SURFACE FAULT TRACE MAP OF THE MALAD CITY WEST QUADRANGLE, ONEIDA COUNTY, IDAHO

EXPLANATIONS

1. Malad City west quadrangle, USGS detail quadrangle map. The map is centered on the location shown on the USGS detail quadrangle map.
2. The map is based on the latest available geologic data and is intended to show the major surface fault traces in the area.
3. The map includes the Malad City west quadrangle, which is located in Oneida County, Idaho.
4. The map is intended to assist in the identification and location of surface fault traces in the area.

REFERENCES


INTRODUCTION

This map shows the surface fault traces in the Malad City west quadrangle. The data used to create this map were obtained from the USGS detail quadrangle map and other available geologic data.

METHODS

The data used to create this map were obtained from the USGS detail quadrangle map and other available geologic data. The map was created using a digital mapping software program.

ACKNOWLEDGEMENTS

The authors would like to thank the following individuals for their contributions to this project: [list of acknowledgments].
SURFACE FAULT RUPTURE HAZARD MAP OF THE SALT LAKE CITY NORTH QUADRANGLE, SALT LAKE AND DAVIS COUNTIES, UTAH

By

Adam L. Hiemstra and Adam P. McKean

2018

EXPLANATION

The following pages present a series of maps illustrating the potential for surface fault rupture in the Salt Lake City North Quadrangle, Salt Lake and Davis Counties, Utah. The maps are based on the analysis of geological and geophysical data, including fault mapping, seismicity, and other relevant information. The maps are intended to provide a visual representation of the potential seismic hazard in the area, with a focus on fault rupture scenarios.

The maps are divided into several sections, each covering a specific aspect of the seismic hazard. The sections include:

- Surface Fault Rupture Hazard
- Fault Geometry
- Seismicity
- Geophysical Data
- Regional Context

Each section is further divided into sub-sections, with specific maps and data presented for each sub-section.

In this document, the following symbols are used:

- Solid lines: Fault traces
- Dashed lines: Seismicity contours
- Gray areas: Seismic velocity data
- Yellow areas: Geophysical data
- Red areas: Hazard zones

The maps are generated using a combination of professional software and data from various sources, including the U.S. Geological Survey and other reputable institutions.

The maps are intended for use by professionals in the fields of geology, seismology, and earthquake engineering, as well as for educational and informational purposes.

REFERENCES

[Insert references here]

Acknowledgments

The authors would like to thank the following organizations and individuals for their contributions to this project:

- U.S. Geological Survey
- Salt Lake City Department of Planning
- Utah Geological Survey
- Davis County

This project was funded by the U.S. Geological Survey through the National Earthquake Hazard Reduction Program.
SURFACE LEHI FAULT HAZARD MAP OF THE LEHI QUADRANGLE, SALT LAKE AND UTICA COUNTIES, UTAH

by

Emily J. Kleber, Scott E.K. Bennett, and Nathan A. Toki

2010

EXPLANATION

The Lehi Fault is a right-lateral fault, and its rupture plane is shown as a red line with an orange outline. The fault extends from the southwest corner of the map to the northeast corner. The map includes a scale bar for distance measurement. The map also includes a north indicator for orientation. The map legend provides information on the symbols and colors used to represent different geological features. The map is oriented with north at the top.

REFERENCES

This map is part of a larger study of the Lehi Fault system and its potential impact on the surrounding areas. The study includes a detailed analysis of the geological, geotechnical, and seismic risk associated with the fault. The map is intended to provide a visual representation of the fault's location and characteristics, and to inform decision-making processes related to planning, development, and emergency response.

CREDITS

The map was created using ArcGIS software and a variety of data sources, including satellite imagery, aerial photography, and geological survey data. The map was reviewed and approved by the Utah Geological Survey and the Utah Division of Natural Resources.

For more information or to obtain a copy of this map, please contact the Utah Geological Survey at 801-538-7777.

This map is not intended for navigation, and is not for legal purposes. It is provided for informational and educational purposes only. The map is not to be used for any commercial or legal purposes, and may not be reproduced or distributed without written permission from the Utah Geological Survey.

Copyright 2010 Utah Geological Survey. All rights reserved. The map is protected by copyright and may not be reproduced or distributed without written permission from the Utah Geological Survey.
SURFACE FAULT RUPTURE HAZARD MAP OF THE OREM QUADRANGLE, UTICA COUNTY, UTAH

by

Emily J. Klieber and Scott E.K. Bennett

2018

EXPLANATIONS

The map shows potential surface faulting and揥alk-in揞ap-ning hazard for the OREM Quadrangle, Utah, by Emily J. Klieber and Scott E.K. Bennett. The map provides information on the potential for surface faulting and ground rupture in the area, based on historical and geological data. The map includes a legend and a scale bar for reference.

REFERENCES


COPIED TEXT

The map shows potential surface faulting and 揥alk-in 揞ap-ning hazard for the OREM Quadrangle, Utah, by Emily J. Klieber and Scott E.K. Bennett. The map provides information on the potential for surface faulting and ground rupture in the area, based on historical and geological data. The map includes a legend and a scale bar for reference.
SURFACE FAULT RUPTURE HAZARD MAP OF THE SANTARQUIN QUADRANGLE, UTAH AND JUAB COUNTIES, UTAH

by

Adan J. Hiossek

2018

This map shows potentially active faults in the Santarquin quadrangle during which outcrops, geological features and historical rock failure events have been shown.

Some earthquakes occur in the area, indicating potential for future seismic activity. Ellipse symbol indicates areas with possible seismic activity. Red line symbol indicates areas with greater than 7 magnitude earthquakes. Yellow line symbol indicates areas with less than 7 magnitude earthquakes. Green line symbol indicates areas with no recorded earthquakes.

Acknowledgments: The data used in this map was compiled and analyzed by Dr. David Hiossek, University of Utah. The map was prepared using ArcGIS software.

Disclaimer: This map is intended for informational purposes only and should not be used for decision-making or legal purposes. The map is not guaranteed to be accurate and may contain errors.

For more information, please contact the Utah Geological Survey at (801) 975-5200 or geology.utah.gov.