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Introduction to Lake
Bonneville

Jack (Charles G.) Oviatt

Socorro, NM

[emeritus professor at Kansas State University]
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beginning of Lake Bonneville



Hansel Valley
ash in-outcrop

\ : dropstone




Hansel

Valley

ashin
GSL cores

at, or near,
the base

of the
Bonneville
section in all
cores where
it’s been
found

GLAD1-GSL00-4E-3H 16.70-19.70 mblf
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Black (N2.5) to cark greenish gray
(10Y4N) to olive (SYA/3) mm paraliel
laminations. <1% mm sit lensas. Olive
layers are DIATOMACEOUS CLAY, dark
layers are ORGANIC MATTER SILT, gray
layers are ARAGONITE MUD.

TEPHRA GSLOO-E-H-1, 52553 cm
Dark brown sandy layer.

DIATOMACEOUS CLAY, ARAGONITE MUD
and ORGANIC MATTER SILT
GSLOOE-8H-2, 73134

Various rations of black (N2.5/1) ORGANIC
MATTER SILT 10 gray (5V6/1) ARAGONITE
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GSLO0-18-9¢-1, 37.5-38 Coarse, dark
brown tephra layer

GSLOO-1B-94-1, 98-125.5;
GSLO0-1B-9H-2, 23-36 Massive, gray
Intervals,
GSLOO-1B-9H-2,
GSLOO-1B5.9H4-2,

0-4 Gap
5 Inclined beading

GSL00-1B-9H-2, 50-65

y (NS/) layers up 1o 1.5 cm thick and
% 1-3 mm thick sand laminations with
erosional bases and
contacts.

Massive to faintly and irreguiary
laminated gray (NS/) with 1%, 1 mm thick
sand lenses. GSLO0-18-9H-2, 77-94
Gray (NS/), ollve (SY54), and very dark
gray (N3) paraliel aminalions 15 mm

thick
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Schnurrenberger and Haskell, 2001



Hansel
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Figure 1: Schematic lithology and stratigraphic logs and ma
of Great Salt Lake cores from Sites 1, 2, 3, and 4. The corr
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age of the Hansel Valley ash

14C age +/- calibrated median probability
26210 260 30465
26460 640 30503

(If the original
radiocarbon ages

are adjusted by

1800 4Cyr, as is

applied higherin

the core, the

calibrated ages are closer
to ~28,000 yr BP)

14C samples in two different cores

2ch

5cm

4

\

€ 26,460

IR Hansel Valley ash

approximate age, rounded off:
30,000 cal yr BP

€ 26,210




06+ 96-4 HV ash is foun_d at the. base
of the Bonneville section

~80 m higher in outcrops
than in cores, suggesting
an abrupt lake rise at

~30,000 BP.
Post-
E 200 Bonneville
(&)
N
o .
& Things to note:
() 400 Lake = abruptincrease in TIC at
© Bonneville beginning of Bonneville
4 -_— - ir.lcreasing trend in TIC,
HV HV since ~30,000 BP
1000 * jincreasing trend as Lake

Bonneville rose

600
4 6 0 2 4 6

% TIC % TIC

Thompson and others (2016); Thompson and Oviatt, unpublished
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FIG. 11.10 The beginning of Lake Bonneville in sediment cores USGSL96-4 and USGSL96-6+.
Depth vs the occurrence of ALM sediments (gray band), TIC%, Hansel Valley ash (HV; marked
by the arrow and dashed black line in each core), and selected pollen types. This diagram shows
that not much of the transition is missing from USGS96-6 at the core break between Drives
2 and 3.

GSL96-4

Thompson and others (2016)



age of the Bonneville shoreline and
Bonneville flood



adjusted elevation (m)

Bonneville shoreline
1 550 i charcoal, wood;

limiting ages
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Matlin Mountains

Table Mountain

0 015 03
Kilometers

lidar images from Paul Jewell



groundwater flow into Lake Bonneville



valley ~ spring

h = hydraulic head

water table

lake

datum (sea level)

P = pressure head
e = elevation head

h=e+P
water table
DarC ’S IaW' higher during
y . pluvial _ _P =0
q = K*dh/d| 4
lake
valley P

submerged

floor ;
spring

~

lake

datum (sea level)




enhanced groundwater flow

caused by the Bonneville

Darcy’s law: flood
q = K*dh/dl

Bonneville shoreline

~130m _
Provo shoreline

/
R
T\ a\\\)\l\ / f
\©°
| /

\ 2
dh increased after the flood if recharge in the mountains remained high
and the water table was not lowered

" - eam = -



age of the regression to the floor of
the Sevier Desert (~¥1400 m; 4600 ft)
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Sunstone Knoll
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Sunstone Knoll ages

maximum '4C age range 1600 yr

15500 + 250
Godsey and
others (2011)

15000 £ 280

others (2011)

14650 + 500
Isgreen, 1986

middle of OSLage  middle of *4C age

range { range 4

preliminary OSL age
ranges
(unpublished)

16000 15000

calibrated years

14000



end of Lake Bonneville



depth (cm)
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core C of Spencer

and others (1984) _
aragonite (percent)
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% TIC calcite (percent)

calcite-aragonite
(C/A) shift

The dominant carbonate mineral
changed abruptly as the lake
neared the end of its regression
and the ratio of Mg to Ca
increased.

data from Spencer and others (1984); Thompson and others (1990);
Jones and others (2009)



depth (cm)

C/A shift in three USGS cores

GSL96-6 aragonite (peak area) GSL964 aragonite (peak area) GSL96-3 aragonite (peak area)
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data from Thompson and Oviatt, unpublished;
Thompson and others (2016)



altitude (m)

C/A elevations in cores and outcrops

outcrops DIW

1290 — NFM-5

1280 — Great Salt Lake cores

1 \

1270 GSL96.3 core ¢ GSL96-4 GSLOO-2B-2H

GSL96-6

1260 —

1300 —
. / \ PVC 15

CANAL

Pilot Valley core

data from Oviatt and others, 1994; Oviatt, 1997; Oviatt and Miller, 1997; Oviatt, unpublished; Rey, 2012; Thompson and others, 2016; Thompson and Oviatt, unpublished
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Great Salt Lake

Desert threshold (1285 m; 4217 ft)
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GREAT SALT LAKE - LAKE BONNEVILLE: IT’S A SYSTEM,
AND DON’T ASSUME SHORELINES ARE LEVEL

Genevieve Atwood

Earth Science Education, Salt Lake City, UT 84103

genevieveatwood@comecast.net

ABSTRACT

Great Salt Lake, Lake Bonneville, and their predecessors have fluctuated across low regions of the tectonically active eastern
margin of the Great Basin. Great Salt Lake and Lake Bonneville are end members of a system, Lake Bonneville being the
expression of global-glacial climate of Oxygen Isotope Stage 2 and Great Salt Lake being the expression of global-interglacial
climate of Oxygen Isotope Stage 1. How can shoreline evidence of Great Salt Lake contribute to an understanding of Lake Bon-
neville? Both lakes’ coastal processes contrast with those of marine margins. Specifically, Great Salt Lake is a closed-basin lake
that is fetch-limited, shallow, ever-fluctuating, and that occupies multiple-basins. Those five characteristics, and others, have
consequences for shorezone processes. Researchers of the Lake Bonneville-Great Salt Lake system should expect to find, and
not be surprised to find shoreline evidence of a given “lake level” (meaning the still-surface-water elevation of the lake) across
a range of values. This is the rule, not the exception. No wind. No waves. No (well... very little) geomorphic work. Shoreline
superelevation (the difference in elevation between lake level and the shoreline evidence of that lake level) is a proxy for wave
energy, but not necessarily for wind strength and direction. Should you be so fortunate to have a fetch-limited (less than 80 km
diameter), circular lake, preferably with three equidistant islands, take confidence that its patterns of shoreline superelevation,
shorezone slope, sedimentation, and vegetation give multiple lines of evidence of storm wind direction. Great Salt Lake is
fetch-limited. Shorezone evidence of its 1986—1987 highstand appears to be consistent with storm wind direction and strength.
As for Lake Bonneville, expect complexities and embrace them.

This content is a PDF version of the author’s PowerPoint presentation.



Great Salt Lake

insights to Lake Bonneville?
Genevieve Atwood

October 3, 2018

#1 Review Atwood-\Wambeam-
Anderson’s Chapter in Oviatt-
Shroder, Lake Bonneville

#2 Review Atwood, Shoreline
Superelevation..., UGS Misc

Pub 06-9.

GSL = Accessiblel!

GSL+ LB =
End members of a system.
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FIG. 1.2 Extent of major levels of Lake Bonneville and Great Salt Lake.


https://geology.utah.gov/2018-lake-bonneville-geologic-conference-and-short-course/

Effects of:
+Multiple basins,
+Thresholds between basins,
+Complex shapes
(hypsometry).

GSL as analog for LB.
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Constrictions.
Basins aren’t simply “open” or “closed.”

Causeway
Gunnison Bay Gilbert Bay

Water surface

Head differential
uptolm

FIG. 1.11  Lake constrictions, Great Salt Lake. Constricted flow through culverts between
Gilbert and Gunnison Bavs alters lake chemistry of Great Salt Lake.

We say: “Great Salt Lake is a terminal lake.” It's more complex than that.
Today, Gunnison Bay is the terminus of the Great Salt Lake watershed because of
constrictions of the railroad causeway.



Lake Bonneville

Constricted flow — LB

During Provo time, the main body of
LB was somewhat analogous to 1720

Gunnison Bay of GSL. i
The water balance and chemistry of

1800
mar'|S and thaS Of PFOVO Ievel Bonneville (green) and Provo {purple) levels

1620
the “main body” of Lake Bonneville
1480
accord|ng to GK Gllbert F"—;- 1.12  Lake constrictions, Lake Bonneville. Cytler Narrows - Bonneville vs Provo levels.

Elevation {m a.sl)

1600
1580

changed from “open” to “constricted”
. 1480
when LB fell from the Bonneville by

1560
1540
level to the Provo level. Hence: 1380

1520
1360




#2. Present findings of Atwood, G., 2006, Shoreline Superelevation: evidence of
coastal processes of Great Salt Lake, Utah, UGS, Misc Pub 06-9. Findings from
UGS Misc Pub 06-9 were incorporated into Oviatt-Shroder Lake Bonneville.

Clarify what is meant by “shoreline.”
Coastal processes of GSL.

GSL = Fetch-limited, shallow lake.
GSL = Highly responsive

Correlating shorelines of closed-basin lakes is inherently difficult.




GREAT SALT LAKE

1960’s low

_ 1980s high
Real time evidence of Great Salt Lake’s surface elevations.

Great Salt Lake is highly responsive to decadal climate.
What can we learn from historic GSL about its shorelines and

how to correlate them with lake fluctuations?



The 1980s wetcycle = 1982-1987
Lake level was monitored.
The lake’s highstand level (4212 ft
a.s.l. =1283.7 m a.s.l.) was
reached in 1986 and again in 1987.

The Guv and others asked UGS:
How high will the lake rise?

How often has it happened?
What damages and how costly?

Deseret News photo, Don Grayston, June 10 1984 - used with permission.

Governor Scott Matheson at Interstate-80.
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| still ask myself those
questions. June 3, 1986

4211.6 ft (1283.7 m) a.s.I.

Does understanding GSL
apply to LB? Of course.
They are a system.

Still-water lake elevation in ft a.s.l.




A shoreline is the hypothetical interface of water and land.
Still-water elevation implies a horizontal, quiet water interface.
No wind, No waves, No geomorphic work.

The lake does not leave recognizable evidence at its still-water level.




Waves create the “shorelines” of
GSL. Elevation of shoreline
evidence of the 1980s highstand
varies... substantially.

Still-water level within a week
of the 1986 highstand.

Unicorn
Point

Shoreline Superelevation
@ High > 4215 ft (1284.7 m)

Intermediate

® Low < 4213.8 ft (1284.4m)

Both individuals stand on shoreline evidence of 1980s highstand.



Surveyed

elevation in 3 L}

classes of |

] : approximately 1
Surveyed : equal number %

, Glevationin1ft ., . )
increments » * Low <4213.8 ft (1284.4 m) a5 ?

° above 4200 ft Intermediate \ (’!

12
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Why aren’t shorelines of GSL at the still-water level?
And why do elevations vary?
THAT is the topic of UGS Misc Pub 06-09

POINT DATA
1228 locations surveyed for elevation of
shoreline evidence.

THREE SETS of LINE DATA
667 shoreline stretches characterized for the 15
attributes.

305 shoreline stretches characterized for
geomorphic attributes such as fetch and aspect from
maps.

94 shoreline stretches characterized for their
planform shape, such as convex or concave.

POLYGON DATA 208 shoreline stretches
characterized with geologic attributes such as
bedrock versus surficial materials.




Coastal processes of Great Salt Lake...
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Big concept... Local storm winds create the waves of Great Salt
Lake.



Great aIt ‘Lake
IS not:

Hawaii



Coastal processes: wind set-up and wave runup

shoreline
superelevation

still-water level’

& still-water level —a

wind set-up

superelevated shoreline

Wave runup ——m
lake set-up




Shoreline
superelevation

elevation of
shoreline debris
above the stillwater
ELCREVEE

SHOREZONE FEATURES

4211-4223 ft
1283.5-1287.3 m

(i .
1283.8m f.'

4202 ft —AHe
1280.7 m

Historic average elevation of Great Salt Lake 1980s lagoon

Elevation of 1980s highstand stillwater lake surface 1980s killed vegetation
Elevation of Antelope Island’s 1980s debris lines Shorelines older than 1980s
Shoreline superelevation Substrate

1980s debris lines Lake deposits, 1980s and older




Elevation differences along the
1980s highstand shoreline of GSL.

ANTELOPE "M I i |

Summary All Island
Minimum 11.1

|~ 1 1st Quartile 13.5
. ] 14.5

Mean
Elevation in ft above 4200 ft a.s.l. Median 14.2

N/
. 21-23 . n ’f‘ “'ETI" 1 3rd Quartile 153

18-20 Maximum 23.4
16 - 17

15 10 12 14 16 18 20 22 24
14 Elevation above 4200 ft (1280.2 m) a.s.l.
13

AllIsland

Surveyed locations 1228

Summary West Side
Minimum 11.2

1st Quartile 14.3
Mean 15.3
Median 15.1
3rd Quartile 16.1
Maximum 234

West side

Surveyed locations 689

10 12 14 16 18 20 2 24
Elevation above 4200 ft (1280.2 m) a.s.l.

Summary
Minimum
1st Quartile
Mean
Median
3rd Quartile

Maximum

East side

Elevation in ft above 4200 ft a.s.l.

20000 40000 Surveyed locations

Location along shore-route in meters 10 12 14 16 18 20 22 24
Elevation above 4200 ft (1280.2 m) a.s.l.




Elevation in it above 4200t a5,

Elavation in fi above 4200 ft a5

Elevation in il above 4200 1t 2.5.1.
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Shoreline evidence vs
Shoreline.

Shoreline superelevation of
evidence of Great Salt Lake is...

NOT spatially random

NOT inconsequential

Far from expecting shoreline
evidence to continue on a
horizontal plane, one should
expect variability due to
coastal processes.




WIND energy into a water body
Waves gain energy but... then max out on growth.

« Stronger wind... more energic waves.

* More distance across open water (fetch)... more energy
Into the lake, more energetic waves.

* Longer storm duration... more energy into the lake.

Disturbed seas begin with chaotic waves. With distance the waves sort
out into wave trains.

Lakes are “fetch-dominated” or “fetch-limited.”

Fetch-dominated lakes are those with sufficiently long fetch that the
contributions of energy from wind strength and storm duration are
overwhelmed. In contrast, fetch-limited lakes’ energy grows with wind
strength and storm duration.




Coastal processes of Lake Bonneuville.

“At an early stage of the investigation, the writer ... imagined
that he had discovered therein the record of prevalent N v
westerly winds .... N

This belief was dissipated by further study; and he discovered,
as students of modern shores long ago discovered, that
there is a close sympathy between the magnitude of the Gilbert,
shore features and the ‘fetch’ of the efficient waves.... 1890, p. 107

The highest cliffs, the broadest terraces, and the largest
embankments are those wrought by the unobstructed
waves of the main body; and opposite coasts appear to
have been equally affected.”

Lake Bonneville has regions that are fetch-dominant.
Great Salt Lake is fetch-limited.
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Nomograph for wave environments.

Great Salt Lake conditions indicate the lake is fetch limited.
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Fetch = distance across open water to Antelope Island.

|48y

Above: Example of how fetch was
calculated at 15 degree intervals for
eight of 305 stretches of Antelope
Island.

Right: Plot of 1228 surveyed
shoreline elevations of the 1980s
highstand shoreline on Antelope

Island vs fetch length.
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Wind strength

Aspect = the direction the shore faces... used as a proxy for
direction of on-shore storm winds

Pl
P

Winds across GSL were not
monitored in 1986/87.

Assume: individual wind
waves run generally in the
direction of strong wind.
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into wind will have higher
shoreline superelevation if
the lake is fetch limited.

Superelevation of Antelope Island 1980s
highstand shoreline plotted against aspect.




Coastal processes of Great Salt Lake —
Shoreline superelevation documents wave energy.

Wind set-up

_ . . | Wind set-down
C;l_lge_[ti_g)_/: , i 3\ Farmington Bay

*
*
Return current " -....0On-shore current

Antelope Island

(Not to scale)

Windward - west side Leeward - east side
Wind set-up Wind set-down

On- shore wind drift Off-shore wind drift
Offshore return current On-shore return current
High energy wave runup Low energy wave runup
Along-shore drift Along-shore drift
Post-storm seiching Post-storm seiching




Higher Superelevation
(greater wave energy)

Correlated with:
Greater fetch
Storm winds from NW and W
Steeper slopes
Shallower water off shore
Erosional landforms versus
depositional features.
Bedrock vs mudflats.

Vegetation dampened wave
energy.

Poor correlation of
superelevation with material size.
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Beach materials and size
Beach material size and
rounding a function of
provenance...

Distance from bedrock.

And nourishment by
debris flows.

Why?

Bedrock.

Boulders.

Boulders and fines.
Mixed cobbles,
gravel and sand.
Gravel and sand.
Mixed cobbles,
gravel and sand.
Boulders and fines.
Boulders




Aspect in

compass

degrees

—2-239

=240 - 290 . High shoreline

—291 - 357 superelevation Fetch 255 km

For Antelope Island —
Superelevation of the 1980s highstand shoreline correlated with both aspect
(proxy for wind direction) and with fetch. Was it all fetch?

The research question of Antelope Island clarified by field work around the
perimeter of GSL.




Survey of elevations of 1986/87
shoreline expressions around
Great Salt Lake.

Places:

1. With vertical control

2. Distributed around the lake
3. With preserved evidence

Great Salt Lake data set tested
5 relationships of Antelope Island

For 608 surveyed locations
At 10 shore regions
With 20 contrasting coastal conditions



Great Salt Lake 1980s highstand shorelines surveyed.

o @
i
;5;1:- e ‘
= s * ti.,
g ERRESEES
16, =" — *EE?EE;E
15 1-?- E : - g g : I B
] § - E i H I ; e ¥
& 14 M 7 : = ¥ g
- o i | l i ! BERA
§ e 11 | I e I 8 ’
A SRR R R
18,19 w : :
11,14 ’
A O emeci N
b L L. . . . L . D L. . T T T T T T
12,13 | 1214 13 5 15 11 18 8 7 B 4 18 8 1 18 3 17 2 10 20
Scatterplot of elevations along surveyed shores
v 8,9,10
; 1y zu" :
Y67 7 ®)
l d ¥
&
T -
.ﬁ.l-\. g o ik
.52 ) 3 & .
r % . a ¢ - —
5 B Y | 8 -
4,3 ) ; = T-
] ' E 1 ) _ - H
) - - T H
£ g E 14 i J, L
#t BRI
1 @ %ﬁﬁ gOE[~.
; - e il IE_—__|W|¢__“
30 155 0 30Kilometers. . BALAYE EAGMIE T 6 4 H B 1 WSy 2
| I T P P N L Box and whisker plots of elevations along surveyed shores




Fetch, aspect, and surperelevation of opposing shores of Gunnison Bay

(b)

15 ’ 17

5 Gilbert Bay

If FETCH-DOMINANT, the pattern would be a bulls-eye with
green in the center and red on the outside... Hmmmm not so!
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Superelevation
m Low
Medium
e High
Hypothetical fetch-dominated lake Hypothetical fetch-limited lake

© H (d) L L

H H

Compass rose for hypothetical
fetch-limited lake

Compass rose for hypothetical
fetch-dominated lake

\ Gilbert Bay

15km £

Actual measurements of fetch-limited Gunnison Bay, Great Salt Lake, Utah.

FIG. 1.9 Fetch and wave energy.

Mental models: (from Atwood et al in
Oviatt Shroder).

STEPS to understand the figure at left.
1. Connect surveyed places with vector
(distance and direction).

2. Plot the vectors for distance and
direction on an axis.

3. Note the patterns of figures.

(c) If fetch alone causes superelevation,
the pattern will be a bulls-eye.

(d) If wind strength explains
superelevation, the pattern will reflect
prevailing storm-wind direction.

The pattern of superelevation of the
highstand shoreline of GSL is not a
bulls-eye. The pattern indicates direction
of strongest storm winds, from the
northwest and west. Fetch-limited lakes
such as GSL can document wind
direction by shoreline superelevation.



Summary

v'Expect shoreline evidence to NOT be at the elevation of still-water lake level. No wind,
no waves, no work.

v'Contrasting elevations of shoreline evidence result from contrasting energy of waves
due to fetch, wind strength, and geomorphic factors.

v'Fetch-dominated lakes are... fetch dominated! Such as Lake Michigan.

v'Great Salt Lake is fetch-limited. Fetch alone does not explain shoreline superelevation.
v Shoreline superelevation can be used to determine storm wind direction.

v'Expect regions of Lake Bonneville to have fetch-dominated and fetch-limited reaches.

v'Future work: To know paleo-wind direction (storm winds). Identify a fetch-limited lake
(radius about 50 km (35 mi)), circular, preferably with three equi-distant islands. Study
the superelevation of its shorelines and the windward-leeward patterns of sedimentation
along the islands’ shores.

v'Advice: To estimate shoreline superelevation associated with closed-basin lakes, use
the Army Corps of Engineers calculations for wave damage along lake shores.

v'Caution: Examine the provenance of shoreline materials of shallow closed-basin lakes
before assuming their size and rounding indicate wave energy.



TIMELY EXAMPLE:

USGS 18818188 GREAT SALT LAKE HERAR SHLINE, UT What |S the “Shorellne” Of GSL
this day of the converence and
for the past couple days?

4192,508

'FWNW.N’“‘FM‘HTNWU”. MMHH.‘M“WA‘M‘

4191.50 ‘11 Effects of wind at the
monitoring gages.

4191.88

Gunnison Bay

4196.58

Lake or reservoir water surface
elevation above NGVD 1923, feet

Note: Inconsistent scales...
Approx 1.5 ft fluctuation Gunnison Bay
Sep Sep Sep Sep Oct

28 29 30 81 Approx 0.7 ft fluctuation at Saltair.
2018 2018 2018 2018 2018 2018 2018 2018

==== Provisional Data Subject to Revision ====
USGS 10616086808 GREAT SALT LAKE AT SALTAIR BOAT HARBOR, UT

The surface of Great Salt
Lake responds to storms...
such as the week before
the conference.
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Promontory
Point

20%
Gilbert Bay

0%
A%

_ 40%

57%\sland

_-60%

_80%

P 100%

Seiche, November 23-25, 1998, Gilbert Bay

Boat harbor gage

railroad

tracks
<—

+ Promontory gage

Elevation difference in ft

11/23/98 11/25/98

Key to arrows

Pre-causeway
northerly fetch
of 1860s-
1870s.

1986-1987
northerly fetch.
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THE NEW UTAH GEOCHRONOLOGY DATABASE

Steve D. Bowman

Utah Geological Survey, Salt Lake City, UT 84116

stevebowman(@utah.gov

ABSTRACT

The Utah Geological Survey (UGS) recently released the first version of the Utah Geochronology Database. The database
contains age and related dating information for over 1700 soil and rock samples acquired in Utah. Age dates were obtained
using argon (*Ar/*Ar), cosmogenic ("’Be and **Cl), fission track, fossil fusulinid, luminescence (thermoluminescence [TL],
infrared-stimulated [IRSL], and optically stimulated [OSL]), radiocarbon (**C), rubidium-strontium (*’Rb/*’Sr), tephrochronol-
ogy, tritium (*H), or uranium-thorium-lead (>**U-?**U/**Pb-*"Pb) dating methods. The samples were analyzed for a variety of
geologic-related projects by the UGS, U.S. Geological Survey (incorporates data from the legacy National Geochronological
Database), and others.

These data have been used to determine the timing of past earthquakes, age of basalt flows, and the age of geologic units for
mapping. Since geochronologic methods have significantly evolved and improved through time, older data are often not as
reliable or usable as more recently dated materials. However, this new database ensures that all these high-cost and valuable
geochronologic data are archived and made available to all. Users can access the database through a web mapping application
(https://geology.utah.gov/apps/geochron/) or an ArcGIS geodatabase (https://gis.utah.gov/data/geoscience/geochronology/).

As the database is expanded in the future, we anticipate adding age results from other geochronologic methods. Our goal is
to collect and permanently archive these invaluable data. Donations of Utah-based geochronology data to this database are
appreciated. Contact the UGS or stevebowman(@utah.gov for more details.

This content is a PDF version of the author’s PowerPoint presentation.



The Utah Geochronology Database

UTAH GEOLOGICAL SURVEY geology.utah.gov



Current Status of the Utah Geochronology Database

* Argon (*°Ar/3°Ar) — 548 samples

* Fission Track — 157 samples

* Luminescence (TL, IRSL, OSL) — 132 samples
 Radiocarbon (1*C) — 760 samples

* Rubidium/Strontium (8’Rb/8’Sr) — 92 samples
 Tephrochronology — 0 samples

* Uranium/Thorium/Lead (238U-235U/206pp-207Ph) — 21 samples

Total Samples in Database = 1710

Contains:
* Most of the Utah Geological Survey (UGS), Geologic Hazards Program samples.

Viapping P

DNR
"\(f

croroarcarsurvey. UTAH GEOLOGICAL SURVEY geology.utah.gov
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UTAH GEOCHRONOLOGY

The Utah Geochronology Database contains ages and
related dating information of sampled geologic
materials (soil and rock) using argon (40Ar/39Ar),
fission track, IRSL, and OSL),
radiocarbon (14C), rhubidium-strontium (87Rh/875r),
or uranium-thorium-lead (238U-235U/206Pb-207Pb)
dating methods and were analyzed for a variety of

luminescence (TL,

geologic-relsted projects by the Utah Geological
(UGS), US. Geological (USGS;

incorporates Utah data National

Survey Survey

from the

Geochronological Database) and others.

Since geochronologic methods have significantly
evolved and improved through time, older data is
often not as reliable or usable as more recently dated
materials. The user should use caution in using this

significant knowledge and experience is
often needed to interpret and apply geochronologic

o projects correctly

As the database is expanded in the future, age results

from other geochronologic dating methods are
anticipated to be added. Various geochronologic
data from geologic mapping projects may be found

. Donations of geochronologic data in Utah are
appreciated, so that the

archived and discoverable and available to all users.

= data can be permanently

for more details
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Future of the Utah Geochronology Database

Additions:
 Remainder of the UGS Geologic Hazards Program samples.
 Remainder of the UGS Geologic Mapping Program samples.

Utah State University Luminescence Laboratory (Tammy Rittenour).

Joel Pederson, Utah State University

Data submitted by other organizations and researchers.

An Excel workbook is available to simplify the data transfer process.
* Also need the original laboratory reports, where available (UGS can scan if needed).

DNR
/‘\(f

croroarcarsurvey. UTAH GEOLOGICAL SURVEY geology.utah.gov
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THE BEAR RIVER’S DIVERSION AND THE CUTTING OF ONEIDA NARROWS
AT ~55-50 KA AND RELATIONS TO THE LAKE BONNEVILLE RECORD

Joel L. Pederson, Tammy M. Rittenour, Susanne U. Janecke, and Robert Q. Oaks, Jr.

Department of Geology, Utah State University, Logan, UT 84322

Corresponding author (Pederson): joel.pederson@usu.edu

ABSTRACT

The Bear River’s course has shifted over Quaternary time, and its late Pleistocene integration into the Bonneville basin long has
been recognized as a possible explanation for why Lake Bonneville was apparently larger than the preceding lakes in its basin,
and the only one to overflow its topographic threshold.

The middle-Pleistocene Bear River joined the Snake River to the north, likely via the Portneuf River drainage. Then an episode
of volcanism in the Blackfoot-Gem Valley volcanic field ~100-50 ka diverted the Bear River southward into Gem Valley. Pre-
vious chronostratigraphic and isotopic work on the Main Canyon Formation in southern Gem Valley indicates internal-basin
sedimentation during most of the Quaternary, with a possible brief incursion of the Bear River ~140 ka. New evidence confirms
that the Bear River’s final diversion at ~55 ka led to its integration into the Bonneville basin by spill-over at a paleo-divide
above present-day Oneida Narrows dam. This drove rapid incision of 200 m of bedrock in the canyon and excavation of south-
ern Gem Valley in the subsequent millennia, before the rise of Lake Bonneville back flooded the area, as constrained by new
optically stimulated luminescence dates above, within, and below the canyon.

Bear River integration into the Bonneville basin early during marine isotope stage 3 seems to postdate the Cutler Dam lake
cycle, although that penultimate pluvial lake is incompletely dated and understood. It is also possible the Bear River’s hydro-
logic addition relates to the recently recognized but poorly constrained Pilot Valley shoreline that predates the main Bonneville
lake cycle. Regardless, the Bear River certainly contributed to the rise of Lake Bonneville, culminating in the Bonneville flood.

This content is a PDF version of the author’s PowerPoint presentation.



The Bear River’s diversion,
the cutting of Oneida Narrows at 55-50 ka,
and relations to the Lake Bonneville record

Joel Pederson, Tammy Rittenour, Susanne Janecke, and Robert Oaks, Jr.

A

a"' ':hl UtahState
University.

DEPARTMENT OF GEOLOGY



1. Review of knowledge about Bear River’s history and diversion

2. Evidence for river integration at ~55 ka
3. Rapid cutting of Oneida Narrows in subsequent millennia
4. Relations to the Lake Bonneville record

THIS TALK = virtual field trip
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1. Review of knowledge about Bear River’s history and diversion
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1. Review of knowledge about Bear River’s history and diversion




2. Evidence for river integration at ~55 ka




2. Evidence for river integration at ~55
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3. Rapid cutting of Oneida Narrows in subsequent millennia




Reconstruction of basin topography prior to diversion




Reconstruction of basin topography prior to diversion




3. Rapid cutting of Oneida Narrows in subsequent millennia
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3. Rapid cutting of Oneida Narrows in subsequent millennia



Lake Level In Feet Above Sea Level
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4. Relations to the Lake Bonneville record



Research needs

- Early Pleistocene path of upper Bear River

- Geology and geochronology of the (diverting) Gem Valley-
Blackfoot volcanic field

- Main Canyon Fm. sedimentology

- Conflicting interpretation from Sr-isotope record — earlier
incursion into Bonneville basin?
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OSL-IRSL AGES OF TWO, PERHAPS THREE, PRE-BONNEVILLE DEEP-WATER PLUVIAL
LAKES IN CACHE VALLEY, UTAH-IDAHO: IMPLICATIONS OF THEIR UNEXPECTED
HIGH ALTITUDES FOR EXCAVATION OF CUTLER NARROWS FROM A LEVEL ABOVE

1494 M (4901 FT), DOWN TO THE PRESENT LEVEL OF 1314 M (4310 FT) MAINLY DURING

THE BONNEVILLE LAKE CYCLE

Robert Q. Oaks, Jr., Susanne U. Janecke, Tammy M. Rittenour,
Thad L. Erickson, and Michelle S. Nelson

Department of Geology, Utah State University, Logan, UT 84322

Corresponding author (Oaks): boboaks@comcast.net

ABSTRACT

Pluvial-lake highstands in the Bonneville basin are known to be contemporaneous with periods of Quaternary glaciation. At
least five lake cycles have been identified from prior studies of two deep cores (Eardley and Gvosdetsky, 1960; Eardley and
others, 1973) and several isolated outcrops in the main part of the Bonneville basin and eastward in Cache Valley. These are the
Lava Creek B (~620 ka, marine isotope stage MIS 16), Pokes Point (~420 ka, MIS12), Little Valley (~150 ka, MIS 6), Cutler
Dam (~60 ka, MIS 4), and Bonneville (~18 ka, MIS 2) lake cycles (Oviatt and others, 1987, 1999; Lisiecki and Raymo, 2005).
Cache Valley, straddling the Utah-Idaho border, held the northeastern arm of Lake Bonneville, and is the entry point of the Bear
River, the largest river to supply water into the basin. This river did not fully enter the Bonneville basin until ~55 ka (Pederson
and others, 2016).

Pre-Bonneville pluvial lakes in Cache Valley rose to near or somewhat above the Provo shoreline several times, and deposited
stacked lacustrine gravel deposits exposed in an active Staker-Parson gravel pit on the southeast edge of Newton Hill (figures
1, 2). These deposits are separated either by multi-story, caliche- and clay-rich geosols, loess, erosional channels, or lag grav-
els. The multi-story geosols formed in the post-Cutler Dam interglacial. These geosols are dated to MIS 3, and reflect first a
dry-condition Bk caliche soil, then deposition of loess and colluvium coincident with a period of more humid conditions. In
eastern Cache Valley, in southeast Hyde Park, Utah, similar multi-storied geosols and loess deposits underlie Bonneville off-
shore silty sand with snails (west, lower) and post-Bonneville colluvial gravel (east, higher), respectively, where they overlie
Little Valley gravels at ~1493 m (4898 ft) and undated alluvial-fan deposits at ~1512 m (4960 ft).

We document stratigraphic evidence and absolute ages from optically stimulated luminescence (OSL) of quartz sand and infra-
red stimulated luminescence (IRSL) of feldspar sand as evidence for at least two, perhaps three, pre-Bonneville lakes in Cache
Valley during past pluvial epochs: (1) ~137-169 ka (Little Valley; n=4); (2) ~96 ka (Newton Hill beds; n=1); and (3) ~49-67
ka (Cutler Dam; n=3) (tables 1, 2). These reached highstands, respectively, of >1470 m (>4824 ft; perhaps 4901 ft), >1443 m
(>4735 ft; perhaps 4768 ft), and ~1443 m (4733 ft). The Newton Hill beds might be the oldest lacustrine record of the Cutler
Dam lake cycle, if that lake cycle had a long duration, or they may be coeval with problematic lacustrine deposits of similar
ages, ~76 and 82 ka, in Hansel Valley (Robison and McCalpin, 1987) and ~90 ka in Gem Valley (Bouchard and others, 1998;
Utley, 2017).

Subsurface data from thousands of water wells drilled across the valley bottom southeast of Newton Hill document four,
perhaps five, successive deposits of deep-water muds with thin intervening gravels layers (Thomas and others, 2011; Oaks,
unpublished). These muds aggregate a total thickness between 30 m and 37 m (100 ft and 120 ft). These are probably coeval
with several of the nearshore gravel and sand deposits in the Newton Hill pit and with deposits of pluvial lakes in the main
Bonneville basin.

Synthesis of our new stratigraphic and geochronologic data show that all of the pre-Bonneville, post-Pokes Point pluvial lakes
rose to near or above the height of the Provo shoreline in the area of the Newton Hill gravel pit. Altitude control for older lakes
has been determined at only about 11 sites in the main part of the Bonneville basin, with some corrected for rebound, others
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Figure 1. Digital-elevation model (DEM) map of Cache Valley area showing 3 gravel pits and 2 other
exposures with lake deposits older than Lake Bonneville. Type area of Cutler Dam unit is along the Bear River
Valley just SW of Cutler Narrows. Bonneville highstand is ~lowest white; Provo highstand is ~top of blue.
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Provo gravel above

Loess with reddish Fielding geosol Bonnevill i pwat

Fielding caliche Bk geosol

Figure 2. View SSE of Cutler Dam gravel dipping 25°to 35° east below Fielding multi-story geosol and overlying deepwaterBonneville
mud. Figure is 6 feet tall. Photo By S.U. Jinecke.

not. Our altitudes are uncorrected. Thus it is uncertain if there are significant differences or near correspondences of highstand
levels among the post-Pokes Point, pre-Bonneville pluvial lake episodes. If notably different, then the older pluvial lakes in the
Salt Lake Valley and in Cache Valley could have been synchronous adjacent lakes, rather than a single lake.

A Little Valley OSL sample of ~137 ka from Hyde Park, Utah, is near 1493 m (4898 ft). A well-developed shoreline near 1494
m (4901 ft) lies 24 m (80 ft) above our highest dated Little Valley gravels at the Newton Hill gravel pit, at 1469 m (4821 ft).
This level of 1494 m (4901 ft) is 16m (53 ft) below the highest recorded uncorrected Little Valley deposits in the Bonneville ba-
sin (Scott and others, 1983; Scott, 1988), at Point of the Mountain, at 1510 m (4954 ft). Post-symposium work shows that there
are two pre-Bonneville deltas built south from Providence Canyon to Millville, Utah, above the Provo-level delta and below
the Bonneville highstand. The bases of their eastward shoreline scarps lie near 1522 m (4995') and 1550 m (5085") respectively.
An OSL sample from the older, higher, well-dissected delta was collected in June 2019.

Our ~96 ka age determination and stratigraphic observations indicate a lake level of the Newton Hill beds at or above 1421
m (4663 ft). This is at least 80 m (263 ft) higher than the uncorrected altitude of 1341 m (4400 ft) proposed by Robison and
McCalpin (1987) for problematic shallow-water deposits in Hansel Valley with luminescence ages of ~82 and ~76 ka. Our
~51 and ~67 ka age determinations and stratigraphic observations indicate that the known high stand of the Cutler Dam lake
cycle in Cache Valley at ~1443 m (4733 ft) was at least 102 m (335 ft) higher than the uncorrected altitude of 1340 m (4396 ft)
proposed by Oviatt (1986), Oviatt and McCoy (1988), and Kaufmann and others (2001) based on shallow-water Cutler Dam
deposits in the main Bonneville basin just southwest of Cutler Narrows (figure 1).

Cache Valley is a complex graben east of a bedrock horst, the Cache Butte Divide, the latter upthrown between the Wasatch
(west) and West Cache (east) fault zones. Cutler Narrows is the deep and narrow canyon of the Bear River across the Cache
Butte Divide. It is cut in hard Paleozoic bedrock and is 392 m (1286 ft) deep on its south side. This canyon is presently deep
enough to allow pre-Bonneville pluvial lakes with water levels between 1314 m (4310 ft) and 1517m (4978 ft) to connect ex-
clusively through the horst there. At higher levels, water could connect across this horst at up to three additional high saddles
between 1517 m (4978 ft) and 1577 m (5175 ft). The latter, 1577 m, coincides with the present rebounded altitude of the highest



Table 1. OSL & IRSL sample information and age dates for Staker-Parson gravel pit, SE flank of Newton Hill, and SE Hyde
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Park City, Cache County, Utah.

Sample Age inka Hand- EDM Sample Strati- Location and Comments; ~65 m W correction Date and
Number and Method | Level Altitude Altitude graphic from GPS data to 1927 North American datum for | Collectors
USU- in Feet in Feet in Meters Unit maps
859 15.20 N.D. 4737 1444 Late Qlbp | NW edge of pit; silt & sand beds dip E; below 9-15-2010
+1.97 OSL | Map ~4790 | Depth ~53 ~4780' Qlbp shore; TR & MN
~N41°52.614' ~W 111°57.426'
854 21.72 ~4748 N.D. ~1447 Early S of road, SW corner of alcove; silty sand & clays | 9-7-2010
+3.750SL | Map ~4785 | Depth ~37 Qlbb above paleosol; TR & RO
N 41°52.4478' W 111°57.3978"
1082 22.04 ~4665 <4672 ~1422 Early Center of pit; laminated silty sand over gravel; 10" [ 12-2-2011
+5.930SL | Map ~4775 | Depth~115 Qlbb above USU-1083; RO & TE
N 41°52.5244" W 111°57.3198"
855 39.28 ~4739 N.D. ~1444 Qf SW alcove; red colluvium: sandy gravelly mud 9-7-2010
+4.99 OSL | Map ~4810 | Depth ~71 over loess paleosol; TR & RO
N 41°52.478" W 111°57.393"
1084 48.99 N.D. 4865 1483 Qcd W pit; white reworked ash in N-S channel, under 12-5-2011
+9.950SL | Map ~4875 | Depth ~10 E-dipping gravel & soil, over 4° W-dipping RO
gravel;
N 41°52.5045" W 111°57.5009'
858 50.50 ~4709 N.D. ~1435 Qcd W alcove; vf-med sand below gravel ~25 ft below [ 9-15-2010
+7.150SL | Map ~4790 Depth ~81 paleosol base; TR & MN
N 41°52.473' W 111°57.382"
856 67.10 ~4729 N.D. ~1441 Qcd W alcove; gravel 4.3' below red paleosol base; 9.8' | 9-7-2010
+7.23 OSL | Map ~4810 | Depth ~81 below USU8SS; TR & RO
N 41°52.479" W 111°57.388'
1083 96.2 ~4655 <4673 ~1419 Qnh Center of pit; in gravel 8.4' below laminated silty 12-2-2011
+14.0 OSL | Map ~4780 | Depth~125 sand of USU-1082; RO & TE
N 41°52.5243' W 111°57.3310'
2895 136.7 N.D. N.D. ~1493 Qlv Fresh N-S scarp; fine- to coarse sand within pale 7-27-2018
SE Hyde +16.1 OSL | Map ~4865 | Depth 9.25 green marl below white caliche geosol below Qlbb | RO
Park City Google fine- to very fine sand with snails;
[2108] N 41°47.8341' W 111°47.8214"
~4898
2490 155.7 ~4735 N.D. ~1443 Qlv W center of pit in E-W cut; sand and gravel in 9-26-2016
+21.4IRSL | Map ~4840 | Depth~105 cobble gravel, 22' lower than E margin of RO & TE
overlying channel;
N 41°52.5203' W 111°57.4165'
857 159.9 N.D. N.D./EDM ~1469 Qlv W center of pit in WSW cut; sand & pebble 9-15-2010
+25.0 OSL | Map ~4865 | 4821 at groundmass in cobble gravel; TR & MN
GPS 4824 graded site N 41°52.492' W 111°57.477'
TR Depth ~44
2491 169.4 ~4678 N.D. ~1426 Qlv NW pit near south end of headwall; pebbly sand 9-26-2016
+28.6 OSL | Map ~4805 | Depth~127 below sandy pebbly cobble gravel; RO & TE
N 41°52.5548' W 111°57.3882"

OSL = optically stimulated luminescence on quartz sand; IRSL = infrared stimulated luminescence on feldspathic sand; ka =
thousands of years ago; Google = Google Earth; EDM = total station, electronic distance measurements with laser; GPS = global-
positioning-system measurement; HL = hand level used from EDM station 16; N.D. = no data; Map: original surface altitudes are
interpolated from 1964 U.S. Geological Survey 7.5' Newton [C.I. = 5'] and Trenton [C.I. = 20'] topographic quadrangles; Qlbp =
Provo lake stage; Qlbb = Bonneville highstand lake stage; Qf = Fielding emergent interval with 2 multistory geosols and higher N-S
channel; Qcd = Cutler Dam lake stage; Qnh = Newton Hill lake stage; Qlv = Little Valley lake stage; MN = Michelle S. Nelson; RO
= Robert Q. Oaks, Jr.; TE = Thad L. Erickson; TR = Tammy M. Rittenour. Note: Early Qlbb and all older lakes likely were separate
from coeval lakes in the main Bonneville basin, and thus should be considered separate Cache Valley lakes.
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Table 2. Optically Stimulated Luminescence (OSL) and Infrared Stimulated Luminescence (IRSL) Age Information, Newton Pit
and Hyde Park, Utah, Feb 2019.

Usu- Depth Nuronfber Doserate | D, + 20 Age 20 In-s:t; Gs::;n K Rb Th u Cosmic | OSL/
2 %)° ¥ ¥ ® | (Gy/ka) | IRSL®
number | (m) aliquots’ (Gy/ka) (Gy) (ka) %)" (um) (%)° | (ppm)° | (ppm)° | (ppm)” | (Gy/ka)
1.76 26.73 15.20 5.9 90- 1.14 52.0 6.2 1.7 0.05
859 162 21(57) +0.07 +2.71 +1.97 (15%) 150 +0.03 | 2.1 +0.6 +0.1 +0.01 ost
3.02 64.72 21.72 90- 1.91 97.2 12.3 2.4 0.08
4 11. 24 (37 14.4 L
85 3 (37) +0.12 +9.88° +3.75 150 +0.05 | 3.9 +1.1 +0.2 +0.01 0s
2.17 47.80 + 22.04 150- 1.48 66.5 8.8 1.9 0.02
1082 351 11(42) +0.09 12.26* +5.93 7.4 250 +0.04 | $2.7 +0.8 +0.1 +0.00 ost
3.90 153.29 39.28 63- 241 | 1195 14.6 3.4 0.04
855 216 24(49) +0.16 15.01 +4.99 102 150 +0.06 | *4.8 +1.3 +0.2 +0.00 ost
2.74 134.26 48.99 75- 1.72 743 10.5 1.8 0.19
1084 1 1 2 12.7 L
08 3 3(32) +0.11 25.04 +9.95 150 +0.04 | 3.0 +1.0 +0.1 +0.02 0s
1.57 79.39 50.50 150- 1.27 34.7 4.4 1.1 0.03
858 247 28(57) +0.06 +9.29 +7.15 3.2 250 | £0.03 | #1.4 10.4 0.1 | $0.00 ost
1.77 118.71 67.10 125- 1.03 40.9 6.8 1.9 0.03
24, 21 (42 1. L
856 4.7 (42) +0.07 +8.36 +7.23 9 250 +0.03 | *1.6 +0.6 0.1 +0.00 0s
1.20 115.24 96.22 150- 0.85 29.7 3.9 0.9 0.02
1083 38.1 14 (34 33 OSL
(34) +0.05 +13.88 +13.99 250 +0.02 | 1.2 +0.4 0.1 +0.00
1.27 173.72 136.66 150- 0.69 24.9 3.5 1.2 0.19
2895 28 16(29) +0.05 +14.76 +16.10 ) 250 +0.02 | *1.0 +0.3 +0.1 +0.02 ost
0.73 23.6 4.0 1.0
6.7 2.29 234.56 155.69 125- | #0.02 | +0.9 +0.4 +0.1 0.02
2490 320 15(17) +0.10 +25.82 21.36 3.8 250 1.06 25.2 3.6 1.0 +0.00 IRSL
+0.03 | *1.0 +0.3 0.1
0.94 151.12 159.93 90- 0.66 22.0 2.6 0.6 0.07
857 134 31(63) +0.04 +20.12 +25.03 3.7 250 +0.02 | 0.9 0.2 0.1 +0.01 ost
1.13 191.02 169.42 125- 0.74 19.6 4.0 1.0 0.01
2491 48.2 23(36) +0.05 +28.12 +28.62 3.8 250 +0.02 | 0.8 0.4 0.1 +0.00 ost

!Number of aliquots used in age calculation and number of aliquots analyzed in parentheses.

?Equivalent dose (D,) calculated using the Central Age Model (CAM) of Galbraith and Roberts (2012), unless otherwise noted.
30SL age analysis using the single-aliquot regenerative-dose procedure of Murray and Wintle (2000) on 1-2mm small-aliquots of
quartz sand. IRSL age analysis using the two-temperature step (50°C, 225°C) pIR IRSL protocol of Buylaert and others (2009) on 1-2
mm small-aliquots of potassium-rich feldspar. IRSL age on each aliquot corrected for fading following the method by Auclair and
others (2003) and correction model of Huntley and Lamothe (2001). Average 84ays fading rate for USU-2490 is 4.6+1.5 %/decade
(50°C, 225°C combined.)

4Assumed 10+3% for moisture content over burial history for in-situ values <10%, excluding USU-859.

°Radioelemental concentrations determined by ALS Chemex using ICP-MS and ICP-AES techniques; dose rate is derived from con-
centrations by conversion factors from Guérin and others (2011).

Grain-size based internal beta dose rate determined assuming 12.5% K and 400ppm Rb using Mejdahl (1979). Alpha contribution to
IRSL dose rate determined using an efficiency factor, or ‘a-value’, of 0.09+0.01 after Rees-Jones (1995).

"Dose rate includes weighted average of radioelemental chemistry based on sand fraction (top value, 35%) and gravel fraction
(bottom value, 65%).

wave-cut Bonneville shoreline there. Each of these three additional high saddles, in sharp contrast to the Cutler Narrows, is
shallow, and overlies weak Neogene Salt Lake Formation with a thin Quaternary cover locally. Ongoing uplift probably has
raised the highest bedrock at Cutler Narrows, now at 1706 m (5596 ft) on the south margin and 1670 m (5479 ft) on the north
margin, above the subsequent highstand of Lake Bonneville, 1577 m (5174 ft). Thus, initial cutting at Cutler Narrows may be
quite old, perhaps along an unmapped fault there.

Scott and others (1983) and Scott (1988) identified Little Valley deposits in Cache Valley at the Ramsbottom and Smart Mountain
gravel pits (figure 1), based on amino-acid racemization of shells. We provide the first evidence of one or more pre-Bonneville,
post-Little Valley deep-water lake deposits in Cache Valley, north-central Utah-Idaho, and reveal variable climates during the
post-Cutler Dam interglacial. We also add the first four definite OSL and IRSL ages for Little Valley deposits in Cache Valley.
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Initiation of cutting of Cutler Narrows may be geologically ancient. Part of its cutting could predate the oldest known pluvial
deposits in the main part of the Bonneville basin, i.e., prior to the Lava Creek B lake cycle (~620 ka) or the Pokes Point lake cy-
cle (~420 ka). However, the apparent lack of correspondence of highstands related to the Little Valley lake cycle, to the Newton
Hill beds, and to the Cutler Dam lake cycle, plus “C and OSL evidence of an early rise of Lake Bonneville ~22 ka to above the
Provo level at the Newton Hill gravel pit and to ~1510 to 1515 m (4954 ft to 4970 ft), corrected for rebound, at the mouth of
Green Canyon (Janecke and others, 2013; Janecke and Oaks, this volume), ~22 ka (**C), indicate higher levels in Cache Valley
than recorded to date for the remainder of the Bonneville basin. This suggests that much of the excavation of Cutler Narrows
postdates the Cutler Dam lake cycle. This would also be after the Bear River was diverted into Cache Valley from Gem Valley,
in the northeast, where overflow culminated in the final incision of Oneida Narrows at ~55 ka (Pederson and others, 2016),
coincident with the Cutler Dam lake cycle.

If the lake levels differed between Cache Valley and the main Bonneville basin until after the Cutler Dam lake cycle, an early
rise of Lake Bonneville in Cache Valley above the threshold at Cutler Narrows would have initiated westward flow, perhaps
with significant erosion, across that threshold into the main Bonneville basin. However, probably most of the excavation of
Cutler Narrows was by subsequent eastward flow during the Bonneville flood, with perhaps some thereafter during outflow
during the two Provo stages (Jdnecke and Oaks, 2011a, 2011b). Minor post-Bonneville erosion has been by westward flow of
the Bear River through Cutler Narrows.
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OSL age dating of two, perhaps three, pre-
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* Geographic Setting: Cache Valley, N-central Utah & SE
daho, NE arm of Lake Bonneville

 Database: Field Mapping, OSL Age Dates, and Drillers’
Logs of Water Wells

* New Findings:
Compound geosol & 2 or 3 pre-Bonneville Gravels

First Definitive Evidence for 1 or 2 post-Little Valley, pre-
Bonneville Lakes in Cache Valley

Lower >186 m of Cutler Narrows likely cut primarily post-
Qlv, mostly < 30 ka, by both west and east flows
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Previous work in Cache Valley established

that there are 4 or perhaps 5 successive lake
cycles recorded in drillers’ logs of water wells
(Bjorklund and McGreevy, 1970; Robinson, 1999;
Oaks, 2000; Thomas et al., 201 I)

Bright (1963) found pre-Bonneville deposits at
Ramsbottom pit, N of Smart Mountain >1477m

McCoy (1981) used amino-acid racemization to
establish that deposits of the Little Valley lake
cycle are present at Smart Mountain >143| m
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Figure 2. DEM map of Cache Valley area showing 3 gravel pits with lake deposits older than
Lake Bonneville. Type area of Cutler Dam unit is along the Bear River Valley SW of Cutler
Narrows. Bonneville highstand is near lowest white; Provo highstand is near top of blue.
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Shoreline Altitudes of Lake Cycles in Main Bonneville Basin Compared to Coeval Shorelines in Cache Valley,
with Current Altitudes for Older Lakes and Altitudes Corrected for Rebound for Bonneville Shorelines.

Lake Cycle
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Scott et al., 1983

West Gully; Robison
& McCalpin, 1987
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Nelson, 2012 Curve
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Age
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Newton Hill Pit

Newton Hill Pit

Newton Hill Pit

Newton Hill Pit

Green Canyon Pit

Green Canyon Pit

in ka

~151.1
~171.5

Same

~95.0

~69.4
~50.6

~22
14C

Same

Shoreline
Altitude

>4824'; 4901'(?)
>1470 m; 1494 m(?)

Same

~4662
~1421 m

~4733'
~1443 m

~4922'
~1500 m

Same

Altitude Difference
in Cache Valley

<-130'; -53'(?)
<-40 m; -16 m(?)

<-136'; -59'(?)
<-41m; -18 m(?)

+262'
+80m

+ 337'
+103 m

+ 509’
+ 155 m

+ 66'
+20m

23






§ Google Earth
File Edit View s Add Help

¥ Search

ork, MY
Get Directions History

, Newton, UT, USA

E =

¥ Places

¥ Layers

& [ rimary Database
P Borders and Labels

2 Phaotos
: [ roads
> )30 Buildings
E‘u Ccean
O 'ﬁ Weather
O Gallery
obal Awareness

©r20131Gongle

Cﬂnglc earth

Imagery Date: 8/11/2011 41°5017.028 M 112°02'29.62" W elev 4498 ft  eye alt 10611 ft




Cache Butte Divide Cache Butte Divide Junction Hills

T12N/R2W T13N/R2W
23|13 13 |12 12 |1 1|2 2|35 36|35 35026 . 26]23 23 2|15
-9 Highest Narrows N | SSE NNW —>
Ts| 5752
6000~ Tt Tst 50000 1St Tst 5340 )5t Dwd 553 Tt 5 Dwd 5596’ 55178 -6000’
. Qlbb SR Qlbb < Qlbb X

5000'= o _bh Slu sy ] ; Ibp \ 5 TsLDE 5000’
40001_ i —2000, i ?(Vl;c . 1900'-2000' West 2500’ / [Ne) _4000'

/ ack Roc T ——
3000- 4 2000'-3500' East West }é./ ——Osp \ \ \ -3000"

— Ogc
2000~ -2000’
5752’

-5700’
5500 547%§st of Cutler Narrows : gggg,
5400~ -5400’
5300~ -5300’
5200,_\ Qlbb Qlbb West of Cutler Narrows Qlbb Qlbb -5200'
5100- ~5174' V.E.=10x ~ (,2013) =5100’
5000~ roRTT —————Spill point >4922; perhaps < 49787 ~4960’ Qlv at BC (S, 1983) /~4922' Qlbb ~22 ka - 5000’
4900 4856 Clbb <22 kn (Ot 3015 R ORIl
4800~ Localities Sources Lake Deposits 2 ngig 8:\t;b 2y ks ~4800°
4700- BC Big Cottonwood J Janecke et al. Qlbp Provo 4733'Qcd -4700'
4600 G Geneva pit K Kaufman Qlbb Bonnevile \ [ 4663'Qnh 4600’
. WC Westside canal M Milligan & McDonald Qcd Cutler Dam ¢
4500~ WG West Gully O Oviatt Qnh Newton Hill ~4413'Qlbb ~122hka (N\:/l(ssoa, 2012)\ 4410'Normal Igvel of -4500
4400- R Robison & McCalpin Qhv Hansel Valley ~4396' 02?143:0W% (‘63“1 987;(K: 538{ o CHer Beservolr =e00
4300~ S Scottetal. Qlv Little Valley 4310'Canyonatbase of  _4300’
4200'- 4199’ Present level of Great Salt Lake (M, 2017) Cutler Dam 4200°

Figure 11. Topography along crest of the Cache Butte Divide between the Wellsville Mountains (south) and Junction Hills (north). Upper part, with no vertical exaggeration,
shows highest bedrock (Oviatt, 1986b) along this profile or projected from east and west. Presence of the highest bedrock along the Cache Butte Divide at Cutler Narrows
probably required superposition from a deep entrenched valley in erodable tuffaceous Tst member of the Salt Lake Formation (see Goessel, 1999; Oaks, 2000) after westward
slip on the low-angle Beaver Dam fault (Figures 9, 10) after 4.4 Ma and subsequent uplift of the Cache Butte Divide along steep Basin-and- Range faults. Similar, yet differing
altitudes of Little Valley (Qlv) highstands suggest Cutler Narrows was not yet eroded to ~4954' during the Qlv highstand. Subsequent lake levels eastward, in Cache Valley,
including the rising leg of Lake Bonneville, are significantly higher than their counterparts in the west. This suggests that the low point of Cutler Narrows stood higher than
4922'at ~22 ka. Subsequently Cutler Narrows was excavated >612’ to its present depth of 4310’ by westward flow during the rise to the Bonneville highstand and then
eastward flow during the Bonneville Flood. The post-Qlv higher relative levels in Cache Valley likely resulted from diversion of the entire flow of the Bear River into Cache
Valley from Gem Valley via the Oneida Narrows ~55 ka (Bright, 1963; Bouchard and others, 1998; Pederson and others, 2016).
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Excavation of Cutler Narrows, Part |:

|. Highest Paleozoic bedrock along the Cache Butte Divide
is 1706 m (5596’) asl; bedrock spanned Cutler Narrows

2. This is ~129 m (422’) above present Bonneville highstand
3. Maximum canyon depth in bedrock is ~392 m (1286’)

4. After lowering of the divide on a LANF <4.4 ma, a lake in
Salt Lake Valley or Cache Valley overtopped the lowest
point on this divide, cut a canyon through Tsl, and then was
superimposed on Paleozoic bedrock near its highest point

5. Similar, yet differing altitudes of Little Valley highstands

suggest Cutler Narrows was not yet eroded to ~1510 m
(~4954’) during the Little Valley highstand, ~190-125 ka.
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Excavation of Cutler Narrows, Part 2:

6. Subsequent lake levels eastward, in Cache Valley, including the
rising leg of Lake Bonneville, are significantly higher than their
counterparts to the west. This suggests that the low point of
Cutler Narrows stood higher than 1500 m (4922’), but lower

than 1517 m (4978’) at ~22 ka.

/. Most of Cutler Narrows was excavated >186 m (>612’) to its
present depth at 1314 m (4310’) by westward flow during the
rise
to the Bonneville highstand and then by eastward flow during the
Bonneville Flood. Most probably occurred during the latter.

8. The post-Little Valley higher relative levels in Cache Valley likely
resulted from diversion of the entire flow of the Bear River from

Gem Valley via the Oneida Narrows ~55 ka (Bright, 1963;
Bouchard et al.,, 1998; Pederson et al., 2016). 29
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Figure 4. Proposed correlations of Saltair and Burmester cores. Water depths, soils, lithologies, and chrons from
Eardley and Gvosdetsky (1960) and Eardley and others (1973). OIS stages from Lisiecki and Raymo (2005).
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At least 5 pluvial lake cycles were identified in the
main Bonneville Basin from two deep cores and
isolated exposures in the main Bonneville Basin and

eastward in Cache Valley: Lava Creek B (~620 ka);
Pokes Point (~420 ka), Little Valley (~150 ka), Cutler

Dam (~60 ka) and Bonneville (~18 ka).

Capture of the Bear River at Oneida Narrows ~55
ka and the Bonneville Flood both occurred at the
north end of Cache Valley. Each had an important
role in excavation of Cutler Narrows, between
Cache Valley and the main Bonneville basin.
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Figure 9. Geologic section across southern Junction Hills, north of Cutler Narrows, and reconstruction of offset on Beaver Dam low-
angle normal fault (cf. Sprinkel, 1976; Goessel, 1999; Oaks, 2000) followed by deep erosion and offset by steeper normal faults. See
Goessel (1999) and Oaks (2000) for descriptions, ages, and thicknesses of subunits of the Salt Lake Formation (Tsl).
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Explanation: See Table 2 for details

B Kaufman & others (2001) below Cutler Dam, K1 to K3
O Oviatt & others (1999) Burmester core, O1 to O4
O Oviatt & others (1994b) Leamington Cyn, O5 to O7

Localities

B = Beck Spur

CD = Cutler Dam

F = Fish Springs Wash

O =Oquirrh
P = Payson dump
PC = Parleys Canyon

0.90— 0O Oviatt & others (1987) Various sites, 08 to O11 G = Geneva Rock, Pt of Mtn R = Ramsbottom pit 090
m Scott & others (1983) 15 sites, STt0 515 H = Harper &= Salan '
m Scott & others (1988) Geneva Rock, S16 K = Kearns. Breitling pit _
0.80— M14L() B - . = ' gap SM = Smart Mtn ¥
_:\\)\ McCoy (1987) 22 sites, M1 to M15 =itk TM = Table Mtn 0.80
§ 2 LC = Leamington Canyon T = Treasureton
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Figure 3. Amino-acid-racimization data correlated against approximate ages of Lake Bonneville and older lakes in the
Bonneville Basin and Cache Bay. Correlation lines connect data from the same study for the same snail or ostracode genus.
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Figure 10. Geologic section immediately south of Cutler Narrows, though highest point of Paleozoic bedrock along Cache Butte
Divide, based on mapping of outcrops and faults (Maw, 1968; Oviatt, 1986b; Goessel, 1999; Oaks, 2000), drillers’ logs of water wells,
and Bouguer anomalies of gravity. Qlbb and Qlbp are Bonneville and Provo highstands, respectively. Paleozoic (Pz) formations
include Dwcu and Dwcl (upper and lower Water Canyon, respectively), Slu and SO (upper Laketown and Laketown-Fish Haven),
Osp (Swan Peak), and Ogc (Garden City). The Beaver Dam fault lies above Pz at well 34C, but is shown offset by a younger normal
fault along the west base of the Cache Butte Divide. The western part of this section crosses the type area of the Cutler Dam unit
(Maw, 1968; Oviatt and others, 1987; Kaufmann and others, 2001) exposed along steep sides of the valley of the Bear River.
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Some Background

Thad Erickson’s first job after graduation in 1960 from Utah State’s
geology program was field assistant for Roger Morrison in the

Little Valley pit. In 2006 he discovered a compound geosol in the
Staker-Parsons pit, then assisted in collecting 3 OSL samples, and used
the USU EDM total station with Bob Oaks to establish precise
altitudes of numerous points in that pit. His recognition of a
distinctive pink/white/green marl in the pit as identical to one in older
deposits of Lake Bonneville in the Little Valley pit helped sort out the
stratigraphy before all of our OSL age dates were completed.

Glade Maw (1968), Bob Oaks’ first graduate student at USU, identified
the Fielding Geosol along canal exposures west of Cutler Dam, and

recognized that the underlying Cutler Dam beds were older than
Lake Bonneville. Jack Oviatt (1986) later named these units.
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OSL sample information and age dates for Staker-Parsons gravel pit, SE flank of Newton Hill, Cache County, north-central Utah.

Sample

Number

USU-

859

854

1082

855

1084

858

856

OSL
Age
in ka

15.44
+2.05

30.05
+4.22

30.27
+7.19

41.87
+5.48

45.60
+9.59

61.63
+8.39

69.44
+9.44

GPS
Altitude
in Feet

N.D.

4766
TR

4674
RO

4745
TR

4818
RO

4656
TR

4735
TR

Google
Altitude in
Feet [Year]

4732 [2011]
Map ~4790

4773 [2009]
Map ~4785

4669 [2011]
Map ~4775

4715 [2009]
Map ~4810

4863 [2011]
Map ~4875

4705 [2009]
Map ~4790

4703 [2009]
Map ~4810

Hand-

Level

in Feet

N.D.

~4748

~4665

~4739

N.D.

~4709

~4729

EDM
Altitude
in Feet

4737
Depth ~53'

N.D.
Depth ~37'

<4672
Depth~115

N.D.
Depth ~71'

4865
Depth ~10'

N.D.
Depth ~81'

N.D.
Depth ~81'

Sample

Altitude

in Meters

1444

1447

~1422

~1444

1483

~1435

~1441

Strati-
graphic
Unit

Late
Qlbp

Early
Qlbb

Early
Qlbb

Qf

Qf

Qcd

Qcd

Location and Comments; ~65 m W
correction from GPS data to 1927 N.
American datum for maps

NW corner of pit; silt & sand beds dip
E; below ~4780' Qlbp shore
~N4152.614' ~W 11157.426'

S of road, SW corner of alcove; silty
sand & clays above paleosol;
N 4152.4478" W 11157.3978'

Center of pit; laminated silty sand
over gravel; 10' above USU-1083
N 4152.5244' W 11157.3198'

SW alcove; red colluvium: sandy
gravelly mud over loess paleosol;
N 4152.478' W 11157.393'

W pit; white reworked ash in N-S
channel, under E-dipping gravel &
soil, over 4 W-dipping gravel;

N 4152.5045' W 11157.5009'

W alcove; vf-med sand below gravel
~25 ft below paleosol base;
N 4152.473"' W 11157.382'

W alcove; gravel 4.3"' below red
paleosol base; 9.8' below USU855;
N 4152.479"' W 11157.388'

Date and
Collectors

9-15-2010
TR & MN

9-7-2010
TR & RO

12-2-2011
RO & TE

9-7-2010
TR & RO

12-5-2011
RO

9-15-2010
TR & MN

9-7-2010
TR & RO
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Sample OSL
Number Age
USuU- in ka
1083 95.0
s
14.3
2490 171.5
hd
23.5
857 179.0
hd
25.7

GPS
Altitude
in Feet

4654
RO

4704 RO

4824
TR

Google
Altitude in
Feet [Year]

4669 [2011]
Map ~4780

4747 [2014]
Map ~4840

4821 [2011]
Map ~4865

Hand-
Level
in Feet

~4655

~4735

EDM
Altitude
in Feet

<4673
Depth~125

N.D.
Depth
~ 105’

N.D. EDM
4821 at
graded site
Depth~44'

Sample
Altitude
in Meters

~1419

~1443

~1470

Strati-
graphic
Unit

Qnh

Qlv

Qlv

Location and Comments

Center of pit; in gravel 8.4' below
laminated silty sand of USU-1082;
N 4152.5243' W 11157.3310'

W center of pit in E-W cut; sand
and gravel in cobble gravel, 22'
lower than E margin of overlying
channel; N 4152.5203'

W 11157.4165'

W center of pit in WSW cut; sand &
pebble groundmass in cobble
gravel; N 4152.492'

W 11157.477"

Date and
Collectors

12-2-2011
RO & TE

9-26-2016
RO & TE

9-15-2010
TR & MN

OSL = optically stimulated luminescence; ka = thousands of years ago; Google = Google Earth; EDM = total station,
electronic distance measurements with laser; HL = hand level used from EDM station 16; N.D. = no data; Map:
original surface altitudes are interpolated from USGS 7.5' Newton [C.I. = 5'] and Trenton [C.l. = 20'] topographic
quadrangles [1964]; Qlbp = Provo lake stage; Qlbb = Bonneville highstand lake stage; Qf = Fielding emergent interval
with 2 paleosols and channel; Qcd = Cutler Dam lake stage; Qnh = Newton Hill lake stage; Qlv = Little Valley lake
stage; MN = Michelle S. Nelson; RO = Robert Q. Oaks, Jr.; TE = Thad L. Erickson; TR = Tammy M. Rittenour
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Conclusions:

|. New OSL age dates establish presence of pre-Bonneville
Cutler Dam (~60 ka) and perhaps Newton Hill (~95 ka)
lake cycles and reconfirms presence of the Little Valley
(~190-125 ka) lake cycle in Cache Valley

2. Cutler Dam lake level is ~103 m higher than west of
Cutler Narrows

3. Newton Hill beds are ~80 m higher than Hansel Valley
shallow-water beds at West Gully

4. Cutler Narrows was excavated after 165 ma, probably
after Oneida Narrows was fully cut ~55 ka
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Saltair Core Burmester Core

OIS Stages Dated Events

Bonneville Flood 17.4 ka

ch
#Sb[:g;QhW
~114ka [109 #5d Qmc/Qnh?

Blake
~120ka 123

Paoha Island ash ~160 ka
#6| Qlv  (cf. Williams, 1994)

191
243

424
Qpp ~417 (Oviatt and
478 others, 1999)

533
#14[

563
(Gansecki and others, 1998)

Lava Creek B ash 602 +/-4 ka

2
#6[ 521 i

#12

1,
"

>
w
=

(Sarna-Wojcicki & Pringle, 1992)

Bishop ash 759 +/- 2 ka
,780ka ~790

#18!

814

| eweAniely  sayunig

Explanation
Strong Soil
Weak Soil
Ash or Montmorillonite (M)
Coarse Sand; Gr = with gravel
B3 Marl or Carbonate
[0 Deep, Fresh Water

Figure 4. Proposed correlations of Saltair and Burmester cores. Water depths, soils, lithologies, and chrons from
Eardley and Gvosdetsky (1960) and Eardley and others (1973). OIS stages from Lisiecki and Raymo (2005).
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LATE PLEISTOCENE LAKE SHAMBIP, CENTRAL UTAH

Daren T. Nelson' and Paul W. Jewell?

"Department of Geology and Geography, University of North Carolina—Pembroke, Pembroke, NC 28372;
“Department of Geology and Geophysics, University of Utah, Salt Lake City, UT 84112

Corresponding author (Jewell): paul.jewell@utah.edu

ABSTRACT

The Lake Shambip shoreline was first recognized and described in the early 1980s on the basis of subtle geomorphic features
south of the Stockton bar, a prominent feature of late Pleistocene Lake Bonneville. The lake developed in Rush Valley south
of the Stockton bar at approximately the same time as the lower and more widely recognized Provo shoreline in Tooele Valley
north of the Stockton bar. However, Lake Shambip shoreline elevations are significantly higher than typical Provo shorelines.
The shoreline is best expressed as a feature that cross-cuts earlier (> ~18,000 yr) transgressive barrier bars at ~1540 m above sea
level. Radiocarbon ages for Lake Shambip shorelines range from 13,300—14,100 yr B.P. (16,720-17,560 cal yr B.P.). Sr-isotopes
of mollusks collected in the shoreline and modern streams draining into Rush Valley suggest variable water sources for Lake
Shambip. The volume of water necessary to maintain a lake such as this during the late Pleistocene however is problematic.

This content is a PDF version of the author’s PowerPoint presentation.
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Rp = Lake Shambip shoreline (~1540 m a.s.l.)
Rg = Smelter Lake shoreline
P1 = highest Provo shoreline (~1480 m a.s.l.)
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\Water balances

* Inputs: streams, groundwater, precipitation

» Qutputs: evaporation, groundwater
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Conclusions

Lake Shambip was hydrologically isolated from the main body
of Lake Bonneville but appears to be contemporaneous with the
long-lived Provo shoreline of Lake Bonneville to the north. h

Multiple water sources (surface inflows, groundwater, and lake
effect precipitation) surrounded Lake Shampbip but there are
no obvious significant outflows.

A stable Lake Shambip thus implies a strong evaporative
climate of this area during the time of the lake’s existence.
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CEDAR VALLEY LAKE—AN ISOLATED LAKE IN CEDAR VALLEY,
UTAH COUNTY, UTAH, DURING THE BONNEVILLE LAKE CYCLE

Adam P. McKean and Jim M. Davis

Utah Geological Survey, Salt Lake City, UT 84116

Corresponding author (McKean): adammckean@utah.gov

ABSTRACT

Recent geologic mapping of Cedar Valley (Utah County, Utah) identified evidence for a lake that occupied the valley following
the Lake Bonneville highstand. After the Bonneville flood 18,000 years ago, Lake Bonneville dropped to the Provo shoreline
lake level and below the northern and southern thresholds of Cedar Valley. During the flood, waters flowing out of Cedar Valley
appear to have scoured surficial deposits and Tertiary bedrock at the southern threshold, just south of Goshen Pass. Isolated
from Lake Bonneville, the Cedar Valley drainage basin reverted to its own closed basin. Cedar Valley Lake stabilized at an
elevation of about 4900 feet (1494 m) or 45 feet (14 m) below the southern threshold. Evidence for a stabilized lake level in
Cedar Valley includes shorelines, gravel bars, beach deposits, and oversized alluvial channels. Since the lake level was well
below the southern threshold, other factors within its catchment contributed to a stabilized lake elevation, potentially including
precipitation, temperature, evaporation, stream flow, springs, seepage through bedrock, and groundwater. The lake likely per-
sisted beyond the overflowing phase and perhaps into the regressive phase of Lake Bonneville.

This content is a PDF version of the author’s PowerPoint presentation.
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- Tamara J. Wambeam 2001, Modeling Lake Bonneville basin
* 'ocatello . . . .
» morphology using digital elevation models
AN g University of Utah, M.S. Thesis
e Table 2. DRAINAGE BASIN AREAS
* @ *Salt Lake City
Drainage Basin Areza
(km”)

Bonneville basin (minus all other basins) 88,364

Nevada Cedar Valley, UT 699
Pine Valley, UT 1,903

Pocatello Valley, ID & UT 305

PuddleValley, UT 395

vt Sevier, UT 42,707

Tule Valley, UT 2,441

Total Bonneville drainage area 134,606

N 20 0 20 40 Miles
Jr St. George —
A ' 20 0 20 40 Kilometers
Arizona - ij_'e tion UTM

Fig. 6. Drainage basins for the different levels of Lake Bonneville:
C= Cedar Valley, GSL = Great Salt Lake basin, I = Pocatello Valley,
P = Puddle Valley, S= Sevier basin, T = Tule Valley, and W = Pine Valley.
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= Scoured surficial
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bedrock
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Evidence for a
stabilized lake
level in Cedar
Valley includes:
e Shorelines
e Gravel bars ¥
* Beach deposits
e Oversized

alluvial

channels
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Since the lake level was well below the
southern threshold, other factors within
its catchment contributed to a stabilized
elevation, potentially including:

* Precipitation

* Temperature

* Evaporation

e Stream flow

* Springs

* Interbasin groundwater flow
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ABSTRACT

Late Pleistocene Lake Bonneville is one of the classic locales for study of the solid earth response to surface loading. Due in
large part to the semi-arid Holocene climate, Lake Bonneville’s shorelines are outstandingly well preserved, recording a com-
plex history of lake level variations induced by deglacial climate change. The spatial pattern of the elevations of these shoreline
features are famously deformed such that features from the center of the lake are uplifted by ~75 m relative to features along
the periphery (Currey, 1982; Chen and Maloof, 2017).

Our presentation has two parts: We present (1) a dataset of 176 unique shoreline feature elevations of the highest Bonneville
shoreline, which were measured using high-precision differential GPS (dGPS) (Chen & Maloof, 2017); and (2) computations
of lake and Laurentide ice sheet loading and rebound, which we use to infer constraints on upper mantle viscosity and show
the possible far-field effect of the Laurentide ice sheet on the pattern of Lake Bonneville shoreline deformation (Austermann
and others, in preparation).

For (1), we build upon work by Currey (1982) and investigate the relationship between different shoreline feature elevations
and the still water level (SWL). From this analysis, we estimate the uncertainty of the elevation of the SWL relative to each
shoreline feature elevation measurement in the compilations by Chen and Maloof (2017) and Currey (1982). Combining these
two datasets, we use these constraints on the SWL to reconstruct our best estimate of the lake volumes of the Bonneville and
Provo lake stages.

For (2), using the revised lake level chronology of Oviatt (2015), and the aforementioned lake volume constraints, we compute
gravitationally self-consistent calculations of lake and Laurentide ice sheet loading that utilize 1-D (depth-dependent only) and
3-D viscosity structures (Kendall and others, 2005; Latychev and others, 2005) based on improved mapping of the lithosphere
and subsurface (Watts, 2006; Obrebski and others, 2011). We also investigate to what degree lateral variations in viscosity are
required to fit both the lake rebound and tilt from the peripheral bulge of the coincident Laurentide ice sheet.
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ADAPTATION, MITIGATION, AND BIOPHYSICAL FEEDBACKS
IN THE CHANGING BONNEVILLE SALT FLATS

Brenda Bowen!, Ciaran Harman?, Matthew Brownlee®, Kevin Deluca®,
William Brazelton’, and John Horel®

"Department of Geology and Geophysics, University of Utah, Salt Lake City, UT 84112;
’Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD 21218;
3Parks and Conservation Area Management, Clemson University, Clemson, SC 29634;
‘Department of Communication, University of Utah, Salt Lake City, UT 84112,
’School of Biological Sciences, University of Utah, Salt Lake City, UT 84112;
’Department of Atmospheric Sciences, University of Utah, Salt Lake City, UT 84112
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ABSTRACT

Bonneville Salt Flats (BSF) in northwest Utah is one of the final depositional remnants of the Lake Bonneville system, and
contains important evaporite sedimentological records of lake desiccation, but is also impacted by complex modern environ-
mental and human-related processes. The system is highly dynamic, responding to variations in rain, wind, evaporation, and
groundwater flux, and also to a century of land-speed racing, potash mining, and recreation which creates an intertwined social
and hydrologic system. North of I-80, a century of racing has created a culture that loves the salt. South of I-80, a century of
mining divides salty basins into different classes of brine evolution to produce potash, a key ingredient in the agricultural fer-
tilizer used to feed an expanding global population. The system is now changing in ways that are limiting historical uses, and
managers are responding with mitigation efforts to try to maintain multiple uses.

The character of BSF changes on daily, weekly, monthly, annual, and geologic time scales in response to fluctuations in water
balance, solute flux, and groundwater flow which is impacted by both local meteorology and water management associated
with mining. In addition, the texture of the salt surface is changed by land use including racing activities, which impacts water
fluxes through the crust. Land managers and stakeholders are actively making decisions about what to do to try to preserve this
environment, primarily for the legacy of land speed racing, while still maintaining opportunities for natural resource extraction
and ecosystem function. However, without a clear and quantified understanding of the processes governing the biophysical
system and the complex connections between the social fabric and biophysical processes, mitigation efforts may not have the
desired outcomes.

Our research aims to transform our understanding of both the social and natural systems that are intertwined at BSF to enable
data-driven decision-making and effective relationships among those interconnected by this unique place. The environmental,
hydrological, and microbiological conditions at BSF impact the salt crust over a range of spatial and temporal scales. Five
years of field observations and sampling, analyses of satellite imagery dating back the 1980s, and geochemical analysis of sur-
face brines have shown that spatiotemporal changes in surface water and fluctuations in the surface salt footprint are linked to
both climate and land use. A new weather station installed in the Fall of 2016 in the middle of BSF allows for unprecedented
analyses of halite surface dynamics. An understanding of the processes that change the surface composition and texture through
time inform interpretation of subsurface saline deposits at BSF. In addition, human activities, decisions, mitigation efforts, and
adaptation to changing conditions impact the biophysical system. Ongoing research seeks to quantify the rates and character-
istics of biophysical and hydrological change and evaluate the feedbacks between the biophysical changes and the stakeholder
communities. BSF provides a unique platform for providing broadly transferable insights into the complex dynamics and feed-
backs between coupled social-ecological systems in an actively changing and highly valued environment.

This content is a PDF version of the author’s PowerPoint presentation.



Adaptation, Mitigation, and Biophysical Feedbacks in the Changing Bonneville Salt Flats
Brenda Bowen, Ciaran Harman, Matthew Brownlee, Kevin Deluca, William Brazelton, and John Horel

Bonneville Salt Flats (BSF) in northwest Utah is one of the final depositional remnants of the Lake Bonneville system, and contains important
evaporite sedimentological records of lake desiccation, but is also impacted by complex modern environmental and human-related processes.
The system is highly dynamic, responding to variations in rain, wind, evaporation, and groundwater flux, and also to a century of land-speed
racing, potash mining, and recreation which creates an intertwined social and hydrologic system. North of 1-80, a century of racing has
created a culture that loves the salt. South of I-80, a century of mining divides salty basins into different classes of brine evolution to produce
potash, a key ingredient in the agricultural fertilizer used to feed an expanding global population. The system is now changing in ways that are
limiting historic uses, and managers are responding with mitigation efforts to try to maintain multiple uses.

The character of BSF changes on daily, weekly, monthly, annual, and geologic time scales in response to fluctuations in water balance, solute
flux, and groundwater flow which is impacted by both local meteorology and water management associated with mining. In addition, the
texture of the salt surface is changed by land use including racing activities, which impacts water fluxes through the crust. Land managers and
stakeholders are actively making decision about what to do to try to preserve this environment, primarily for the legacy of land speed racing,
while still maintaining opportunities for natural resource extraction and ecosystem function. However, without a clear and quantified
understanding of the processes governing the biophysical system and the complex connections between the social fabric and biophysical
processes, mitigation efforts may not have the desired outcomes.

Our research aims to transform our understanding of both the social and natural systems that are intertwined at BSF to enable data-driven
decision-making and effective relationships among those interconnected by this unique place. The environmental, hydrological, and
microbiological conditions at BSF impact the salt crust over a range of spatial and temporal scales. Five years of field observations and
sampling, analyses of satellite imagery dating back the 1980s, and geochemical analysis of surface brines have shown that spatiotemporal
changes in surface water and fluctuations in the surface salt footprint are linked to both climate and land use. A new weather station installed
in the Fall of 2016 in the middle of BSF allows for unprecedented analyses of halite surface dynamics. An understanding of the processes that
change the surface composition and texture through time inform interpretation of subsurface saline deposits at BSF. In addition, human
activities, decisions, mitigation efforts, and adaptation to changing conditions impact the biophysical system. Ongoing research seeks to
guantify the rates and characteristics of biophysical and hydrological change and evaluate the feedbacks between the biophysical changes and
the stakeholder communities. BSF provides a unique platform for providing broadly transferable insights into the complex dynamics and
feedbacks between coupled social-ecological systems in an actively changing and highly valued environment.
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BSF is one of the final depositional remnants of the Lake Bonneville system, and contains
important evaporite sedimentological records of lake desiccation, but is also impacted by
complex modern environmental and human-related processes.




Pirates of the Caribbean, 2007




The system is highly dynamic, responding to variations in rain, wind, evaporation,
and groundwater flux, and also to a century of land-speed racing, potash mining,
and recreation which creates an intertwined social and hydrologic system.




North of 1-80, a century of racing has created a culture that loves the salt.
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South of I-80, a century of mining divides salty basins into different classes of brine evolution to produce
potash, a key ingredient in the agricultural fertilizer used to feed an expanding global population.
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The character of BSF changes on daily, weekly, monthly, annual, and geologic time scales in
response to fluctuations in water balance, solute flux, and groundwater flow which is impacted

by both local meteorology and water management associated with mining.
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Texture of the salt surface is changed by land use including racing activities,
which impacts water fluxes through the crust.
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Salt crust strata have distinct
microbial communities with
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The salt crust microbial community has the potential to be
highly active in the carbon, nitrogen, and sulfur cycles.
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BSF provides a unique platform for providing broadly transferable insights
into the complex dynamics and feedbacks between coupled social-
ecological systems in an actively changing and highly valued environment.




Depositional and
diagenetic clues from
the sedimentary record
at BSF




Solute and water sourcing: geochemical
clues from groundwater feeding into the

western Bonneville basin




The role of humans in environmental change at BSF:
Clues from the water, solute, salt budget
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THE TRANSITION OF LAKE BONNEVILLE TO THE BONNEVILLE SALT FLATS
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ABSTRACT

The Bonneville Salt Flats (BSF) in the Utah West Desert is a remnant of Lake Bonneville. However, the timing of the transi-
tion in depositional environment from lacustrine to saline pan setting is not well documented. This research aims to describe
the timing and processes that governed how Lake Bonneville transitioned to the present day BSF. The BSF is an ephemeral
saline pan that consists of up to ~2 m of interbedded halite and gypsum. Lower gypsum layers are coarser grained and con-
tain ooids. The gypsum layers on the periphery of the BSF also contain oolitic grains. The origin of BSF layers is likely a mix
of detrital gypsum grains and ooids eroded from exposed areas in the West Desert and in-situ chemical precipitates. There is
evidence for halite and gypsum crystallization at the surface and displacive growth in the subsurface. The evaporites of the
BSF are underlain by laminated lacustrine sediment with geochemical (XRF), sedimentological, and micropaleontological
(ostracods, brine shrimp fecal pellets/ooids) indicators of environmental change. Current research indicates that this portion
of the West Desert may have undergone erosion or significant deposition prior to the deposition of the BSF, as the laminated
aragonite sediment at the base of a four-meter core did not include Lake Bonneville sediments. Ongoing research aims to
utilize optically stimulated luminescence to determine the age of this sediment and test the hypothesis that this area sustained
significant erosion or deposition during the Holocene. This research extends our understanding of the evolution of this region
of the western desert. Furthermore, it reveals the heterogeneity of deposition/erosion in the post-Lake Bonneville system.

This content is a PDF version of the author’s PowerPoint presentation.
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Hypotheses

g Evaporite

Lacustrine

Lake to Flats

1.
. Lake Bonneville -> erosional period -> Bonneville Salt Flats

2
3.
4. Lake Bonneville -> other process -> Bonneville Salt Flats

Lake Bonneville -> Bonneville Salt Flats

Lake Bonneville -> shallow lake -> Bonneville Salt Flats



Hypotheses

g Evaporite

Lacustrine

Evaporite Deposition
5. Gypsum deposited under varying conditions
a) during dry periods as detrital input
b) during wet periods as precursor precipitate to halite

6. Preserved halite deposited under wet (non-desiccated)
conditions

7. All halite below ~1 ft depth is recrystallized
8.>100 year old surface layers

Lake to Flats

1. Lake Bonneville -> Bonneville Salt Flats

2. Lake Bonneville -> erosional period -> Bonneville Salt Flats
3. Lake Bonneville -> shallow lake -> Bonneville Salt Flats

4. Lake Bonneville -> other process -> Bonneville Salt Flats



Proxies/Tools

Evaporite

Stage of
research

Lacustrine
XRF - water chemistry and X
sediment chemistry
Ostracods —water X
chemistry/salinity
Ooids —salinity X
Grain Size — sediment sourcing X

Depositional/diagenetic textures
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Performed
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Geochronology — awaiting preliminary results
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gypsum grain size

fine medium coarse very coarse

Sand Analysis

- Size, shape/angularity
- Sorting

- Composition

Core#:35 Core #:12B
angulag moderately sorted

\ subrounded, well sorted
‘ angular (medum grained), well sorted,
\ coarse sand Is 509 euhedral/50%
rounded

\ angulag elongate crystak, moderately
1 sorted

angulag (fine-medium grains -
broken/fractures; coarse grains
rywell-rounde) poorly sorted, colds

Core #: 3

subangular, moderately sorted, ooids
subangular, moderately, sorted, ooids
subangular, poorly sorted, coids

— .m_s_l_"!.ux_ws.
| sngudr, moderatelysoted angular, well sorted, halite, ooids
i angular, well sorted, carbonate clay chunks
angular, well sorted, ooids

.| angulag well sorted
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Tying depositional record to modern observations




Testing Geochronology — Future Work

Geochronology

OSL — fine grain fraction
Lead-Cesium

Carbon dating - Pollen
Uranium Series




s e e

@Leam More at:

b LE T R T [G) @bsfscience

S | thanks to Jack Oviatt, Dave Dinter, Andrea Brunelle, Pete Lippert, Kayl 2 ]

Bgflf;ijona:ss 0 Jac Via ave vinter, Andrea brunelle, Fete Lipper aylee it y @BSFSCIGHCG
===  [EPBSF Science




Background

adpusted eleation (m)
1400 1500

nistorical mean level of Great Sat Lake

Research Questions: How, and when, did the Bonneville Salt Flats form? How are they changing now?

Interpretations |
Study Location

+ Transect 5-5

oo [ [

W
i
!

Data

QYPSM 0ain size

[ e s
% Loene s3rgated Yo te
[ R—
[ [N
N

[

-
-

-. Transect 1-1; uninterpreted

o o

i Transect J-) vu 1Y =

o oe g

Conclusions \

- Multiple processes: eolian,
flooding, halite precipitation, etc.
built the Bonneville Salt Flats

- Many environmental proxies
can yield valuable insights

- More research necessary for
better correlations and age
determinations

Acknowledgments: this research was fundod by a NSF-ONH graer
v would nat hire been possible without the input of Brenca
Bowan, Evan Kipnis, a0 Lity Wetterlin
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Introduction
BSFis an ephemeral saline pan consisting of a
lens-shaped surface layer of up to ~2m of interbedded
halite and gypsum overlying fine grained carbon-
ate-rich mud that is as
a remnant of the desiccation of Lake Bonneville. The
surface landscape and surface evaporite sediments
change in resp floodit
desiccation, and human use.

Research Questions

How, and when, did the Bonneville Salt Flats form?
-What are modem and paleo-timescales of deposi-
tion and erosion?

-What processes are driving chemical sediment pre-
cipitation, accumulation, dissolution? (Unique op-
portunity to study modem surface processes as well
as recent depositional record)

Tools

-sedimentological records (grain and crystal
textures, diagenetic features, micro-fossils, etc.)

-microscopy
“-micro-CT SRS
———— - — - s

-geochemistry
-age dating
~fluid inclusions (future work)

Geological Context study time

Lake Bonnevile Water Bevations (m) 10, s
'1()‘(!) !-11(}(2‘ 1500 1600 T i

10

—— Bt
~ shorave

= Sunstony 2

/;m\xm T
— 20

* historical mesnlevel of Great SaftLake  \cuas ead ook g toward
S At e ACEEAradlock g o

Current Processes

1\ brine

ﬂrunw 1
Flooding

Core Data

See current crust conditions: bitly/bsfcamera

'Micro-scale - sedimentary textures
7

subsurface - thin sections

bi-'-l' ia
=

Interpretation - correlation

Transect L-L"

Interpretations
Halite:

- primarily deposited and preserved as
bottom growth chevrons

- isolated accumulation from wind con-
centrating rafts

- organic material preserved within halite
-primary fluid inclusions indicate surface
halite growth associated with dissolution
pipes

Gypsum:

- mixed gypsum sand sources

- eolian reworking of some gypsum
-fining upward trend

Diagenesis:
-halite porosity increases with depth
-chevron crystals cemented as porosity
increases along dissolution pipes
-halite preservation decreases with
depth

this research
a NSF-CNH grant and would not have been
passible without the input of Evan Kipnis and
LilyWetterlin.
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IS WATER FROM LAKE BONNEVILLE STILL WITH US? A GEOCHEMICAL EVALUATION
OF GROUNDWATER IN THE WESTERN BONNEVILLE BASIN

Jory Lerback and Brenda Bowen
Department of Geology and Geophysics, University of Utah, Salt Lake City, UT 84112

Corresponding author (Lerback): jory.lerback@gmail.com

ABSTRACT

Groundwater flowing into the Bonneville basin (BB) is used by phreatophytic vegetation, agriculture and domestic use, the U.S.
Army (Dugway Proving Ground), mining, and is a critical component controlling the landscape of the Bonneville Salt Flats
(BSF). Saline groundwater in BB is pumped from north and south of BSF onto the surface of BSF in an attempt to mitigate
salt removal by mining. Blue Lake (BL), just south of BSF, is one of the largest springs in Utah’s West Desert, and likely hy-
drologically connected to BSF through the relatively homogenous BB basin-fill lake sediment. This research aims to address 1)
how connected and homogenous the groundwater beneath the western BB is, and 2) whether the groundwater has moved along
regional flow paths toward BB, or is a direct remnant of infiltration from Lake Bonneville (LB).

Radiocarbon ('*C) dating of the water at BL and groundwater wells at BSF suggest these flow systems recharged 8000-16,000
years ago. A deep well (350 ft) northwest of BSF has a 2.7 percent modern carbon (pmC), compared to the 8.5 pmC at BL.
These waters may have recharged at a time when LB still covered the basin, and possibly directly from the lake. Sr isotopic
composition of the BL and wells at BSF (¥Sr/%Sr = 0.7135 and 0.7126, respectively) indicate that BL discharge might have
similar water-rock interactions as BSF groundwater, meaning all may have been LB water. The major ion compositions (Na*,
Ca?, Mg*, Cl,, HCO3-, SO4*) and noble gas composition (**Ne, “Ar, #Kr) of BL is more similar to that of BSF groundwater
than that of the groundwaters sampled from outside the BB.

However, particle tracking simulations in the Great Basin Carbonate and Alluvial Aquifer System Numerical Model (Brooks
and others, 2014) show that water in BB may be a mixture of water from the nearby mountain ranges and inter-basin flow
from the surrounding nested valleys. Additional *C dates were obtained to address whether the water of BL and BSF wells
are from different interbasinal flow systems as the hydrologic model suggests. Wells in the adjacent valleys (Deep Creek and
Antelope Valleys) have corrected radiocarbon transit times of 2000-9500 years (corrected from 1663 pmC). These results are
ambiguous as younger ages in potential recharge areas may be interpreted that these samples are higher up on a similar flow
path, moving ultimately to BB where older ages are to be expected. Deuterium and 8'%0 isotopes also indicate that all waters
sampled have a similar origin, as they trend along a common path of isotopic evolution toward the end member of the highly
evaporated BSF waters.

Understanding the composition, chemical evolution, and overall availability of this deep groundwater in the western BB will
inform how groundwater affects the landscape at BSF, and how it can be used to further human activities there.

REFERENCE

Brooks, L. E., Masburch, M.D., Sweetkind, D.S., and Buto, S.G., 2014, Steady-state numerical groundwater flow model of the
Great Basin carbonate and alluvial aquifer system: US Geological Survey Scientific Investigation Report 124-5213, 124 p.

This content is a PDF version of the author’s PowerPoint presentation.



A geochemical evaluation of groundwater in the
western Bonneville basin
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Water balance at Blue Lake (BL)
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Hypothesis 1: Mountain Front Recharge




Hypothesis 2: Interbasinal G_roundvyater Flow
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Hypothesis 3: Pluvial Infiltration

e Storage in alluvial and limestone aquifers would change
e Discharge rates variable through time

deep Pleistocene lake;
X groundwater storage in upland aquifers ”

=
9roundwate, St it
er di = r d|$Cha'ge
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of degp lake freshwater cap on saline lake; after regress!
sapropel deposition

Figure 11. Conceptual model for the deposition of organic-rich laminated mud on the floor of shallow GSL during the early Holocene.

Oviatt et al., 2015
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West Desert groundwaters after Gardner & Heilweil, 2014, Gardner and Masbruch, 2015, USGS, and Current study
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Radiocarbon dates

Using the Han and Plummer, 2013
groundwater correction model and the
Gonfiantini, 1972 IAEA model

Site Mean Transit Time Range
BL 5-12ka
FS 800 yr - 6ka

BSF deep well | 10-16ka
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West Desert groundwaters after Gardner & Heilweil, 2014, Gardner and Masbruch, 2015, USGS, and Current study
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Implications

e Groundwater provenance
e Groundwater budgets
e Solute Flux
e Archaeology
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MODERN GREAT SALT LAKE SALINITY GRADIENTS INFLUENCE
THE BIOLOGY OF MICROBIALITES

Bonnie Baxter

Great Salt Lake Institute at Westminster College, Salt Lake City, UT 84105

bbaxter@westminstercollege.edu

The information for this presentation is included in the publication below:

Lindsay, M.R., Anderson, C., Fox, N., Scofield, G., Allen, J., Anderson, E., Bueter, L., Poudel, S., Sutherland, K., Munson-Mc-
Gee, J.H., Van Nostrand, J.D., Zhou, J., Spear, J.R., Baxter, B.K., Lageson, D.R., Boyd, E.S., 2016, Microbialite
response to an anthropogenic salinity gradient in Great Salt Lake, Utah: Geobiology, https://onlinelibrary.wiley.com/
doi/abs/10.1111/gbi.12201
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STABLE ISOTOPE VARIABILITY IN MODERN GREAT SALT LAKE SEDIMENTS: HOW
DO LOCAL MICROBIAL PROCESSES TRANSLATE TO THE SEDIMENTARY RECORD?

Miquela Ingalls'?, Lizzy Trower', Carie Frantz?®, and Kathryn Snell'

"Department of Geological Sciences, University of Colorado, Boulder, CO 80309;
Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125;
‘Department of Geosciences, Weber State University, Ogden, UT 84408

Corresponding author (Ingalls): miquela.ingalls@colorado.edu

ABSTRACT

The abundance and distribution of carbon and oxygen stable isotopes within carbonate lake sediments are common-
ly used to reconstruct physicochemical conditions in ancient terrestrial environments (e.g., temperature, aridity,
elevation, and vegetation). However, we hypothesize that microbe-sediment interactions in the subsurface alter the
primary isotopic composition of carbonate either directly, e.g., by metabolic pathways such as sulphate reduction,
or indirectly by altering the porewater dissolved inorganic carbon (DIC) pool from which authigenic carbonate
precipitates. How does early, localized isotopic alteration manifest itself in the sedimentary record? In this study,
we measure carbon and oxygen isotopic composition of carbonate sediments (carb), organic matter (OM), and
porewater DIC from sediment cores in Great Salt Lake (GSL). When microbial metabolic processes (e.g., sulfate
reduction, respiration, methanogenesis) impact carbon cycling within the porewater-carbonate system, we expect
an anti-correlated trend in 6'*C values of OM and carbonate due to mixing of DIC and DOC pools and reduced cor-
relation between 0"3C and 0'*0. In addition, carbonates associated with OM respiration typically have lower §'*O
values, and thus we test the fidelity of 6'*0 as a secondary indicator of microbial influence on carbonate stable iso-
topes. We find significant 6'*0 and &'*C variability within and between five core sites (GSL State Park, Spiral Jetty,
and three sites at Antelope Island). The measured carbonate sediments and microbialites formed within geologically
contemporaneous macro-environments, and thus isotopic variability likely reflects perturbations to local carbonate
chemistry via biological processes in the sub-surface rather than changes in climate or environment.

A single sedimentary bed should record a snapshot in an environment’s depositional history. Our data suggest that
sampling across theoretically contemporaneous modern GSL sediments would yield ranges in "°C_, and 8"*O_ of
at least 5%o and 3%0VPDB, respectively. In the rock record, this variability would likely be interpreted as post-buri-
al, late-stage diagenesis rather than biologically driven eogenesis in the sub-surface environment. Thus, we demon-
strate the importance of lateral sampling of coeval geological sediments across intrinsincally complex lake systems
to fully characterize and use the geochemical and isotopic variability driven by localized biological processes to

fingerprint true primary environmental signatures.

This content is a PDF version of the author’s PowerPoint presentation.
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Expectations of sedimentary record

1. A single sedimentary bed records a snhapshot in an
environment’s depositional history.
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Expectations of sedimentary record

. A single sedimentary bed records a snapshot in an
environment’s depositional history.

. Stable isotopes in carbonate minerals record the
environmental conditions under which they precipitate.

lake water




Expectations of sedimentary record

1. A single sedimentary bed records a snapshot in an environment’s
depositional history.

2. Stable isotopes in carbonate minerals record the environmental
conditions under which they precipitate.

3. Therefore, if the stable isotopes of carbonate and organic
matter record climate information at a regional/basin scale,

their isotopic records should be relatively invariable across
sedimentary horizons.




Overview

. Future directions

. Review climatic, environmental, and biological factors that

determine stable isotopic compositions
Field, geochemical, and sedimentological approach

Characterize total C & O stable isotope variability across
modern GSL shoreline facies

Consider microbial mediation of early diagenesis
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Carbonate sediments can be altered by early diagenetic processes.

e.g. methanogenesis

e.g. autotrophic
sulfate

81 80 reduction
eg. A pH
hetercS>tI;oph|c A ALK
e.g. methanotrophy AN [D'C] & 813CDIC
5°Cic microbial
D bolism
in situ authigenic _-metapolisms

porewater
chemistry

carbonate
precipitation/

dissolution




N A carbonate mineral records the integrated product of all primary
~_and post-depositional experiences.

What physical, chemical, and biological presses drive post-
depositional alteration of the organic and inorganic isotopes of
lacustrine carbonate”

' How much longitudinal isotopic variability exists in a single lake? How
- oes that translate to a smgle horizon in a sed|mentary section?




Great Salt Lake |

How vriale are 613C and 480 records of lacustrine
carbonate? Can we tie 5'3C and 8180 to highly localized
| hydrogical effects and biological processes?
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Two main facies in GSL shoreline sediments:
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OOLITIC facies: SJ, SP. BB

Bridger Bay: medium sand-size
ooids with broken ooid fragments
and detrital quartz grains

State Park: fine to medium-size ooids;
micritic Artemia fecal pellets;
carbonate-coated intraclasts

Spiral Jetty: poorly sorted fine sand-
size ooids; elongated peloids; detrital
pyrite-bearing lithic fragments




OOLITIC facies: SJ, SP. BB

14C ages of inorganic and organic C
from Antelope Island ooid nuclei
~6600 yr BP, with
6000 subsequent years of growth
(Paradis et al., GSA 2017)

Time-averaged isotopic signal




Carbonaceous mud + detrital facies:
LFP, Al-3

Mud and fine-grained authigenic carbonate

likely record a shorter time interval of

carbonate precipitation than oolitic facies

Mud-size micritic carbonate
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Detrital quartz grains with thin (<50um)
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§513C and &80 variability dependent on lacustrine carbonate facies
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How variable are §13C and 56180 records of lacustrine carbonate due to highly localized
hydrological effects, biological processes, and/or seasonality of carbonate precipitation?

~7 %o variability iN 8'8Q0carb | Newell et al., 2017 data
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Down-core variability and trends: muddy facies off Antelope Island

Al-3
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Down-core variability and trends: muddy facies off Antelope Island

Al-3 Lady Finger Point
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Down-core variability and trends: muddy facies off Antelope Island

Lady Finger Point
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Has closed system sulfate reduction caused fractionation of §'3Corg t0 heavier values?

Lady Finger Point
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Sulfide precipitation as
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Has closed system sulfate reduction caused fractionation of §'3Cerg t0 heavier values?

Lady Finger Point
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Interpretation of hardground lithification:

1) Sediment burial below photic zone; cyanobacteria degrade
2) Cyano casts coated by authigenic Mg-Si phase
associated with sulfate reduction (Pace et al., 2016)

3) Aragonite precipitates mimicking EPS structure, lithifying
hardground
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Has closed system sulfate reduction caused fractionation of §'3Corg t0 heavier values?

2. Magnitude and direction of fractionation

1. Alter local alkalinity via between organic and inorganic carbon pools
microbial respiration of org C during SR determined by who does it and with
2[CH,0] + SO; + OH — 2HCO; + HS" + H,0 what electron donor (here: acetate).
HCO; + Ca?* — CaCO, + H” Desulfovibrio Desulfotomaculum Desulfobacter  Desulfobacterium
HCO; + H* — CO, + H,0 desulfuricans acetoxidans‘ hydrogenophilus  autotrophicum
2[CH,0] + SOz CaCo, + CO, + 2H,0 L Loy [ y
+OH- + Ca<| | +HS I o o, o
— co, initial co, —
(net: 2 initial 2 initial -_l 2 initial
~7 CO, finali A5 ,' | | — 28
& | 13C =0.5 %o I lI l |
e lactate  piomass IP3C=77% |
Sq) B30I AS1C=0.1 % Il’l' l | =50
o - lll | I B
]
32 O l, | Co | — -32
Next step: 16S rRNA amplicon B —M} Co, fna} 2 fna B
. gates OBC=12% AOBC=18% | 34
sequencing to ID SRB and pathways —‘acetate —\ ——
B ASBC = -8.6 %o Ad13C=07% bilomass Ad13C=038 %obiomass B
-36 — — -36

Londry & Des Marais, Applied and Environmental Microbiology, 2003



Has closed system sulfate reduction caused fractionation of §'3Corg t0 heavier values?

Lady Finger Point

ol 2 = e Hypothesis: Local increase in §'3Corg due to
A AD® community change: cyanos to SRB?
A . .
Next step: 16S rRNA amplicon sequencing to ID SRB and pathways
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Sediment-water interface as an approximation of a single stratum

South North
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Sediment-water interface as an approximation of a single stratum
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Conclusions

Stable isotopic variability across a single depositional horizon in Great Salt Lake basin could lead
to discrepant interpretations of ancient environments

Interannual shifts in microbial community composition drive significant alteration of §13C
Future work: 16S rRNA

Organic-inorganic C recycling in ooid nuclei results in unusually heavy §'3Corg? TBD
...facies matter in sampling the rock record for environmental and climatic reconstructions




Editor's note:
Subsequent to the conference an error was discovered in some of the data presented,
a few presentation slides with erroneous data have been removed.
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GREAT SALT LAKE MICROBIALITE CHRONOLOGY AND ISOTOPE GEOCHEMISTRY:
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ABSTRACT

Extensive lacustrine microbialite deposits exposed along the shores of Great Salt Lake (GSL), Utah, preserve a rich continental
paleoenvironmental record. We report microbialite carbon and oxygen stable isotope ratios in carbonate, and radiocarbon dates
from both carbonate and trapped organic matter. These data inform paleolake hydrological and biogeochemical changes from
the late Pleistocene through the Holocene. Uncalibrated '“C dates range from 14,747 +/- 50 to 3362 +/- 26 yr B.P. Calibrated
dates range from 17,945 to 3606 cal yr B.P., assuming that the radiocarbon was in equilibrium with the atmosphere when in-
corporated into the microbialites. The presence and impact of some long-residence time, older carbon on these dates (known
as the reservoir effect) is unknown, and could yield dates that are too old by a few hundred to few thousand years. Positive
correlations between carbonate 'O and 6"*C in some microbialites are consistent with a holomictic (mixes at least once per
year), hydrologically closed-basin lake with fluctuations in volume, chemistry, and associated changes in lake primary produc-
tion. However, inverse 8'*0 and 0'*C correlations present in a number of microbialites are enigmatic, but may imply periods
of higher salinity and stable lake stratification (meromixis) similar to modern GSL conditions. The preliminary geochronology
and isotope geochemistry in this study may indicate two prior periods of meromixis between ~13 and 9.5 ka, and 6 and 3.6 ka,
separated by periods dominated by holomictic conditions in GSL.

This content is a PDF version of the author’s PowerPoint presentation.



Great Salt Lake (Utah) microbialite chronology
and isotope geochemistry: implications for
paleolake biogeochemical evolution
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GREAT SALT LAKE MICROBIALITES
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RESEARCH QUESTIONS

Does microbialite geochemistry preserve a record of lake
composition and biogeochemical cycling?

How old are GSL microbialites?
Are they “growing’ today!

How and when do they grow!

Great Salt Lake Eocene Green River Fm

R e e

(Frantz et al,, 2014)



GSL STUDY LOCATIONS
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MICROBIALITE [ EXTURES
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MICROBIALITE [ EXTURES
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STABLE ISOTOPE GEOCHEMISTRY
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STABLE ISOTOPES + GEOCHRONOLOGY
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STABLE ISOTOPE GEOCHEMISTRY

Positive Correlations
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STABLE ISOTOPE GEOCHEMISTRY
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RECORD OF VOLUME CHANGE!
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STABLE ISOTOPES + GEOCHRONOLOGY
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Elevation (m asl

ISOTOPE CORRELATIONS
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Elevation (m asl
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SUMMARY

Periodic microbialite growth since the Pleistocene provides a
proxy record for Great Salt Lake hydro- and bio-geochemical
condrtions

C and O stable isotopes likely track lake geochemistry and
may Indicate past well-mixed periods versus more stable
stratification (like today)

Isotopic variations within and between microbialites may
track changes in basin hydrology, lake biogeochemistry, and
lake extent
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L AKE BONNEVILLE AND GREAT SALT LAKE
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INTO HOT WATER OR OUT OF OUR DEPTH?
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ABSTRACT

The continental carbonates along the modern shoreline at Lakeside, Utah, combine microbialites, travertine, and tufa in a con-
nected depositional system. Continental carbonates are well exposed at Atwoods Point, Death Point, and Dos Equis Point close
to Lakeside. Facies analysis and mapping in the field was supported by thin section petrography, as well as XRD, SEM-EDS,
and isotope analyses. Mississippian Great Blue Limestone bedrock is cut by fractures and an earlier karst system, providing
pathways for hyperalkaline groundwater. Other groundwater conduits, lined by carbonate, have been preserved in lake margin
cliff faces, exposed by collapse under shoreline processes. Onshore lake margin springs deposited drapes, cascades, rimmed
pools, and mounds of aragonitic carbonate. Shoreline lacustrine microbialites were physically linked to the onshore travertine.
Slightly deeper lacustrine microbialite benches completed the carbonate depositional system.

Carbonate mounds measuring meters to tens of meters across are cut by crevices that acted as vents for carbonate rich ground-
water. Alkaline groundwater flowed from bedrock outlets down and into the lake. Pavements and benches of microbialites
developed as nearshore and longshore reefs, possibly with the influence of longshore currents. Permanent flooding of lacustrine
carbonates, and recurrent flooding and exposure of the shoreline carbonates, led to precipitation of “dolomites” comprising
very high Mg-calcite, non-stoichiometric dolomite, and stoichiometric dolomite. Deeper lacustrine microbialites have been
pervasively dolomitized, while shoreline microbialites were dolomitized to a lesser extent. Shoreline microbialites and ground-
water spring carbonates were modified by pedogenesis with vadose and phreatic dolomitic cements. “Dolomites” gradually
diminish in the carbonates above the paleoshoreline, to disappear before reaching 10 m above historical lake levels suggesting
that lake water was the Mg source for the Mg-Ca carbonates.

Aragonite composition, as opposed to calcite, provides circumstantial evidence for mesothermal temperatures of resurgent
groundwater (>40°C). Skeletal aragonite and dendritic calcite fabrics indicate precipitation from hyperalkaline fluids. Isotope
geochemistry supports the interpretations of evaporitic conditions in groundwater-fed ponds, as well as of the meteoric ground-
water origin of late calcitic drapes.

Swash zone beach deposits are interbedded with shoreline lacustrine microbialites. This shows that the lake elevation at the
time of these Lakeside carbonates was between 1282 m and 1285 m, similar to historical Great Salt Lake. The system at Lake-
side was likely triggered by fall of the lake’s elevation to Great Salt Lake level. Further analytical work on the ages of the
geomorphic features and on the paleotemperatures of the different carbonates is underway in order to test this proposal.
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