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Key access roads, selected trails, and prominent 
features in and near Capitol Reef National Park 

shown in brown.  Condition and status of roads and 
trails may change over time. Some not shown.  
From data provided by National Park Service.
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Table 1.  Summary of strath terrace elevation and Schmidt hammer data for both the Pleasant Creek and Fremont River drainages.
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Unconformity  

Navajo Sandstone (Lower Jurassic) – Very-pale-orange to 
pale-gray, large-scale trough cross-stratified, very fine to 
fine-grained sandstone.  Localized soft-sediment defor-
mation is observable in the top 200 feet (60 m) and may 
be associated with cataclysmic failure of interdune lakes 
within the Navajo erg (Eisenberg, 2003).  Forms cliffs and 
rounded domes.  The map contact in the transitional 
facies zone between the Navajo and Kayenta Formations 
is placed at the top of the last prominent red shale bed 
below uniform sandstone.  Sandstones beneath this red 
shale are both eolian and fluvial in nature and have been 
placed within the Kayenta Formation.  1000 to 1300 feet 
(300-400 m) thick.  

Kayenta Formation (Lower Jurassic) – Moderate-red-
dish-brown to moderate-reddish-orange, cross-bedded to 
irregularly-bedded, siltstone and very fine to coarse- 
grained sandstone.  Forms stepped topography composed 
of ledges (locally cliffs) and slopes.  The upper approxi-
mately 100 feet (30 m) was mapped by Sorber and others 
(2007) and Doelling and Kuehne (2007) as the basal 
member of the Navajo Sandstone within the adjacent 
Twin Rocks quadrangle, where the eolian nature is more 
prominent.  300 to 400 feet (90-120 m) thick. 

JURASSIC - TRIASSIC ROCKS

Wingate Sandstone (Lower Jurassic to Triassic[?]) – 
Light-brown to moderate-reddish-brown, trough cross- 
stratified to massive, very fine to fine-grained sandstone.  
Forms the sheer cliffs of the western escarpment of the 
Waterpocket Fold.  Walls highly fractured and commonly 
covered with black to dark-brown desert varnish.   350 to 
400 feet (110-120 m) thick.

Unconformity

TRIASSIC ROCKS  

Owl Rock Member of the Chinle Formation (Upper Tri-
assic) – Orange and purple mudstone, siltstone, and fine-
grained sandstone with 1- to 3- foot- (0.3-1 m) thick inter-
beds of mottled dusky-red to pale-yellowish-green lime-
stone, interpreted as paleosols with abundant rhizoliths 
and bioturbated horizons.  Forms slopes.  Member com-
monly covered by talus deposits of the overlying Wingate 
and Kayenta Sandstones.   180 to 220 feet (55-70 m).

Petrified Forest Member of the Chinle Formation 
(Upper Triassic) – Moderate-reddish-brown mudstone 
and siltstone interbedded with carbonate nodule horizons 
2 feet (0.6 m)  thick interpreted as paleosols.  Contains 
petrified wood.  The upper bed of the member consists of 
a locally extensive dark-reddish-brown, ledge-forming, 
medium- to coarse-grained, cross-bedded sandstone 
called the “Capitol Reef Bed.”  Most of the member forms 
slopes.   180 to 200 feet (55-60 m) thick.

Monitor Butte Member of the Chinle Formation (Upper 
Triassic) – Light-olive-gray to greenish-gray bentonitic 
claystone with thin, dusky-brown to dark-yellowish-or-
ange, medium- to coarse-grained, cross-bedded, channel-
ized sandstone beds.  Forms slopes.   150 to 200 feet 
(45-60 m) thick.  

Chinle Formation undifferentiated upper part (Upper 
Triassic) – Includes the Owl Rock, Petrified Forest, and 
Monitor Butte Members.  Undivided due to difficulty in 
identifying members because of Quaternary cover and 
high dip of beds on the west flank of the Miners Mountain 
uplift.   510 to 600 feet (155-190 m) thick.

Shinarump Member of the Chinle Formation (Upper 
Triassic) – Grayish-orange to very-pale-orange, medium- 
to very coarse grained, cross-bedded conglomeratic sand-
stone.  Contains petrified wood.  Shinarump beds are dis-
continuous due to its braided fluvial depositional history.  
The member contains uranium that has been historically 
mined within the quadrangle.   Forms ledges and cliffs.   0 
to 30 feet (0-9 m) thick. 

Unconformity

Moody Canyon Member of the Moenkopi Formation 
(Lower Triassic) – Moderate-reddish-brown to moder-
ate-reddish-orange laminated mudstone and siltstone with 
sparse ripple-laminated, fine-grained sandstone with gyp-
sum-filled fractures and bedding-parallel stringers.  Typi-
cally forms slopes but can be cliff-forming if overlain by 
the Shinarump Member.  250 to 300 feet (75-90 m) thick.  

Torrey Member of the Moenkopi Formation (Lower Tri-
assic) – Moderate-reddish-brown to moderate-reddish-or-
ange mudstone, siltstone and fine- to medium-grained 
sandstone.  Contains “ripple rock” and reptilian track-
ways.  Forms ledges and slopes.   200 to 220 feet (60-70 
m) thick.  

Sinbad Limestone Member of the Moenkopi Formation 
(Lower Triassic) – Very-pale-orange to grayish-orange 
limestone and dolostone with interbeds of calcareous silt-
stone, sandstone, and algal boundstone.  Upper bed com-
monly contains oolitic grains.  Forms cliffs above Black 
Dragon Member.   40 to 70 feet (10-20 m) thick.

Black Dragon Member of the Moenkopi Formation 
(Lower Triassic) – Moderate-reddish-brown to moder-
ate-reddish-orange, interbedded mudstone, siltstone, and 
sandstone with gypsum stringers.  Forms slopes.  In many 
areas undercuts the overlying Sinbad Limestone Member 
and is commonly covered by Sinbad talus.   50 to 70 feet 
(15-20 m) thick.

Unconformity

PERMIAN ROCKS  

Kaibab Limestone (Lower Permian) – Upper 100 feet (30 
m) is composed of very-light-gray to yellowish-gray 
shale and carbonate beds with calcrete and silcrete nod-
ules.  Lower portion is composed of pale-gray interbed-
ded carbonate and light-gray, fine-grained, calcareous 
sandstone beds.  Locally sandstone beds contain glauco-
nite grains.  Forms slopes and ledges.   500 to 550 feet 
(150-170 m) thick.  

Cutler Group undivided (Lower Permian) – Consists of 
light-gray to yellowish-gray, fine- to medium- grained, 
trough crossed-stratified sandstones.  Distinguished from 
the overlying Kaibab Limestone by the absence of any 
carbonate beds.  Undivided in this locality due to the ab-
sence of the Organ Rock Shale between White Rim Sand-
stone and Cedar Mesa Sandstone.  Base not exposed 
within the quadrangle.  Forms sheer cliffs.  Thickness is at 
least 1,500 feet (500 m). 

PALEOZOIC ROCKS 

Paleozoic undivided – Subsurface rocks.

 

PRECAMBRIAN ROCKS

Precambrian undivided – Subsurface rocks.

QUATERNARY DEPOSITS

Alluvial and floodplain deposits (Quaternary) – Poorly 
sorted material found in modern streams and rivers.  In-
cludes clay- to boulder-size sediments composed of mud-
stone, siltstone, sandstone, limestone, and volcanic parti-
cles.  Particles of volcanic origin are found only in the 
Pleasant Creek drainage.  0 to 10 feet (0-3 m) thick.

Alluvial and floodplain deposits of a former river level 
(Quaternary) – Located 10 to 20 feet (3-6 m) above cur-
rent floodplain.  Clay- to boulder-size sediments com-
posed of mudstone, siltstone, sandstone, limestone, and 
volcanic particles.  Particles of volcanic origin are found 
only in the Pleasant Creek drainage.  0 to 20 feet (0-6 m) 
thick.  

Talus deposits (Quaternary) – Talus deposits from mass 
movement of sediment by rock falls, rock slides, and 
slumps.  Sediment is composed of clay- to boulder-size 
particles.  Commonly found where an easily erodible rock 
layer is located directly under a more resistant rock layer.  
For example, talus deposits composed of the Sinbad 
Member of the Moenkopi Formation overlie the Black 
Dragon Member in many areas and talus deposits com-
posed of the Wingate and Kayenta Formations overlie the 
Owl Creek Member of the Chinle Formation.  Locally ap-
plies to deposits over pediment-like surfaces.  0 to 30 feet 
(0-9 m) thick. 

Volcanic boulder terrace deposits (Quaternary) – Sedi-
ments overlying river-cut strath terraces sourced from 
volcanic-covered highlands to the west.  Composed of 
pebble- to boulder-size extrusive (basaltic, andesitic, and 
tuffaceous) igneous rocks as well as clay- to boulder-size 
locally-derived material consisting of mudstone, silt-
stone, sandstone, and limestone.  Terraces in the Glen 
Canyon Group section of Pleasant Creek are divided into 
two groupings based on work by Eddleman (2005) 
(Qatv1, Qatv2).  All other terraces with these characteris-
tics are labeled Qatpu (undivided).  Terraces have an 
easily recognized dark coloration due to the presence of 
the black volcanic boulders.  0 to 20 feet (0-6 m) thick.  

Volcanic boulder colluvial deposits (Quaternary) – Pre-
dominantly composed of talus and colluvial material 
weathering from volcanic boulder terraces.  Commonly 
includes large extrusive (basaltic, andesitic, and tuffa-
ceous)  igneous boulders as well as other locally derived 
material.  0 to 5 feet (0-1.5 m) thick.  

Locally derived old terrace deposits (Quaternary) – Ter-
race deposits derived from local sources, composed of 
clay- to boulder-size particles of mudstone, siltstone, 
sandstone, and limestone.  Typically very well cemented. 
Commonly located at the mouths of canyons that cut into 
Miners Mountain.  5 to 60 feet (1.5-18 m) thick.  

Eolian deposits (Quaternary) – Deposits composed of very 
well sorted, well rounded, wind-blown sand. Commonly 
occurs between domes of the Navajo Sandstone and in 
point-bar areas of stream channels.  0 to 10 feet (0-3 m) 
thick.   

Landslide deposits (Quaternary) – A slump block com-
posed of the Moenkopi Formation that has slid over the 
Chinle Formation in an area of steeply dipping beds.  
Source location and slump scarp are not mappable due to 
subsequent erosion.  Moenkopi block has retained some 
bedding and cohesion.  50 to 80 feet (15-25 m) thick.

JURASSIC ROCKS   

Entrada Sandstone (Middle Jurassic) – Grayish-red to 
moderate-red mudstone interbedded with moderate-red-
dish-orange, fine-grained sandstone.  Grayish-orange, 
cross-bedded, eolian sandstone also found at horizons 
within the formation.  The majority of the Entrada Sand-
stone in this quadrangle is referred to as the “earthy” 
(tidal flat) facies as opposed to the “slick rock” (eolian) 
facies famous in Arches National Park (Peterson, 1988).  
Forms slopes.  450 to 480 feet (135-145 m) thick.  

Upper Winsor (Banded) Member of the Carmel Forma-
tion (Middle Jurassic) – Pale-reddish-brown siltstone 
and mudstone with gypsum stringers interbedded with 
pale-olive mudstone. Forms slopes.  Beds are commonly 
deformed due to the movement of gypsum that was origi-
nally deposited in underlying members.  180 to 200 feet 
(55-60 m) thick.   

Lower Winsor (Gypsum) Member of the Carmel Forma-
tion (Middle Jurassic) – Light-gray to white gypsum, 
pale-reddish-brown siltstone and mudstone beds with 
gypsum stringers and light-gray to greenish-gray mud-
stone.  Forms slopes and ledges.  Ledges are composed of 
20 feet (7 m) thick layers of gypsum.  The beds are com-
monly deformed due to movement of gypsum layers.   
180 to 200 feet (55-60 m) thick.  

Paria River Member of the Carmel Formation (Middle 
Jurassic) – Moderate-reddish-brown mudstone and silt-
stone, yellowish-gray siltstone, and light-gray to white 
gypsum.  Forms ledges.  The gypsum bed is locally dis-
continuous due to gypsum flow and dissolution.  150 to 
200 feet (45-60 m) thick.      

Page Sandstone (Middle Jurassic) – The Page Sandstone 
in this quadrangle is composed of two members: the 
Harris Wash Member (lower) and the Thousand Pockets 
Member (upper), that are divided by the Judd Hollow 
Tongue, a member of the overlying Carmel Formation.  
The Judd Hollow Tongue is included in the Page Sand-
stone map unit.  The Harris Wash Member is 92 to 113 
feet (28-35 m) thick.  It is composed of very-pale-orange 
to pale-yellowish-orange, fine- to medium-grained, 
trough cross- stratified sandstone.  Based on pollen as-
semblages and ages, the upper part of the Judd Hollow 
Tongue correlates with the Crystal Creek Member of the 
Carmel Formation as mapped in southwestern Utah, and 
the Judd Hollow Tongue as mapped in south-central Utah 
(Douglas A. Sprinkel and Hellmut H. Doelling, personal 
communication, 2005).  It is composed of ripple-laminat-
ed, moderate-reddish-brown to dark-reddish-brown mud-
stone and sandstone with local interbeds of limestone.  
The Judd Hollow Tongue forms slopes and ranges from 
10 to 17 feet (3-5 m) thick.  The Thousand Pockets 
Member is composed of very-pale-orange to pale-yellow-
ish-orange, fine- to medium-grained, trough cross-strati-
fied sandstone with planar-laminated and contorted beds.  
It is 17 to 32 feet (5-9 m) thick.  The Page Sandstone 
forms ledges, cliffs, and the caprock of many of the prom-
inent geographical features within the quadrangle, includ-
ing the Golden Throne monolith.  The Page Sandstone 
can be distinguished from the underlying Navajo Sand-
stone by the abrupt change in weathering style.  The 
lower portion of the Page Sandstone forms sheer cliffs 
above the rounded expression of the Navajo Sandstone.  
Total map unit thickness ranges from 135 to 155 feet 
(40-50 m).  It thins slightly to the south.
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mately located; dotted where concealed; arrows 
show component of strike-slip movement; tick 
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changes on scissor fault

Joints – Showing areas with prominent joint sets 
(only most prominent shown)

Anticline – Showing trace of the axial plane of 
the Miners Mountain anticline

Syncline – Showing trace of the axial plane

Monocline – Showing trace of the Teasdale 
monocline

Structural contours – Drawn on top of the Black 
Dragon Member of the Moenkopi Formation; 

dashed where projected; units are in feet above 
sea level.  Contour interval 500 feet.
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Location of Golden Throne quadrangle in Capitol Reef National Park.

Volcanic Boulder-covered Strath Terraces and Landscape Evolution 

Volcanic Boulder-covered Strath Terraces within the Glen Canyon Group Sec-
tion of Pleasant Creek Canyon – from Eddleman (2005)

Boulder-covered strath terraces are landforms carved into the relatively resis-
tant bedrock of the Pleasant Creek drainage.  These fluvial terraces and their as-
sociated boulder deposits at one time represented the active river floor, but have 
since been abandoned.  These terraces help to preserve stream bed histories and 
create an ideal surface with which to characterize overall drainage development.  

The influence of nearby glaciated highlands on the landscape and drainage 
morphology has been significant within Pleasant Creek and surrounding drain-
ages.  Research suggests that strath terrace development (widening of the flood-
plain) and deposition occurred as Pleasant Creek responded to dramatic increas-
es in discharge and sediment flux during glacial maxima/deglacial climate 
phases.  Incision and subsequent abandonment of strath terraces began as drain-
ages responded to continued elevated discharge (due to glacial retreat) and an 
overall decrease in sediment during deglacial/interglacial climate phases.

Strath terrace populations were analyzed in an attempt to understand land-
scape evolution.  Terraces were placed into 20-foot (6 m) bins and then grouped 
into larger terrace levels based on natural breaks in population data (occurring in 
intervals of approximately 60-80 feet (20-25 m)) that display multiple modes.  
Results for Pleasant Creek were plotted (figure A) and two terrace levels, labeled 
Qatv2 and Qatv1 respectively, were interpreted.  An identical analysis for the 
Fremont River drainage (approximately 10 miles [16 km] to the north in the 
Fruita 7.5' quadrangle; McLelland and others, 2007) yields similar results and 
was used in a comparative analysis between drainages (figure B).

 A Schmidt Hammer is a piston impact device designed to measure the hard-
ness of a surface.  Surface hardness can provide a valuable measure of rock sur-
face weathering and therefore relative terrain age.  A Schmidt Hammer was used 
to obtain quantitative data (Schmidt Hammer rebound or R-values) on  the hard-
ness of volcanic boulder deposits on strath terraces.  Schmidt Hammer results in-
dicate that elevation change between strath terraces is accompanied by a coinci-
dent change in mean R-values wherein the higher the elevation of the terrace 
above the present stream bed, the lower the mean R-values become. Mean 
Schmidt Hammer data (table 1) confirms terrace level designations (figures A 
and B) for both the Pleasant Creek and Fremont River drainages.  Schmidt 
Hammer data also highlight very similar mean R-values for the most recent ter-
race levels of both the Pleasant Creek and Fremont River drainages (table 1).

Results, based on terrace populations and Schmidt Hammer analysis, indicate 
that the Pleasant Creek drainage is likely much younger than the larger Fremont 
River drainage.  Data also supports the conclusion that correlation exists be-
tween the Pleasant Creek terrace levels (Qatv1 and Qatv2) and the two lowest 
(most recent) terrace levels within the Fremont River (Qatf1 and Qatf2).  This 
correlation is significant and illustrates that the root cause of drainage develop-
ment and incision may be a forcing mechanism that is extrabasinal in nature.  We 
suggest that the most probable forcing mechanism was regional Pleistocene gla-
cial-interglacial climate cycles.
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