after 
Morris and Lovering (1979) and Keith and others (2009); only 
one unit is present in the map area:

Ttlr  Tintic Mountain Volcanic Group, Latite Ridge 
Latite (upper Eocene) – Dark-reddish-brown to 
brown, densely welded, trachytic tuff with pheno-
crysts (15%–20%) of plagioclase, biotite, and clino-
pyroxene; tuff is rich in lithic fragments (15%–20%, 
~1 cm), pumice (10%–15%), and black flattened non-
vesicular cognate clasts (5–15 cm); crops out as ledg-
es and knobs; 40Ar/39Ar biotite age of 34.64 ± 0.17 
Ma (UGS and NMGRL, 2007) from Tintic Mountain 
quadrangle (south of map area); exposed thickness up 
to 65 feet (20 m) (McKean and others, 2020).

Packard Quartz Latite subdivided by Morris and Lovering 
(1979) into several units that are not all present in the map area; 
informal units of McKean (2011), Allen (2012) and McKean 
and others (2020) are combined as follows:

Tp  Packard Quartz Latite, undivided (upper 
Eocene) – Combined unit includes several volcanic 
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lithofacies, informally subdivided by McKean 
and others (2020) into three members: (1) tuff of 
Rattlesnake Pass (ignimbrite), (2) tuff of Tintic Davis 
Canyon (vitrophyric rhyolite tuff), and (3) lava flow 
and tuff member; the latter member is equivalent to 
the rhyolite lava member of Allen (2012); tuff of 
Rattlesnake Pass member predominantly light-gray 
to pink, non-welded to welded rhyolite ignimbrite 
with large and abundant phenocrysts (30%–40%) 
of quartz, sanidine, plagioclase, and biotite; bi-
pyramidal quartz phenocrysts are the distinguishing 
characteristic of this lithofacies; also contains 
pumice (1%–5%, 1–4 cm) and lithic fragments 
(1%–5%, 1–4 cm) that are not as abundant as in unit 
Tsc; 40Ar/39Ar sanidine age of 35.08 ± 0.03 Ma on 
ignimbrite (tuff of Rattlesnake Pass; Christiansen 
and others, 2013; McKean and others, 2020); tuff 
of Tintic Davis Canyon member includes small 
area of dark-brown, densely welded, ash-flow tuff 
(vitrophyre) with an 40Ar/39Ar age of 35.21 ± 0.03 
Ma (tuff of Tintic Davis Canyon; Christiansen and 
others, 2013; McKean and others, 2020); lava flow 
and tuff member locally consists of rhyolite lava 
flows and related flow breccia (southern border of 
Boulter Peak and Allens Ranch quadrangles) with 
an 40Ar/39Ar age of 35.25 ± 0.04 Ma (Allen, 2012; 
Christiansen and others, 2013) (lava flow and tuff 
member; rhyolite lava member); in Broad Canyon, 
unit includes small exposure of tuff of Hot Stuff 
mine (Allen, 2012) underlying tuff of Rattlesnake 
Pass member; unit Tp exposed thickness to 425 feet 
(130 m) (Allen, 2012; McKean and others, 2020).

TRIASSIC TO NEOPROTEROZOIC ROCK 
UNITS IN MAIN PART OF MAP AREA

Triassic and Permian stratigraphy in the Martin Fork area of the 
eastern Stansbury Mountains was reinterpreted from Jordan and 
Allmendinger (1979) by modifying some formation contacts.

^tw  Thaynes Formation and Woodside Formation, 
undivided (Lower Triassic) – Thaynes is light- to 
medium-gray and brown, gastropod- and pelecy-
pod-bearing limestone, sandstone, and siltstone; the 
unit is resistant, bioturbated, and irregularly me-
dium bedded; regionally contains Meekoceras beds 
(ammonite) at base of unit (Kummel, 1954); under-
lying Woodside is pale-red and brown siltstone and 
calcareous sandstone, greenish-brown shale, and 
minor light-gray laminated limestone that is poorly 
exposed and forms slopes; present only at core of 
Martin Fork syncline; unconformity between unit 
^tw and underlying unit Ppfm; incomplete thick-
ness of Thaynes is 590 feet (180 m) and complete 
Woodside is 210 feet (65 m), with a combined unit 
thickness of 800 feet (245 m).

Pz         Paleozoic rocks, undivided – Cross sections only.

Pz-Z   Paleozoic and Neoproterozoic rocks, undivided – 
Cross sections only.

Ppfm Park City Formation, Franson Member and 
Phosphoria Formation, Meade Peak Member, 
undivided (middle to lower Permian) – Franson 
is moderate-brown and gray limestone, sandy lime-
stone, and calcareous sandstone that is medium bed-
ded, with minor shale; underlying Meade Peak is 
pale-red, brown, and dark-gray shale, with lesser 
bedded chert and phosphorite; forms a distinct red-
brown-weathering slope or saddle; crops out at Mar-
tin Fork syncline; Franson is 280 feet (85 m) and 
Meade Peak is 230 feet (70 m) thick, and combined 
unit thickness is 510 feet (155 m).

Ppg Park City Formation, Grandeur Member (lower 
Permian) – Gray cherty and bioclastic limestone, 
sandy and cherty dolomite, calcareous sandstone, 
quartzite, and bedded chert; medium- to thick-bed-
ded ledge former present only in the Martin Fork 
syncline; thickness is 500 feet (150 m).

Psl  Permian sandstone, limestone and dolomite 
(lower Permian, Leonardian) – Gray to light-brown 
sandstone, limestone, and lesser dolomite; sand-
stone is fine to medium grained with calcareous 
cement and tabular cross-beds; carbonate rocks are 
finely crystalline, locally with chert and calcite nod-
ules, and locally with brachiopods and gastropods; 
medium to thick bedded forming steep, ledgy slopes 
at Cedar Mountains; Leonardian age is from brack-
eting strata and fusulinids in the Cedar Mountains 
(sample D-77; Clark and others, 2016); may corre-
late with the Pequop Formation (west) and Diamond 
Creek Sandstone and Kirkman Formation (east); 
present in two small outcrops at northwest corner 
of map; complete thickness at Cedar Mountains is 
3953 feet (1205 m) (Maurer, 1970).

Pdk, Pdk?

  Diamond Creek Sandstone and Kirkman For-
mation, undivided (lower Permian, Leonardian? 
to Wolfcampian) – Mapped as combined unit in 
South Mountain and Martin Fork syncline, east-
ern Stansbury Mountains; Diamond Creek is gray 
to tan, weathering to red brown and light brown, 
fine-grained sandstone and quartzite to calcareous 
sandstone (at Martin Fork) that is thin to medium 
bedded; typically slope-forming unit weathers to 
chips and blocks; Kirkman at South Mountain is 
atypical and may be represented by a 30-foot-thick 
(10 m) sandy limestone at base of unit and some 
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overlying sandstone (Welsh and James, 1998), or 
may be attenuated; at Martin Fork area, Kirkman 
is moderate-gray to light-brown limestone, calcar-
eous sandstone, fossiliferous carbonate-clast con-
glomerate, and oncolitic limestone; limestone is lo-
cally bioclastic and cherty, and laminated with chert 
stringers and nodules; thin to thick bedded forming 
ledges and cliffs; the Kirkman is regionally a weak, 
intensely deformed interval (refer to descriptions of 
this unit in the Oquirrh Mountains [Tooker and Rob-
erts, 1970; Swenson, 1975; Laes and others, 1997] 
and Wasatch Range [Constenius and others, 2011]); 
limited fossil age data (Jordan, 1979a, 1979b; table 
A8); top not exposed, incomplete thicknesses are 
2600 feet (790 m) at South Mountain and about 750 
feet (225 m) at Martin Fork area.

Oquirrh Group strata includes five lower Permian and 
Pennsylvanian formations of the Bingham mine area (Oquirrh 
Mountains) after Laes and others (1997) (figures 4 and 5), and 
one unit of the Cedar thrust sheet (see Clark and others, 2020b).

Pofc Oquirrh Group, Freeman Peak and Curry Peak 
Formations, undivided (lower Permian, Wolf-
campian) – Combined unit at Cedar Mountains and 
Stansbury Mountains; see unit descriptions below; 
fossil age data in table A8; figure 4 shows reinter-
pretation from prior mapping at Cedar Mountains; 
maximum exposed thickness is about 3500 feet 
(1070 m) (Clark and others, 2016).

Pofp, Pofp?

  Oquirrh Group, Freeman Peak Formation (lower 
Permian, Wolfcampian) – Light-brown, weathering 
to red brown, fine-grained sandstone and quartzite; 
medium to thick bedded, resistant, and jointed, form-
ing blocky ledges and talus-covered slopes; age from 
Welsh and James (1961), Jordan (1979a, 1979b), 
and Armin and Moore (1981) (table A7); thickness 
is 2900 feet (880 m) in South Mountain, and 2400 
feet (730 m) thick on Freeman Peak at the Bingham 
district (Swenson, 1975), north of map area.

Pocp Oquirrh Group, Curry Peak Formation (lower 
Permian, Wolfcampian) – Dark-gray, weathering 
to light gray and tan, very fine grained calcareous 
sandstone and siltstone that is poorly bedded (thin) 
and includes some minor quartzite and limestone 
intervals; sparsely fossiliferous, but worm tracks 
and trails are abundant on bedding planes; quartzite 
lacks fine banding; forms chippy slopes with 
few ledges; unconformity between Curry Peak 
Formation and Bingham Mine Formation in the 
Bingham district (Welsh and James, 1961), but not 
observed to the west; age from Welsh and James 
(1961), Jordan (1979a, 1979b), and Armin and 

Moore (1981) (table A7); thickness is 1800 feet (550 
m) at South Mountain, and 2450 feet (750 m) thick 
in reference section on Curry Peak at the Bingham 
district (Swenson, 1975), north of map area.

*ob, *ob?

  Oquirrh Group, Bingham Mine and Butterfield 
Peaks Formations, undivided (Upper to Lower 
Pennsylvanian) – Combined unit in a few exposures 
of southern Oquirrh Mountains, western Traverse 
Mountains, and southern Cedar Mountains.

*obm, *obm?

  Oquirrh Group, Bingham Mine Formation, un-
divided (Upper Pennsylvanian, Virgilian-Missou-
rian) – Brown-weathering, fine-grained quartzitic 
sandstone, quartzite, and calcareous sandstone with 
interbeds of medium- to dark-gray, fine-grained 
sandy and cherty limestone; light-brown to pale-red 
sandstones are very fine grained, feldspathic, and 
cross-laminated; limestone can be poorly bedded; 
overall, sandstone predominates over limestone; 
forms talus-covered slopes with some intervening 
ledges; age data in Welsh and James (1961), Took-
er and Roberts (1970), Douglass and others (1974), 
Jordan (1979a, 1979b), and Armin and Moore 
(1981) (table A8); complete thickness is 5300 to 
6500 feet (1600–2000 m) at the Bingham district 
(Welsh and James, 1961; Swenson, 1975) north of 
map area, 6400 feet (1950 m) at South Mountain 
(Welsh and James, 1998), 8000 feet (2450 m) at 
southern Stansbury Mountains, and 2800 feet (850 
m) at southern Cedar Mountains (Clark and oth-
ers, 2016); incomplete section at Vernon Hills is 
about 1850 to 3200 feet (560–980 m) thick (Kirby, 
2010a, 2010b).

Bingham Mine Formation in southern Oquirrh Moun-
tains locally divided into upper and lower members after 
Swenson (1975):

*obmu

  Oquirrh Group, Bingham Mine Formation, up-
per member (Upper Pennsylvanian, Virgilian?) 
– Light-gray to brownish-tan, thinly color-banded, 
locally cross-bedded, calcareous quartzite with in-
terbedded thin, light- to medium-gray, calcareous, 
fine-grained sandstone, limestone, and siltstone; 
several of the thin calcareous units are locally im-
portant as marker beds; unit is very similar to the 
lower member above the Commercial Limestone; 
2200 feet (670 m) thick at the Oquirrh Mountains 
(Swenson, 1975).
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*obml

  Oquirrh Group, Bingham Mine Formation, 
lower member (Upper Pennsylvanian, Missou-
rian) – Unit includes the Commercial and basal 
Jordan Limestone marker beds (important Bingham 
ore hosts); most of the unit consists of light-gray 
to brownish-tan, banded orthoquartzite and cal-
careous quartzite with thin, interbedded, light- to 
medium-gray, calcareous, fine-grained sandstone, 
limestone, siltstone, and minor shale; the Commer-
cial consists of thin-bedded, dark-gray to black, ar-
gillaceous, silty and cherty limestone, whereas the 
Jordan is thin-bedded, dark-gray, argillaceous and 
silty, cherty limestone and arenaceous limestone; 
Missourian-age conodont fauna was recovered from 
the Jordan Limestone east of Tooele (S.M. Ritter, 
Brigham Young University, written communication, 
October 27, 2009); thickness is about 3100 feet (945 
m) near Middle Canyon (Swenson, 1975).

*obw Oquirrh Group, Butterfield Peaks Formation 
and West Canyon Limestone, undivided (Middle 
to Lower Pennsylvanian, Desmoinesian-Morrowan) 
– Combined unit mapped in small exposures of 
southern Cedar Mountains and Onaqui Mountains 
where subdivision is difficult due to similar lithofa-
cies in faulted sections.

*obp, *obp?

  Oquirrh Group, Butterfield Peaks Formation 
(Middle to Lower Pennsylvanian, Desmoinesian-
Morrowan) – Typically cyclically interbedded lime-
stone and clastic intervals; limestone is medium 
gray and locally fossiliferous, arenaceous, cherty, 
and argillaceous in thin to thick beds; limestone con-
tains locally abundant brachiopod, bryozoan, coral, 
and fusulinid fauna; diagnostic black chert weath-
ers brown and locally occurs as spherical nodules 
and laterally linked masses; light-brown calcareous 
quartzite, orthoquartzite, and calcareous sandstone is 
thin to medium bedded and locally cross-bedded; in-
cludes some poorly exposed light-gray siltstone and 
mudstone interbeds; limestone is similar in abun-
dance to quartzite and sandstone, with clastic per-
centages increasing somewhat upsection; unit forms 
ledges and cliffs with regularly intervening slopes; 
age data in Tooker and Roberts (1970), Douglass and 
others (1974), and Armin and Moore (1981) (table 
A8); complete thickness is 9000 feet (2765 m) on 
Butterfield Peaks at the Oquirrh Mountains (Tooker 
and Roberts, 1970) north of map area, and 5400 feet 
(1650) thick at southern Cedar Mountains (Clark 
and others, 2016); incomplete thickness is 6000 feet 
(1800 m) at southern Stansbury Mountains (Armin 
and Moore, 1981; Copfer and Evans, 2005), 6842 

feet (2086 m) at Manning Canyon, Oquirrh Moun-
tains (Konopka, 1999), 1100 to 1250 feet (340–380 
m) at Vernon Hills (Kirby, 2010a, 2010b), and about 
3650 feet (1110 m) at northern East Tintic Moun-
tains, where it corresponds to Oquirrh formation 
units 2 through 5 of Disbrow (1957).

*owc, *owc?

  Oquirrh Group, West Canyon Limestone (Lower 
Pennsylvanian, Morrowan to Upper Mississippian?, 
Chesterian?) – Medium-gray to dark-gray limestone, 
sandy limestone, and fossiliferous limestone that is 
thin to medium bedded; locally laminated with silt 
and sand and contains some sparse chert; locally in-
cludes minor thin sandstone and quartzite in middle 
and near upper and lower contacts; fossils include 
crinoid columnals, brachiopods, bryozoans, rugose 
corals, and fusulinids; forms ledgy exposures; ledge 
and slope-forming unit is the basal carbonate pack-
age of Oquirrh Group, however, there are uncertain-
ties about researchers picking a consistent litholog-
ic and fossil datum at the lower contact with unit 
Mmc; age data in Tooker and Roberts (1970), Dou-
glass and others (1974), Webster and others (1984), 
and Davis and others (1994) (table A8); thickness is 
1456 feet (444 m) at type section (West Canyon in 
southern Oquirrh Mountains) (Nygreen, 1958), and 
1007 to 1053 feet (307–321 m) at reference section 
(Soldier Canyon) (Tooker and Roberts, 1970; Da-
vis and others, 1994); complete thicknesses of 500 
to 800 feet (150–245 m) at southern Cedar Moun-
tains (Clark and others, 2016), up to 800 feet (250 
m) at Onaqui Mountains (Croft, 2004; this study), 
and about 750 feet (230 m) at northern East Tintic 
Mountains where it corresponds to Oquirrh forma-
tion unit 1 of Disbrow (1957, 1961); incomplete 
thickness about 1150 to 1650 feet (350–500 m) at 
Vernon Hills (Kirby, 2010a, 2010b).

*olc Oquirrh Group, limestone unit, Cedar thrust 
sheet (Middle Pennsylvanian?) – Moderate-gray 
limestone and cherty limestone with minor inter-
bedded light-brown calcareous sandstone; typically 
medium to thick bedded, forming cliffs and ledges; 
no fossils were found for biostratigraphic control; 
Maurer (1970) mapped as Oquirrh Formation unit 3 
and Clark and others (2016) mapped as unit *obp, 
but Oquirrh Group facies change westward across 
the Cedar and Calcite thrust faults (see figure 3; 
Clark and others, 2020a, 2020b); incomplete thick-
ness is roughly 1900 feet (580 m).

M          Mississippian rocks, undivided – Cross section only.

M-D      Mississippian and Devonian rocks, undivided – 
Cross section only.
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Mmc, Mmc?

  Manning Canyon Formation (Lower Pennsylva-
nian?, Morrowan? to Upper Mississippian, Cheste-
rian) – Lithologically diverse unit of predominantly 
shale with lesser sandstone, quartzite, and limestone; 
black to grayish-purple calcareous and carbona-
ceous shale and siltstone; light-brown, fine-grained 
calcareous sandstone with cross-bedding; brown-
weathering, medium- to thick-bedded orthoquartz-
ite with vitreous luster; and medium-gray to bluish-
gray, thin- to thick-bedded, fossiliferous and argil-
laceous limestone; weak, slope-forming unit; fossils 
include brachiopods, bryozoans, rare trilobites, and 
leaves; in Soldier Canyon, conodont age data from 
Webster and others (1984) (note discrepancy with 
Davis and others, 1994), and palynomorph data 
(C. Morgan, UGS, verbal communication, April 
13, 2009) suggest a late to middle Chesterian age 
(table A9); unit is an interval of regional decolle-
ment, commonly exhibiting substantial deforma-
tion, but Soldier Canyon in the Oquirrh Mountains 
and the Lake Mountains (east of map area) contain 
relatively intact sections; thickness at Soldier Can-
yon is 1140 feet (347 m) (Gilluly, 1932) to 1559 feet 
(475 m) (Moyle, 1959), and 1176 feet (359 m) thick 
at Lake Mountains (Biek and others, 2009) (east 
of map area); incomplete sections are as much as 
1050 feet (320 m) at northern East Tintic Mountains 
(Disbrow, 1957), up to 1300 feet (400 m) at Ver-
non Hills, Stansbury Mountains, Onaqui Mountains, 
northern Sheeprock Mountains, Davis–Little Davis 
Mountains area (Kirby, 2010a, 2010b; this study), 
and about 1500 to 2000 feet (450–600 m) thick at 
southern Cedar Mountains (Maurer, 1970).

Mgb, Mgb?

  Great Blue Limestone, undivided (Upper Missis-
sippian) – Mapped as combined unit in the southern 
Cedar Mountains, Davis–Little Davis Mountains 
area, southernmost Stansbury Mountains, Onaqui 
Mountains, northern Sheeprock Mountains, and 
northern East Tintic Mountains, where the medial 
Long Trail Shale is not well exposed or absent; we 
did not use the members in the East Tintic Mountains 
previously used by Disbrow (1957, 1961) and Mor-
ris and Lovering (1961); see descriptions for units 
Mgbu and Mgbl; thickness about 1600 feet (490 
m) at the Stansbury Mountains southward to Davis 
Mountain area; incomplete thicknesses of 2440 feet 
(745 m) at the southern Cedar Mountains (Maurer, 
1970), 440 to 820 feet (130–250 m) at Vernon Hills 
(Kirby, 2010a, 2010b), and as much as 1080 feet 
(330 m) at the northern East Tintic Mountains (Dis-
brow, 1961; this study).

Great Blue Limestone divided into three members in the 
southern Oquirrh Mountains and locally in the Stansbury 
Mountains (after Gilluly, 1932), and an additional member 
(Mgbus) near Fivemile Pass (this study):

Mgbus Great Blue Limestone, upper limestone and shale 
member (Upper Mississippian) – Interbedded, silty 
and arenaceous, blue-gray, medium-bedded, sparsely 
fossiliferous limestone and a thick section of fissile, 
greenish-black shale with interspersed thin chert and 
quartzite lenses; crops out as ledges and slopes; unit 
is a different facies of the upper limestone member 
with more shale at the southern end of the Oquirrh 
Mountains near Fivemile Pass, which Tooker (1999) 
called a separate structural block, whereas Laes and 
others (1997) mapped an upper shale unit within 
their upper limestone unit; following Tooker, we 
map the unit as an informal member of the Great 
Blue Limestone; Mgbus may in part be transitional 
with the overlying Manning Canyon Formation and/
or the upper limestone member of the Great Blue 
Limestone; source of brick clay deposits and local 
variscite deposits north of Fivemile Pass; exposed 
thickness is roughly 2000 feet (610 m).

Mgbu, Mgbu?

  Great Blue Limestone, upper limestone member 
(Upper Mississippian) – Blue-gray limestone, cherty 
and argillaceous limestone, and calcareous shale; 
sparsely fossiliferous and thin to medium bedded 
forming ledges, cliffs, and slopes; also informally 
called Mercur limestone member (Gordon and oth-
ers, 2000); unit transitions to Mgbus southward 
across Wells–Clay Canyon fault near Fivemile Pass, 
southern Oquirrh Mountains; Great Blue age data 
from Gordon and others (2000); thickness is 3000 
feet (915 m) at southern Oquirrh Mountains (Gil-
luly, 1932), and north of Mercur Canyon is between 
2500 and 2800 feet (760–850 m) (Kirby, 2012); 800 
feet (240 m) thick at southern Stansbury Mountains 
(Copfer and Evans, 2005).

Mgbs, Mgbs?

  Great Blue Limestone, shale member (Upper 
Mississippian) – Black to dark-green calcareous 
and carbonaceous shale in upper part, fossiliferous 
argillaceous limestone and silty limestone in lower 
part; forms a thin-bedded, slope-forming interval 
between enclosing limestone members; maximum 
thickness is 110 feet (34 m) at southern Oquirrh 
Mountains where it has been called the Long Trail 
Shale Member (Gilluly, 1932; Kirby, 2012); 30 to 
80 feet (10–25 m) thick at the southern Stansbury 
Mountains (Copfer and Evans, 2005).
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Mgbl, Mgbl?

  Great Blue Limestone, lower limestone member 
(Upper Mississippian) – Blue-gray limestone and 
argillaceous limestone, interbedded with calcareous 
sandstone and sandy limestone; thin to medium bed-
ded, locally silicified (jasperoid of Laes and others, 
1997), and locally fossiliferous (brachipods, cor-
als, bryozoans), forming ledges, slopes, and cliffs; 
also informally called Silveropolis limestone mem-
ber (Gordon and others, 2000); upper part of lower 
limestone member (mineralized interval) was called 
the Mercur series (Laes and others, 1997) and Mer-
cur member (Mako, 1999); thickness is 460 to 560 
feet (140–170 m) at southern Oquirrh Mountains 
(Gilluly, 1932), 700 feet (210 m) at southern Stans-
bury Mountains (Copfer and Evans, 2005).

Mhd? Humbug Formation and Deseret Limestone, un-
divided? (Upper to Lower Mississippian) – Queried 
unit in one area of southern Stansbury Mountains 
where probable Humbug and Deseret are poorly ex-
posed; see descriptions for units Mh and Md.

Mh, Mh?

  Humbug Formation (Upper Mississippian) – Inter-
bedded calcareous quartz sandstone, orthoquartzite, 
and limestone that weather to ledgy slopes; limestone 
is medium to dark gray, medium to very thick bedded, 
locally cross-bedded, with uncommon brachiopod, 
coral, and bryozoa fauna; locally contains light-gray 
sublithographic limestone in uppermost part; sand-
stone and quartzite is brown weathering and common-
ly lenticular, medium to very thick bedded, locally 
cross-bedded; in isolated exposures can be confused 
with Oquirrh Group strata; about 600 feet (180 m) 
thick at the northern East Tintic Mountains (Disbrow, 
1957); 650 feet (200 m) thick at the southern Oquirrh 
Mountains (Gilluly, 1932); 700 feet (210 m) thick at 
southern Stansbury Mountains (Teichert, 1958), up to 
1240 feet (380 m) thick at the Onaqui Mountains, 850 
feet (260 m) thick at the Sheeprock Mountains, 1400 
feet (425 m) thick in Davis Mountain (Harrill, 1962; 
this study), and 850 to 1250 feet (260–380 m) at the 
Vernon Hills (Kirby, 2010a, 2010b); incomplete thick-
ness of 1014 feet (310 m) at southern Cedar Moun-
tains (Maurer, 1970).

Md  Deseret Limestone (Upper to Lower Mississippian) 
– Blue-gray limestone that is medium to very thick 
bedded and locally sandy, fossiliferous, and cherty, 
forming ledges and cliffs; basal part contains slope-
forming black shale and chert (red weathering) of 
the Delle Phosphatic Member (up to 30 feet [10 m] 
thick) (see Sandberg and Gutschick, 1984); in the 
Tintic mining district, Morris and Lovering (1961) 

subdivided the Deseret above the Delle into the Tet-
ro Member and Uncle Joe Member based on lithol-
ogy, but these members are not mapped regionally; 
thickness is about 650 feet (200 m) at the southern 
Oquirrh Mountains (Gilluly, 1932); about 700 feet 
(215 m) at the northern East Tintic Mountains (Dis-
brow, 1957); 525 feet (160 m) at southern Stansbury 
Mountains; 450 feet (140 m) at the Onaqui Moun-
tains; about 200 feet (60 m) at northern Sheeprock 
Mountains and Davis Mountain; attenuated thick-
ness is about 200 feet (60 m) at Vernon Hills (Kirby, 
2010a, 2010b).

MDgs Gardison Limestone, Fitchville Formation, Pin-
yon Peak Limestone, Stansbury Formation, un-
divided (Lower Mississippian to Upper Devonian) 
– Combined unit north of head of Dry Canyon in 
southern Stansbury Mountains, but to the south 
this interval is mapped as units MDfs and Mg; see 
individual unit descriptions below; Stansbury For-
mation thins northward to zero near head of Indian 
Hickman Canyon, and northward the Pinyon Peak 
and Fitchville pinch out; thickness is about 1200 
feet (370 m).

Mg, Mg?

  Gardison Limestone (Lower Mississippian) – Me-
dium- to dark-gray limestone and cherty limestone 
that is very fossiliferous and well bedded; upper part 
is thicker bedded (medium to very thick), sandy and 
cherty, forming cliffs and ledges, whereas lower part 
is thinner bedded (thin and medium) and less resis-
tant forming ledges and slopes; black chert occurs as 
nodules and thin beds; fossils include rugose and co-
lonial corals, brachiopods, gastropods, and bryozo-
ans, and some fossils are replaced by white calcite; 
unconformity between Gardison and Fitchville–Pin-
yon Peak Formations; 450 feet (140 m) thick at the 
northern East Tintic Mountains (Disbrow, 1961); 
460 feet (140 m) thick at the southern Oquirrh 
Mountains (Gilluly, 1932); 700 feet (210 m) thick 
at southern Stansbury Mountains; 780 feet (240 m) 
thick at the Onaqui Mountains; 840 feet (260 m) 
thick at Vernon Hills (Kirby, 2010a, 2010b); about 
400 feet (120 m) thick at northern Sheeprock Moun-
tains and Davis Mountain; queried at Skull Valley 
where more than 600 feet (180 m) is exposed.

MDfs Fitchville Formation, Pinyon Peak Limestone, 
Stansbury Formation, undivided (Lower Missis-
sippian to Upper Devonian) – Combined unit south 
of Dry Canyon in southern Stansbury Mountains; 
refer to descriptions below; Fitchville-Pinyon Peak 
thickness is about 450 feet (140 m), Stansbury thick-
ness is 0 to about 60 feet (0–20 m), and combined 
unit thickness is about 500 feet (150 m).
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MDfp Fitchville Formation and Pinyon Peak Lime-
stone, undivided (Lower Mississippian to Upper 
Devonian) – Lithologically complex unit with inter-
bedded gray dolomite and limestone (coarse to fine 
grained) with intraformational breccia; upper part 
(Fitchville) is gray carbonate rock that is typically 
thicker bedded; lower part (Pinyon Peak) consists 
of gray to tan sandy and silty limestone and dolo-
mite that is locally bioclastic and irregularly bed-
ded, with interbeds of light-brown to pale-red sand-
stone and quartzite; in southern Oquirrh Mountains, 
within upper cliffy part of unit is one massive bed 
that contains conspicuous white calcite blebs up to 
a few inches in diameter, called the “eye bed” (Gil-
luly, 1932); Gilluly (1932) originally mapped this 
unit as Jefferson(?) dolomite and Tooker (1987) sub-
sequently used Fitchville–Pinyon Peak; thickness 
is 130 feet (40 m) at the southern Oquirrh Moun-
tains (Kirby, 2012); about 200 feet (60 m) thick at 
southern Stansbury Mountains; about 300 feet (90 
m) thick at the Onaqui Mountains, northern Shee-
prock Mountains, and Davis Mountain; 60 feet (20 
m) thick at the Vernon Hills (Kirby, 2010a, 2010b).

D         Devonian rocks, undivided – Cross sections only.

Dst  Stansbury Formation (Upper Devonian) – Typi-
cally consists of distinctive conglomerate with 
gray carbonate clasts in a dolomite matrix that var-
ies from matrix to clast supported; clasts are sub-
rounded to subangular typically from pebble to 
boulder size; includes white quartzite that weathers 
to tan and pale red, is locally cross-bedded and is 
thin to medium bedded forming resistant ledges and 
knobs (unit Dst exposures near Box Elder Canyon, 
Stansbury Mountains); type area at Flux of north-
ern Stansbury Mountains; formation previously de-
scribed by Rigby (1958), Stokes and Arnold (1958), 
Trexler (1992), and Clark and others (2017, 2020b); 
our mapping follows Trexler (1992) except for reas-
signing the uppermost part (commonly covered) to 
the Pinyon Peak Limestone (see Rigby, 1958; Sand-
berg and Gutschick, 1979); fossil data indicate the 
formation is Famennian in age (Sandberg and Guts-
chick, 1979; Mamet, in Trexler, 1992); Hollis (2015) 
reported U-Pb detrital zircon provenance data, but 
no maximum depositional age; major unconformity 
at base of formation associated with the Stansbury 
uplift, locally removing Devonian through Middle 
Cambrian strata (Rigby, 1959a; Morris and Lover-
ing, 1961; Trexler, 1992); the formation extends to 
Stansbury Island and the Wasatch Range (Rigby, 
1959a; Bryant, 1990; Trexler, 1992); incomplete 
thickness is 0 to 200 feet (0–60 m) in map area, and 
complete thickness as much as 1710 feet (520 m) at 
northern Stansbury Mountains (Trexler, 1992).

DOu Guilmette Formation?, Simonson, Sevy, Lake-
town, and Ely Springs Dolomites, undivided 
(Upper Devonian? to Upper Ordovician) – Com-
bined unit at the southern Stansbury Mountains; 
Guilmette? includes dark-gray, well-bedded lime-
stone; Simonson is dark-gray, coarsely to medium 
crystalline dolomite; Sevy is very light gray, finely 
crystalline dolomite with laminated surface appear-
ance; Laketown is gray, medium- to thick-bedded, 
locally cherty, coarsely to medium crystalline dolo-
mite; Ely Springs is dark-gray and mottled, medium 
crystalline dolomite; Guilmette? newly recognized 
and Ely Springs previously mapped as the Fish Ha-
ven Dolomite; thickness is as much as about 2000 
feet (600 m) where not missing under the Devonian 
unconformity.

Dg, Dg?

  Guilmette Formation (Upper to Middle Devonian) 
– Moderate- to dark-gray, medium- to fine-grained, 
thin- to thick-bedded (moderately to weakly bed-
ded), sparsely fossiliferous dolomite with a few thin, 
dark-gray, fine-grained limestone beds near the top 
of unit; forms slopes and ledges; thickness is 180 
feet (55 m) at Vernon Hills (Kirby, 2010a, 2010b), 
but unit is absent at northern Sheeprock Mountains 
and Davis Mountain; queried west of Camels Back 
Ridge due to structure and incomplete section, but 
exposed thickness there is about 500 feet (150 m) 
(Clark and others, 2016).

Dsi, Dsi?

  Simonson Dolomite (Middle Devonian) – Light-
brownish-gray to pale- and medium-gray, locally 
weathers brownish gray, fine- to medium-grained, 
very thick or thin-bedded dolomite that forms cliffs 
and ledges; local zones of chert; generally more lith-
ologically variable and less well bedded than the un-
derlying Sevy; thickness is 750 feet (225 m) at Da-
vis Mountain; 640 to 1150 feet (195–350 m) thick 
at northern Sheeprock Mountains; 670 to 930 feet 
(200–280 m) in Vernon Hills (Kirby, 2010a, 2010b), 
and incomplete thickness is about 500 feet (150 m) 
at Camels Back Ridge area (Clark and others, 2016)

Dsy, Dsy?

  Sevy Dolomite (Lower Devonian) – Medium-gray, 
weathering to white and very light gray, fine- to me-
dium-grained dolomite; displays well-developed fine-
scale planar lamination on weathered surface; rarely 
fossiliferous; contains uncommon thin beds of sandy 
dolomite; thin to medium bedded, forms ledges and 
float-covered hills; unconformity between Sevy and 
underlying Laketown; thickness is 590 feet (180 m) at 
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Davis Mountain; 1200 to 1480 feet (360–450 m) thick 
at northern Sheeprock Mountains; 1310 feet (400 m) 
thick at Vernon Hills (Kirby, 2010a, 2010b); incom-
plete thickness is about 250 feet (75 m) at Camels 
Back Ridge area (Clark and others, 2016).

S-O     Silurian and Ordovician rocks, undivided – Cross 
sections only.

SOu, SOu?

  Laketown Dolomite and Ely Springs Dolomite, 
undivided (Silurian to Upper Ordovician) – Dark- to 
medium-gray, granular to fine-grained, moderately 
or poorly bedded cherty dolomite; contains common 
pink to dark-gray chert bands or nodules; fossils in-
clude rugose corals and rare stromatolites in lower 
part of unit and chain corals near upper contact; poor-
ly bedded parts of this unit appear bioturbated; forms 
small blocky outcrops and steep slopes; thickness is 
1420 feet (430 m) at Davis Mountain and 1070 to 
1690 feet (325–510 m) at northern Sheeprock Moun-
tains; incomplete thickness is 1060 to 1280 feet 
(320–390 m) at Vernon Hills (Kirby, 2010a, 2010b).

Sl  Laketown Dolomite (Silurian) – Moderate- to dark-
gray, finely to moderately crystalline dolomite that 
locally weathers to light and moderate brown and 
light gray and that contains some intervals of light-
gray dolomite; contains gray and red chert in beds, 
masses and nodules, and rust-colored, case-hardened 
surfaces; mostly very thick bedded, forming cliffs 
and ledges; to the southwest, Hintze (1980) sepa-
rated into several members corresponding to forma-
tions of Staatz and Carr (1964) (see Hintze and Kow-
allis, 2009); incomplete thickness is about 500 feet 
(150 m) at the Camels Back Ridge area (Clark and 
others, 2016).

Ou  Ordovician strata, undivided (Upper to Lower 
Ordovician?) – Dark- to medium-gray calcitic do-
lomite breccia (75% of exposures), light-gray silicic 
limestone breccia, and light-reddish-brown, strong-
ly recrystallized limestone with abundant reddish-
brown chert (Geomatrix, 2001); exposed at Hick-
man Knolls on the Skull Valley Indian Reservation, 
which was not accessed for this map; previously 
mapped by Moore and Sorensen (1979) as Ordovi-
cian carbonate rocks and quartzite; may include all 
or parts of the Ely Springs Dolomite and Pogonip 
Group; exposed thickness roughly 200 feet (60 m).

Oes, Oes?

  Ely Springs Dolomite (Upper Ordovician) – Lo-
cally upper part is very light gray, finely crystalline 
dolomite with indistinct to medium bedding (Floride 

Member of Hintze, 1980); lower part is cherty, resis-
tant, moderate-gray dolomite (at top) underlain by 
brown-weathering, less resistant, thin-bedded dolo-
mite; both parts are thin to thick bedded, forming 
ledges, cliffs and slopes; locally unconformable on 
unit Op; incomplete thickness is 250 feet (75 m) at 
Camels Back Ridge area (Clark and others, 2016).

O_u Lower Ordovician and Upper-Middle Cambrian 
strata, undivided (Lower Ordovician? to Upper-
Middle Cambrian?) – Carbonate rocks at Simpson 
Buttes; gray-, brown-, and pink-weathering dolo-
mite and limestone, thin to very thick bedded; fur-
ther subdivision precluded due to lack of access, but 
may correspond to parts of Pogonip Group?, Notch 
Peak Formation, Orr Formation, Lamb Dolomite, 
and Trippe Limestone; incomplete thickness about 
2300 feet (700 m) (Clark and others, 2016).

O  Ordovician rocks, undivided – Eureka Quartzite 
and Pogonip Group rocks, cross sections only.

Oe  Eureka Quartzite (Upper Ordovician) – Grayish-
tan to light-gray, medium- to thick-bedded, medi-
um-grained, vitreous orthoquartzite; commonly dis-
plays well-developed trough cross-bedding and pla-
nar bedding; crops out as resistant ledges and cliffs 
with some intervening slopes; locally the Eureka 
and uppermost part of the Pogonip Group are ab-
sent over the Tooele arch (Hintze, 1959); variable in 
thickness, 420 feet (125 m) thick at Davis Mountain 
and 260 to 1000 feet (80–300 m) thick at northern 
Sheeprock Mountains; incomplete thickness of 40 to 
80 feet (12–24 m) at the Vernon Hills (Groff, 1957; 
Kirby, 2010a, 2010b); absent at southern Stansbury 
Mountains (Copfer and Evans, 2005) and probably 
Camels Back Ridge area (Clark and others, 2016).

Opk Pogonip Group, Kanosh Shale (Middle Ordovi-
cian) – Black to dark-brown shale and lesser silt-
stone and sandstone; slope-forming unit; locally 
mapped (where thicker) as separate unit in north-
ern Sheeprock Mountains, elsewhere mapped with 
unit Op; variable thickness, up to 250 feet (75 m) 
at northern Sheeprock Mountains, Davis Moun-
tain, and southern Stansbury Mountains (Cohenour, 
1957, 1959; Teichert, 1958, 1959; this study).

Op, Op?

  Pogonip Group, undivided (Middle to Lower Or-
dovician) – Moderate-gray, weathering to blue gray 
and reddish tan, limestone and silty limestone with 
lesser intraformational conglomerate, siltstone, and 
minor shale; thin to medium bedded in typically 
ledgy exposures; upper part locally includes Kanosh 
Shale (see unit Opk), and the underlying formations 
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are described by Hintze (1980); previously mapped 
as Kanosh Shale and Garden City Formation at the 
Stansbury Mountains (Rigby, 1958; Teichert, 1958, 
1959); locally upper or all Pogonip Group rocks 
are absent over the Tooele arch (Hintze, 1959) and 
Stansbury uplift (Rigby, 1959a); thickness is 0 to 
1350 feet (410 m) at southern Stansbury Moun-
tains (Copfer and Evans, 2005) and 800 to 2130 feet 
(240–650 m) at northern Sheeprock Mountains and 
Davis Mountain (Cohenour, 1957, 1959; this study); 
incomplete thickness up to 150 feet (45 m) at Cam-
els Back Ridge area (Clark and others, 2016).

_          Cambrian rocks, undivided – Cross sections only.

_-Z    Cambrian and Neoproterozoic rocks, undivided – 
Cross sections only.

_u, _u?  

  Upper Cambrian strata, undivided (lowermost 
Ordovician to Upper Cambrian) – Combined Notch 
Peak Formation and Orr Formation at eastern Da-
vis Mountain where poorly exposed and structurally 
disturbed; thickness roughly 1600 feet (490 m).

_um, _um?

  Upper and Middle Cambrian strata, undivided 
(lowermost Ordovician, Upper to Middle Cambrian) 
– Combined unit of several formations at the southern 
Stansbury Mountains and locally northern Sheeprock 
Mountains where structural complexities and litho-
facies similarities make subdivision difficult at this 
map scale; includes carbonate rocks and shale from 
all or parts of the following formations: Orr, Lamb, 
Trippe, Pierson Cove, Wheeler, Swasey, Whirlwind, 
Dome, Chisholm, and Howell; in the southern Stans-
bury Mountains the Devonian unconformity (Rigby, 
1959a) cuts down section to middle Cambrian rocks 
(increasing northward); variable thickness (north to 
south) from 600 to 6700 feet (185–2045 m).

_np, _np?

  Notch Peak Formation (lowermost Ordovician? to 
Upper Cambrian) – Moderate to dark-gray, finely to 
moderately crystalline dolomite with some intervals 
that are light gray, tan, and light pink (some up to 
several feet [meters] thick); medium to very thick 
bedded, cliff and ledge forming; locally includes 
chert nodules, pisolites, twiggy bodies, and Gir-
vanella (algae); corresponds to Dugway Ridge For-
mation of Staatz and Carr (1964); thickness is about 
700 feet (215 m) at northern Sheeprock Mountains 
(Cohenour, 1957, 1959); incomplete thicknesses 
about 500 feet (150 m) at Camels Back Ridge (Clark 

and others, 2016), greater than 500 feet (150 m) at 
Davis Mountain, and about 1000 feet (330 m) at 
southern Stansbury Mountains.

_o, _o?

  Orr Formation (Upper Cambrian) – Moderate-
gray silty limestone that is thin to medium bedded; 
typically faulted with some slopes and ledges, but 
not well exposed; incomplete thickness greater 
than 1200 feet (365 m) at the northern Sheeprock 
Mountains, and greater than 470 feet (140 m) at 
Davis Mountain.

Orr Formation locally separated into two units at Camels 
Back Ridge:

_ou, _ou?

  Orr Formation, upper part (Upper Cambrian) –
Very light gray to light-gray, finely to moderately 
crystalline dolomite and limestone, and green and 
light-brown shale; commonly medium to thick bed-
ded; forms less-resistant and lighter-colored inter-
val between Notch Peak Formation and Big Horse 
Limestone that likely includes (in descending or-
der) Sneakover Limestone Member, Corset Spring 
Shale Member, Johns Wash Limestone Member, 
and Candland Shale Member; corresponds to Fera 
Limestone of Staatz and Carr (1964); 200 feet (60 
m) thick (Clark and others, 2016).

_ob Orr Formation, Big Horse Limestone Member 
(Upper Cambrian) – Moderate-gray to tan-gray, finely 
to moderately crystalline limestone, with some inter-
vals weathering to light tan, pink, and mottled; me-
dium- to very thick bedded, resistant interval forming 
cliffs and ledges; locally dolomitized; corresponds to 
Straight Canyon Formation of Staatz and Carr (1964); 
425 feet (130 m) thick (Clark and others, 2016).

_l  Lamb Dolomite (Upper to Middle Cambrian) – 
Upper part is less resistant, mostly very thin to thin 
bedded and commonly rusty and pink weathering, 
and consists of ledges of moderate-gray oolitic and 
silty limestone and flat-pebble conglomerate, under-
lain by moderate-gray dolomite and limestone with 
rusty-colored blebs and layers; lower part of more 
resistant gray dolomite that locally weathers to mot-
tled gray, pink gray, and light brown, is moderate to 
coarsely crystalline, contains intervals of Girvanella 
(algae), and forms a thin- to very thick bedded ledgy 
interval; thickness is 900 feet (275 m) at Camels 
Back Ridge (Clark and others, 2016).

_m  Middle Cambrian strata, undivided (Middle 
Cambrian) – Several carbonate and shale units 
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composing the upper plate of a low-angle normal 
fault (Dry Canyon fault) on the southwest margin of 
the Stansbury Mountains; formations may include 
the lower Trippe, Pierson Cove, and Wheeler; 
thickness is roughly 1500 feet (450 m).

_tl  Trippe Limestone (Middle Cambrian) – Upper part 
is moderate-gray, laminated and nodular limestone, 
shale, intraformational conglomerate, and light-tan-
weathering dolomite that is laminated to medium bed-
ded; lower part is light- to moderate-gray, locally mot-
tled, laminated to very thick bedded limestone; unit 
forms generally less resistant and ledgy interval be-
tween Lamb Dolomite and Pierson Cove Formation; 
thickness is 700 feet (215 m) at Camels Back Ridge 
(Clark and others, 2016); incomplete thickness is 450 
feet (140 m) at the northern Sheeprock Mountains.

_pc, _pc?

  Pierson Cove Formation (Middle Cambrian) – 
Moderate-gray limestone and silty limestone with 
some light-gray dolomite interbeds; thin to very 
thick bedded forming ledges to cliffs; unit locally 
dolomitized; 870 feet (265 m) thick at the northern 
Sheeprock Mountains; incomplete thicknesses are 
about 800 feet (245 m) at Camels Back Ridge and 
greater than 400 feet (120 m) thick at the northern 
Simpson Mountains.

_ww Wheeler Formation, Swasey Limestone, Whirl-
wind Formation, undivided (Middle Cambrian) 
– Combined unit at northern Simpson and northern 
Sheeprock Mountains; Wheeler is red-brown to me-
dium- or dark-gray, thin- to medium-bedded calcare-
ous shale and limestone that generally forms slopes; 
contains Peronopsis trilobite fauna (Hintze and 
Davis, 2003); Swasey is medium-gray, medium- to 
thin-bedded, blocky, cliff- and ledge-forming lime-
stone; includes intervals of silty ribbon limestone 
and wackestone; contains Elrathia trilobite fauna 
(Hintze and Davis, 2003); Whirlwind is light-olive-
gray to red or brown shale and argillite interbedded 
with thin-bedded limestone; contains Ehmaniella 
trilobite fauna (Hintze and Davis, 2003); combined 
unit thickness is 900 feet (275 m).

_dh Dome Limestone, Chisholm Formation, Howell 
Limestone, undivided (Middle Cambrian) – Com-
bined unit at northern Simpson and northern Shee-
prock Mountains; Dome is medium-gray, medium- 
to thin-bedded, blocky limestone that forms ledges; 
Chisholm is brown to red-brown shale and some 
dark-gray pisolitic limestone, and contains Glos-
sopleura trilobite fauna (Hintze and Davis, 2003); 
Howell is light- to dark-gray limestone that forms 
ledges; combined unit thickness is 770 feet (235 m).

_p, _p?

  Pioche Formation (Middle to Lower Cambrian) 
– Red-brown and green-brown shale and phyllitic 
shale with interbedded quartzite; upper part contains 
red-brown limestone that is irregularly bedded and 
some gray limestone and shale; thin to medium bed-
ded unit forms ledges and slopes; as much as 400 
feet (120 m) thick at southern Stansbury Mountains, 
northern Sheeprock Mountains, and northern Simp-
son Mountains.

_pm, _pm?

  Prospect Mountain Quartzite (Lower Cambrian 
to Neoproterozoic?) – Light-gray, light-brownish-
gray, and pinkish-gray, commonly reddish-brown-
weathering quartzite that is thin to thick bedded and 
medium to coarse grained; locally contains a few 
beds of sandy phyllitic argillite near top and lenses 
of quartzite conglomerate in lower half; forms resis-
tant ledges and cliffs; complete thicknesses of 4260 
feet (1290 m) at northern Sheeprock Mountains, and 
2700 feet (825 m) at northern Simpson Mountains; 
incomplete thicknesses of about 4200 feet (1280 m) 
at southern Stansbury Mountains (Rigby, 1958) and 
2800 feet (850 m) at Davis Mountain.

Z          Neoproterozoic rocks, undivided – Cross sections 
only.

Zm, Zm?

  Mutual Formation (Neoproterozoic) – Maroon, 
pink, and purple quartzite that is feldspathic, me-
dium to coarse grained, commonly gritty or pebbly 
with zones of reddish and white quartzite pebbles; 
locally contains trough cross-beds; forms resistant 
ledges and cliffs; contact with overlying Prospect 
Mountain is transitional and marked by color change 
and increase in feldspar and lithic content (Moore 
and Sorensen, 1977); complete thickness is 1700 
feet (520 m) at northern Sheeprock Mountains, and 
incomplete thickness is greater than 950 feet (290 
m) at northern Simpson Mountains.

Zi  Inkom Formation (Neoproterozoic) – Olive-
green and maroon slate and argillite that is locally 
micaceous with subordinate interbeds of moderate-
brown quartzite and pebbly quartzite; slope and 
ledge-forming unit present in hanging wall of 
Government Canyon thrust fault at northern 
Sheeprock Mountains; at northern Simpson 
Mountains previously mapped as Inkom Formation? 
by Morris and Kopf (1986) and part of undivided 
siltstone and quartzite unit by Moore and Sorensen 
(1977); incomplete thicknesses are 600 feet (180 m) 
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at northern Sheeprock Mountains, and greater than 
790 feet (240 m) at northern Simpson Mountains.

Zcc, Zcc?

  Caddy Canyon Quartzite (Neoproterozoic) – White 
to very pale pink and medium- to dark-brown, medi-
um-bedded, medium-grained quartzite, with scattered 
lenses of white quartz-pebble conglomerate that forms 
resistant ledges and cliffs; similar to Prospect Moun-
tain Quartzite but generally darker in color; queried 
in one large area of incomplete exposure at northern 
Simpson Mountains where neither top nor bottom 
contacts are exposed (Morris and Kopf, 1986); incom-
plete thickness is greater than 3800 feet (1160 m).

CAMBRIAN ROCK UNITS OF SOUTHERN 
OQUIRRH MOUNTAINS

A major disconformity occurs between the Fitchville–Pinyon 
Peak Formations (unit MDfp) and the underlying Cambrian 
strata at the southern Oquirrh Mountains.

_ly  Lynch Dolomite (Upper? to Middle? Cambrian) – 
Light-gray dolomite with a few limestone beds in 
lower half; lower part also includes dark-gray dolo-
mite containing twiggy bodies (short white carbon-
ate rods less than 1 inch [3 cm] in length); thick-
bedded, prominent cliff-forming unit in Ophir Can-
yon; may correlate with Opex Formation? and Cole 
Canyon and Bluebird Dolomites at the East Tintic 
Mountains (Gilluly, 1932; Morris and Lovering, 
1961); thickness from 810 to 1050 feet (245–320 m) 
(Gilluly, 1932; Kirby, 2012).

_b  Bowman Limestone (Middle? Cambrian) – Mot-
tled shaley limestone, intraformational conglomer-
ate, and oolitic limestone; includes a shaley/hornfels 
unit about 40 feet (12 m) thick at base; forms ledgy 
slopes and small cliffs; sparse trilobite fauna; may 
correlate with upper part of Herkimer Limestone at 
East Tintic Mountains (Gilluly, 1932; Morris and 
Lovering, 1961); thickness is 310 to 345 feet (95–
105 m) (Gilluly, 1932; Kirby, 2012).

_h  Hartmann Limestone (Middle? Cambrian) – Gray, 
banded, mottled, thin-bedded, silty and shaley lime-
stone; oolitic toward the top, and contains sparse tri-
lobite fauna; forms slopes and small ledges; may cor-
relate to the lower part of Herkimer Limestone and 
Teutonic Limestone at East Tintics (Gilluly, 1932; 
Morris and Lovering, 1961); thickness is 590 to 630 
feet (180–190 m) (Gilluly, 1932; Kirby, 2012).

_op Ophir Formation (Middle Cambrian) – Gray shale 
and micaceous shale, with several beds of mottled 

shaley limestone in middle of unit, and sandy shale 
and quartzite near base; slope-forming unit with few 
ledges; contains brachiopod and trilobite (Olenellus) 
fauna; thickness in core of Ophir anticline is 280 to 
310 feet (85–95 m) (Gilluly, 1932; Kirby, 2012).

_t  Tintic Quartzite (Middle? to Lower? Cambrian) – 
White quartzite that weathers to reddish brown; bed-
ding is thick and locally irregular and cross-bedded, 
forms ledges and slopes; only upper part exposed in 
core of Ophir anticline, where it is gradational with 
the overlying Ophir Formation; exposed thickness as 
much as 300 feet (90 m) (Gilluly, 1932; Kirby, 2012).

MISSISSIPPIAN TO NEOPROTEROZOIC 
ROCK UNITS OF NORTHERN EAST TINTIC 
MOUNTAINS

The Gardison Limestone (unit Mg) conformably overlies the 
Fitchville Formation (unit MDf) at the northern East Tintic 
Mountains (Greenhalgh, 1980), but is shown as unconform-
able in Hintze and Kowallis (2009).

MDf Fitchville Formation (Lower Mississippian to Up-
per Devonian) – Commonly divided into three parts; 
upper part consists of very thick bedded pink sub-
lithographic limestone capped by a bed of laminat-
ed light- and dark-gray stromatolitic limestone (the 
“Curley” limestone; see Proctor and Clark, 1956) that 
is as much as 3 feet (1 m) thick; middle part is black 
dolomite or limestone with scattered pods of chert 
or coarsely crystalline white dolomite; lower part is 
light- to medium-gray shaley limestone; fossils in-
clude corals and brachiopods; forms cliffs and ledges; 
thickness about 300 feet (90 m) (Disbrow, 1961).

Dpv Pinyon Peak Limestone and Victoria Formation, 
undivided (Upper Devonian) – Pinyon Peak is 
thin- and very thick bedded, medium-gray to light-
blue-gray limestone; sandy at the top and contains 
a brown sandstone and a tan shaley limestone unit 
near the base; fossils include crinoids, brachiopods 
and bryozoans; 125 to 175 feet (40–55 m) thick 
(Disbrow, 1961); separated by a disconformity from 
the underlying Victoria Formation (Morris and Lov-
ering, 1979); Victoria is medium- to light-gray do-
lomite that is fine to medium grained with a minor 
amount of light-brown, rusty weathering quartzite 
and quartzite breccia; locally a 4-foot-thick (1 m) 
bed of dark-gray dolomite crowded with ¼-inch 
white dolomite crystals is present a few feet above 
base of formation; Victoria is 125 feet (40 m) thick 
(Disbrow, 1961); unit Dpv forms slopes and ledges; 
unconformity present between the Victoria and un-
derlying Bluebell; combined unit thickness is 250 to 
300 feet (75–90 m).



Utah Geological Survey34

DOb Bluebell Dolomite (Upper Devonian to Upper Ordo-
vician) – Light- and dark-gray dolomite, thick and thin 
bedded, generally banded and mottled in appearance, 
locally cherty at base and sandy near top; sparsely fos-
siliferous with crinoids, corals, and pentamerid bra-
chipods; locally, distinctive 10-foot-thick (3 m) bed of 
laminated light- and dark-gray dolomite is in middle 
of formation (Colorado Chief marker bed of Morris 
and Lovering, 1961); ledge former; unit contains two 
unconformities (Budge and Sheehan, 1980); thickness 
is about 600 feet (180 m) (Disbrow, 1961).

Od  Ordovician dolomite (Upper Ordovician) – Me-
dium- and light-gray dolomite in very thick and thin 
beds that weather to a rough surface texture; nodu-
lar chert-bearing and mottled beds common in up-
per one-third of formation; fossils include crinoids, 
corals, and brachiopods; distinctive dark-gray and 
white mottled dolomite, the Leopard Skin marker 
bed (50 to 100 feet [15–30 m] thick), is at top of for-
mation; forms cliffs and slopes; may be equivalent 
to the Ely Springs Dolomite; previously mapped as 
Fish Haven Dolomite by Disbrow (1961); unconfor-
mity exists between the formation and underlying 
Opohonga Limestone; thickness is 270 feet (80 m) 
thick (Disbrow, 1961).

Oo  Opohonga Limestone (Lower Ordovician) – Dis-
tinctive unit of light-blue-gray, thin-bedded lime-
stone with seams and beds of yellow, pink, and red 
mudstone that impart a striped, mottled or mosaic 
appearance; flat-pebble conglomerate beds common 
throughout; pods of white chert typical in lower one-
third of formation; basal beds are brown sandstone; 
slope forming unit with flaggy outcrops; thickness is 
about 800 feet (245 m) (Disbrow, 1961).

_ao Ajax Dolomite and Opex Formation, undivided 
(lowermost Ordovician? to Upper Cambrian) – Ajax 
is light- to dark-blue-gray, cherty dolomite with a 
medial interval of creamy white dolomite (Emerald 
Member) that is 15 to 30 feet (5–10 m) thick; chert 
is less common in lower part; well bedded (thin to 
thick) forming cliffs and ledges; Ajax thickness is 
600 feet (180 m) (Disbrow, 1961); Opex is light- 
and dark-gray limestone mottled and streaked with 
yellow and red mudstone; thin beds of sand-streaked 
limestone and flat-pebble conglomerate interlayered 
throughout; 10 feet (3 m) of greenish-gray shale 
near top and light-gray oolitic dolomite 40 to 70 feet 
(12–20 m) thick near base; thin bedded and forms 
slopes; Opex thickness is 250 feet (75 m) (Disbrow, 
1961); combined unit thickness is 850 feet (260 m).

_c  Cole Canyon Dolomite (Middle Cambrian) – Up-
per part (about 625 feet [190 m]) of alternating 

light- and dark-gray dolomite beds; light-gray beds 
are mottled or laminated; dark-gray beds are locally 
mottled, laminated, or with white twig-like dolomite-
calcite bodies (twiggy bodies); lower part (about 200 
feet [60 m]) is blue-gray limestone streaked and 
mottled with yellow and red mudstone interlayered 
with light-colored laminated dolomite and with lens-
es of intraformational conglomerate; well stratified 
(medium to thick bedded) forming ridges and steps; 
thickness is 825 feet (250 m) (Disbrow, 1961).

_bh Bluebird Dolomite and Herkimer Limestone, 
undivided (Middle Cambrian) – Bluebird is dusky 
blue-gray dolomite or limestone with twiggy bodies 
and is very thick bedded forming ridges and ledges; 
Bluebird thickness is about 200 feet (60 m) (Dis-
bow, 1961); Herkimer is light-blue-gray limestone 
mottled and striped with yellow and red mudstone 
that is thin to medium bedded; unit of 20-foot-thick 
(6 m) green to tan shale exists about 180 feet (55 m) 
above base; oolitic and pisolitic near top; moderate-
ly resistant forming slopes and low cliffs; Herkimer 
thickness is 400 feet (120 m) (Disbrow, 1961); com-
bined unit thickness is 600 feet (180 m).

_dt  Dagmar Dolomite and Teutonic Limestone, un-
divided (Middle Cambrian) – Dagmar is medium-
gray, fine-grained, laminated dolomite with minor 
interbedded light-gray limestone; distinctive unit 
is thin-bedded and weathers to creamy white color 
with a blocky fracture; Dagmar is about 75 feet (20 
m) thick (Disbrow, 1961); Teutonic is light- and 
dark-gray limestone generally mottled and streaked 
with yellow-brown argillaceous lenses; oolite and 
pisolite beds common in lower and middle parts; 
locally contains Girvanella spherules; medium bed-
ded, forming smooth cliffs and ledges; Teutonic 
thickness is 420 feet (130 m) (Disbrow, 1961); com-
bined unit thickness is about 500 feet (150 m).

_op Ophir Formation (Middle Cambrian) – Upper part 
is gray-green micaceous shale overlying a medial 
limestone interval of dark-gray limestone mottled 
and streaked with yellow-brown mudstone; lower 
part is gray-green shale with minor interlayered 
limestone, and near base is brown and purple sand-
stone; slope-forming unit; thickness is about 430 
feet (130 m) (Disbrow, 1961).

_t  Tintic Quartzite (Middle? to Lower? Cambrian) 
– Pink, white, brown, and greenish-gray quartzite 
that is medium- to very thick bedded, cross-bedded, 
and fractured, containing shaley and conglomeratic 
zones; a thin, altered diabase flow is locally interbed-
ded about 980 feet (300 m) above base; lower part is 
marked by a purple conglomerate unit 300 feet (90 
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m) thick; forms resistant ridges and rounded hills; un-
conformity present between Tintic Quartzite and un-
derlying Big Cottonwood Formation; approximately 
2500 feet (760 m) thick (Disbrow, 1961; this study).

Zbc  Big Cottonwood Formation (Neoproterozoic?) – 
Olive-green to brownish-green phyllitic shale, argil-
lite, quartzite, and quartzite conglomerate assigned 
to the Big Cottonwood Formation by Morris and 
Lovering (1961); well bedded and slightly metamor-
phosed; no age control at East Tintic Mountains, but 
at Wasatch Range likely Neoproterozoic in age and 
possibly correlative with the <770 Ma Uinta Moun-
tain Group based on U-Pb detrital zircon data (Muel-
ler and others, 2007; Dehler and others, 2010); only 
about 200 feet (60 m) exposed in the map area at the 
core of the North Tintic anticline of the East Tintic 
Mountains; maximum exposed thickness south of 
the map area at the East Tintic district is 1675 feet 
(510 m) (Morris and Lovering, 1961; Morris, 1964).
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Table A1. Selected drill hole and well log data from the Rush Valley 30’ x 60’ quadrangle.

Map ID1 Source2 Location Location Data 
UTM 27-12E

Location Data UTM 
27-12 N

Total 
Depth 
(feet)

Basin fill 
Thickness 

(feet)3
Log Description4 Notes ID5

W1 UDWRI Cedar Valley 414051 4468259 554 225 Q 0-225, Tv 225-385, PIPo 385-554 UGS Eagle Mountain monitoring well N110 W475 S4 24 5S 2W SL

W2 UDWRI Cedar Valley 406472 4461733 466 462 Q 0-462, PIPo? 462-466 S1035 W38 NE 18 6S 2W SL

W3 UDOGM Rush Valley 388243 4451362 7132 4217 Tsl 0-2460, Oligocene? 2460-4217, PIPo 4217-
7132 TD in IPowc Oligocene? noted on log, lithology and geophysics look like Tsl 4304530017

W4 UDOGM Rush Valley 392113 4451317 4046 3530 Tsl 0-3530, PIPo 3530-4046 4304530019

W5 UDOGM Rush Valley 386084 4450589 3250 2780 Tsl 0-2780, PIPo 2780-3250 4304530020

W6 UDWRI Skull Valley 354804 4464190 601 601+ Q 0-157, Tsl 157-601 N20 W826 SE 02 6S 8W SL

W7 UDWRI Skull Valley 361834 4464688 480 368 Q 0-368, Tv 368-385, Md? or Mmc? (black 
shale) 385-480 Tv noted as red colored on log S528 E968 W4 03 6S 7W SL

W8 UDWRI Skull Valley 351789 4484012 542 493+ Q 0-493, Ts? or Tsl? conglomerate 493-542 TD in Ts or Tsl conglomerate N1300 W1725 SE 04 4S 8W SL

W9 UDWRI Government Creek 338556 4447463 405 405+ Q only Deepest well log along Government Creek S804 W786 NE 06 8S 9W SL

W10 UDWRI Rush Valley 391851 4440725 298 298+ Q 0-285, Tsl 285-298 S1050 W108 NE 22 8S 4W SL

W11 UDWRI Rush Valley 376816 4475837 900 517 Q 0-517, PIPo 517-900 N2100 E2600 SW 31 4S 5W SL

W12 UDWRI Rush Valley 376135 4443679 510 420 Q 0-250, Tsl 250-420, PIPo 420-510 N0 E1320 W4 7 8S 5W SL

W13 UDWRI Rush Valley 376320 4437212 1165 1140 Q 0-1140, PIPo1140-1165 S2600 W410 S4 30 8S 5W SL

W14 Kennecott Rush Valley 383421 4474808 3015 1394 Q 0-1394, Tv (tuff) 1394-1601, Tv (latite) 1601-
3015 Core is available in the UGS core research center 04RDYR01

W15 Kennecott Rush Valley 383688 4478968 770 436 Q 0-436, Tv (andesite) 436-770 Just south of Stockton Bar 97RCTKO33

W16 Kennecott Rush Valley 386120 4475916 2202 1400 Q 0-1400, Tv (latite) 1400-2202 68RCSTK02A

W17 Kennecott Rush Valley 386942 4475096 1500 1290 Q 0-1290, PIPo (mostly limestone) 1290-1500 68RCSTK004

Notes: 
1 Map ID on plate 1. 
2 Data sources:  UDWRI is the Utah Division of Water Rights; UDOGM is the Utah Division of Oil, Gas  and Mining; Kennecott data are unpublished mineral exploration drill holes. 
3 Basin fill thickness including unconsolidated deposits (Q) and Salt Lake Formation (Tsl).  Plus indicates a minimum thickness. 
4 Depth ranges for geologic units.  Q = unconsolidated deposits, Tv = Tertiary-age volcanic rocks undivided, Tsl = Salt Lake Formation, Ts = Tertiary conglomerates undivided, PIPo = Oquirrh Group undivided, Md = Deseret Limestone, Mmc = Manning Canyon Formation.  
   Well picks for UDWRI and UDOGM data by Kirby, and for Kennecott data by K. Krahulec (UGS retired).  
5 ID is the PLS location for water wells, API number for oil and gas wells, and drill hole number for Kennecott data.



Utah Geological Survey50

Table A2. Ages and elevations of major shorelines of Lake Bonneville and related lakes in the Rush Valley 30’ x 60’ quadrangle.

Lake Cycle and Phase Shoreline (map symbol)
Age (Rounded to 1000 years) Skull Valley Government Creek Basin Southern Tooele Valley Rush Valley Cedar Valley Goshen Valley

radiocarbon years B.P. calibrated years B.P.1 Elevation feet (meters) Elevation feet (meters) Elevation feet (meters) Elevation feet (meters) Elevation feet (meters) Elevation feet (meters)

Transgressive Phase
Stansbury (S) 22–20 2 26–24 4470 (1363) 4460 (1360) not in map area not present not present not present

Bonneville (B) ~153 ~18 5260–5280 (1604–1610) 5240–5260 (1598–1604) 5235–5245 (1596–1599) 5175–5260 (1578–1603) 5165–5180 (1575–1579) 5125–5150 (1563–1570)

flood

Overflowing Phase
Cedar Valley (CV) unknown4 unknown ~4900 (~1494)

Provo (P) 15–12.6 5 18–15 4800–4880 (1463–1488) 4850–4880 (1479–1488) 4845–4880 (1477–1487) see below 4800 (1463) not in map area

Shambip (Sh)6 14–137 17–16 5045–5060 (1538–1542)

Regressive Phase Smelter (Sm)6 no data no data 5010 (1527)

Notes: 
1 Calendar calibration using OxCal 14C calibration and analysis software (v. 4.3.2) (Bronk Ramsey, 2009) using the IntCal13 calibration curve (Reimer and others, 2013), rounded to the nearest 1000 years. 
2 Oviatt and others (1990).  Stansbury high and low. 
3 Oviatt (2015), Miller (2016) and references therein. 
4 McKean (2020) 
5 Miller and others (2013), Godsey and others (2005, 2011), Oviatt (2015). 
6 Burr and Currey (1988, 1992) reported that regressive-phase shorelines in Rush Valley fluctuated independently from the main body of Lake Bonneville subsequent to construction of the Stockton Bar. They reported these shorelines may be equivalent in age to the Provo and Gilbert shorelines. 
7 Nelson (2012)
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Lab code
14C age 
(yr)

14C error 
1- sigma 
(yr) Material

Collection 
elevation 
(m) Stratigraphic interpretation

Method - 
Conventional 
or AMS

Latitude °N 
(NAD83)

Longitude °W 
(NAD83) Reference Location

Beta- 156660 11,940 130 gastropod shells 1460

“Barrier beach composed of marl-rich very fine sand with abundant gastropods, sharp contact with overlying gravels that grade into cobbles” 
(Godsey and others, 2005); “gastropods collected from sand about 24 m below Provo shoreline (in “P7 offshore” position)” (H.S. Godsey, 
2008, personal communication); Stagnicola conventional 40.51 112.37 Godsey and others, 2005

Stockton Bar; Tooele Army Depot water 
main trench

Beta- 159810 13,580 40 gastropod shells 1468
“Cobbles encrusted with thin tufa layer on crest of spit about 14 m below the Provo shoreline” (Godsey and others, 2005); “Pyrgulopsis col-
lected from interstices of tufa” (H.S. Godsey, 2008, personal communication); Pyrgulopsis conventional 40.51 112.36 Godsey and others, 2005 Stockton Bar; Tooele Army Depot quarry

Beta-50770 14,420 370
gastropod shells 
Stagnicola 1575 “Sample take from interstices of tufa on gravel beach crest about 5 m below the B1 shoreline” (Godsey and others, 2005) conventional 40.47 112.36 Godsey and others, 2005 Stockton Bar railroad cut

Beta- 146004 14,730 140 gastropod shells 1572

“Laminated medium to fine sand overlain by coarse sand and gravel in embayment of the west side of the Stockton Bar about 30 m below 
Bonneville shoreline” (Godsey and others, 2005); “Gravel and rippled sand about 5 m below spit crest (“armpit” sand)” (H.S. Godsey, 2008, 
personal communication); Stagnicola conventional 40.47 112.36 Godsey and others, 2005 Stockton bar sand pit

SI-4227C 14,730 100 tufa 1579

“innermost 18%, C13/C12 adjusted” . . . “Youngest occupation of Bonneville shoreline” (Currey and Oviatt, 1985); “Tufa on gravel beach 
crest about 5 m below the B1 shoreline at the Stockton Bar” (Godsey and others, 2005); collected by D.R. Currey from the railroad cut 
through the Stockton bar; from the part of the Bonneville shoreline referred to by Burr and Currey (1988) as the “B8” shoreline.  This age 
(SI-4227C) was reported as 14730 +/- 100 by Currey and Oviatt (1985) and Godsey and others (2005), and as 14260 +/- 100 by Currey and 
James (1982); Currey and others (1983) and Burr and Currey (1992). conventional 40.46 112.36

Robert Stuckenrath, personal com-
munication to Currey, 1979, reported 
in Currey and James, 1982; Currey 
and others, 1983; Currey and Oviatt, 
1985; Burr and Currey, 1992 Stockton Bar

Beta- 156660 11,940 130 gastropod shells 1460

“Barrier beach composed of marl-rich very fine sand with abundant 
gastropods, sharp contact with overlying gravels that grade into cobbles” (Godsey and others, 2005); “gastropods collected from sand about 
24 m below Provo shoreline (in “P7 offshore” position)” (H.S. Godsey, 2008, personal communication); Stagnicola conventional 40.51 112.37 Godsey and others, 2005

Stockton Bar; Tooele Army Depot water 
main trench

Beta- 159810 13,580 40 gastropod shells 1468

“Cobbles encrusted with thin tufa layer on crest of spit about 14 m 
below the Provo shoreline” (Godsey and others, 2005); “Pyrgulopsis 
collected from interstices of tufa” (H.S. Godsey, 2008, personal communication); Pyrgulopsis conventional 40.51 112.36 Godsey and others, 2005

Stockton Bar; 
Tooele Army Depot quarry

Beta-50770 14,420 370
gastropod shells 
Stagnicola 1575 “Sample take from interstices of tufa on gravel beach crest about 5 m below the B1 shoreline” (Godsey and others, 2005) conventional 40.47 112.36 Godsey and others, 2005 Stockton Bar railroad cut

Beta- 146004 14,730 140 gastropod shells 1572

“Laminated medium to fine sand overlain by coarse sand and gravel in 
embayment of the west side of the Stockton Bar about 30 m below Bonneville shoreline” (Godsey and others, 2005); “Gravel and rippled 
sand about 5 m below spit crest (“armpit” sand)” (H.S. Godsey, 2008, personal communication); Stagnicola conventional 40.47 112.36 Godsey and others, 2005 Stockton bar sand pit

SI-4227C 14,730 100 tufa 1579

“innermost 18%, C13/C12 adjusted” . . . “Youngest occupation of Bonneville shoreline” (Currey and Oviatt, 1985); “Tufa on gravel beach 
crest about 5 m below the B1 shoreline at the Stockton Bar” (Godsey and others, 2005); collected by D.R. Currey from the railroad cut 
through the Stockton bar; from the part of the Bonneville shoreline referred to by Burr and Currey (1988) as the “B8” shoreline.  This age 
(SI-4227C) was reported as 14730 +/- 100 by Currey and Oviatt (1985) and Godsey and others (2005), and as 14260 +/- 100 by Currey and 
James (1982); Currey and others (1983) and Burr and Currey (1992). conventional 40.46 112.36

Robert Stuckenrath, personal com-
munication to Currey, 1979, reported 
in Currey and James, 1982; Currey 
and others, 1983; Currey and Oviatt, 
1985; Burr and Currey, 1992 Stockton Bar

Beta- 156660 11,940 130 gastropod shells 1460

“Barrier beach composed of marl-rich very fine sand with abundant 
gastropods, sharp contact with overlying gravels that grade into cobbles” (Godsey and others, 2005); “gastropods collected from sand about 
24 m below Provo shoreline (in “P7 offshore” position)” (H.S. Godsey, 2008, personal communication);  Stagnicola conventional 40.51 112.37 Godsey and others, 2005

Stockton Bar; Tooele Army Depot water 
main 
trench

Beta- 159810 13,580 40 gastropod shells 1468

“Cobbles encrusted with thin tufa layer on crest of spit about 14 m 
below the Provo shoreline” (Godsey and others, 2005); “Pyrgulopsis collected from interstices of tufa” (H.S. Godsey, 2008, personal com-
munication); Pyrgulopsis conventional 40.51 112.36 Godsey and others, 2005 Stockton Bar; Tooele Army Depot quarry

Beta-50770 14,420 370
gastropod shells 
Stagnicola 1575 “Sample take from interstices of tufa on gravel beach crest about 5 m below the B1 shoreline” (Godsey and others, 2005) conventional 40.47 112.36 Godsey and others, 2005 Stockton Bar railroad cut

Beta- 146004 14,730 140 gastropod shells 1572

“Laminated medium to fine sand overlain by coarse sand and gravel in 
embayment of the west side of the Stockton Bar about 30 m below Bonneville shoreline” (Godsey and others, 2005); “Gravel and rippled 
sand about 5 m below spit crest (“armpit” sand)” (H.S. Godsey, 2008, personal communication); Stagnicola conventional 40.47 112.36 Godsey and others, 2005 Stockton bar sand pit

SI-4227C 14,730 100 tufa 1579

“innermost 18%, C13/C12 adjusted” . . . “Youngest occupation of 
Bonneville shoreline” (Currey and Oviatt, 1985); “Tufa on gravel beach crest about 5 m below the B1 shoreline at the Stockton Bar” (God-
sey and others, 2005); collected by D.R. Currey from the railroad cut through the Stockton bar; from the part of the Bonneville shoreline re-
ferred to by Burr and Currey (1988) as the “B8” shoreline.  This age (SI-4227C) was reported as 14730 +/- 100 by Currey and Oviatt (1985) 
and Godsey and others (2005), and as 14260 +/- 100 by Currey and James (1982); Currey and others (1983) and Burr and Currey (1992). conventional 40.46 112.36

Robert Stuckenrath, personal com-
munication to Currey, 1979, reported 
in Currey and James, 1982; Currey 
and others, 1983; Currey and Oviatt, 
1985; Burr and Currey, 1992 Stockton Bar

UTM NAD? 
Zone 12

UTM NAD? 
Zone 12

Beta- 307253 13,360 50
gastropod shells 
Valvata utahensis nd Shambip paleoshoreline, over wash gravels behind a small beach barrier AMS 378750 E 4472300 N

Nelson, 2012; D. Nelson, unpub-
lished data Rush Valley

Beta- 307252 13,300 50
gastropod shellsS 
tagnicola bonnevillensis nd Shambip paleoshoreline, over wash gravels behind a small beach barrier AMS 378750 E 4472300 N

Nelson, 2012; D. Nelson, unpub-
lished data Rush Valley

Beta- 307254 13,990* 50
gastropod shells 
Valvata utahensis nd Shambip paleoshoreline, offshore beach sands just below shoreline AMS 380000 E 4476000 N

Nelson, 2012; D. Nelson, unpub-
lished data Rush Valley

Beta- 457941 14,100 50 shells nd nd AMS 380000 E 4476000 N D. Nelson, unpublished data Rush Valley

Notes: 
AMS is Accelerator Mass Spectrometry. 
UTM datum for Nelson samples is presently unknown. 
*Age is 14,290 in Nelson (2012). 
nd is no data.

Table A3. Summary of radiocarbon ages from the Rush Valley 30’ x 60’ quadrangle and adjacent areas.
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Map ID Sample ID 7.5’ Quadrangle Location Data Location Data Tephra Name Age (Ma) Error (Ma) Age Type Comments Reference

Skull Valley

TR1-4 (8’) Hickman Knolls * * unknown (SE California tephra?) ~3-4 - interpolation? ash analysis by M.E. Perkins Geomatrix, 2001; Perkins, pers. comm, 2009

ctb-1-80 Hickman Knolls * * unknown ~6? - - ash analysis by M.E. Perkins Geomatrix, 2001; Perkins, pers. comm, 2009

ctb-5-75 Hickman Knolls * * unknown ~6? - - ash analysis by M.E. Perkins Geomatrix, 2001; Perkins, pers. comm, 2009

ctb-8-70 Hickman Knolls * * unknown ~6? - - ash analysis by M.E. Perkins Geomatrix, 2001; Perkins, pers. comm, 2009

ctb-1-155 Hickman Knolls * * Walcott 6.31 0.04 correlation ash analysis by M.E. Perkins Geomatrix, 2001; Perkins, pers. comm, 2009

A-1 (85’) Hickman Knolls * * Walcott 6.4 0.2 correlation ash analysis by W.P. Nash Stone & Webster Engineering Corp., 1997

A-1 (90’) Hickman Knolls * * Walcott 6.4 0.2 correlation ash analysis by W.P. Nash Stone & Webster Engineering Corp., 1997

TR1-1 (8’) Hickman Knolls * * unknown ~4 to 16 - - ash analysis by M.E. Perkins Geomatrix, 2001; Perkins, pers. comm, 2009

TR1-2 (10’) Hickman Knolls * * unknown ~4 to 16 - - ash analysis by M.E. Perkins Geomatrix, 2001; Perkins, pers. comm, 2009

TR1-3 (5’) Hickman Knolls * * unknown ~4 to 16 - - ash analysis by M.E. Perkins Geomatrix, 2001; Perkins, pers. comm, 2009

South Willow Canyon Latitude (N) NAD83 Longitude (W) NAD83

T1 sb87-11 Deseret Peak East 40.497440o 112.562570o Cougar Point Tuff unit XIII 10.94 0.03 correlation - Ar/Ar in steep, narrow gully Perkins, unpub data

Rush Valley UTM 27-12 E UTM 27-12 N

T2 412 Lofgreen 388219 4431831 Walcott 6.33 correlation ash analysis by M.E. Perkins Kirby, in preparation

T3 1751 Lofgreen 391989 4431499 Walcott 6.33 correlation ash analysis by M.E. Perkins Kirby, in preparation

T4 396 Lofgreen 386445 4434257 Blacktail Creek 6.69 correlation ash analysis by M.E. Perkins Kirby, in preparation

                                                                                      Latitude (N) NAD83 Longitude (W) NAD83

T5 rv88-18 Faust 40.176270o 112.392160o Blacktail Creek 6.66 0.03 correlation - Ar/Ar exposed on east side of UP tracks Perkins and others, 1998; Perkins, unpub data

T6 rv93-553 Vernon NE 40.180940o 112.372580o Blacktail Creek 6.66 0.03 correlation - Ar/Ar Perkins, unpub data

T7 rv88-2 Vernon NE 40.179060o 112.372000o Cub River 7.05 0.03 interpolation Perkins and others, 1998; Perkins, unpub data

T8 rv88-15a Faust 40.176267o 112.390580o Faust 7.54 0.04 correlation - Ar/Ar a number of short adits into this tephra Perkins and others, 1998; Perkins, unpub data

T9 rv88-12b Faust 40.179310o 112.386932o Rush Valley 8.39 0.24 correlation - Pb/U very thick tephra mined for light weight aggregate Perkins and others, 1998; Perkins, unpub data

T10 rv89-11 Faust 40.176381o 112.384817o Inkom 8.59 0.18 interpolation Perkins and others, 1998; Perkins, unpub data

T11 rv89-240 Vernon NE 40.169460o 112.371400o McMullan Cr. Tuff unit 1 9.22 0.04 correlation - Ar/Ar Hill 5333 section; location approximate Perkins, unpub data

T12 rv88-10 Faust 40.178043o 112.380614o Schmidt Ranch? 9.3 0.17 interpolation sample collected at/near this location; possible correlative of Great Plains tephra Perkins and others, 1998; Perkins, unpub data

T13 rv88-5 Vernon NE 40.175920o 112.375670o Section 26 9.61 0.15 interpolation Perkins and others, 1998; Perkins, unpub data

T14 rv88-0 Vernon NE 40.177010o 112.373170o - 9.82 0.23 interpolation fault between this sample and rv88-2 Perkins, unpub data

Tickville Gulch

T15 TS9903-2 Tickville Spring 40o25’29.2” 112o02’09.0” Walcott 6.4 0.2 correlation ash analysis by M.E. Perkins Biek and others, 2005

T16 TS101904-1 Tickville Spring 40o25’18.0” 112o01’55.0” Walcott 6.4 0.2 correlation ash analysis by M.E. Perkins Biek and others, 2005

Notes:
* Skull Valley area samples were from the subsurface, depths in feet indicated in parentheses; location coordinates were not provided in sources, sample locations are shown on maps in references.

Age type (correlation) are based on correlation to the database of analyses/stratigraphic data/age dates for late Cenozoic vitric tephra layers in the Western U.S. assembled by M.E. Perkins and several colleagues at the University of Utah, Dept. of Geology and Geophysics. 
Some of the key tephra layers in this database are described in Perkins and others (1995, 1998).  Refer to Perkins and others (1995) for procedures on sample preparation and analyses.
Age type (correlation - Ar/Ar,  - Pb/U) are based on correlation to tephra with isotopic age measurement.  All Ar/Ar ages are relative to an age of 28.02 Ma for the Fish Canyon Rhyolite sanidine Ar monitor.
Age type (interpolation) are interpolated age estimates relative to isotopic ages.

Table A4. Summary of tephrochronology data from the Rush Valley 30’ x 60’ quadrangle.
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Map 
ID

Sample 
ID

Map 
Unit

Rock 
Name

7.5’ 
Quadrangle

Location 
Data 
UTM 
27-12E

Location 
Data 
UTM 
27-12N

Preferred Age 
(Ma) Material Dated Laboratory Comments Reference

Zr1 1835 Tsl Sandstone Faust 379883 4448263 6.49 ± 0.38 detrital zircon AtoZ weighted mean 
age, 1 grain UGS and AtoZ, 2013

Zr2 1831 Tir Rhyolite Ophir 392571 4468991 36.46 ± 1.40 primary zircon AtoZ weighted mean 
age, 15 grains

Kirby, 2012; UGS and 
AtoZ, 2013

Zr3 RV-48 Tso Sandstone Vernon 383931 4436403 38.70 +0.28 -0.62 detrital zircon AtoZ TuffZirc age, 10 
grains UGS and AtoZ, 2013

Zr4 RV-46 Tso Sandstone Davis Knolls 362036 4447797 46.77 ± 1.28 detrital zircon AtoZ weighted mean 
age, 4 grains UGS and AtoZ, 2013

Notes:

AtoZ is Apatite to Zircon Inc., Viola, Idaho.
TuffZirc program of Ludwig (2003).
For complete data, see UGS and AtoZ (2013).

Table A5. Summary of U-Pb zircon age analyses from the Rush Valley 30’ x 60’ quadrangle.
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Table A6. Selected major- and trace-element whole-rock analyses from the Rush Valley 30' x 60' quadrangle.

https://ugspub.nr.utah.gov/publications/maps/m-294/m-294A.xlsx

https://ugspub.nr.utah.gov/publications/maps/m-294/m-294A.xlsx


55Geologic map of the Rush Valley 30' x 60' quadrangle, Tooele, Utah, and Salt Lake Counties, Utah

Map 
ID Sample ID

Map 
Unit1 Rock Name 7.5’ Quadrangle Location2

Location Data 
UTM 27-12 E

Location Data 
UTM 27-12 N Age (Ma) Material Dated Laboratory3

Analysis 
Type Comments Reference

R1 TS102103-5 Tido Dacite Tickville Spring Northeastern-Bingham 409609 4474471 32.05 + 0.13 biotite NMGRL Ar/Ar furnace step-heat, somewhat disturbed Biek and others, 2005; NMGRL and UGS, 2006

Tick 28 Tvlb Dacite Tickville Spring Northeastern-Bingham 407485 4477079 32.12 + 0.14 plagioclase Berkeley Ar/Ar plateau age Deino and Keith, 1997

R2 TS33104-7 Tvfa Basaltic andesite lava flow Tickville Spring Northeastern-Bingham 409562 4474433 32.86 + 0.48 groundmass concentrate NMGRL Ar/Ar furnace step-heat, disturbed Biek and others, 2005; NMGRL and UGS, 2006

R3 TS33104-4 Tir Rhyolite Tickville Spring Northeastern-Bingham 408141 4483153 35.49 + 0.13 sanidine NMGRL Ar/Ar laser total fusion Biek and others, 2005; NMGRL and UGS, 2006

R4 TS32904-3 Tia Andesite Tickville Spring Northeastern-Bingham 409619 4480719 36.26 + 0.18 biotite NMGRL Ar/Ar furnace step-heat Biek and others, 2005; NMGRL and UGS, 2006

Tick 43 Tvfo Minette Tickville Spring Northeastern-Bingham 406009 4477714 37.82 + 0.14 whole rock Berkeley Ar/Ar plateau age Deino and Keith, 1997

Tick-113 Tvlo Waterlain tuff Tickville Spring Northeastern-Bingham 406618 4477536 38.68 + 0.13 sanidine Berkeley Ar/Ar plateau age Maughan, 2001

Bing-6 Til Latite Tickville Spring Northeastern-Bingham 404805 4483095 38.84 + 0.19 plagioclase Berkeley Ar/Ar plateau age Deino and Keith, 1997

Tick 23 Tvlo Latite clast Tickville Spring Northeastern-Bingham 405090 4481395 39.18 + 0.11 biotite Berkeley Ar/Ar plateau age Deino and Keith, 1997

R5 D-17 Tac Andesite Tabbys Peak SW Western-Cedar Mountains 334856 4463878 38.17 + 0.47 groundmass concentrate NMGRL Ar/Ar furnace step-heat Clark and others, 2016: UGS and NMGRL, 2009b

R6 D-4 Tid Dacite Tabbys Peak SW Western-Cedar Mountains 338545 4464979 38.69 + 0.10 sanidine NMGRL Ar/Ar laser total fusion Clark and others, 2016: UGS and NMGRL, 2009b

R7 D-48 Trr Rhyolite Tabbys Peak Western-Cedar Mountains 332246 4476004 39.18 + 0.06 sanidine NIGL Ar/Ar laser total fusion UGS and NIGL, 2012b

R10 FM083105-1 Tid Dacite Camels Back Ridge NE Western-Cedar Mountains 343583 4451611 39.56 + 0.10 biotite NMGRL Ar/Ar integrated age, low K2O% Clark and others, 2016; UGS and NMGRL, 2009a

R9 D-40 Tiac Andesite Tabbys Peak Western-Cedar Mountains 331518 4480861 40.61 + 0.78 groundmass concentrate NMGRL Ar/Ar furnace step-heat Clark and others, 2016: UGS and NMGRL, 2009b

R10 FM083105-1 Tid Dacite Camels Back Ridge NE Western-Cedar Mountains 343583 4451611 40.95 + 0.32 hornblende NMGRL Ar/Ar step-heating, plateau age Clark and others, 2016; UGS and NMGRL, 2009a

R11 RV-24 Tir Rhyolite Mercur Northeastern-Mercur 396473 4462674 32.38 + 0.10 biotite NIGL Ar/Ar isochron age UGS and NIGL, 2012b

R12 RV-30 Tim Granodiorite Stockton Northeastern-Stockton 387157 4478428 41.06 + 0.21 sanidine NIGL Ar/Ar laser total fusion UGS and NIGL, 2012b

R13 879 Trv Rhyolite Vernon Vernon Hills 380034 4434853 35.33 + 0.05 sanidine NIGL Ar/Ar laser fusion ages, weighted mean Kirby, 2010b; UGS and NIGL, 2012a

R14 873 Trv Rhyolite Vernon Vernon Hills 381537 4430359 35.58 + 0.29 plagioclase NIGL Ar/Ar plateau age Kirby, 2010b; UGS and NIGL, 2012a

R15 920 Tdv Trachydacite Lofgreen Vernon Hills 382814 4437572 36.63 + 0.16 plagioclase NIGL Ar/Ar isochron age Kirby, 2010a; UGS and NIGL, 2012a

R16 AR-608 Tb Trachybasalt Allens Ranch East Tintic Mtns 412938 4440242 19.74 + 0.05 groundmass NMGRL Ar/Ar step heat, weighted mean McKean, 2011; Christiansen and others, 2013

R17 BOULTPK-1509 Tfb Shoshonite Boulter Peak East Tintic Mtns 401201 4432828 25.33 + 0.03 anorthoclase NMGRL Ar/Ar step heat, weighted mean Allen, 2012; Christiansen and others, 2013

R18 BOULTPK-409 Tdm Basalt Boulter Peak East Tintic Mtns 403293 4433755 25.40 + 0.20 groundmass NMGRL Ar/Ar plateau of age spectrum Allen, 2012; Christiansen and others, 2013

R19 BOULTPK-209 Tvm Shoshonite Boulter Peak East Tintic Mtns 395377 4432026 28.72 + 0.06 biotite NMGRL Ar/Ar step heat, weighted mean Allen, 2012; Christiansen and others, 2013

R20 AR-1608 Tlsl Trachyandesite Allens Ranch East Tintic Mtns 412630 4428811 32.66 + 0.03 sanidine NMGRL Ar/Ar laser fusion single crystals McKean, 2011; Christiansen and others, 2013

R21 AR-1108 Tsc Rhyolite Allens Ranch East Tintic Mtns 411684 4434924 34.61 + 0.02 sanidine NMGRL Ar/Ar laser fusion single crystals McKean, 2011; Christiansen and others, 2013

R22 AR-2606 Tstp Dacite Allens Ranch East Tintic Mtns 410555 4435119 34.62 + 0.17 plagioclase NMGRL Ar/Ar step heat, weighted mean McKean, 2011; Christiansen and others, 2013

R23 AR-908 Tp Rhyolite? Allens Ranch East Tintic Mtns 414391 4440196 35.08 + 0.03 sanidine NMGRL Ar/Ar laser fusion single crystals McKean, 2011; Christiansen and others, 2013

R24 AR-1708 Tp Rhyolite Allens Ranch East Tintic Mtns 406519 4429195 35.21 + 0.03 sanidine NMGRL Ar/Ar laser fusion single crystals McKean, 2011; Christiansen and others, 2013

R25 BOULTPK-309 Tp Rhyolite Boulter Peak East Tintic Mtns 403829 4428375 35.25 + 0.04 sanidine NMGRL Ar/Ar laser fusion single crystals Allen, 2012; Christiansen and others, 2013

74-KA-1 Tb Olivine basalt Goshen Pass East Tintic Mtns 414002 4445147 21.4 + 2.5 whole rock USGS K-Ar Goshen Pass area Moore and McKee, 1983

9 Tvbs Hornblende latite tuff-breccia Tickville Spring Northeastern-Bingham 411830 4479863 30.7 + 0.9 biotite USGS K-Ar W Traverse Mtns - South Mountain Moore, 1973a

11 Trf Biotite rhyolite vitrophyre Tickville Spring Northeastern-Bingham 413466 4474663 31.2 + 0.9 biotite USGS K-Ar W Traverse Mtns - Tickville Gulch rhyolite flow Moore, 1973a

12 Tir Fine-grained biotite rhyolite Mercur Northeastern-Mercur 397741 4462279 31.6 + 0.9 biotite USGS K-Ar Oquirrh Mtns - Mercur district, Eagle Hill rhyolite plug Moore, 1973a

10 Tir Biotite rhyolite vitrophyre Tickville Spring Northeastern-Bingham 408197 4483237 33.0 + 1.0 biotite USGS K-Ar W Traverse Mtns - Shaggy Peak plug Moore, 1973a

WT-41 Tipqm Biotite granodiorite porphyry Mercur Northeastern-Mercur 396196 4466649 36.7 + 0.5 biotite USGS K-Ar Oquirrh Mtns - Porphyry Hill at Ophir Moore and McKee, 1983

6 Til Quartz latite porphyry dike Lowe Peak Northeastern-Bingham 397740 4483003 37.1 + 1.1 biotite USGS K-Ar Oquirrh Mtns - Middle Canyon area Moore, 1973a

7 Tim Monzonite porphyry stock Stockton Northeastern-Stockton 387210 4477973 38.0 + 1.1 biotite USGS K-Ar Oquirrh Mtns - Stockton District, Calument Mine area Moore, 1973a

74-KA-2 Trv Biotite-hornblende rhyolite Vernon Vernon Hills 398020 4461998 38.0 + 0.5 biotite USGS K-Ar Vernon Hills Moore and McKee, 1983

69-TS-32 Tvfo Basalt Tickville Spring Northeastern-Bingham 407043 4475604 38.5 + 0.3 whole rock USGS K-Ar Oquirrh Mtns - South of Bingham mine Moore and McKee, 1983

5 Tiql Quartz monzonite porphyry sill Stockton Northeastern-Stockton 388429 4483876 38.6 + 1.1 biotite USGS K-Ar Oquirrh Mtns - Selkirk Canyon area Moore, 1973a

69-SM-2 Tib Basalt South Mountain Northeastern-Stockton 377774 4480188 40.1 + 0.5 whole rock USGS K-Ar South Mountain dike Moore and McKee, 1983

Notes:
1 Map unit corresponds with those on plate 1.
2 General unit location corresponds to figure 7.
3 Laboratory:  NMGRL is New Mexico Geochronology Research Laboratory, Socorro, New Mexico; NIGL is Nevada Isotope Geochronology Laboratory, Las Vegas, Nevada.
Data is selected to be representative for the various rock units.  It is not intended to be a comprehensive list of geochronology data.

Table A7. Selected radiometric age analyses from the Rush Valley 30’ x 60’ quadrangle.
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Map ID Sample ID Map Unit Rock Type 7.5’ Quadrangle Location Data Location Data Fossil Type Fauna Preservation & 
Abrasion

Calcareous Algae 
Present Age

Data from southern Cedar Mountains by Clark and others (2016)
UTM 27-12 E UTM 27-12 N

F1 D-69 Pofc biomicrite: wackestone Tabbys Peak 330675 4480889 fusulinid Triticites  cf. T. meeki Good None early Wolfcampian
F2 D-75 Pofc biomicrite: mudstone Tabbys Peak 332168 4481562 fusulinid Triticites  cf. T. meeki Fair None early Wolfcampian
F3 D-76 IPobm biomicrite: wackestone Tabbys Peak 335200 4484669 fusulinid Triticites Fair None Virgilian
F4 D-68 IPobm biomicrite: wackestone Tabbys Peak 330601 4473150 fusulinid Triticites Fair None Virgilian
F5 D-52 IPobm biomicrite: wackestone Tabbys Peak SW 331231 4468857 fusulinid Pseudofusulinella, Triticites Fair None early Virgilian
F6 D-57 IPobm biosparite: packstone Tabbys Peak SW 332609 4465513 fusulinid Triticites cullomensis Good None early Virgilian
F7 D-71 IPobm biomicrite: mudstone Tabbys Peak 331523 4472158 fusulinid Triticites Good None Missourian
F8 D-78 IPobm biomicrite: wackestone Tabbys Peak SW 332115 4466551 fusulinid Triticites Fair None Missourian
F9 D-70 IPobp biomicrite: wackestone Tabbys Peak 332246 4472228 fusulinid Beedeina Fair Fragments early Desmoinesian
F10 D-50 IPowc crinoidal packstone Tabbys Peak 333106 4471299 conodont Adetognathus lautus - - latest Mississippian to early Permian

Note:
Fusulinids identified by A.J. Wells (independent). Also see Utah Geological Survey and Wells (2017).
Conodonts identified by S.R. Ritter (Brigham Young University).
Map number on plate 1.

Data from Stansbury Mountains, South Mountain, Oquirrh Mountains (this study)
UTM 27-12 E UTM 27-12 N

F11 RV-17 Pofc biosparite: packstone Deseret Peak East 369232 4480292 fusulinid Triticites  cf. T. meeki Good None early Wolfcampian
F12 RV-8 Pofc biosparite: packstone Deseret Peak East 370302 4476669 fusulinid Schwagerina, Triticites Poor None early Wolfcampian
F13 RV-11 IPobm biosparite: packstone Deseret Peak East 369812 4476473 fusulinid Triticites Poor None Virgilian
F14 RV-9 IPobm biomicrite: wackestone Deseret Peak East 369355 4476355 fusulinid Triticites  cf. T. Cullomensis Fair None Virgilian
F15 RV-2 IPobm biosparite: packstone Deseret Peak East 368510 4481907 fusulinid Triticites Fair None Virgilian
F16 RV-5 IPobm wackestone Deseret Peak East 368234 4481041 fusulinid Triticites Good None Missourian
F17 RV-4 IPobm biomicrite: wackestone Deseret Peak East 368084 4481089 fusulinid Propseudofusulinella Fair None Missourian
F18 RV-6 IPobm sandstone Deseret Peak East 367964 4480377 fusulinid Propseudofusulinella Good None Missourian
F19 RV-14 Pdk biosparite: grainstone South Mountain 376615 4480605 fusulinid Schwagerina Fair-Poor None late-early Wolfcampian
F20 RV-15 Pocp biomicrite: mudstone South Mountain 380540 4481840 fusulinid Triticites, Schwagerina Poor None Wolfcampian
F21 970 IPobm biomicrite: mudstone South Mountain 379150 4481088 fusulinid Triticites Fair None late Missourian to Virgilian
F22 1199 IPobm calcareous sandstone South Mountain 378298 4473296 fusulinid Triticites Poor None Missourian
F23 RV-20 IPobm calcareous sandstone South Mountain 380660 4478875 fusulinid Triticites Poor None early Missourian
F24 RV-18 IPobm wackestone South Mountain 381603 4479643 fusulinid Propseudofusulinella Good None Missourian
F25 RV-28 IPobm limestone South Mountain 382228 4479232 conodont ideognathodids and/or adetognathids - - Pennsylvanian
F26 RV-27 IPobm limestone South Mountain 382399 4479227 conodont ideognathodids and/or adetognathids - - Pennsylvanian
F27 969 IPobp biomicrite: wackestone South Mountain 382403 4478628 fusulinid Fusulina Poor None early Desmoinesian
F28 RV-23 IPobp calcareous sandstone Stockton 388761 4480243 fusulinid Fusulinella Fair None late Atokan
F29 RV-22 IPobp mudstone Stockton 389008 4479246 fusulinid Fusulinella Poor None late Atokan
F30 RV-31 IPowc limestone Lowe Peak 395986 4471439 conodont ideognathodids and/or adetognathids - - Pennsylvanian

Data from Vernon Hills and Onaqui Mountains by Kirby (2010a, b; 2013b) and this study.
UTM 27-12 E UTM 27-12 N

F31 447 IPobm biomicrite: wackestone Faust 381857 4443049 fusulinid Triticites  cf. T. cullomensis Good None middle-early Virgilian
F32 720 IPobm biomicrite: wackestone Lofgreen 383405 4441220 fusulinid Psuedofusulinella Fair None late Missourian through Virgilian
F33 726 IPobm biomicrite: wackestone Lofgreen 383688 4440907 fusulinid Psuedofusulinella: P.  cf. fergusonensis Fair None Missourian through earliest Wolfcampian
F34 1600 IPobm wackestone Faust 382450 4443329 fusulinid Triticites Good None early Missourian
F35 1341 IPobp mudstone Onaqui Mountains South 371105 4453230 fusulinid Wedekindellina Fair None early Desmoinesian
F36 1641 IPobp wackestone Faust 372987 4452702 fusulinid Profusulinella Poor None early Atokan
F37 245 IPobp biomicrite: mudstone Lofgreen 383170 4440190 fusulinid Profusulinella Good None early Atokan
F38 586 IPowc biomicrite: wackestone Vernon 382346 4439325 fusulinid - Poor None Morrowan?

Note: 
Fusulinids identified by A.J. Wells (independent). Also see UGS and Wells (2017).  
Conodonts identified by S.M. Ritter (Brigham Young University).

Data from Stansbury Mountains by Jordan (1979a)

Map ID Sample ID Map Unit Township, Range, Section 7.5’ Quadrangle
Approximate 
UTM 27-12 E

Approximate 
UTM 27-12 N Fossil Type Fauna                                                                                                                                               Age

SJ1 8f53 Pofc 4S., 6W., NW1/4 NE1/4 28 Deseret Peak East 370554 4478264 fusulinid Triticites  sp., Schwagerina  sp.                                                                                                      Wolfcampian

SJ2 8f104B Pofc 4S., 6W., SE1/4 SE1/4 17 Deseret Peak East 369365 4480176 fusulinid
Pseudofusulinella  sp., Triticites  sp.,                                                                                              
Pseudofusulina? Wolfcampian

Note:
Map unit designations from this study.
Fusulinids identified by R.C. Douglass (USGS).

Table A8. Fossil identifications and ages from the Rush Valley 30’ x 60’ quadrangle.
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Map ID Sample ID Map Unit Township, Range, Section 7.5’ Quadrangle Approximate UTM 27-12 E Approximate UTM 27-12 N Fossil Type Fauna Age

S18 77-AF-46 Pofc 4S., 6W., 28 Deseret Peak East 370517 4477951 fusulinid Schwagerina  sp. Wolfcampian
S19 77-AF-48 Pofc 4S., 6W., 29 Deseret Peak East 369432 4478292 fusulinid Triticites  sp., Schwageria?  sp. Wolfcampian
S14 77-AF-30 IPobm 4S., 6W., 29 Deseret Peak East 368569 4476962 fusulinid Pseudofusulinella  sp., Triticites  sp. Virgilian or Wolfcampian
S22 77-AF-80 IPobm 5S., 6W., 4 Deseret Peak East 370790 4473903 fusulinid Pseudofusulinella  sp. Late Pennsylvanian or Early Permian
S16 77-AF-40 IPobm 5S., 6W., 5 Deseret Peak East 369375 4474957 fusulinid Triticites  sp. Late Pennsylvanian or Early Permian
S17 77-AF-42 IPobm 5S., 6W., 4 Deseret Peak East 370118 4475006 fusulinid Triticites?  sp. Late Pennsylvanian or Early Permian
S12 77-AF-20 IPobm 4S., 6W., 20 Deseret Peak East 366545 4479751 fusulinid Pseudofusulinella  sp. Late Pennsylvanian
S23 77-AF-82 IPobm 5S., 6W., 4 Deseret Peak East 369704 4473721 fusulinid Triticites?  sp. Late Pennsylvanian
S15 77-AF-36 IPobm 5S., 6W., 5 Deseret Peak East 368664 4474538 fusulinid Triticites  sp. Late Pennsylvanian
S11 77-AF-19 IPobp 4S., 6W., 19 Deseret Peak East 367241 4479434 fusulinid Triticites  sp. Late Pennsylvanian
S20 77-AF-51 IPobm 4S., 6W., 19 Deseret Peak East 368047 4478729 fusulinid Pseudofusulinella  sp., Triticites  sp. Virgilian(?)
S24 78-AF-7 IPobm 4S., 6W., 30 Deseret Peak East 367882 4478458 fusulinid Triticites  sp. Virgilian(?)
S13 77-AF-25 IPobm 4S., 6W., 30 Deseret Peak East 637529 4477456 fusulinid Triticites  sp. Virgilian(?)
S21 77-AF-55 IPobm 4S., 6W., 19 Deseret Peak East 367413 4479546 fusulinid Triticites  sp. Virgilian
S25 78-AF-16 IPobm 5S., 6W., 16 Deseret Peak East 370974 4471546 fusulinid Pseudofusulinella  sp., Triticites  sp. Missourian (?)
S26 78-AF-22 IPobm 4S., 6W., 19 Deseret Peak East 366728 4478670 fusulinid Pseudofusulinella  sp., Triticites  sp. Missourian (?)
S27 78-AF-23 IPobm 4S., 6W., 31 Deseret Peak East 367562 4476708 fusulinid Pseudofusulinella  sp., Triticites?  sp. Missourian (?)
S4 77-AF-35 IPobm 5S., 6 W., 6 Deseret Peak East 367782 4474128 fusulinid Pseudofusulinella  sp., Triticites  sp. early Missourian?
S5 77-AF-45 IPobm 5S., 6W., 16 Deseret Peak East 369798 4471544 fusulinid Pseudofusulinella  sp., Triticites  sp. early Missourian?
S2 77-AF-18 IPobp 4S., 7W., - Deseret Peak East 366423 4478244 fusulinid Beedeina ? sp. Desmoinesian?
S3 77-AF-21 IPobp 4S., 7W., - Deseret Peak East 365855 4479450 fusulinid Beedeina ? sp. Desmoinesian?
S7 77-AF-88 IPobp 5S., 6 W., 17 Deseret Peak East 368509 4470762 brachiopod Mesolobus  cf. M euampygus  (Girty) Desmoinesian
S8 78-AF-8 IPobp 5S., 6W., 20 Johnson Pass 368811 4470140 brachiopod Mesolobus  sp. Middle Pennsylvanian
S10 Seq 6-6 IPobp 4S., 7 W., - Deseret Peak East 366052 4477001 fusulinid Beedeina  sp. Desmoinesian
S1 77-AF-13 IPobp 5S., 6W., 7 Deseret Peak East 367253 4472644 fusulinid Fusulinella  sp. Atokan
S6 77-AF-87 IPobp 5S., 6W, 17 Deseret Peak East 368390 4470612 fusulinid Fusulinella  sp. Atokan
S9 Seq 5-6 IPobp 5S., 6 W., 18 Deseret Peak East 367896 4472019 fusulinid Fusulinella  sp. Atokan

O26 13672 IPobm 7S., 6W., 30 Onaqui Mountains South 367239 4447746 fusulinid Triticites  sp. Virgilian
O18 77-AF-56 IPobm 7S., 7W., 36 Onaqui Mountains South 365999 4447413 fusulinid Triticites  sp. Virgilian?
O19 77-AF-57 IPobm 7S, 7W., 36 Onaqui Mountains South 366087 4447559 fusulinid Triticites  sp. Virgilian?
O21 77-AF-59 IPobm 7S., 6W., 31 Onaqui Mountains South 367239 4447746 fusulinid Triticites  sp. Virgilian?
O20 77-AF-58 IPobm 7S., 6W., 31 Onaqui Mountains South 366264 4447738 fusulinid Triticites  sp. Late Pennsylvanian
O22 77-AF-61 IPobm 7S., 6W., 30 Onaqui Mountains South 367776 4448701 fusulinid Triticites  sp. Late Pennsylvanian
O23 13671 IPobm 7S., 7W., 13 Onaqui Mountains South 365601 4451182 fusulinid Triticites  sp. Late Pennsylvanian
O24 24544 IPobm 7S., 6W., 19 Onaqui Mountains South 366834 4450409 fusulinid Triticites  sp. Late Pennsylvanian
O25 13682 IPobm 7S., 7W., 26 Onaqui Mountains South 365703 4448311 fusulinid Triticites  sp. Late Pennsylvanian
O27 13683 IPobm 7S., 7W., 36 Onaqui Mountains South 365921 4447313 fusulinid Triticites  sp., Pseudofusulinella  sp. Late Pennsylvanian
O28 24543 IPobm 7S., 6W., 31 Onaqui Mountains South 367616 4447561 fusulinid Triticites  sp. Late Pennsylvanian
O16 77-AF-1 IPobm 7S., 6W., 29 Onaqui Mountains South 367883 4448099 fusulinid Kansanella  sp. Missourian
O17 77-AF-12 IPobm 7S., 6W., 19 Onaqui Mountains South 366595 4450316 fusulinid Triticites  sp. Missourian
O1 77-AF-13 IPobp 7S., 6W., 29 Onaqui Mountains South 369166 4448468 fusulinid Beedeina  sp. Desmoinesian
O2 77-AF-14 IPobp 7S., 6W., 7 Onaqui Mountains South 367097 4453396 fusulinid Beedeina  sp. Desmoinesian
O3 77-AF-15 IPobp 7S., 6W., 19 Onaqui Mountains South 367305 4450233 fusulinid Beedeina  sp. Desmoinesian
O4 77-AF-16 IPobp 7S., 6W., 32 Onaqui Mountains South 368070 4446947 fusulinid Beedeina  sp. Desmoinesian
O5 77-AF-62 IPobp 7S., 6W., 19 Onaqui Mountains South 366322 4451056 fusulinid Beedeina  sp. Desmoinesian
O6 77-AF-65 IPobp 7S., 6W., 18 Onaqui Mountains South 366331 4451981 fusulinid Beedeina  sp. Desmoinesian
O7 77-AF-68 IPobp 7S., 6W., 18 Onaqui Mountains South 366715 4452457 fusulinid Beedeina  sp. Desmoinesian
O8 77-AF-71 IPobp 7S., 6W., 29 Onaqui Mountains South 368289 4449166 fusulinid Beedeina  sp. Desmoinesian
O9 77-AF-72 IPobp 7S., 6W., 29 Onaqui Mountains South 368955 4448653 fusulinid Beedeina  sp. Desmoinesian
O11 Seq 2-8 IPobp 7S., 6W., 29 Onaqui Mountains South 368675 4447887 fusulinid Beedeina  sp. Desmoinesian
O12 f13673 IPobp 7S., 6W., 6 Onaqui Mountains South 367517 4454372 fusulinid Beedeina  sp. Desmoinesian
O13 f13674 IPobp 7S., 7W., 12 Onaqui Mountains South 365961 4452982 fusulinid Beedeina  sp. Desmoinesian
O14 f13681 IPobp 7S., 6W., 7 Onaqui Mountains South 366891 4453221 fusulinid Beedeina  sp. Desmoinesian
O15 f24545 IPobp 7S., 6W., 8 Onaqui Mountains South 368210 4453462 fusulinid Beedeina  sp. Desmoinesian
O10 77-AF-73 IPobp 7S., 7W., 12 Onaqui Mountains South 365855 4453741 fusulinid Beedeina  sp. Atokan
Note:
Sample locations were obtained from Armin and Moore’s (1981) geologic map.
Map unit designations are modified from Armin and Moore (1981).
Fossil identification by C.H. Stevens (USGS).
Wright (1961) also reported fossil data from measured sections in the Stansbury Mountains, but is not included since it lacks detailed location information.

Table A8. Continued  

Map ID Sample ID Map Unit Rock Type 7.5’ Quadrangle Location Data Location Data Fossil Type Fauna Preservation & 
Abrasion

Calcareous Algae 
Present Age

Data from southern Cedar Mountains by Clark and others (2016)
UTM 27-12 E UTM 27-12 N

F1 D-69 Pofc biomicrite: wackestone Tabbys Peak 330675 4480889 fusulinid Triticites  cf. T. meeki Good None early Wolfcampian
F2 D-75 Pofc biomicrite: mudstone Tabbys Peak 332168 4481562 fusulinid Triticites  cf. T. meeki Fair None early Wolfcampian
F3 D-76 IPobm biomicrite: wackestone Tabbys Peak 335200 4484669 fusulinid Triticites Fair None Virgilian
F4 D-68 IPobm biomicrite: wackestone Tabbys Peak 330601 4473150 fusulinid Triticites Fair None Virgilian
F5 D-52 IPobm biomicrite: wackestone Tabbys Peak SW 331231 4468857 fusulinid Pseudofusulinella, Triticites Fair None early Virgilian
F6 D-57 IPobm biosparite: packstone Tabbys Peak SW 332609 4465513 fusulinid Triticites cullomensis Good None early Virgilian
F7 D-71 IPobm biomicrite: mudstone Tabbys Peak 331523 4472158 fusulinid Triticites Good None Missourian
F8 D-78 IPobm biomicrite: wackestone Tabbys Peak SW 332115 4466551 fusulinid Triticites Fair None Missourian
F9 D-70 IPobp biomicrite: wackestone Tabbys Peak 332246 4472228 fusulinid Beedeina Fair Fragments early Desmoinesian
F10 D-50 IPowc crinoidal packstone Tabbys Peak 333106 4471299 conodont Adetognathus lautus - - latest Mississippian to early Permian

Note:
Fusulinids identified by A.J. Wells (independent). Also see Utah Geological Survey and Wells (2017).
Conodonts identified by S.R. Ritter (Brigham Young University).
Map number on plate 1.

Data from Stansbury Mountains, South Mountain, Oquirrh Mountains (this study)
UTM 27-12 E UTM 27-12 N

F11 RV-17 Pofc biosparite: packstone Deseret Peak East 369232 4480292 fusulinid Triticites  cf. T. meeki Good None early Wolfcampian
F12 RV-8 Pofc biosparite: packstone Deseret Peak East 370302 4476669 fusulinid Schwagerina, Triticites Poor None early Wolfcampian
F13 RV-11 IPobm biosparite: packstone Deseret Peak East 369812 4476473 fusulinid Triticites Poor None Virgilian
F14 RV-9 IPobm biomicrite: wackestone Deseret Peak East 369355 4476355 fusulinid Triticites  cf. T. Cullomensis Fair None Virgilian
F15 RV-2 IPobm biosparite: packstone Deseret Peak East 368510 4481907 fusulinid Triticites Fair None Virgilian
F16 RV-5 IPobm wackestone Deseret Peak East 368234 4481041 fusulinid Triticites Good None Missourian
F17 RV-4 IPobm biomicrite: wackestone Deseret Peak East 368084 4481089 fusulinid Propseudofusulinella Fair None Missourian
F18 RV-6 IPobm sandstone Deseret Peak East 367964 4480377 fusulinid Propseudofusulinella Good None Missourian
F19 RV-14 Pdk biosparite: grainstone South Mountain 376615 4480605 fusulinid Schwagerina Fair-Poor None late-early Wolfcampian
F20 RV-15 Pocp biomicrite: mudstone South Mountain 380540 4481840 fusulinid Triticites, Schwagerina Poor None Wolfcampian
F21 970 IPobm biomicrite: mudstone South Mountain 379150 4481088 fusulinid Triticites Fair None late Missourian to Virgilian
F22 1199 IPobm calcareous sandstone South Mountain 378298 4473296 fusulinid Triticites Poor None Missourian
F23 RV-20 IPobm calcareous sandstone South Mountain 380660 4478875 fusulinid Triticites Poor None early Missourian
F24 RV-18 IPobm wackestone South Mountain 381603 4479643 fusulinid Propseudofusulinella Good None Missourian
F25 RV-28 IPobm limestone South Mountain 382228 4479232 conodont ideognathodids and/or adetognathids - - Pennsylvanian
F26 RV-27 IPobm limestone South Mountain 382399 4479227 conodont ideognathodids and/or adetognathids - - Pennsylvanian
F27 969 IPobp biomicrite: wackestone South Mountain 382403 4478628 fusulinid Fusulina Poor None early Desmoinesian
F28 RV-23 IPobp calcareous sandstone Stockton 388761 4480243 fusulinid Fusulinella Fair None late Atokan
F29 RV-22 IPobp mudstone Stockton 389008 4479246 fusulinid Fusulinella Poor None late Atokan
F30 RV-31 IPowc limestone Lowe Peak 395986 4471439 conodont ideognathodids and/or adetognathids - - Pennsylvanian

Data from Vernon Hills and Onaqui Mountains by Kirby (2010a, b; 2013b) and this study.
UTM 27-12 E UTM 27-12 N

F31 447 IPobm biomicrite: wackestone Faust 381857 4443049 fusulinid Triticites  cf. T. cullomensis Good None middle-early Virgilian
F32 720 IPobm biomicrite: wackestone Lofgreen 383405 4441220 fusulinid Psuedofusulinella Fair None late Missourian through Virgilian
F33 726 IPobm biomicrite: wackestone Lofgreen 383688 4440907 fusulinid Psuedofusulinella: P.  cf. fergusonensis Fair None Missourian through earliest Wolfcampian
F34 1600 IPobm wackestone Faust 382450 4443329 fusulinid Triticites Good None early Missourian
F35 1341 IPobp mudstone Onaqui Mountains South 371105 4453230 fusulinid Wedekindellina Fair None early Desmoinesian
F36 1641 IPobp wackestone Faust 372987 4452702 fusulinid Profusulinella Poor None early Atokan
F37 245 IPobp biomicrite: mudstone Lofgreen 383170 4440190 fusulinid Profusulinella Good None early Atokan
F38 586 IPowc biomicrite: wackestone Vernon 382346 4439325 fusulinid - Poor None Morrowan?

Note: 
Fusulinids identified by A.J. Wells (independent). Also see UGS and Wells (2017).  
Conodonts identified by S.M. Ritter (Brigham Young University).

Data from Stansbury Mountains by Jordan (1979a)

Map ID Sample ID Map Unit Township, Range, Section 7.5’ Quadrangle
Approximate 
UTM 27-12 E

Approximate 
UTM 27-12 N Fossil Type Fauna                                                                                                                                               Age

SJ1 8f53 Pofc 4S., 6W., NW1/4 NE1/4 28 Deseret Peak East 370554 4478264 fusulinid Triticites  sp., Schwagerina  sp.                                                                                                      Wolfcampian

SJ2 8f104B Pofc 4S., 6W., SE1/4 SE1/4 17 Deseret Peak East 369365 4480176 fusulinid
Pseudofusulinella  sp., Triticites  sp.,                                                                                              
Pseudofusulina? Wolfcampian

Note:
Map unit designations from this study.
Fusulinids identified by R.C. Douglass (USGS).
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Data from South Mountain by Jordan (1979a)

Map ID Sample ID Map Unit Township, Range, Section 7.5’ Quadrangle Approximate 
UTM 27-12 E

Approximate  
UTM 27-12 N Fossil Type Fauna Age

SM1 SI33 Pdk 4S., 5W., NW1/4 SW1/4 18 South Mountain 376451 4480780 fusulinid
Psuedofusulina  sp., Schwagerina  sp., Psuedoschwa-
gerina? Wolfcampian

SM2 SI30 Pofp 4S., 5W., north edge SE1/4 SW1/4 18 South Mountain 376749 4480431 fusulinid Triticites?, Schwagerina  sp. Wolfcampian

SM3 SI28 Pofp
4S., 5W., north edge SE1/4 
SW1/4 18 South Mountain 376654 4480427 fusulinid Schwagerina  sp. Wolfcampian

SM4 SI23 Pofp 4S., 5W., SW1/4 SE1/4 18 South Mountain 377074 4480268 fusulinid Schwagerina  sp. Wolfcampian
SM5 SI18 Pofp 4S., 5W., south boundary NE1/4 SW1/4 18? South Mountain 376597 4480429 fusulinid Triticites?, Schwagerina? Wolfcampian

SM6 SI17 Pofp
4S., 5W., south boundary 
NE1/4 SW1/4 18? South Mountain 376597 4480429 fusulinid

Pseudofusulina?, Schwagerina  sp., 
Pseudoschwagerina Wolfcampian

SM7 SI13a, SI14 Pofp
4S., 5W., south edge NE1/4 
SE1/4 18 South Mountain 377458 4480325 fusulinid Schwagerina  sp. Wolfcampian

SM8 SI5 Pocp 4S., 5W., SE1/4 SW1/4 17 South Mountain 378271 4480266 fusulinid Triticites  sp. late Virgilian/early Wolfcampian
SM9 61F84ab IPobm 4S., 5W., NW1/4 21 South Mountain 379693 4479651 fusulinid Triticites  sp. Missourian/earliest Virgilian

SM10

61F77a, 
61F78a, 
61F79, 61F84 IPobm 4S., 5W., NW1/4 21 South Mountain 379782 4479638 fusulinid

Tetrataxis  sp., Bradyina  sp., Millerella  sp., Fusuli-
nella  sp., Oketaella?, Kansanella  sp., Triticites  sp. Missourian with intermixed Middle Pennsylvanian

SM11
61F74, 
61F75abc IPobm 4S., 5W., SE1/4 NE1/4 21 South Mountain 380648 4479399 fusulinid

Bradyina  sp., Climacammina  sp., Pseudofusulinella  
sp., Triticites  sp. Missourian

SM12 61F73 IPobm
4S., 5W., center N edge 
SW1/4 22 South Mountain 381331 4479272 fusulinid Bradyina  sp., Eowaeringella  sp. Missourian

Note: 
Map unit designations from this study. 
Fusulinids identified by R.C. Douglass (USGS). 
MacKenzie and Duncan in Tooker and Roberts (1970) report on megafauna of the Butterfield Peaks Formation of the Oquirrh Mountains in the West Canyon type and reference sections and the Soldier Canyon reference section (see their table 6).

Data from Western Traverse Mountains by Douglass and others (1974)

Map ID Sample ID (Map Locality 
Number) Map Unit 7.5’ Quadrangle Approximate 

UTM 27-12 E
Approximate 
UTM 27-12 N Fossil Type Fauna Age

WT1 f24507 (11) IPobm Tickville Spring 414925 4477544 fusulinid Triticites  sp. aff. T. pygmaeus Missourian
WT2 f24417 (7) IPobp Tickville Spring 411807 4473741 fusulinid Fusulinella  sp. undet. latest Atokan  to early Desmoinesian
WT3 f24416 (6) IPobp Tickville Spring 413111 4470559 fusulinid Fusulinella  sp. undet. latest Atokan  to early Desmoinesian
WT4 f24415 (5) IPobp Tickville Spring 407266 4474453 fusulinid Wedekindellina  sp. 4, Beedeina  sp. 1 late Desmoinesian
WT5 f24506 (4) IPobp Tickville Spring 405037 4477907 fusulinid Beedeina  sp. aff. B. rockymontana? middle Desmoinesian
WT6 f24505 (3) IPobp Tickville Spring 404920 4477719 fusulinid Beedeina  sp. aff. B. pristina middle Desmoinesian
WT7 f24503 (2) IPobp Tickville Spring 404766 4476860 fusulinid B.  sp. aff. B. rockymontana middle Desmoinesian
WT8 f24504 (1) IPobp Tickville Spring 404873 4476331 fusulinid F.  sp. aff. F. haywardi latest Atokan  to early Desmoinesian
WT9 f24540 (28) IPobp Tickville Spring 414983 4476198 fusulinid Beedeina  sp. 1? late Desmoinesian
WT10 f24501 (10) IPobp Tickville Spring 414413 4476641 fusulinid Beedeina  sp. 1 late Desmoinesian
WT11 f24541 (29) IPobp Tickville Spring 414907 4474953 fusulinid Millerella  sp., W.  sp. 3 late Desmoinesian

WT12 f24502 (9) IPobp Tickville Spring 413458 4476737 fusulinid
M.  sp., F.  sp. aff. F. lounsberyi Streptognathodus 
anteecccentricus, latest Atokan  to early Desmoinesian

WT13 24769-PC (8) IPowc Tickville Spring 414189 4473191 conodont
Adetognathus gigantus, A. lautus, 
Hindeodella  sp. Morrowan

WT14 25031-PC (33) IPowc Tickville Spring 413633 4475544 conodont
A. lautus, Hindeodella  sp. 
A. lautus, Hindeodella  sp., Neognathodus Morrowan

WT15 25030-PC (32) IPowc Tickville Spring 414531 4474068 conodont
bassleri symmetricus, Ozarkodina  sp., 
Rhachistognathus muricatus Morrowan

Note:
Sample ID (map locality numbers) were obtained from Moore’s (1973c) geologic map.
Map unit designations are modified from Moore (1973c).
Fossil identifications by R.C. Douglass (fusulinids) and J.W. Huddle (conodonts) (see Douglass and others, 1974).

Table A8. Continued



59Geologic map of the Rush Valley 30' x 60' quadrangle, Tooele, Utah, and Salt Lake Counties, Utah

Map ID Sample ID Map Unit 7.5’ Quadrangle Location Data 
UTM 27-12 E

Location Data 
UTM  27-12 N

Waanders Report 
Date Recovery Age Environment Spores and Pollen Reference

P1 1928 Mmc Fivemile Pass 398926 4446425 12/29/2010 barren Indeterminate Restricted Marine/Lacustrine - this study

P2 1944 Mgbs Ophir 392415 4467140 12/29/2010 barren Indeterminate Fluvial/Floodplain - this study

P3 2097 Mgbus Fivemile Pass 399206 4454944 12/29/2010 yes Namurian B-C? (Chesterian?) Swamp/Deltaic Densosporites  sp. (R), Lycospora  sp.  (R) this study

P4 2101 Mgbus Mercur 400279 4457873 12/29/2010 yes Namurian B-C? (Chesterian?) Swamp/Lacustrine Densosporites  sp. (C), Leiotriletes adnatus  (R), 
Lycospora  sp.  (C), Punctatisporites  spp.  (F) this study

P5 SC-9 IPowc Stockton 389971 4476460 4/13/2009 yes Chesterian? (Namurian B-C?) Swamp Densosporites  spp. (R), Lycospora  spp.  (R),  
Punctatisporites  spp. (R) Chidsey, 2016

P6 SC-8 Mmc Stockton 390028 4476280 4/13/2009 yes Chesterian? (Namurian B-C?) Swamp
Densosporites  spp. (R), Lycospora  spp.  (R), 
Punctatisporites  spp.  (R), unidentifiable palynomorphs  (R), 
Raistrickia nigra (R)

Chidsey, 2016

SC-7 Mmc Stockton - - 4/13/2009 barren Chesterian? (Namurian B-C?) Swamp - Chidsey, 2016

P7 SC-5 Mmc Stockton 389902 4476204 4/13/2009 yes Chesterian? (Namurian B-C?) Lacustrine Lycospora  spp.  (R), root hairs and soil fungi (A) Chidsey, 2016

P8 SC-3 Mmc Stockton 389539 4476290 4/13/2009 yes Chesterian? (Namurian B-C?) Swamp Densosporites  spp. (R), Lycospora  spp.  (R), 
Punctatisporites  spp.  (R) Chidsey, 2016

P9 SC-2 Mmc Stockton 389632 4476260 4/13/2009 yes Chesterian? (Namurian B-C?) Lacustrine Densosporites  spp. (R), Lycospora  spp.  (R), 
Punctatisporites  spp.  (R) Chidsey, 2016

P10 SC-1 Mmc Stockton 389388 4476224 4/13/2009 yes Chesterian? (Namurian B-C?) Swamp
Densosporites  spp. (R), Lycospora  spp.  (R), 
Punctatisporites  spp. (R), unidentifiable 
palynomorphs  (R)

Chidsey, 2016

AR-1 Md Allens Ranch 413473 4436379 10/5/2009 barren Indeterminate Restricted Marine/Lacustrine? - Chidsey, 2016

P11 AR-2 Mmc Allens Ranch 406199 4429330 10/5/2009 yes Chesterian? Swamp Densosporites  spp. (A), Lycospora  spp.  (R), 
Punctatisporites  spp.  (R) Chidsey, 2016

AR-3 Mmc Allens Ranch 406196 4429338 10/5/2009 barren Indeterminate Restricted Marine/Lacustrine? - Chidsey, 2016

Notes:
See Utah Geological Survey and Waanders (2020) for data reports.
Sample 1928 was previously mapped as the Poker Knoll Member of the Great Blue Formation.
SC-9 plots in our map unit IPowc.
SC-2 location was corrected.
Samples AR-2 and AR-3 were previously mapped as the Chiulos Member of the Great Blue Formation.
R=Rare <6 specimens/slide, F=Frequent 6-15 specimens/slide, C=Common 16-30 specimens/slide, A=Abundant >30 specimens/slide

Table A9.   Summary of palynology data from the Rush Valley 30’ x 60’ quadrangle.



Utah Geological Survey60

APPENDIX B: Photo Gallery
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RUSH VALLEY PHOTO GALLERY

1. 2011_October 201_RVreview.jpg – Field review group examining Salt Lake Formation

limestone in Rush Valley. Photo by Robert Biek.

 Field review group examining Salt Lake Formation limestone in Rush Valley. Photo by Robert Biek.
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2. 2011_October 206_RVreview.jpg – Stefan Kirby explains geology of the Vernon Hills to

the field review group. Photo by Robert Biek.

 Stefan Kirby explains geology of the Vernon Hills to the field review group. Photo by Robert Biek.
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3. Cdpisolite.jpg – Close-up view of pisolitic limestone of the Dome Formation of map unit 

_dh in the northern Sheeprock Mountains. Hammerhead for scale. Photo by Stefan 

Kirby. 

 

 

 

 

 

 

 

 

 

Close-up view of pisolitic limestone of the Dome Limestone of map unit _dh in the northern Sheeprock Mountains. 
Hammerhead for scale. Photo by Stefan Kirby.
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4. Cpqrtzt1.jpg – Quartzite of the Pioche Formation in the northern Sheeprock Mountains. 

Hammer for scale. Photo by Stefan Kirby. 

 

 

 

 

 

 

 

 

 

 Quartzite of the Pioche Formation in the northern Sheeprock Mountains. Hammer for scale. Photo by Stefan Kirby.
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5. Ds.jpg – Close-up view of the Sevy Dolomite displaying wavy laminated bedding in the 

Vernon Hills. Hammer for scale. Photo by Stefan Kirby. 

 

 

 

 

 

 

 

 

 

 Close-up view of the Sevy Dolomite displaying wavy laminated bedding in the Vernon Hills. Hammer for scale. Photo 
by Stefan Kirby.
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6. IMG_0044_Onaquis.jpg – View southeast of the Hellhole Canyon area in the Onaqui 

Mountains. The high ground on the right side of the photo is composed of folded Oquirrh 

Group, Butterfield Peaks Formation. Photo by Donald Clark. 

 

 

 

 

 

 

 

 

 

View southeast of the Hellhole Canyon area in the Onaqui Mountains. The high ground on the right side of the photo 
is composed of folded Oquirrh Group, Butterfield Peaks Formation. Photo by Donald Clark.
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7. IMG_0077_Simpsons.jgp – View south of the northern Simpson Mountains area. The 

high peak and much of the adjoining ridgelines are composed of Caddy Canyon 

Quartzite, Mutual Formation, and the Prospect Mountain Quartzite. Notch in right middle 

ground is Bonneville shoreline cut into older alluvial-fan deposits. Photo by Donald 

Clark. 

 

 

 

 

 

 

 

View south of the northern Simpson Mountains area. The high peak and much of the adjoining ridgelines are com-
posed of Caddy Canyon Quartzite, Mutual Formation, and the Prospect Mountain Quartzite. Notch in right middle 
ground is Bonneville shoreline cut into older alluvial-fan deposits. Photo by Donald Clark.
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8. IMG_0078_SWStansburys.jpg – View northeast of snow-capped Deseret Peak and the 

southern Stansbury Mountains and the floor of Skull Valley. Photo by Donald Clark. 

 

 

 

 

 

 

 

 

 

View northeast of snow-capped Deseret Peak and the southern Stansbury Mountains and the floor of Skull Valley. 
Photo by Donald Clark.
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9. IMG_0086_CBR+SB.jpg – View west of Government Creek basin, Simpson Buttes and 

northern Dugway Range (left) and Camels Back Ridge (right). In the background is 

Granite Peak (right) and the Deep Creek Mountains (center). Photo by Donald Clark. 

 

 

 

 

 

 

 

 

View west of Government Creek basin, Simpson Buttes and northern Dugway Range (left) and Camels Back Ridge 
(right). In the background is Granite Peak (right) and the Deep Creek Mountains (center). Photo by Donald Clark.
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10. IMG_0144_RedPine.jpg – View east of Red Pine Mountain in the northern Sheeprock

Mountains. Photo shows north-dipping section of Cambrian strata that include the 

Prospect Mountain Quartzite through the Pierson Cove Formation. Photo by Donald 

Clark.

View east of Red Pine Mountain in the northern Sheeprock Mountains. Photo shows north-dipping section of Cam-
brian strata that include the Prospect Mountain Quartzite through the Pierson Cove Formation. Photo by Donald Clark.
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11. IMG_0518_Cedars.jpg – View south of the southern Cedar Mountains and Skull Valley.

This part of the Cedar Mountains is composed primarily of folded and faulted

Mississippian- through Permian-age sedimentary rocks and Tertiary igneous rocks.

Photo by Donald Clark.

View south of the southern Cedar Mountains and Skull Valley. This part of the Cedar Mountains is composed primar-
ily of folded and faulted Mississippian- through Permian-age sedimentary rocks and Tertiary igneous rocks. Photo by 
Donald Clark.
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12. IMG_0643.jpg - View east of Stockton Bar and spit complex and Oquirrh Mountains.

Bedrock in this part of the Oquirrh Mountains consists of folded and faulted Oquirrh

Group rocks. Photo by Donald Clark.

View east of Stockton Bar and spit complex and Oquirrh Mountains. Bedrock in this part of the Oquirrh Mountains 
consists of folded and faulted Oquirrh Group rocks. Photo by Donald Clark.
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13. IMG_0702_MFkSync.jpg – View north of the core of the Martin Fork syncline in the

eastern Stansbury Mountains consisting of Thaynes Limestone. As mapped, the fold

includes Triassic and Permian rocks of the Thaynes Limestone through Kirkman

Formation. Photo by Donald Clark.

View north of the core of the Martin Fork syncline in the eastern Stansbury Mountains consisting of Thaynes Lime-
stone. As mapped, the fold includes Triassic and Permian rocks of the Thaynes Limestone through Kirkman Formation. 
Photo by Donald Clark.
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14. IMG_0722_Delle.jpg – View of the Delle Phosphatic Member near the base of the

Deseret Limestone. Located in Dry Canyon in the western Oquirrh Mountains near

Ophir. Hammer for scale. Photo by Donald Clark.

View of the Delle Phosphatic Member near the base of the Deseret Limestone. Located in Dry Canyon in the western 
Oquirrh Mountains near Ophir. Hammer for scale. Photo by Donald Clark.
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15. IMG_0747_OphirAnti.jpg – View south of the Ophir anticline at the town of Ophir.

The cliffs consist of folded upper? to middle? Cambrian carbonate rocks of the Lynch

Dolomite. Upper forested part of ridge is Mississippian Humbug Formation strata. Photo

by Donald Clark.

View south of the Ophir anticline at the town of Ophir. The cliffs consist of folded upper? to middle? Cambrian car-
bonate rocks of the Lynch Dolomite. Upper forested part of ridge is Mississippian Humbug Formation strata. Photo 
by Donald Clark.



Utah Geological Survey76

16. IMG_0828.jpg - View west from the Oquirrh Mountains of Stockton Bar and northern

Rush Valley, South Mountain, and the Stansbury Mountains. Photo by Donald Clark.

View west from the Oquirrh Mountains of Stockton Bar and northern Rush Valley, South Mountain, and the Stansbury 
Mountains. Photo by Donald Clark.
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17. IMG_0859_Mercur.jpg – View south of the Mercur mine area in the southern Oquirrh 

Moutains. The East Tintic Mountains are in the distance on the right side of the photo. 

Photo by Donald Clark. 

 

 

View south of the Mercur mine area in the southern Oquirrh Moutains. The East Tintic Mountains are in the distance 
on the right side of the photo. Photo by Donald Clark.
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18. IMG_0876_CedarVOquirrhs.jgp – View north of Cedar Valley and the southern Oquirrh

Mountains. Photo by Donald Clark.

View north of Cedar Valley and the southern Oquirrh Mountains. Photo by Donald Clark.
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19. IMG_0896_Stans.jpg – View southwest up the South Willow Canyon drainage in the 

Stansbury Mountains. The high point is Deseret Peak, which is composed of folded 

Prospect Mountain Quartzite. Photo by Donald Clark. 

 

View southwest up the South Willow Canyon drainage in the Stansbury Mountains. The high point is Deseret Peak, 
which is composed of folded Prospect Mountain Quartzite. Photo by Donald Clark.
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20. IMG_0898_SWillow.jpg – View east of east-dipping exposure the Salt Lake Formation

capped by alluvial gravel in South Willow Canyon, Stansbury Mountains. Photo by

Donald Clark.

View east of east-dipping exposure the Salt Lake Formation capped by alluvial gravel in South Willow Canyon, Stans-
bury Mountains. Photo by Donald Clark.
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21. IMG_0935_DeseretAnti.jpg – View north of the Deseret anticline in the Stansbury

Mountains. The photo shows the gently dipping west limb and steep to overturned east

limb composed of Prospect Mountain Quartzite. Photo by Donald Clark.

View north of the Deseret anticline in the Stansbury Mountains. The photo shows the gently dipping west limb and 
steep to overturned east limb composed of Prospect Mountain Quartzite. Photo by Donald Clark.
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22. RvpicsSpring08 002.jpg – Tephra layer within the Salt Lake Formation. Age is about 6 to 

7 Ma. Located in quarry on the Pony Express Road in Rush Valley. Pen for scale. Photo 

by Stefan Kirby. 

Tephra layer within the Salt Lake Formation. Age is about 6 to 7 Ma. Located in quarry on the Pony Express Road in 
Rush Valley. Pen for scale. Photo by Stefan Kirby.
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23. RvpicsSpring08 003.jpg – Close-up view of rugose (horn) corals in the Great Blue 

Limestone in the Oquirrh Mountains. Hammertip for scale. Photo by Stefan Kirby.

Close-up view of rugose (horn) corals in the Great Blue Limestone in the Oquirrh Mountains. Hammertip for scale. 
Photo by Stefan Kirby.
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24. RvpicsSpring08b 024.jpg – View southwest of the southern part of Rush Valley near

Vernon. The snow-capped Sheeprock Mountains lie in the distance. Photo by Stefan

Kirby.

View southwest of the southern part of Rush Valley near Vernon. The snow-capped Sheeprock Mountains lie in the 
distance. Photo by Stefan Kirby.
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25. RvpicsSpring08c 001.jpg – Close-up view of shale in the Pioche Formation in the

Sheeprock Mountains. Hammer for scale. Photo by Stefan Kirby.

Close-up view of shale in the Pioche Formation in the Sheeprock Mountains. Hammer for scale. Photo by Stefan Kirby.
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26. RvpicsSpring08c 008.jpg – View to the north of the southern Stansbury Mountains, from

the Onaqui Mountains. The slope in the foreground consists of gently west dipping,

interbedded limestone and sandstone of the Humbug Formation. Photo by Stefan Kirby.

View to the north of the southern Stansbury Mountains, from the Onaqui Mountains. The slope in the foreground con-
sists of gently west dipping, interbedded limestone and sandstone of the Humbug Formation. Photo by Stefan Kirby.
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27. RvpicsSpring08c 015.jpg – View of the Great Blue Limestone in the Onaqui Mountains.

Photo by Stefan Kirby.

View of the Great Blue Limestone in the Onaqui Mountains. Photo by Stefan Kirby.
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28. RvpicsSpring08c 039.jpg – View from the top of the Vernon Hills, southern Rush Valley.

The bedrock in the foreground is the Pennsylvanian-age West Canyon Limestone. The 

Sheeprock Mountains are in the distance. Photo by Stefan Kirby.

View from the top of the Vernon Hills, southern Rush Valley. The bedrock in the foreground is the Pennsylvanian-age 
West Canyon Limestone. The Sheeprock Mountains are in the distance. Photo by Stefan Kirby.
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29. RvpicsSpring08c 054.jpg – Close-up view of the conglomeratic red beds of the Older

Tertiary strata (unit Tso) in the Vernon Hills. Hammer for scale. Photo by Stefan Kirby.

Close-up view of the conglomeratic red beds of the Older Tertiary strata (unit Tso) in the Vernon Hills. Hammer for 
scale. Photo by Stefan Kirby.
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30. Tsl and Qaf4.jpg – View to the east of west-tilted Salt Lake Formation strata capped by 

older alluvial-fan deposits in a railroad cut near the Vernon Hills. Photo by Stefan Kirby. 

 

 

 

View to the east of west-tilted Salt Lake Formation strata capped by older alluvial-fan deposits in a railroad cut near 
the Vernon Hills. Photo by Stefan Kirby.
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View of Upper and Middle Cambrian formations on the east flank of Camels Back Ridge, includes from top to bot-
tom Notch Peak Formation, Orr Formation, Lamb Dolomite.
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Southern Cedar Mountains with view to the east of lava flows and other volcanic rocks (unit Tac) in foreground and 
White Rock (unit Tid) in middle ground.
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View southeast of Little Granite Mountain (unit Tid) with well developed Provo shoreline notch near middle and 
lower part of mountain.
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Volcanic rocks above (unit Tac) and Oquirrh Group strata below, near Cane Springs, southern Cedar Mountains. 
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Beds of Oquirrh Group, Butterfield Peaks Formation in Wildcat Canyon, southern Cedar Mountains.
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