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DESCRIPTION OF MAP UNITS

QUATERNARY DEPOSITS

Alluvial and floodplain deposits – Poorly to moderately sorted material in 
modern streams and rivers.  Includes clay- to boulder-size sediments 
composed of mudstone, siltstone, sandstone, and limestone.  Includes low 
terrace deposits up to 10 feet (3m) above the active channel.  0-10 feet (0-3 
m) thick.

Alluvial and floodplain deposits of a former river level – Located 10-20 feet 
(3-6 m) above current floodplain.  Clay- to boulder-size sediments composed 
of mudstone, siltstone, sandstone, and limestone. 0-20 feet (0-6 m) thick.

Alluvial-eolian deposits – Alluvium that has been subsequently reworked by 
eolian processes to form small surficial eolian deposits (dunes and ripples).  
Commonly associated with exposed point bars of Deep Creek.  Eolian 
sediments are well sorted and composed of silt to medium-grained sand.  0-10 
feet (0-3 m) thick.

Eolian deposits – Very well sorted, well-rounded, very fine to fine wind-blown 
sand. Occurs between domes of the Navajo Sandstone.  0-10 feet (0-3 m) 
thick.

Talus deposits – Mass-movement talus deposits of rockfalls, rockslides, and 
slumps.  Composed of clay- to boulder-size particles.  Commonly found 
where an easily erodable rock layer is located directly under a more resistant 
rock layer.  For example, talus deposits composed of resistant Wingate 
Sandstone and Kayenta Formation sandstones overly the softer Owl Rock 
Member of the Chinle Formation.  0-30 feet (0-9 m) thick. 

Volcanic boulder colluvial deposits – Predominantly composed of talus and 
colluvial material weathering from nearby volcanic alluvial terrace deposits.  
Commonly includes large extrusive (basaltic to andesitic) igneous boulders.  
These deposits may form pediments when overlying softer bedrock such as 
the Moenkopi Formation, Chinle Formation, Carmel Formation, Entrada 
Sandstone, and Morrison Formation.  0-5 feet (0-1.5 m) thick.

Old alluvial terrace deposits – Bedded sand- to boulder-size sediments 
overlying river-cut strath terraces.  Consists of two main types of material of 
which one or both may be present.  One type is composed mainly of large 
igneous boulders (basaltic to andesitic composition) with smaller amounts of 
lighter colored sand- to silt-size sediment.  The other type of terrace material 
is made of light peach-colored sand- to cobble-size sediment from locally 
derived bedrock.  Where both of these deposits are present, the igneous 
boulder material is found below the locally derived material.  Each terrace 
has been designated as follows:

Qatf - Terraces associated with the Fremont River drainage.  Qatf1 represents 
the youngest terraces, with Qatf2, Qatf3, Qatf4, and Qatf5 representing 
consecutively older terraces at higher elevations above the present riverbed.  
Qatf1 represents deposits 0-60 feet (0-18 m) above the present stream level, 
Qatf2 - 60-120 feet (18-37 m), Qatf3 - 120-180 feet (37-55 m), Qatf4 - 
180-240 feet (55-73 m), and Qatf5 - 240-320 feet (73-98 m). (Eddleman, 
2005).  Qatfu are sparse undifferentiated terraces associated with the Fremont 
River drainage, and are older and higher in elevation than Qatf5.    

Qatd1, Qatdu - Terraces associated with Deep Creek drainage.  The numbering 
for these terraces uses the same method as mentioned above for the Fremont 
River terraces.  However, the data for these terraces suggest only two 
different terrace names: Qatd1 and Qatdu (undifferentiated terraces associated 
with Deep Creek).  The Qatdu terraces are sparse, much higher in elevation, 
and older than the Qatd1 terraces.    

Qatpu - Undivided terraces associated with Pleasant Creek drainage.  These 
terraces are associated with the Pleasant Creek drainage because of their 
proximity to it.

Old locally derived terrace deposits – Terrace deposits not clearly associated 
with any of the present perennial drainages.  Clay- to boulder-size particles of 
mudstone, siltstone, sandstone, and limestone derived from local, 
non-volcanic sources.  Deposits are elevated significantly above present 
streambeds.  Located in the southwest corner of the quadrangle.  5-30 feet 
(1.5-9 m) thick.

TERTIARY ROCKS

Intrusive igneous dikes – Dark-gray, near-vertical dikes of trachybasalt and 
basanite composition.  Some are locally brecciated, containing a mixture of 
igneous material and host rock.  The average dike width is approximately 3 
feet (1 m).  The width of the dikes is slightly exaggerated on the map, and 
may contain adjacent host rock that has been altered by the intrusion.  Dikes 
are generally wider in the middle and thin on the ends.  Ages of the intrusions 
range from 3.4 ± 0.2 Ma to 4.7 ± 0.3 Ma (Delaney and Gartner, 1997; Nelson 
and Tingey, 1997).  Doelling and Kuehne (2005) dated dikes at 4.35 ± 0.04 
Ma (40Ar/39Ar).

CRETACEOUS ROCKS

Tununk Member of the Mancos Shale (Upper Cretaceous) – Medium- to 
dark-gray to bluish bentonitic shale.  Near the base and top, the shale may be 
yellowish- to greenish-gray and may include mudstone, siltstone, and very 
fine grained sandstone.  The pelecypod Mytiloides mytiloides is found in the 
lower middle part of the Tununk Member.  Forms a broad slope.  Exposed in 
the Fruita quadrangle in the center of the doubly plunging syncline in North 
Blue Flats.  330-500 feet (100-150 m) thick.

Dakota Sandstone (Lower Cretaceous) – Tan to brownish-gray, very fine to 
fine-grained, quartz-rich sandstone to siltstone/mudstone.  May contain thin 
units of weathered interbedded coal, carbonaceous shale, and conglomerate.  
Thick sandstone beds may contain oysters.  Channel sandstones look similar 
to those in the Mussentuchit Member of the Cedar Mountain Formation.  
Forms ledges and slopes.  0-10 feet (0-3 m) thick.

Mussentuchit Member of the Cedar Mountain Formation (Lower 
Cretaceous) – Light-gray to greenish-gray smectitic mudstone and siltstone.  
A few thin discontinuous sandstones may be present.  In North Blue Flats the 
Mussentuchit is discontinuous.  Forms slopes.  0-30 feet (0-10 m) thick.

Ruby Ranch Member of the Cedar Mountain Formation (Lower Cretaceous) 
– Variegated purple, brown, and red mudstone with minor limestone and 
sandstone beds.  Drab colors are more pastel than the Brushy Basin Member 
of the Morrison Formation (below), and may help distinguish the two where 
the Buckhorn is missing, although color is not necessarily diagnostic.  
Consists of thin-bedded, laminated, slope-forming mudstone and shale with 
carbonate nodules.  Contains a few sandstone beds and lenses of light-gray to 
light-brown cross-bedded sandstone to conglomerate.  0-60 feet (0-20 m) 
thick.

Buckhorn Conglomerate Member of the Cedar Mountain Formation 
(Lower Cretaceous) – Gray to brown conglomerate to conglomeratic 
sandstone that is commonly cross-bedded.  Pebbles consist of white, gray, 
brown, and red chert, light-gray quartzite, clear quartz, and light-gray 
limestone.  Minor beds of light-gray, light-green, or purple mudstone, silty 
sandstone, light-gray limestone, and light-gray conglomeratic limestone.  
Unit is missing locally due to non-deposition and/or erosion.  Forms ledges 
and cliffs.  0-50 feet (0-15 m) thick.

JURASSIC ROCKS

Brushy Basin Member of the Morrison Formation (Upper Jurassic) – 
Reddish-brown and light-greenish-gray laminated to thin-bedded mudstone, 
claystone, and siltstone.  The mudstone contains significant quantities of 
swelling clays and weathers to produce a popcorn-like texture on the surface.  
Contains local gray to buff sandstone.  Forms badlands-type topography.  
200-360 feet (60-110) thick.

Salt Wash Member of the Morrison Formation (Upper Jurassic) – 
Light-grayish-brown to light-gray, fine- to very coarse grained, cliff-forming 
sandstone and colored, chert-rich pebble conglomerate.  Contains minor 
amounts of interbedded, very thin, laminated beds of red and grayish-green 
mudstone.  Forms ledges and slopes.  100-200 feet (30-60 m) thick.  

Tidwell Member of the Morrison Formation (Upper Jurassic) –  
Predominantly gray, green, and red, crinkly, thin-bedded mudstone.  Thin 
beds of gray, dense limestone are interbedded with the mudstone locally.  
Small amounts of gypsum may be present.  Forms a slope.  15-30 feet (5-10 
m) thick.

Summerville Formation (Upper Jurassic) – Thin-bedded red-brown mudstone 
and siltstone with thin interbeds of limestone, sandstone, and gypsum.  
“Coconut” gypsum stringers may be found as fracture and fault fill.  Forms 
cliffs, ledges, and slopes.  130 feet (40 m) thick.

Curtis Formation (Upper Jurassic) – Light-grayish-green, glauconitic, 
calcite-cemented sandstone and siltstone with thin interbeds of sandy 
limestone.  Forms steep slopes and ledges.  80 feet (25 m) thick.

Entrada Sandstone (Middle Jurassic) – Grayish-red to moderate-red mudstone 
interbedded with moderate-reddish-orange fine-grained sandstone.  
Grayish-orange cross-bedded eolian sandstone of varying thickness are 
locally present.  Upper portion may contain thin beds of nodular gypsum and 
“coconut” gypsum fracture-filling veins.  The vast majority of the Entrada 
Sandstone in this quadrangle is referred to as the "earthy" facies 
(tidal-influenced mudflats) as opposed to the "slick rock" (eolian) facies 
(Morris and others, 2005).  Forms a slope.  430-490 feet (130-150 m) thick.

Upper Winsor (Banded) Member of the Carmel Formation (Middle Jurassic) 
– Pale-reddish-brown siltstone and mudstone with gypsum stringers that are 
interbedded with pale-olive mudstone.  Slope-forming unit contains deformed 
beds due to gypsum movement.  Locally gypsum diapirs cut unit.  180-200 
feet (55-60 m) thick.  

Lower Winsor (Gypsum) Member of the Carmel Formation (Middle 
Jurassic) – Light-gray to white gypsum, pale-reddish-brown siltstone and 
mudstone beds with gypsum stringers, and light-gray to greenish-gray 
mudstone.  Forms slopes and ledges.  Ledges are composed of up to 40-foot 
(13 m) thick layers of gypsum.  Bedding is commonly deformed due to 
movement of gypsum beds.  180-200 feet (55-60 m) thick.  

Paria River Member of the Carmel Formation (Middle Jurassic) – 
Moderate-reddish-brown mudstone and siltstone, yellowish-gray siltstone, 
and a bed of light-gray to white gypsum.  Forms ledges.  Gypsum bed is 
locally discontinuous due to gypsum flow.  150-200 feet (45-60 m) thick.

Page Sandstone (Middle Jurassic) – The Page Sandstone is composed of two 
members: the Harris Wash Member (lower) and the Thousand Pockets 
Member (upper) (Martin and others, 2007).  These are separated by the Judd 
Hollow Tongue, a member of the overlying Carmel Formation that is 
included in the Page map unit.  The Harris Wash Member is very-pale-orange 
to pale-yellowish-orange, fine- to medium-grained, cross-bedded sandstone.  
It is 90-110 feet thick (30-34 m).  Based on pollen assemblages and ages, the 
upper part of the Judd Hollow Tongue correlates with the Crystal Creek 
Member of the Carmel Formation as mapped in southwestern Utah, and the 
Judd Hollow Tongue as  mapped in south-central Utah (Douglas A. Sprinkel 
and Hellmut  H. Doelling,  personal communication, 2005).  It is    
composed of slope-forming, ripple-laminated, moderate-reddish-brown to 
dark-reddish-brown mudstone and sandstone with locally interbedded 
limestone and is 10-17 feet (3-5 m) thick.  The Thousand Pockets Member is 
very-pale-orange to pale-yellowish-orange, fine- to medium-grained, 
cross-bedded, planar-bedded, and contorted sandstone.  It is 17-32 feet thick 
(5-10 m).  The Page Sandstone can be distinguished from the underlying 
Navajo Sandstone by the abrupt change in weathering style.  The lower 
portion of the Page Sandstone forms sheer cliffs above the rounded Navajo 
Sandstone.  Total thickness of the Page Sandstone map unit ranges from 
130-150 feet (40-45 m) thick.

Navajo Sandstone (Lower Jurassic) – Very-pale-orange to pale-gray, 
large-scale, high-angle, trough cross-bedded, very fine to fine-grained 
sandstone.  Localized soft-sediment deformation observable in the upper few 
hundred feet may be associated with cataclysmic failure of interdune lakes 
within the Navajo erg (Eisenberg, 2003).  Forms cliffs and rounded domes.  
The basal map contact in the transitional zone with the underlying Kayenta 
Formation has been chosen as the last prominent but slope-forming red shale 
bed beneath uniform cross-bedded eolian sandstone.  Sandstones beneath this 
red shale bed are both eolian and fluvial in nature and have been placed 
within the Kayenta Formation.  900-1300 feet (275-395 m) thick.

Kayenta Formation (Lower Jurassic) – Moderate-reddish-brown to moderate- 
reddish-orange, irregularly bedded, very fine to coarse-grained sandstone and 
siltstone.  Forms stepped topography composed of ledges (locally cliffs) and 
slopes.  The upper approximately  100 feet (30 m) was mapped by Sorber and 
others (2006) and Doelling and Kuehne (2005) as the basal member of the 
Navajo Sandstone within the adjacent Twin Rocks quadrangle where the 
eolian nature is more prominent.  300-400 feet (90-120 m) thick.

JURASSIC - TRIASSIC ROCKS

Wingate Sandstone (Lower Jurassic to Triassic[?]) – Light brown to moderate 
reddish-brown, cross-bedded to apparently massive, very fine to fine-grained 
sandstone.  Forms the sheer cliffs of the western escarpment of the 
Waterpocket Fold.  Walls are highly fractured and commonly covered with 
black to dark-brown desert varnish.  350-400 feet (105-120 m) thick.

TRIASSIC ROCKS

Owl Rock Member of the Chinle Formation (Upper Triassic) – Orange and 
purple mudstone, siltstone, and sandstone with 1-3 foot (0.3-1 m) thick 
interbeds of mottled dusky-red to pale-yellowish-green limestone (interpreted 
to represent paleosols) containing abundant rhizoliths and bioturbated 
horizons.  Forms a steep slope.  Unit is commonly covered by talus deposits 
of the overlying Wingate and Kayenta Sandstones.  180-220 feet (55-65 m) 
thick.

Petrified Forest Member of the Chinle Formation (Upper Triassic) – 
Moderate-reddish-brown mudstone and siltstone interbedded with carbonate 
nodule horizons, 2 feet (0.6 m) thick, interpreted to be paleosols.  Contains 
petrified wood.  The upper bed of the member consists of a locally extensive, 
dark-reddish-brown, ledge-forming, medium- to coarse-grained, cross-bedded 
sandstone called the "Capitol Reef Bed."  Most of the unit forms slopes.  
180-200 feet (55-60 m) thick.

Monitor Butte Member of the Chinle Formation (Upper Triassic) – 
Light-olive-gray to greenish-gray, bentonitic claystone with thin dusky-brown 
to dark-yellowish-orange, medium- to coarse-grained, cross-bedded, 
channelized sandstone beds.  Forms a slope.  150-200 feet (45-60 m) thick.

Shinarump Member of the Chinle Formation (Upper Triassic) – 
Grayish-orange to very-pale-orange, medium- to very coarse grained, 
cross-bedded conglomeratic sandstone.  Contains petrified wood.  Shinarump 
beds are discontinuous due to its braided fluvial depositional history.  The 
basal unconformable contact is scoured with 0-5 feet (0-1.5 m) of relief.  The 
member contains uranium and has been historically prospected within the 
quadrangle.  Forms ledges and cliffs.  0-20 feet (0-6 m) thick.

Moody Canyon Member of the Moenkopi Formation (Lower Triassic) – 
Moderate-reddish-brown to moderate-reddish-orange, laminated mudstone 
and siltstone with sparse, fine-grained, ripple-laminated sandstone beds.  
Gypsum-filled fractures and bedding-parallel stringers are common.  
Commonly forms a slope. Can be cliff-forming where overlain by the 
Shinarump Conglomerate.  250-300 feet (75-90 m) thick.

Torrey Member of the Moenkopi Formation (Lower Triassic) – 
Moderate-reddish-brown to moderate-reddish-orange mudstone, siltstone, 
and very fine to medium-grained sandstone.  Bedding thickness ranges from 
1-15 feet (0.5-5 m).  Contains “ripple rock” and reptilian trackways.  Forms 
ledges and slopes.  200-220 feet (60-65 m) thick.

Sinbad Limestone Member of the Moenkopi Formation (Lower Triassic) – 
Very-pale-orange to grayish-orange limestone and dolostone with interbeds 
of calcareous siltstone, sandstone, and algal boundstones.  Upper bed 
commonly contains oolitic grains with rare bivalves.  Forms a cliff.  40-70 
feet (12-20 m) thick.

Black Dragon Member of the Moenkopi Formation (Lower Triassic) – 
Shown in cross-section only.

PALEOZOIC ROCKS

Paleozoic rocks undifferentiated.  (cross section) 

SYMBOLS

Contacts

Fault - bar and ball on downthrown block; dashed where approximate, dotted 
where covered

Anticline - showing anticlinal axis and direction of plunge

Syncline - showing synclinal axis and direction of plunge

Strike and dip of bedding

Line of cross section

Structural contours - drawn on the top of the Wingate Sandstone; dashed where 
projected; units are feet above sea level; contour interval:  500 feet

Joints (only prominent shown)
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ROADS AND TRAILS

Paved road

Gravel and dirt road

Trail

Key access roads, selected trails, and prominent 
features in and near Capitol Reef National Park 

shown in brown.  Condition and status of roads and 
trails may change over time. Some not shown.  
From data provided by National Park Service.
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Volcanic Boulder-covered Strath Terraces within the Glen Canyon Group 
Section of the Fremont River Canyon - from Eddleman (2005) 

 Boulder-covered strath terraces are dominant landforms carved into 
the relatively resistant bedrock of the Fremont River drainage.  These fluvial 
terraces and their associated boulder deposits at one time represented the active 
river floor, but have since been abandoned.  These terraces help to preserve 
stream bed histories and create an ideal surface with which to characterize 
overall drainage development.
 Glacial influence on landscape and drainage morphology has been 
significant within the Fremont River and surrounding drainages.  Research 
suggests that strath terrace development (widening of the floodplain) and 
deposition occurred as the Fremont River responded to dramatic increases in 
discharge and sediment flux during glacial maxima/deglacial climate phases. 
Incision and subsequent abandonment of strath terraces began as   drainages 
responded to continued waning discharge (due to glacial retreat) and an overall 
decrease in sediment during deglacial/interglacial climate phases.
 Strath terrace populations were analyzed in an attempt to understand 
landscape evolution.  Terraces were placed into 20-foot. bins and then grouped 
into larger terrace levels based on natural breaks in population data (occurring in 
intervals of approximately 60-80 feet) that display multiple modes.  Results for 
the Fremont River were plotted (figure A) and six terrace levels, labeled Qatf1 
through Qatf5 and Qatfu respectively, were interpreted.  An identical analysis 
for the Pleasant Creek drainage (approximately 10 miles [16 km] to the south in 
the Golden Throne 7.5' quadrangle, Martin and others, 2006) yields similar 
results and was used in a comparative analysis between drainages (figure B). 
 A Schmidt Hammer is a piston impact device designed to measure the 
hardness of a surface.  Surface hardness can provide a valuable measure of rock 
surface weathering and therefore relative terrain age. A Schmidt Hammer was 
used to obtain quantitative data (Schmidt Hammer rebound or R-values) on  the 
hardness of basalt boulder deposits on strath terraces.  Schmidt Hammer results 
indicate that elevation change between strath terraces is accompanied by a 
coincident change in mean R-values wherein the higher the elevation of the 
terrace above the present stream bed, the lower the mean R-values become. 
Mean Schmidt Hammer data (table 1) confirms terrace level designations 
(figures A and B) for both the Fremont River and Pleasant Creek drainages.  
Schmidt Hammer data also highlight very similar mean R-values for the most 
recent terrace levels of both drainages (table 1).
 Results, based on terrace populations and Schmidt Hammer analysis, 
indicate that the larger Fremont River drainage is likely much older than the 
Pleasant Creek drainage.  Data, also supports the conclusion that correlation 
exists between the two lowest (most recent) terrace levels within the Fremont 
River (Qatf1 and Qatf2) and the Pleasant Creek terraces (Qatv1 and Qatv2). This 
correlation is significant and illustrates that the root cause of drainage 
development and incision may be a forcing mechanism that is extrabasinal in 
nature.  We suggest that the most probable forcing mechanism was regional 
Pleistocene glacial-interglacial climate cycles.
     

Volcanic Boulder-Covered Strath Terraces and Landscape Evolution
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Table 1.  Summary of strath terrace elevation and Schmidt hammer data for both the Pleasant Creek and Fremont River drainages.  
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>381 ft.

340-380 ft.
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<60 ft.

33.59

37.66

39.22

39.30

44.87

46.55

52.46

Qatv2
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Present

61-140 ft.

<60 ft.

45.01

50.02

Pleasant Creek Terrace Data

Southeastward view of the western escarpment of the Waterpocket Fold.  The near cliff exposes Triassic Moen-
kopi Formation at the base, Chinle Formation in middle, Wingate Sandstone as the vertical cliff face, and the 
Kayneta Formation capping the cliff.  Note the distal Henry Mountains in background.

Kayenta Formation

Wingate Sandstone

Chinle - Owl Rock
Chinle - Petrified Forest

Chinle - Monitor Butte Chinle - Shinarump

Moenkopi - Moody Canyon

Moenkopi - Torrey

Western Escarpment of
the Waterpocket Fold

Henry Mountains

Eastward view of Capitol Dome looking down the Fremont River.  Capitol Dome is composed of Jurassic 
Navajo Sandstone (Jn).  It may be viewed at the Hickman Bridge parking area along Highway 24.  In this 
photo the canyon walls are composed primarily of Jurassic/Triassic Wingate Sandstone with the Jurassic 
Kayenta Formation capping the left cliff face on the skyline. 

Westward view of the Fremont River drainage as seen from the Hickman Bridge area.  Flat surfaces represent 
stream-cut strath terraces.  The distal dark sliver (beneath cloud) is  Boulder Mountain - part of the headwa-
ters of the Fremont River.
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Location of Fruita Quadrangle in Capitol Reef National Park.
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