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EXECUTIVE SUMMARY 
AND 

GUIDE TO GEOLOGIC HAZARDS IN LAND-USE PLANNING 

by 

Barry J. Solomon 

Geologic hazards are naturally occurring geologic processes that present a risk to life and 
property, and are important factors to be considered prior to development. Under Chapter 12 of the 
Zoning Ordinance, Tooele County may require that special site-specific studies be performed to 
identify geologic hazards at sites proposed for development. Reports of study results, recommending 
measures for hazard reduction if necessary, should be submitted to the county for approval prior to 
construction. Cities have a similar authority to require special studies under zoning ordinances, 
subdivision ordinances, or development codes. 

This report provides the basis for enforcing these land-use regulations. It identifies areas 
within Tooele Valley and the West Desert Hazardous Industries Area (WDHIA), Tooele County, 
where special studies should be performed because of the potential for geologic hazards. The report 
contains a text which discusses geologic hazards, and maps which show areas where hazards may 
exist. 

The report text is divided into sections, each of which discusses individual geologic hazards 
or groups of closely related hazards. Each section is designed to stand alone and is organized as 
listed below. Hazard maps are provided with selected sections. 

• INTRODUCTION - A brief overview of the basis for considering the 
hazard. 

• CHARACTERISTICS -A definition of the hazard and why it occurs. 

• EFFECTS - A description of the potential consequences of each 
hazard. 

• HAZARD REDUCTION - A summary of techniques to reduce 
potential effects, or avoid the hazard. 

• USE OF HAZARD MAPS - In selected sections, a description of 
information used to assess the hazard potential and recommendations 
on how planners may use the hazard maps. 

• SITE INVESTIGATIONS - A summary of the scope of detailed site 
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investigations recommended in areas of potential hazards. 

• REFERENCES - A list of references used to prepare each chapter. 

Associated with selected sections are a set of maps (plates 1 through 5). These maps show 
areas of similar hazard potential or susceptibility, and are designed to indicate areas where site
specific investigations should be required by local governments prior to development. Table 1 gives 
our recommendations regarding requirements for these investigations, which should be conducted 
by qualified professionals, chiefly engineering geologists and geotechnical engineers. Maps have 
been prepared for the WDHIA at a scale of 1 :50,000, and for Tooele Valley at a scale of 1 :24,000 
on U.S. Geological Survey topographic quadrangles, of hazards for which sufficient data exist. 
Maps included with this report are: 

• SURFACE FAULT RUPTURE - During a large earthquake, fault 
rupture at depth causing the earthquake may propagate upward and 
displace the ground surface. This commonly results in formation of 
a main scarp and adjacent zone of deformation. The zone of 
deformation, which may be several hundred feet wide along the main 
fault trace, includes features such as ground cracks and tilted and 
downdropped blocks. 

The Oquirrh fault zone (OFZ) at the eastern margin of Tooele 
Valley is the only fault zone in either Tooele Valley or the WDHIA 
known to have ruptured the surface during Holocene time (the last 
10,000 years). The most recent surface fault rupture occurred along 
the OFZ between 4,300 and 6,900 years ago, and a significant 
potential exists for it to recur. Several smaller faults in southeastern 
Tooele Valley and northern Rush Valley may have ruptured during 
the last 10,000 years, but conclusive evidence is lacking. Maps show 
main fault traces of the OFZ and smaller faults, and also show special 
study areas that are generally 1,000 feet (300 m) wide centered on the 
main fault scarps. These areas are where the potential for surface 
fault rupture and related deformation should be determined for certain 
land uses by special studies prior to development. Design of 
structures to withstand surface fault rupture is difficult, and we 
recommend certain facilities be set back a safe distance from active 
faults identified by site-specific studies. 

• LIQUEFACTION SUSCEPTIBILITY - Liquefaction occurs when 
earthquake ground shaking causes certain soils to liquefy, lose their 
ability to support structures, and in some cases move downslope. 
Liquefaction susceptibility maps address ground-water conditions 
and soil properties conducive to liquefaction. Areas most susceptible 
to liquefaction are northern Tooele Valley and the western WDHIA. 
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Table 1. Recommended requirements for site-specific investigations for geologic hazards mapped in this 
study (modified from Lowe, 1990a, table A-1 ). Site-specific investigations (for all development 
types) are also recommended for other geologic hazards described in the text but not mapped 
because of insufficient regional information. 

Hazard Hazard Area Designation Development Type 

Essential facilities, Industrial and Residential 
lifelines, special- and commercial huildings suhdivisions 

high-occupancy (other than high-
huildin!!s occunancv) 

Surface fault rupture In (SFR)' Yes No' No' 
(plate I) 

Out Yes No No 

Liquefaction High and Moderate Yes Yes No' 
(plate 2) 

Low and V erv Low Yes No No 

Landslides High and Moderate Yes Yes Yes 
(plate I) 

Low and Verv Low Yes No No 

Dehris-sl ide/tl ow High and Moderate Yes Yes Yes 
susceptibility 

(plate 3} 
Low Yes No No 

Dehris-tlow/tlood deposits In (DFF)1 Yes Yes' Yes' 
and stream flooding 

(plate 3) 
Out Yes No No 

Rock fall In (RF)' Yes Yes Yes 
(plate 4) 

Out Yes No No 

Lake flooding C:rreat Salt Lake: he low 4,2 I 7 ft Yes Yes Yes 
(plate l} Rush Lake: below 4,979 ft 

Great Salt Lake: ahove 4,217 ft No No No 
Rush Lake: above 4 979 ft 

Ponding and sheet flooding In (PSF)' Yes Yes Yes 
(plate I) 

Out Yes No No 

Shallow ground water 0-10 ft Yes Yes Yes 
(plate 4) 

10-30 ft Yes Yes Yes 

30-50 ft Yes No No 

>50 ft Yes No No 

Expansive soil In (Xclay)' Yes Yes Yes 
(plate 5) 

Out Yes No No 

Gypsiferous soil In (Gyp)' Yes Yes Yes 
(plate 5) 

Out Yes No No 

1Recommended requirements are for site-specific geologic-hazards investigations in hazard areas designated hy the symhols in parentheses. 
'Appropriate disclosure should he required. 

Residential 
single lots 

No' 

No 

No' 

No 

Yes 

No 

Yes 

No 

Yes' 

No 

Yes 

No 

Yes 

No 

Yes 

No 

Yes 

Yes 

No 

No 

Yes 

No 

Yes 

No 

'Site-specific investigations are required in canyon bottoms and at canyon mouths along mountain fronts, where no dehris has in or flood-control structure exists 
ahove the site. Elsewhere, site-specific investigations (or appropriate disclosure) are at the discretion of the Tooele County Department of Engineering. 
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Although the maps do not address the probability of earthquake ground 
shaking sufficient to cause liquefaction, other studies show a significant 
potential for liquefaction-induced ground failure sufficient to cause 
moderate to severe damage in areas of high susceptibility in Tooele Valley. 
Because of a lesser earthquake potential, the hazard is substantially lower 
in the WDHIA. Avoidance of areas susceptible to liquefaction is usually 
not necessary. Structural measures and site-modification techniques are 
available to reduce this hazard. 

• LANDSLIDE HAZARD - Landslides are the downslope movements of
blocks of rock or soil under the force of gravity. They are usually the result
of changing moisture conditions in susceptible rock or soil ( static
conditions), but may be induced by earthquakes (dynamic conditions).
Landslides may affect property, buildings, transportation routes, and utility
lines, and may also produce flooding from damming of streams.

Landslide maps show the location of existing deep-seated (greater 
than 10 feet [3 m] thick) landslides and the relative susceptibility of slopes 
to fail under static conditions. Only a few landslides exist in Tooele Valley; 
their scarcity is due to the competent rock. The landslide hazard is greatest 
in the Oquirrh and Stansbury Mountains at the south end of the valley, 
where the slide-prone Manning Canyon Shale is present in slopes. No 
landslides have been found within the WDHIA, where there is no 
significant landslide hazard. The landslide hazard under dynamic 
conditions was not evaluated, however areas most susceptible to static 
landsliding are generally most susceptible to earthquake-induced landsliding 
as well. Avoidance is the least expensive measure for landslide-hazard 
reduction, but engineering techniques are available to stabilize slopes and 
ensure that site grading and development do not destabilize slopes. 

• DEBRIS-SLIDE, DEBRIS-FLOW, DEBRIS-FLOOD, AND STREAM
FLOODING HAZARDS - Debris slides, debris flows, debris floods, and
stream floods form a continuum of sediment/water mixtures which originate
in mountain canyons, but may cause damage over large areas beyond
canyon mouths. Loss of life and property damage may result from
drowning, high-velocity impact, erosion, or burial.

Susceptibility maps show relative susceptibility to slope failure in 
areas where debris originates. In Tooele Valley, canyon slopes in the 
southern Oquirrh Mountains near Tooele are most susceptible, where over 
90 debris slides and debris flows were identified; the WDHIA has a low 
susceptibility. Hazard maps show the location of existing debris-flow and 
debris-flood deposits and areas that may be impacted as debris and flood 
water travels downslope. The greatest hazards are in stream channels and 
gently sloping areas at channel mouths (alluvial fans) where streams issue 
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from moootain canyons. Such areas include alluvial fans along the Oquirrh 
and Stansbury Moootain fronts in Tooele Valley; the eastern portion of the 
WDHIA, which includes extensive alluvial fans deposited by streams from 
the Cedar Moootains; and small alluvial fans on the margin of the Grayback 
Hills in the WDHIA. 

Avoidance of areas subject to these hazards is an effective means of 
hazard reduction, but is not always possible because active alluvial fans 
commonly exist within developed areas, including Tooele City. Hazard
reduction techniques include source-area stabilization, modification of the 
zone in which debris and flood water travel from source to destination, and 
engineered structures to control deposition. Flood warnings and 
floodproofing may also be effective to reduce the risk from stream flooding. 

• ROCK-FALL HAZARD - Rock falls originate when erosion and gravity 
dislodge rocks from slopes. Rock falls commonly occur during storms and 
snowmelt, and may also be initiated by earthquakes. During a rock fall, 
dislodged material travels at high velocities and can pose a threat to 
structures and personal safety. 

The hazard maps show areas potentially affected by rock falls. 
Rock-fall hazards are foood in all moootain canyons, in Tooele Valley near 
the base of the Oquirrh and Stansbury Moootains and South Mountain, and 
in the WDHIA in the Grayback Hills. The best method of hazard reduction 
is avoidance, but modification or stabilization of the source area, 
construction of engineered barriers to stop or deflect rock-fall debris, and 
structural strengthening of facilities at risk are also possible. 

• LAKE FLOODING, PONDING, AND SHEET FLOODING - Lake 
flooding refers to inoodation oflow-lying areas associated with rises in the 
level of Great Salt Lake. Temporary, localized flooding in low areas during 
storm roooff or snowmelt is termed ponding. Sheet flooding occurs when 
flood waters, often generated by intense storms, spread over an area and are 
not concentrated in a well-defined depression or channel. Lake flooding 
may be both seasonal and long-term and may produce significant property 
damage. Ponding and sheet flooding are generally seasonal or short-term 
phenomena, but they may repeatedly occur and cause significant local 
damage. 

A lake-flood hazard may arise in northern Tooele Valley from an 
increase in the level of Great Salt Lake. The lake rose to an elevation of 
4,217 feet (1285 m) in the 1600s, the record highstand in recent times, and 
may reasonably be expected to reach that elevation again in the future. A 
lake-flood hazard may also arise in northern Rush Valley from an increase 
in the level of Rush Lake. The highest measured elevation of Rush Lake 
was 4,979 feet (1,514 m) in the 1800s. Ponding and sheet flooding may 

5 



occur in the mudflats south of the Great Salt Lake shore in Tooele Valley, 
and in the mudflats of the Great Salt Lake Desert in the western WDHIA. 
Land use in the zone oflake flooding should be compatible with the hazard. 
Engineered flood-control measures are possible but often expensive and 
subject to events that exceed design criteria. Floodproofing measures are 
available for structures in areas subject to lake flooding, ponding, and sheet 
flooding. 

• SHALLOW GROUND WATER - Ground water at depths ofless than 30 
feet (9 m) poses a hazard to basements, foundations, transportation routes, 
utility lines, and waste-disposal facilities. Shallow ground water also 
contributes to the potential of other geologic hazards, including 
liquefaction, surface flooding, expansive soils, and dissolution of soluble 
minerals. Shallow ground water is readily polluted by surface sources, and 
may ultimately contaminate deeper drinking-water supplies. 

Shallow ground water is present in northern Tooele Valley, and west 
of the Grayback Hills and in northern Ripple Valley in the WDHIA. 
Shallow ground water flooded basements in Erda in 1985 in response to 
several years of greater than average precipitation. Avoidance of below
ground facilities is the easiest solution to shallow ground-water problems, 
and is the recommended and often mandated solution when the proposed 
facility may result in environmental contamination. Foundation drains or 
pumps may be used to lower water tables, however both are expensive and 
unreliable long-term solutions. 

• PROBLEM SOILS - Problem soils are surficial geologic materials 
susceptible to volumetric change, collapse, subsidence, dissolution, or other 
engineering problems. In the study areas, mapped problem soils are either 
expansive or gypsiferous. 

Expansive soils are clay-rich, and expand and contract with changes 
in moisture content. Such soils may crack foundations and road surfaces, 
and plug wastewater disposal systems. Expansive soils are a potential 
hazard in northern Tooele Valley, and from Ripple Valley westward in the 
WDHIA. The best method of hazard reduction is to control the amount of 
moisture available to the soil. Engineering techniques also exist to stabilize 
foundations and roads. 

Gypsum in soil may dissolve, resulting in settlement. Gypsiferous 
soils are also a weak material with low bearing strength, and weather to 
form sulfuric acid and sulfates which may react with cement and weaken 
foundations. Gypsiferous soils are found in mudflats of northern Tooele 
Valley south of the Great Salt Lake shore, and the Great Salt Lake Desert 
on the western edge of the WDHIA. Dissolution of gypsiferous soils may 
be avoided by reducing the amount of moisture available to the soil. 
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Sulfate-resistant concrete should also be used for foundations in areas with 
gypsiferous soils. 

Maps indicate only where potential hazards may exist. We recommend that local government 
requirements for site-specific investigations, performed prior to issuance of building permits, be based on 
map hazard-area designations and development type as shown in table 1. The investigations may show 
that: (1) no hazards actually exist; (2) hazards exist, but recommended measures can reduce the hazards 
to acceptable levels or the hazard is already acceptably low ; or (3) hazards exist for which no hazard
reduction measures will suffice or are economically feasible, and the site is not suitable for the intended 
use. Once submitted to the local government, the report should be reviewed by qualified geologists and 
engineers and, if necessary, revised through additional investigations. Building permits should either be 
approved or denied only after submittal of complete investigation results. Once approved, it is important 
that report recommendations are followed during construction. 

Additional geologic hazards are discussed in this report for which no hazard maps were prepared. 
As with other geologic hazards, these must also be considered in site-specific investigations: 

• GROUND SHAKING - Ground shaking is the most widespread and 
frequent earthquake hazard, and is responsible for most earthquake-related 
damage. Tooele Valley and the WDI-IlA are susceptible to ground shaking 
from both nearby earthquakes and more distant earthquakes, such as those 
along the Wasatch fault zone. Ground shaking cannot be avoided, but can 
be reduced by adhering to seismic provisions in the Uniform Building Code 
(UBC) for all construction. Tooele Valley is in UBC seismic zone 3, and 
the WDHIA is in both zones 2B and 3. 

• TECTONIC SUBSIDENCE- Tectonic subsidence is the warping, lowering, 
and tilting of a valley floor that may accompany large surface-faulting 
earthquakes. This hazard may cause inundation along lake and reservoir 
shores and ponding of water in areas with shallow ground water, and may 
adversely affect facilities that require gentle gradients or horizontal floors 
such as wastewater-treatment plants and sewer lines. 

Tectonic subsidence may be a hazard in northeastern Tooele Valley 
west of the OFZ associated with surface faulting on the fault, but is unlikely 
to occur in the WDHIA because no surface-faulting hazards have been 
identified there. Avoidance of this hazard is generally not practical because 
areas potentially affected may be large and difficult to define. Engineered 
flood-control measures are possible and floodproofing measures are 
available for structures in areas subject to flooding. Tilting may be 
considered in the design tolerance of structures that depend on gravity
induced flow, such as wastewater-treatment plants. Facilities which contain 
dangerous substances may incorporate safety features. Releveling of 
facilities may be required after large earthquakes. 
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• OTHER EARTHQUAKE HAZARDS - A variety of other hazards may 
accompany earthquakes. These include: (1) ground failure due to loss of 
strength in sensitive clays; (2) subsidence in granular materials from ground 
shaking, and (3) flooding caused by seiches in Great Salt Lake, surface 
drainage disruptions, and increased ground-water discharge. The extent of 
property damage and loss oflife depends on the earthquake characteristics, 
duration of ground shaking, proximity to the earthquake epicenter, geologic 
and hydrologic conditions, nature of foundation materials, and building 
design. 

Tooele Valley and the WDHIA may be susceptible to these hazards 
from both local and distant earthquakes. The effects can be mitigated by 
special foundation designs or strengthening of structures subject to the 
hazard and, in the case of seiches, by the use of dikes and engineered 
breakwaters. 

• DAM FAILURE - Dam failures generally occur with little or no warning. 
The severity of flooding depends on the size of the reservoir and the type of 
failure. The effects of dam failure may include loss oflife and structural or 
other flood damage to buildings. In May of 1983 and 1984, stream inflow 
exceeded that which could be safely released from the Settlement Canyon 
Reservoir south of Tooele. Resultant floodwaters inundated Tooele streets, 
breached a dike, and damaged property. 

Dam-failure inundation studies are necessary to assess the likely 
extent of flooding caused by failure of dams in, and on the margin of, 
Tooele Valley. The WDHIA is not subject to dam-failure flooding because 
there are no dams in the vicinity. Land-use planning may restrict 
development in areas subject to dam-failure flooding, but a more common 
means of hazard reduction is a coordinated dam monitoring program and 
community emergency-response plan. 

• PIPING AND MINE SUBSIDENCE - Piping is the subsurface erosion of 
fine-grained sediment by ground water. This erosion may create large 
underground voids which could collapse and cause surface subsidence. 
Fine-grained sediments deposited by Lake Bonneville, present in both 
Tooele Valley and the WDHIA, are susceptible to piping. The hazard 
potential may only be assessed with site-specific studies. Piping and related 
damage may be reduced by proper drainage. 

Subsidence can also be caused by collapse of underground mines. 
Mine subsidence is a potential hazard on mountain slopes adjacent to 
Tooele Valley. In areas above mines, the collapse potential should be 
assessed prior to development. The Utah Division of Oil, Gas, and Mining 
can provide information regarding mining activity and the potential for 
subsidence in these areas. 
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• INDOOR RADON - Radon is a naturally occurring radioactive gas that, 
when inhaled in sufficient concentrations, can cause lung cancer. High 
indoor-radon levels are more likely to occur in areas underlain by rock or 
soil with relatively high amounts of uranium, deep ground water, and high 
permeability. Indoor-radon levels also depend on weather, construction 
type, and occupant lifestyle. A detailed assessment of factors affecting 
indoor-radon levels has been conducted in Tooele Valley, but not in the 
WDHIA. The detailed study in Tooele Valley shows that the hazard 
potential is generally moderate; scattered areas of high hazard potential are 
found in the southern and western portions of the valley, whereas areas of 
low hazard potential are found in the northern portion. Regional data 
suggest that the radon-hazard potential is also generally moderate the 
WDHIA. The most effective means of determining indoor-radon levels is 
to conduct indoor tests. If excessive levels are found, the hazard can be 
reduced by a variety of construction modifications. Construction techniques 
may be applied to new buildings in areas of high hazard potential to reduce 
radon entry routes. 

The geologic-hazard maps included with this report are generalized for planning purposes to show 
areas where site-specific studies are needed. The hazard potential of any specific area may differ from that 
shown on the maps. Moreover, hazards may exist that are not shown. The maps do, however, provide an 
indication of hazard potential that a prudent developer should consider prior to construction. Responsible 
local-government officials should consult the maps early during the planning and permitting process and 
use them to require the appropriate studies by developers. Utah Geological Survey staff are available to 
assist local governments in using these maps and reviewing final site-investigation reports. 
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SECTION A: 
BACKGROUND 

by 

Barry J. Solomon 

INTRODUCTION 

Geologic studies have been conducted in Tooele County for more than a century. In the first 
study, an 1854 expedition across the Great Basin of the western U.S., Beckwith (1855) was inspired 
with the ancient shorelines of "Tuilla Valley" which 11will perhaps afford .... the means of determining 
the character of the sea by which they were formed .... " Later, the great American geomorphologist 
G.K. Gilbert ( 1890) recognized that the landscape of the region had been shaped to a great extent 
by a large lake, rather than a "sea," and said of the Great Salt Lake Desert that "The area formerly 
covered by the main body of Lake Bonneville is now a plain, conspicuous for its flatness." He 
described the "'lost mountains' of Great Salt Lake Desert" as "circled by rocky and inhospitable 
coasts" during the Lake Bonneville highstand, but the "Cedar Range .... bleak and barren as it now is, 
we may picture as then mantled with verdure (Gilbert, 1890)." 

Today, geologic studies determine more than just the nature of ancient processes which 
formed the landscape. The study of geology provides information to evaluate geologic hazards that 
must be considered for safe and responsible development. To aid such development, the Utah 
Geological Survey (UGS) has undertaken a program of geologic hazards mapping throughout the 
state. Two areas were selected in Tooele County for assessment of geologic hazards (figure A-1 ): 
(1) Tooele Valley in east-central Tooele County, and (2) the West Desert Hazardous Industry Area 
(WDHIA) in north-central Tooele County. Tooele Valley contains most of the county's population, 
and is on the western margin of expanding metropolitan Wasatch Front communities. The WDHIA 
is an administrative unit established in 1987 by Tooele County to coordinate the development of 
hazardous-waste treatment, storage, and disposal facilities. 

These areas have been severely impacted by geologic hazards in the last decade, and a variety 
of potential geologic hazards are present. Above-average precipitation in the early 1980s resulted 
in basement flooding in Erda from shallow ground water, surface flooding in Tooele City from rapid 
snowmelt and an uncontrolled release of water over the spillway from Settlement Canyon Dam, and 
landslides and debris flows in canyons in the Oquirrh Mountains on the east side of Tooele Valley. 
Potential geologic and related environmental hazards include contamination of ground water in 
basin-fill aquifers; rock falls, debris flows, and flash floods in canyons and along valley margins; and 
earthquake-related hazards. Adverse foundation conditions also occur. Silty and sandy sediments 
subject to liquefaction ot hydrocompaction, clayey sediments and mudflats subject to shrinking or 
swelling, and gypsiferous dunes and mudflats subject to subsidence due to dissolution are all present 
in Tooele Valley and the WDHIA. A knowledge of these conditions and related hazard potential \vill 
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Figure A-1. Location map of Tooele Valley and the West Desert Hazardous Industry Area, 
Tooele County, Utah. The boundary of the Tooele Valley study area is shown by a dashed 
line. 

provide decision makers with valuable tools to undertake responsible action. 

This report defines and describes the hazards, and delineates areas in which hazards are likely 
to occur. A summary of hazards and their distribution is shown on table A-1. Related reports 
previously published include a preliminary assessment of geologic hazards in the WDHIA (Solomon 
and Black, 1990), a description of landslides in the Oquirrh Mountains on the eastern margin of 
Tooele Valley (Harty, 1990), and a road log and summary of geologic hazards in Tooele Valley 
(Solomon and others, 1992). 

PURPOSE AND METHODS 

The purpose of this study is to provide a tool for early planning by compiling maps depicting 
pertinent basic geologic data and constructing derivative maps to delineate areas where adverse 
geologic conditions might occur. The report and maps are designed to be the basis for enforcing 
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land-use regulations, such as ordinances and development codes, regarding geologic hazards. 
Geologic criteria are important considerations for responsible development. Such criteria are best 
applied early in the planning process to minimize construction and maintenance costs and 
environmental contamination, and ensure safe siting of critical facilities. 

The two study areas were selected after discussion \Vith staff of the Tooele County 
Department of Engineering. A literature search was undertaken to determine geologic map coverage 
and the impact and extent of past geologic hazards in the study areas. Surficial geology of the study 
areas, the basic data from which many hazard interpretations have been derived, was first mapped 
on air photos. Accuracy of air-photo interpretation was checked with field investigations, and air
photo maps were then transferred to 7 .5-minute topographic quadrangles at a scale of 1 :24,000 
(Solomon, 1993). Additional air-photo interpretation and field investigations inventoried existing 
geologic hazards and examined geologic materials to determine their potential for future impacts. 
Air-photo maps of geologic hazards, supported by field data, were then overlain on the geologic 
maps to construct derivative maps of hazard potential. Selected hazard interpretations were 
supplemented with computer modelling. The derivative maps, which delineate areas subject to 
geologic hazards, are compiled at the same scale as the geologic maps, and on the same base maps 
(figure A-2). 

The maps are only to be used for planning purposes and to determine potential hazards that 
might be encountered. Once hazards at a site have been identified using these maps, the site 
suitability must be demonstrated by detailed site characterization. Our recommendations for studies 
and hazard reduction will reduce the likelihood of property damage or loss of life from geologic 
hazards. However, the level of risk acceptable to local governments could vary, and these 
recommendations for studies and hazard reduction should be tailored to fit individual needs. UGS 
staff are available to assist local governments in using these maps and reviewing final site
investigation reports. 

SETTING 

Tooele Valley is in east-central Tooele County (figure A-1), a rural county with a 1990 
population density of about 3.8 persons per square mile (1.5 persons/knl) and population of 26,601 
(U.S. Census Bureau, 1990). The Oquirrh Mountains form the eastern border of Tooele Valley, and 
the Stansbury Mountains form the western border. Great Salt Lake lies to the north of Tooele 
Valley, which is separated from Rush Valley to the south by South Mountain. Drainage is north into 
Great Salt Lake. 

The Tooele Valley study area is bounded by the Stansbury Mountain crest to the west, the 
county line between Tooele and Salt Lake Counties in the Oquirrh Mountains to the east, and the 
lake shore to the north, and includes the northernmost margin of Rush Valley to the south. The study 
area has a north-south dimension of about 17 miles (27 km), an east-west dimension of about 22 
miles (35 km), and covers about 375 square miles (971 km2

). Elevations range from about 4,200 feet 
(1,280 m) at the Great Salt Lake shore to 11,030 feet (3,360 m) at Deseret Peak in the Stansbury 

A-3 



Table A-1. Hazard map summary. 

PLATE 1 

Sur1ace Lake Flooding, 
Fault Landslide Ponding, Sheet 

Rupture Hazards Flooding 

TEXT SECTION B G J 

NO. MAPPED AREA 

A West Desert Hazardous lndustrv Area -1 VL-L X 

B Flux Quadrangle -1 VL-M X 

C Burmester Quadranale -1 VI._1 X 

D Mills Junction Quadranale X VL-M X 

E Farnsworth Peak Quadranole X VL-M X 

F North Willow Canvon Quadranole -1 VL-M -1 

G Grantsville Quadranole -1 VL-M -1 

H Tooele Quadranole X VL-M -1 

I Binoham Canyon Quadrangle X VL-L -1 

J Deseret Peak East Quadrangle -1 VL-M -1 

K South Mountain Quadranale X VL-M X 

L Stockton Quadranale X VL-H -1 

M Lowe Peak Quadrangle -1 L,H -1 

X Hazard occurs in the mapped area. 

PLATE2 PLATE3 

Debris-slide, 
DeMs-flow, 

Debris-flood, and 
Liquefaction Stream-Flooding 
Susceptibility Hazards 

E 

VL-H 

VL-H 

M-H 

VL-H 

VL-H 

VL-M 

VL-H 

VL-H 
VI._1 

VI._1 

VL-H 

VL-M 
VI._1 

H 

L-M2 

L-M2 

L2 

L-M2 

L-M2 

L-M2 

L2 

L-M2 

L-H2 

L-M2 

L-M2 

L-H2 

M-H 

Expansive clay. 

Gypsiferous soil. 

PLATE4 

Shallow 
Ground 

Rod< Fall Water 

I K 

X A-D 

X A-O 

-1 A-B 

X A-O 

X A-O 

X B-O 

-1 A-O 

X A-O 

X D 

X D 

X A-O 

X B-D 

X D 

VL-H 

Hazard does not occur in the mapped area. 

Hazard potential or range of potential: 

Xclay 

Gyp 

A-O Depth to shallow ground water or range of depth: 
VL = Very Low 
L = Low 
M = Moderate 
H = High 

A = 0-10 feet (0-3 m) 
B = 10-30 feet (3-9 m) 
C = 30-50 feet (9-15 m) 
D = >50feet(15m) 

1No map is induded because the hazard does not occur in the mapped area or the potential for the hazard is uniformly very low. 

2Includes areas of sediment deposition and flooding from debris flows, debris floods, and stream flooding (OFF, table 1 ). 
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PLATE 5 

Problem Soils 

L 

Xday, Gyp 

Xday,Gyp 

Xday,Gyp 

Xday, Gyp 
1 -
1 -

Xdav 

Xdav 
1 -
1 -

Xday 
1 -
1 -
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Figure A-2. Index map of Tooele Valley and the West Desert Hazardous Industry Area. Letters A 
through Mare used in plate designations and table A-1. Study area boundaries are sho"\\'11 by dashed 
lines. 

Mountains. The study area includes portions of twelve U.S. Geological Survey 7.5-minute 
topographic quadrangles (figure A-2). 

Tooele City, in the southeastern comer of Tooele Valley, is about 30 miles (50 km) southwest 
of Salt Lake City. Tooele City is the county seat and largest community in the county, with a 
population of 13,887 in 1990 and more than 50 percent of the county total. Grantsville, in 
northwestern Tooele Valley, is the second largest community with an estimated population of 4,500 
in 1990 (U.S. Census Bureau, 1990). 

Tooele Valley has a semi-arid climate v.ith wide seasonal and diurnal temperature variability 
typical of middle-latitude continental regions (National Oceanic and Atmospheric Administration, 
1990). Tooele City has an approximate mean annual temperature of 50.7° F (10.4° C); mean monthly 
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temperatures are lowest in January (28.8° F [-1.8° C]) and highest in July (75.4° F [24.1 ° C]). Annual 
precipitation is 16.5 inches (42.0 cm). 

The WDHIA, located in north-central Tooele County (figure A-1 ), is essentially uninhabited. 
The Great Salt Lake Desert bounds the WDHIA to the north, west, and south. The Grassy 
Mountains and Puddle Valley lie to the northeast, and the Cedar Mountains to the southeast. Ripple 
Valley is in the center of the WDHIA, and is separated from the Great Salt Lake Desert by the 
Grayback Hills. Drainage of the WDHIA is west into the Great Salt Lake Desert. 

A zoning district established by the Tooele County Commissioners Board as "Hazardous 
Industrial District MG-H" defines the perimeter of the WDHIA. The district is about 20 miles (32 
km) long, has a maximum width of about 15 miles (24 km), and covers about 140 square miles (363 
km2

) (figure A-2). Elevations range from about 4,225 feet (1,288 m) in the western mudflats to 
5,000 feet (1,524 m) in the foothills of the Cedar Mountains. 

The WDHIA is about 65 miles (105 km) west of Salt Lake City. Four facilities operate in 
the area and one more is under construction (figure A-1). The first was established by U.S. Pollution 
Control, Inc. (USPCI) in 1981 when the Grassy Mountain hazardous-waste landfill opened. The site 
now contains several lined pits for the disposal of hazardous wastes, and equipment for the recycling 
and chemical destruction of other industrial by-products. In 1984, the Utah Department of Health 
opened a facility at Clive for the disposal of low-level radioactive mill tailings and associated 
contaminated residues and soil removed from the Vitro uranium mill in South Salt Lake City. The 
Vitro project encouraged Envirocare of Utah to open, in 1988, a landfill for low-level radioactive 
and mixed (low-level radioactive and hazardous) wastes adjacent to the Clive site. USPCI began 
operation in 1992 ofindustrial- and hazardous-waste transfer, storage, and incineration facilities, and 
similar facilities to be operated by Aptus are under construction. The incinerators are designed to 
thermally destruct both "hazardous" chemical waste materials, as defined under the Resource 
Conservation and Recovery Act, and "toxic" chemical waste materials, as defined under the Toxic 
Substance Control Act. 

The WDHIA has an arid climate, unlike Tooele Valley, but both areas have in common wide 
seasonal and diurnal temperature variability. The WDHIA has an approximate mean annual 
temperature of 46.6° F (8.1° C); mean monthly temperatures are lowest in January (19.2° F [-7.1° C]) 
and highest in July (79 .0° F [26.1 ° C]). Annual precipitation is 6.6 inches ( 16.8 cm). 
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SECTIONB: 
SURFACE FAULT RUPTURE 

by 

Bill D. Black 

INTRODUCTION 

Movement along faults at depth generates earthquakes. During earthquakes larger than 
Richter magnitude 6.5, ruptures along normal faults in the intermountain region generally propagate 
to the surface (Smith and Arabasz, 1991) as one side of the fault is uplifted and the other side 
downdropped (figure B-1). The resulting fault scarp has a near-vertical slope. Faults that show 
evidence of recurrent movement during Quaternary time (last 1.6 million years) have a potential to 
generate earthquakes that could cause surface rupture; the potential is highest along those faults that 
show evidence of recurrent movement during the Holocene (last 10,000 years). 

Surface fault rupture is a potential hazard in the Tooele Valley study area, but there are no 
known active faults (and therefore little potential for surface fault rupture) in the WDHIA. Tooele 
Valley is the result of millions of years of faulting, which has uplifted the Oquirrh and Stansbury 
Mountains on the east and west, and downdropped the basin between them (Everitt and Kaliser, 
1980; Barnhard and Dodge, 1988). Although no surface ruptures have occurred in Tooele Valley 
in historical time, the Oquirrh fault zone (OFZ) along the base of the Oquirrh Mountains has had a 
large-magnitude earthquake accompanied by surface rupture within the last 7,000 years (Olig and 
others, 1994). Other faults in Tooele Valley and northern Rush Valley show evidence for activity 
during Quaternary time. A potential exists for surface rupture to recur along these faults, and 
structures which straddle them may be damaged or destroyed by surface fault rupture. 

CHARACTERISTICS 

Oquirrh Fault Zone 

The OFZ is evident as a series of west-facing normal fault scarps 9.5 to 35.4 feet (2.9 - 10.8 
m) high, which offset Quaternary alluvial deposits (Barnhard and Dodge, 1988). The scarps extend 
discontinuously 11 miles (17 km) north-south along the Oquirrh Mountains, from east of Lake Point 
to south of Middle Canyon (plates ID, IE, IH, and II). 

Studies have indicated evidence for active faulting on the OFZ. Paleoseismic data from 
trenches excavated across scarps near the mouths of Big Canyon (plate IE) and Pole Canyon (plate 
ID) suggest the most-recent surface-rupturing earthquake (MRE) occurred from 4,300 to 6,900 years 
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Figure B-1. Diagram of a normal fault showing relationship of the epicenter to the focus, and 
the trace of surface rupture (fault scarp). The fault plane likely dips 50-60 degrees toward 
the valley. Note the focus of the earthquake is beneath the valley (downdropped) block, not 
on the trace of surface rupture (modified from Robison, 1993). 

ago, with a penultimate event between 20.300 and 26,400 years ago and an antepenultimate event 
older than 32,800 years ago (Olig and others. 1994). Lund and others (1994) indicate the Bonneville 
shoreline was displaced 8 to 10 feet (2.5-3.0 m) during the MRE; a large amount considering the 
length (7.5 miles [12 km]) of smface rupture. There is also geomorphic evidence for recurrent 
faulting near the northern end of the OFZ, where the scarp of the MRE diverges from an older scarp 
(Barnhard and Dodge, 1988). The compound scarps, representing both the MRE and older surface-
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faulting events, are up to twice as high as the single-event scarp and have surface displacements of 
up to 24 feet (7.3 m) (Barnhard and Dodge, 1988; Hecker, 1993). 

Other Faults 

Other faults in the Tooele Valley study area also have evidence for Quaternary movement. 
These include: (I) a discontinuous set of west-facing normal fault scarps south of Tooele (plates 1 H 
and IL), which offset late Pleistocene alluvial-fan deposits topographically above the Bonneville 
shoreline (Tooker and Roberts, 1992; Solomon, 1993); (2) a 0.2-mile (0.3-km) long west-facing 
normal fault scarp south of Stockton (plate IL), which offsets Holocene to late-Pleistocene Lake 
Bonneville deposits (Tooker and Roberts, 1992; Solomon, 1993); and (3) a 0.8-mile (1.3-km) long 
east-facing normal fault scarp in northwestern Rush Valley near East Hickman Canyon (plate lK), 
which offsets Pleistocene alluvial-fan deposits topographically above the Bonneville shoreline 
(Solomon, 1993). A Pleistocene-age fault not evident at the surface was also found in a gravel pit 
roughly 2 miles (3 km) northwest of Tooele (Utah Section of the Association of Engineering 
Geologists, 1994), and similar faults may occur elsewhere. No detailed investigations have been 
conducted on these faults and no paleoseismic data are available. 

EFFECTS 

During surface-faulting earthquakes, offset occurs on the main surface trace of the fault 
zone (Schwartz and Coppersmith, 1984). This offset forms a near-vertical scarp, commonly in 
unconsolidated surficial deposits, that begins to ravel and erode back to the material's angle of repose 
(33-35 degrees). Antithetic faults (faults with an opposite sense of movement from the main fault) 
on the downthrown side of the main trace may also form, generally exhibiting a lesser amount of 
offset, but sometimes as much as several feet (figure B-2). The zone between these two faults may 
be faulted and tilted in a complex manner. In some cases, a broad zone of flexure may form on the 
downthrown side of the main fault in which the surface is tilted downward toward the fault zone. 
Deformation associated with surf ace fault rupture can damage or destroy structures and sever 
lifelines. 

HAZARD REDUCTION 

It is difficult, both technically and economically, to design a structure to withstand several 
feet of offset through its foundation. Because surface fault rupture occurs without warning and is 
a life-threatening hazard, avoidance of the main trace of the fault is the principal hazard-reduction 
technique. However, in some areas adjacent to the main trace within the zone of deformation, 
avoidance may not be necessary. Less damaging (smaller) offsets and tilting may occur and 
structural measures may be taken to reduce damage and threat to life. However, structural damage 
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Figure B-2. Diagram of a normal-fault zone showing typical features near the ground surface. 
Although the sketch is not to scale, surface offset is usually 6-9 feet (2-3 m) (Robison, 1993). 

may still be great, and buildings in the zone of deformation may not be safe for occupants following 
a large earthquake. 

USE OF HAZARD MAPS 

Plate 1 shows main fault traces with the greatest potential for future movement in the Tooele 
Valley study area (figure B-3). These maps also indicate special study areas where surface-fault
rupture hazards need to be considered for certain land uses (table 1). The special study areas, which 
follow fault traces mapped by Solomon (1993), are about 500 feet (152 m) wide on both the 
upthrown and downthrown sides of the main fault scarp. Site-specific investigations addressing 
surface-fault-rupture hazards are needed in special study areas because the fault maps are not detailed 
enough to include all fault traces and delineate zones of deformation at a particular location. 
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Figure B-3. Index map of areas (crosshatched) where surface-fault-rupture hazards are mapped 
on plate 1. Letters are used in plate designations. Study area boundaries are shown by 
dashed lines. 

SITE INVESTIGATIONS 

Site investigations for surface-fault-rupture hazards will vary depending on the proposed land 
use, nature of faulting, and amount of pre-existing disturbance of the surface. In general, 
investigations are needed to delineate the location of faults (if present), characterize offsets, and 
suggest setback distance. The Utah Section of the Association of Engineering Geologists ( 1987) has 
prepared guidelines for performing surface-fault-rupture investigations and preparing reports. 

At undisturbed sites, the initial phase of a surface-faulting investigation should include 
mapping of all suspected faults and scarps. Mapping consists chiefly of identifying fault scarps or 
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field investigations. If fault scarps are found, topographic profiles (two-dimensional cross sections) 
can defme slopes needed to determine standard fault setbacks. The likely location of the fault and 
minimum setback distances can be determined from scarp slopes. Faults are commonly located at 
the midpoint of their scarps (McCalpin, 1987); if the scarp slope is less than 30 percent, structures 
should be set back a minimum of 50 feet (15 m) from the scarp midpoint (figure B-4a). If the scarp 

slope is 30 percent or greater, then the setback should be taken from the 30 percent slope break at 
the top and bottom of the scarp (figure B-4b ). If profiles indicate that backtilting, flexure, secondary 

faulting, or graben-bounding antithetic faults are present in a wide zone of deformation, the setback 
distance should be taken from the outermost faults or where the undeformed pre-fault surface slope 
is regained (figure B-4c). By following these recommendations, structures should avoid straddling 
the main, and potentially most dangerous, fault trace. However, the setbacks only reduce the risk 
from surface fault rupture and do not guarantee that damage won't occur. 

If structures are to be placed within the 50-foot (15-m) setback zone, trenching studies are 

needed to demonstrate a lack of deformation within this zone. Trenching studies may also be needed 
to characterize faults which have not been adequately studied, such as those in northern Rush Valley. 
Based on trenching data, fault activity can be assessed and recommendations can be made for 
variances from minimum setback guidelines. In some cases, trenches should be offset (along the 
strike of the fault) from actual building foundations to avoid adversely affecting soil-foundation 
conditions with trench backfill. 

In areas where surface deposits have been disturbed or regraded, or geologically young areas 
such as active stream flood plains and alluvial fans, surficial materials may post-date faulting and 
be sufficiently thick to conceal older faulted deposits and faults. These areas would require that site
specific studies contain recommendations for setback distances by projecting faults from adjacent 
property through the study area. If setback distances cannot be determined from projections, 
trenching may be done to a depth that encounters older disturbed material. 
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Figure B-4. Diagram of recommended minimum setback distances, relative to fault scarps, in areas 
where trenching studies are not performed. Recommended setback distances are: (A) 50 feet 
from the midpoint of a scarp that is less than a 30-degree slope, (B) 50 feet from the top and 
bottom slope break on a scarp that is greater than a 30-degree slope, and (C) 50 feet from the 
slope break (at the top of the scarp) and the farthest antithetic fault for scarps where a graben 
is present (Robison, 1993). 
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SECTION C: 
GROUND SHAKING 

by 

Bill D. Black 

INTRODUCTION 

Ground shaking is the most widespread and frequently occurring earthquake hazard. The 
Tooele Valley study area is located in the Intermountain seismic belt (ISB), a generally north
south trending zone of increased earthquake activity which bisects Utah (figure C-1 ). The 
WDHIA is west of the ISB. There are many active faults within this zone capable of producing 
earthquakes. Both Tooele Valley and the WDHIA could be susceptible to ground shaking from a 
surface-faulting earthquake centered on a nearby fault or distant fault. In addition, earthquakes 
large enough to cause damage, but which don't cause surface fault rupture (up to magnitude 6.5) 
and thus are not attributable to a mapped fault, may occur anywhere in the area (Smith and 
Arabasz, 1991). 

Ground shaking is caused by seismic waves generated during an earthquake. The waves 
originate at the source of the earthquake (or focus) and radiate out in all directions (figure C-2). 
The extent of property damage and loss of life due to ground shaking depends on factors such as: 
(I) proximity and strength of seismic waves at the surface (horizontal accelerations are the most 
damaging); (2) amplitude, duration, and frequency of ground motions; (3) nature of foundation 
materials; and ( 4) building design (Costa and Baker, 1981 ). 

A building need only withstand the force of gravity (1 g) to support its own weight. 
However, during an earthquake, a structure is also subjected to horizontal accelerations that may 
be greater than that of gravity. Accelerations are normally expressed in decimal fractions of the 
acceleration due to gravity (g) (32 feet/second2 [9.8 m/s2

]). The threshold for damage to weak 
structures (buildings not specifically designed to resist earthquakes) is roughly 0.1 g (Richter, 
1958). 

CHARACTERISTICS 

Large magnitude earthquakes typically cause more damage because they result in larger 
amplitudes of ground motion for longer periods of time. Because energy is dissipated as seismic 
waves travel through the earth, ground shaking generally decreases with increasing distance from 
the epicenter. Seismic waves can travel long distances, as shown in the September 19, 1985, 
magnitude 8.1 Michoacan, Mexico earthquake that devastated portions of Mexico City, 240 
miles (386 km) from an epicenter off the Pacific coast of Mexico (Ghosh and Kluver, 1986). 
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Figure C-1. Tooele Valley and the West Desert Hazardous Industry Area with respect to the 
Intermountain seismic belt (modified from Arabasz and Smith, 1981). 
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Figure C-2. Diagram showing factors affecting ground shaking, including: fault location, 
earthquake focus and epicenter, surficial deposits, and propagation of seismic waves 
(modified from Robison, 1993). 

In certain cases, earthquake ground motions can be amplified and shaking duration 
prolonged by local site conditions (Hays and King, 1982). The degree of amplification depends 
on factors such as thickness of the sediments and their physical characteristics such as "stiffness" 
or "softness". "Soft" sediments are generally clays with low shear-wave velocities. Studies 
along the Wasatch Front of weak ground motions produced by distant explosions at the Nevada 
Test Site indicate that certain ground motions are amplified on soft-soil sites by as much as 10 to 
13 times relative to rock sites (Hays and King, 1982). Studies of earthquakes worldwide have 
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demonstrated that near-smface "soft" sediments amplify ground motions (Gutenberg, 1957; Seed 
and others, 1987; Borcherdt and others, 1989; Jarpe and others, 1989). These "soft" sediments 
include fine-grained fluvial or lake deposits, which are extensive throughout Tooele Valley and 
the WDHIA. Recent theoretical studies by Adan and Rollins (1993) and Wong and Silva (1993) 
indicate that amplification may also occur in shallow stiff (sandy and gravelly) soils. These 
conditions may be found around the periphery of Tooele Valley along mountain fronts and 
around the Grayback Hills in the WDHIA. 

Both Tooele Valley and the WDHIA are susceptible to ground shaking from an 
earthquake on a mapped fault, or from a "floating earthquake" on a fault not evident at the 
surface. Although the principal active fault mapped in Tooele Valley is the Oquirrh fault zone 
(OFZ) of Barnhard and Dodge (1988), there are several other potentially active faults within 30 
miles ( 48 km) of Tooele Valley: (I) the Wasatch fault zone, at the base of the Wasatch Range 
east of Tooele Valley; (2) faults such as the Mercur, St. John Station, and Clover fault zones in 
Rush Valley to the south (Barnhard and Dodge, 1988), and other lesser-known faults in northern 
Rush Valley (Tooker and Roberts, 1992; Solomon, 1993); (3) the Stansbury fault zone, on the 
west side of the Stansbury Mountains west of Tooele Valley (Barnhard and Dodge, 1988; 
Hecker, 1993); and (4) the East Great Salt Lake fault zone, beneath Great Salt Lake west of 
Antelope Island (Arabasz and others, 1992; Hecker, 1993). There are no active faults mapped 
within the WDHIA, but there are two potentially active faults within 30 miles (48 km) of the 
WDHIA: (1) the Puddle Valley fault zone, on the west side of Puddle Valley to the northeast 
(Barnhard and Dodge, 1988); and (2) the Stansbury fault zone to the east. 

EFFECTS 

Failure of man-made structures from ground shaking is responsible for most earthquake 
losses. Proper building design can reduce damage. Older unreinforced-masonry buildings are at 
a higher risk than newer earthquake-resistant designs. Studies have cited the high risk from 
ground shaking for the large number of older buildings in Utah (Algermissen and others, 1988). 

Horizontal motions are typically the most damaging type of ground shaking. In addition, 
different types of structures are affected by different frequencies of vibration. When the 
dominant frequency of ground shaking matches the natural frequency of vibration of a structure 
(a function of building height and construction type), resonance can occur that may result in 
severe damage or collapse. Proximity to the source of the earthquake also influences the damage 
caused by ground shaking. Ground motion maps prepared by Algermissen and others ( 1990) 
show the expected peak horizontal acceleration on bedrock with a 10% chance of being exceeded 
in time periods of 50 and 250 years (figure C-3). Horizontal accelerations on the 50-year map 
are typically used in building design. These accelerations range from 0.15 to 0.20 gin Tooele 
Valley and from 0.1 to 0.15 gin the WDHIA (figure C-3). As an example of damaging ground 
motions, accelerations of 0.26 and 0.29 g were recorded close to the I-880 freeway overpass that 
collapsed during the 1989 Loma Prieta earthquake in California (Shakal and others, 1989). 
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Figure C-3. Expected horizontal acceleration on bedrock in Utah with a 10% chance of being 
exceeded in 50 and 250 years (after Algermissen and others, 1990). Tooele Valley and 
the West Desert Hazardous Industry Area (WDHIA) are crosshatched. 
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Bolt (1988) relates peak horizontal acceleration (PHA) to the Modified Mercalli intensity 
scale. The Modified Mercalli intensity scale measures the effects of ground shaking through a 
ranking based on observed effects and damage (table C-1 ). A PHA of 0.12 g, equivalent to 
Modified Mercalli intensity VII, was recorded 25 km (16 mi) from the epicenter of the ML5.7 
1962 Cache Valley earthquake (Smith and Lehman, 1979). Despite the relatively modest ground 
motions, this earthquake caused nearly $1 million of damage (1962 dollars; Lander and Cloud, 
1964) and illustrates the power of even moderate-sized earthquakes to cause considerable 
damage. By comparison, estimated damage from the 1993 magnitude 5.6 Scotts Mills 
earthquake in Oregon is so far nearly $30 million (Madin and others, 1993). 

Table C-1. Modified Mercalli intensity scale (modified from Bolt, 1988) 

Intensity value and description Peak 
horizontal 

acceleration 

I. Felt only by a very few under especially favorable circwnstances. 

II. Felt only by a few persons at rest, especially on upper floors of buildings. Delicately suspended objects may 
swin2. 

ill. Felt quite noticeably indoors, especially on upper floors of buildings. However, many do not recognize it as an 
earthauake. Standin11. automobiles mav rock slil!htlv. Vibration is like a oassinl! truck. Duration estimated. 

IV. Felt indoors by many during the day, outdoors by only a few. At night some people awakened Dishes, 0.0J5g-0.02g 
windows, and doors disturbed; walls make creaking sounds. Sensation is like a heavy truck striking the building. 
Standin1,1 automobiles rocked noticeablv. 

V. Felt by nearly everyone; many people awakened at night. Some dishes and windows broken; cracked plaster in a 0.03g-0.04g 
few places; unstable objects overturned. Disturbance of trees, poles, and other tall objects is sometimes noticed. 
Pendulum clocks mav stoo. 

VI. Felt by all, many frightened and run outdoors. Some heavy tumiture is moved; a few instances of fallen plaster 0.06g-0.07g 
and damal!ed chimnevs. Damal!e is slil!bt. 

VII. Everybody runs outdoors. Damage is: ( 1) negligible in buildings of good design and cons1IUction; (2) slight to 0.10g-0.15g 
moderate in well-built ordinary structures; and (3) considerable in poorly-built or badly-designed structures. 
Some chimneys are broken. Noticed bv oeoole drivin11 cm. 

VIII. Damage is: (I) slight in specially-designed structures; (2) considerable in ordinary buildings, with partial 0.25g-0.30g 
collapse: and (3) great in poorly-built structures. Panel walls thrown out of frame structures. Chlmneys, factory 
stacks, columns, monuments, and walls fall down. Heavy tumiture overturned. Sand and mud ejected in small 
amounts. Chanl!es in weJl water. Peoole drivinl! cars disturbed. 

IX. Damage is considerable in specially-designed structures; well-designed frame structures thrown out of plumb. 0.50g-0.55g 
Damage is great in ordinary buildings, with partial collapse. Buildings shifted off of foundations. Ground 
consoicuouslv cracked. 

X. Some well-built wooden structures destroyed; most masonry and frame structures witllfoundations destroyed; .... More than 0.60g 
ground is badly cracked. Rails bent Numerous landslides from river banks and steep slopes. Sand and mud 
shifted. Water solashed and slonne.d over river banks. 

XI. Few, if any. (masonry) strucmres remain standing. Bridges destroyed. Broad fissures in the ground. 
lJnder1?Cound pipelines completely out of service. Earth shunps in soft ground. Rails bent i:reatlv. 

XII. Damage total. Waves seen on ground swi·ace. Lines of sight and level distorted. Objects thrown into the air. 
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HAZARD REDUCTION 

Ground shaking cannot be avoided because it is so widespread, and the best alternative to 
reduce the potential effects of the hazard is to strengthen structures. Because failure of man
made structures is the cause of most earthquake losses, engineers, building officials, and 
architects play a key role in reducing losses by implementing improved design and construction 
practices. 

The Uniform Building Code (UBC), which was adopted statewide in 1987, specifies 
requirements for earthquake-resistant design and construction to minimize structural damage and 
loss of life from earthquakes (International Conference of Building Officials, 1991). It applies to 
all new building construction, including schools, hospitals, commercial and residential buildings, 
fire and police stations, and power plants. The "Earthquake Regulations" in the code were 
extensively revised for the 1988 edition, but the basic philosophy to reduce potential structural 
damage and protect lives during earthquakes remained the same. In any case, the regulations do 
not ensure that the structure or its contents will not be damaged during an earthquake, a painful 
lesson learned by many building owners since adoption of the first earthquake-resistant design 
provisions in 1961. 

Two factors, Zand S, are defined in the UBC to quantify the minimum level of ground 
shaking that structures must be designed to withstand without collapse. The seismic zone factor 
(Z) attemptc. to quantify ground motions on rock, whereas the site coefficient (S) attemptc. to 
quantify the effects of near-surface sediments on the ground motions. Specifically, Z is tied to 
accelerations on rock with a 10% chance of being exceeded in 50 years. Site coefficients range 
from 1.0 to 2.0, depending on the type and thickness of sediments underlying a site; larger site 
coefficients attempt to account for larger amplifications of ground motions by near-surface "soft" 
sediments. 

SITE INVESTIGATIONS 

Although no large-scale maps have been prepared showing the actual ground-shaking 
hazard for Tooele Valley or the WDHIA, the UBC seismic zone map is sufficient to determine 
minimum design levels for buildings (figure C-4). Krinitzsky (1989) studied ground motions for 
an engineering site in the south area of the Tooele Army Depot in Rush Valley, but no other 
specific studies on ground-shaking hazards have been made in the area. Maps showing site 
coefficients are not available, and site-specific studies are generally needed to determine S 
factors. 

The UBC requires that buildings be designed to withstand a minimum amount of lateral 
motion, usually expressed in terms of peak horizontal acceleration (Olig, 1991 ). Many cities and 
counties in Utah independently adopted some version of the UBC, which first included 
earthquake-resistant design provisions in the 1961 edition. Prior to 1961, the only requirements 
for buildings to resist horizontal forces in Utah were those determined by wind loads (Rogers and 
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others, 1976). Until recently, requirements were left to the discretion of local jurisdictions. 
However, in 1987 the Utah State Legislature adopted the 1985 UBC statewide for the first time. 
This edition was later superseded by the 1988 UBC, adopted statewide in 1989 as part of the 
Uniform Building Standards Act. This act also established the UBC Commission to oversee 
statewide implementation of the code. The UBC was most recently revised in 1994 
(International Conference of Building Officials, 1994). 

Seismic zones range from Oto 4, with only zones 1, 2B, and 3 being present in Utah 
(figure C-4). New construction in Tooele Valley and the WDHIA should conform to the 
guidelines set forth in the UBC. Tooele Valley lies within zone 3, whereas the WDHIA straddles 
zones 2B and 3 but lies mostly within zone 2B. Although accurate determination of seismic 
zones and site coefficients is important, the UBC is ineffectual without adequate implementation 
and enforcement of the earthquake regulations in the code. 

Site-specific evaluations of ground-shaking hazards involve accurate determination of Z 
(expected peak horizontal accelerations) and S (site coefficients) factors. The Z factor can be 
taken directly from the seismic zone map, but site coefficients (table C-2) are determined either 
by drilling or estimation based on geologic conditions and existing geotechnical data. Site
specific probabilistic estimates of earthquake ground motions are generally only performed for 
certain high-cost, high-occupancy, or environmentally-sensitive critical facilities. Details of 
methods used to perform such studies are beyond the scope of this report, but are available in 
Reiter (1990) and Krinitsky and others (1993). Adequate plan checks by qualified building 
officials are recommended prior to issuance of building permits to ensure proper enforcement of 
seismic building code provisions. 
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Figure C-4. The UBC seismic zone map of Utah. Tooele Valley and the West Desert 
Hazardous Industry Area (WDHIA) are crosshatched (from International Conference of 
Building Officials, 1994). 
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Table C-2. Site coefficients from soil-profile types (based on geotechnical data). In locations 
where soil properties are not known in sufficient detail to determine the soil profile type, 
use soil profile S3 (modified from International Conference of Building Officials, 1991). 

TYPE DESCRIPTION SFACTOR 

s. A soil profile with either: LO 

(a) A rock-like material characterized by a shear-wave velocity 
greater than 2,500 feet per second (762 m/sec) or by other suitable 
means of classification, or 

(b) Stiff or dense soil conditions where the soil depth is less than 200 
feet (61 m). 

S2 A soil profile with stiff or dense soil conditions where the soil depth 1.2 
exceeds 200 feet (61 m). 

S3 A soil profile 70 feet (21 m) or more in depth and containing more 1.5 
than 20 feet (6 m) of soft to medium stiff clay, but not more than 40 
feet (12 m) of soft clay. 

S4 A soil profile containing more than 40 feet (12 m) of soft clay 2.0 
characterized by a shear-wave velocity less than 500 feet per second 
(152 m/sec). 
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SECTIOND: 
TECTONIC SUBSIDENCE 

by 

Bill D. Black 

INTRODUCTION 

Tectonic subsidence is the warping, lowering, and tilting of a valley floor that accompanies 
surface-faulting earthquakes on normal (dip-slip) faults, such as the OFZ. Subsidence occurred 
during the 1959 Hebgen Lake earthquake in Montana and 1983 Borah Peak earthquake in Idaho, and 
geologic evidence indicates that there has also been tectonic subsidence during prehistoric 
earthquakes along the Wasatch Front (Keaton, 1987). Inundation along lake and reservoir shores, 
and ponding of water in areas with a shallow water table, may be caused by tectonic subsidence. 
Also, tectonic subsidence may adversely affect certain structures which require gentle gradients or 
horizontal floors, particularly wastewater-treatment facilities and sewer lines (Keaton, 1987). 

Tectonic subsidence could be a hazard in Tooele Valley, along known faults with evidence 
of surface faulting, particularly during the last 10,000 years. However, there have been no specific 
studies of the potential for tectonic subsidence for Tooele Valley. In the WDHIA there are no active 
faults, and thus the hazard from tectonic subsidence is very low. 

Tectonic subsidence from an earthquake on the OFZ will be greatest in the eastern part of 
Tooele Valley on the western (downdropped) side of the fault, where the maximum amount of 
potential subsidence may occur. Flooding related to tectonic subsidence on the OFZ, as well as 
ponding of water and disruption of buried facilities, will be greatest in the northeastern part of the 
valley due to shallow ground-water levels and the proximity to the shore of Great Salt Lake. 

CHARACTERISTICS AND EFFECTS 

Tectonic subsidence, also termed seismic tilting, occurs during surface-faulting earthquakes 
(greater than magnitude 6.5) along normal faults. The extent of seismic tilting is controlled chiefly 
by the amount and length of surface displacement. Subsidence typically extends only a short 
distance beyond the ends of the fault rupture. The maximum amount of subsidence should occur at 
the fault and decrease gradually away on the downdropped valley block. 

The probability of tectonic subsidence accompanying an earthquake on a specific fault is the 
same as that for a surface-faulting earthquake, although the extent of subsidence varies. Because no 
detailed studies have been made on the OFZ, subsidence characteristics are not known. However, 
the 1983 Borah Peak earthquake in Idaho may provide a model for subsidence associated with the 
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OFZ. Up to 4.3 feet (1.3 m) of subsidence at the fault wa,;; observed following this earthquake, with 
subsidence extending up to 9.3 miles (15 km) from the fault on the downdropped side (Keaton, 
1987). 

The two major types of hazards associated with tectonic subsidence are tilting of the ground 
surface and flooding from lakes, reservoirs, or shallow ground water (figure D-1) (Smith and 
Richins, 1984). Tilting of the ground surface may compromise gravity-flow structures such as 
wastewater-treatment plants and sewer lines, and thus prevent them from working properly. 
Flooding from lakes and reservoirs may damage structures along shorelines and result in injury or 
loss of life. Subsidence may also cause ground-water levels to rise, causing water to pond and 
flooding basements and buried facilities. 

HAZARD REDUCTION AND SITE INVESTIGATIONS 

Because subsidence may occur over a large area, it is generally not practical to avoid, except 
in low-lying lake shoreline areas. However, some structures may have to be releveled after tectonic 
subsidence occurs. Therefore, tolerance to slight changes in gradient should be considered for 
gravity-flow structures, such as wastewater-treatment plants, in areas of potential subsidence. 

Flooding problems along the Great Salt Lake shoreline from tectonic subsidence depend on 
lake levels at the time of the event. The greatest effects would result from high lake levels. At the 
present lake level of 4,200 feet (1,280 m), flooding due to subsidence is likely within the zone of 
normal lake flooding, which is discussed in Section J. ff it is determined that probability of an 
earthquake occurring on the OFZ when lake levels are high is sufficient to merit hazard reduction, 
methods such as raising structures above expected flood levels or building dikes should be 
considered to reduce flooding effects. 

The effects of subsidence-induced flooding due to rising ground-water levels can be 
minimized using methods discussed in Section K. However, shallow ground-water conditions are 
also conducive to earthquake-induced liquefaction (Section E), which may compound hazard
reduction problems. 

The magnitude and extent of tectonic subsidence along the OFZ is unclear, and a study 
similar to Keaton (1987) is required to better define the amount and extent of potential subsidence. 
Without such a study, estimates of the amount of subsidence can be made based on the amount of 
fault offset per earthquake event (from paleoseismic data) and the extent of subsidence from similar 
historical events. Site investigations may determine the depth to ground water and surface elevation, 
which can then be compared to the amount of subsidence to define areas of potential lake-margin 
flooding and ponded shallow ground water. Vulnerable essential facilities such as wastewater
treatment plants and hazardous-waste facilities should also consider potential tilting. 
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Figure D-1. Hypothetical plan view and cross sections showing tectonic subsidence accompanying 
a surface-faulting earthquake. Top cross section shows the lake shoreline and structures on 
the plan view (below) in their pre-earthquake position. Bottom cross section shows the 
possible effects of tectonic subsidence and their extent on the plan view (above), including 
inundation along the lake shoreline (lake shoreline inundation zone); post-earthquake 
flooding, ponded water, and sag ponds (produced by backtilting) due to the rising water 
table; and changes in gradient from backtilting causing a reversal of flow in sewer lines 
(modified from Robison, 1993). 
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SECTIONE: 
LIQUEFACTION 

by 

Bill D. Black 

INTRODUCTION 

Earthquake ground shaking causes a variety of phenomena which can damage structures and 
threaten lives. One of these phenonema is liquefaction. Liquefaction occurs when ground shaking 
increases the pressure in the pore water between soil grains, which decreases the stresses between 
the grains. The loss of intergranular stress can cause the strength of some soils to decrease to nearly 
zero. When this happens, the soil behaves like a liquid, and therefore is said to have liquefied. 
Liquefaction of a soil can have four major adverse effects: (1) foundations may crack; (2) buildings 
may tip; (3) buoyant buried structures, such as septic tanks and storage tanks, may rise; and (4) gentle 
slopes may fail as liquefied soils and overlying materials move downslope. 

Liquefaction potential depends on soil and ground-water conditions and the severity and 
duration of ground-shaking. Liquefaction most commonly occurs in areas of shallow ground water 
(less than 30 feet [9 m]) and loose sandy soils. In general, an earthquake of Richter magnitude 5 or 
greater is necessary to induce liquefaction (Kuribayashi and Tatsuoka, 1975, 1977; Youd, 1977). 
For larger earthquakes, liquefaction has a greater likelihood of occurrence and will be found at 
greater distances from the epicenter ( the point on the earth's surface directly above the focus of the 
earthquake). Liquefaction has been documented up to 170 miles (274 km) from the epicenter of an 
earthquake (1977 Romanian earthquake, magnitude 7.2) (Youd and Perkins, 1987). 

Liquefaction is a hazard that can affect Tooele Valley and the WDHIA. Soil and ground
water conditions are conducive to liquefaction in both areas, although the likelihood of sufficient 
ground shaking is greater in Tooele Valley. 

CHARACTERISTICS 

Liquefaction itself does not necessarily cause damage, but may induce damaging ground 
failures. Four types of ground failure commonly result from liquefaction: (1) loss of bearing 
strength, (2) ground oscillation, (3) lateral-spread landslides, and ( 4) flow landslides (Youd, 197 8a, 
1978b; Tinsley and others, 1985). Youd (1978a) relates these types of ground failure to the slope 
of the ground surface (table 1). 

Loss of bearing strength and resulting deformation of a soil mass beneath a structure are the 
principal effects of liquefaction in areas where slopes are generally less than about 0.1 percent 
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(Youd, 1978a, 1984; Bartlett and Youd, 1992). Liquefaction reduces shear strength of the soil which 
provides foundation support, allowing structures to settle and tilt (Youd, 1984; National Research 
Council, 1985; figure E-1). 

Table E-1. Ground slope and expected failure mode resulting from liquefaction (modified from 
Youd, 1978a; Anderson and others, 1982; Bartlett and Youd, 1992). 

GROUND SURFACE SLOPE FAILURE MODE 

Less than 0.1 percent Bearin,e; capacity 

Less than 0.1 percent, Ground oscillation 
liquefaction at depth 

0.1 to 5.0 percent Lateral-spread landslides 

Greater than 5.0 percent Flow landslides 

Ground oscillation takes place when liquefaction occurs beneath the ground surface, below 
soil layers that do not liquefy, and where slopes are too gentle for lateral displacement to occur 
(Tinsley and others, 1985). Under these conditions, liquefaction at depth commonly causes 
overlying soil blocks to detach from each other and jostle back and forth on the liquefied layer during 
an earthquake (National Research Council, 1985; figure E-2). The detached soil blocks vibrate 
differently from the underlying and surrounding firm ground, causing fissures to form and impacts 
to occur b.etween oscillating blocks and adjacent firm ground (National Research Council, 1985; 
Tinsley and others, 1985). 

Where the ground-surface slope ranges between 0.1 and 5.0 percent, failure by lateral 
spreading may occur (Anderson and others, 1982; Bartlett and Youd, 1992). Lateral spreads are 
characterized by surficial blocks of sediment which are displaced laterally downslope as a result of 
liquefaction in a subsurface layer (National Research Council, 1985; figure E-3). The surface layer 
commonly breaks up into blocks. bounded by fissures, which may tilt and settle differentially 
(National Research Council, 1985). The amount of lateral displacement depends on soil and ground
water conditions, slope, and the strength and duration of ground shaking (Tinsley and others, 1985). 

Where ground-surface slopes are steeper than about 5.0 percent, slope failure may occur in 
the form of flow landslides (Anderson and others, 1982; figure E-4). They are comprised chiefly of 
liquefied soil or blocks of intact material riding on a liquefied layer (National Research Council, 
1985). Flow landslides can cause soil masses to be displaced several miles (Tinsley and others, 
1985). 
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Figure E-1. Tilting of a building due to liquefaction and loss of bearing strength in the underlying 
soil, allowing the building to settle and tilt (Youd, 1984, in National Research Council, 
1985). 
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Figure E-2. Diagram of liquefaction-induced ground oscillation. Liquefaction occurs in the 
cross-hatched zone and causes ground settlement, opening and closing of fissures, and sand 
boils as the surface layer detaches from the surrounding firm ground (Youd, 1984, in 
National Research Council, 1985). 
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Figure E-3. Diagram of a lateral spread. Liquefaction occurs in the cross-hatched zone, causing 
the surface layer to detach from surrounding firm ground and move downslope (Youd, 1984, 
in National Research Council, 1985). 

Before liquefaction 

Figure E-4. Diagram of a flow failure. Liquefaction beneath the ground surface causes a loss of 
shear strength, allowing the soil mass to flow down the steep slope (Youd, 1984, in National 

Research Council, 1985). 
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EFFECTS 

Earthquake-induced liquefaction and ground failures have the potential to cause damage to 
most types of structures. Structures that are particularly sensitive to liquefaction-induced ground 
failure include: buildings with shallow foundations, railway lines, highways and bridges, buried 
structures, dams, canals, retaining walls, shoreline structures, utility poles, and towers (National 
Research Council, 1985). 

Loss of bearing strength in foundation soils causes structures to settle and/or tilt. Buoyant 
buried structures, such a..,; gasoline storage or septic tanks, may also float upward in liquefied soils 
(Tinsley and others, 1985). Among the more spectacular examples of a bearing-capacity failure was 
the tilting of four 4-story buildings, some as much as 60 degrees, in the 1964 magnitude 7.3 
earthquake in Niigata, Japan (National Research Council, 1985). Buried septic tanks rose by as 
much as three feet (1 m) during the same earthquake (Tinsley and others, 1985). 

Ground oscillation can also cause damage to structures and buried facilities. Damage is 
caused by differential settlement, opening and closing of fissures, and formation of sand boils which 
commonly accompany the oscillations (Tinsley and others, 1985). 

Lateral-spread landsliding can cause significant damage to structures (table E-2) and may be 
especially destructive to pipelines, utilities, bridge piers, and structures with shallow foundations 
(Tinsley and others, 1985). Lateral-spread landslides with ground displacements of only a few feet 
caused every major pipeline break in San Francisco during the 1906 earthquake (Youd, 1978a), and 
thus were indirectly responsible for the inability to control the fires that damaged the city (Tinsley 
and others, 1985). 

Table E-2. Relationship between ground displacement and damage to structures (modified from 
Youd, 1980). 

GROUND DISPLACEMENT LEVEL OF EXPECTED DAMAGE 

Less than 4 inches (0.1 m) Little damage, repairable 

4 inches (0.1 m) to Severe damage, repairable 
1 foot (0.3 m 

1 foot (0.3 m) to Severe damage, non-repairable 
2 feet (0.6 m) 

More than 2 feet (0.6 m) Collapse, non-repairable 

Flow landslides are the most catastrophic mode of liquefaction-induced ground failure 
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(Tinsley and others, 1985). Extensive damage due to flow landslides occurred in the cities of Seward 
and Valdez, Alaska, during the 1964 Alaska Earthquake (Tinsley and others, 1985). A flow 
landslide near the Mount Olivet Cemetery during the 1906 San Francisco earthquake knocked a 
power house off its foundation (Youd, 1973). 

HAZARD REDUCTION 

The National Research Council (1985) identifies several alternative approaches for existing 
structures threatened by earthquake-induced liquefaction. The choices include: (1) structure and/or 
site retrofitting to reduce the potential for liquefaction-induced damage; (2) abandoning the structure 
if the retrofit costs exceed potential benefits derived from maintaining the structure; or (3) accepting 
the risk. 

Areas of moderate to high liquefaction susceptibility need not be avoided; structural measures 
and site modification techniques are available to reduce hazards. The cost of reducing liquefaction 
hazards is commonly excessive for single-family dwellings, and liquefaction is generally not a 
life-threatening hazard in such structures. However, hazard reduction may be recommended for 
existing larger structures (Anderson and others, 1987). 

Possible actions which may be taken if a liquefaction hazard exists at the site for a proposed 
structure include: (1) improving site conditions to lower the liquefaction potential; (2) designing the 
structure to withstand liquefaction effects; (3) avoiding the risk by moving the proposed 
development to a less hazardous site; (4) insuring the development so that if liquefaction-induced 
damage occurs, funds will be available to repair the damage; or (5) accepting the risk if the 
liquefaction potential and consequences are clearly understood. 

Structural solutions to reduce the effects of liquefaction can take several forms. For 
buildings, foundation-support problems in liquefiable soils may be avoided by using end-bearing 
piles, caissons, or fully-compensated mat foundations, designed for the predicted liquefaction 
phenomena at the site (National Research Council, 1985). Methods of improving liquefiable soil
foundation conditions are: (1) densification of soils through vibration or compaction, (2) grouting, 
(3) dewatering with drains or wells, and (4) loading or buttressing to increase confining pressures 
(National Research Council, 1985). Costs of site improvement techniques range from less than 
$0.50 to more than $500.00 per cubic yard (0.76 m3

) of soil-foundation material treated (National 
Research Council, 1985). 

USE OF HAZARD MAPS 

Ar::. originally proposed by Youd and Perkins ( 1978), a liquefaction potential map is derived 
by superimposing a liquefaction susceptibility map and liquefaction opportunity map. Liquefaction 
susceptibility represents properties of near-surface earth materials, whereas liquefaction opportunity 
represents the seismic potential of a region. Liquefaction susceptibility maps (plate 2) have been 
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prepared for quadrangles in Tooele Valley and the WDHIA where liquefaction hazards are likely 
(figure E-5). Although the probability of earthquake ground shaking sufficient to cause liquefaction 
was not included in this assessment, there is a significant potential for liquefaction-induced ground 
failure to cause severe damage in areas of high susceptibility in Tooele Valley (Mabey and Youd, 
1989). Because of a lesser earthquake potential, the hazard is substantially lower in the WDHIA. 

WEST DESERT HAZARDOUS 

INDUSTRY AREA 

UTAH 

TOOELE VALLEY 

NORTHERN RUSH VALLEY 

\ 

IJ , I 

M 

Figure E-5. Index map of areas ( crosshatched) where liquefaction susceptibility is mapped on 
plate 2. Letters are used in plate designations. Study area boundaries are shown by dashed 
lines. 

Liquefaction susceptibility was determined primarily from geologic and ground-water data. 
In areas that may have sediments susceptible to liquefaction where the depth to ground water is less 
than 50 feet ( 15 m ), susceptibility was mapped as: ( 1) high, if the depth to ground water is less than 
10 feet (3 m); (2) moderate, if the depth to ground water is from 10 to 30 feet (3-9 m); or (3) low, 
if the depth to ground water was from 30 to 50 feet (9-15 m). Areas with a very low liquefaction 
susceptibility do not have susceptible sediments, or have ground-water depths greater than 50 feet 
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(15 m). Seasonal and long-tenn fluctuations in ground water levels can affect the susceptibility at 
a given site. 

The expected mode of ground failure for liquefaction at a given site may be evaluated by 
detennining the approximate ground surface slope at the site and referring to table E-1. To 
differentiate between bearing capacity and ground oscillation failure modes in areas of less than 0.1 
percent slope, the depth to the liquefiable layer(s) at the site must be known. Ground oscillation is 
likely if the liquefiable layer(s) are deep. 

The liquefaction susceptibility maps are at a regional scale and, although they can be used 
to gain an understanding of the susceptibility of a given area for liquefaction-induced ground failure, 
they are not designed to replace site-specific evaluations. Mapped areas classified with a particular 
liquefaction susceptibility may contain isolated areas with other classifications, and site-specific 
geotechnical studies are still required. Site-specific evaluations for liquefaction hazards should be 
conducted for all essential facilities regardless of mapped liquefaction susceptibility, and for 
industrial and commercial buildings in areas with a high and moderate susceptibility (table 1). 
However, for other types of structures in high susceptibility areas such as single-family dwellings, 
liquefaction hazards need only be disclosed. 

SITE INVESTIGATIONS 

A liquefaction potential evaluation should be part of a standard soil-foundation investigation. 
Liquefaction susceptibility evaluations are based on ground-water depth and soil characteristics, 
including soil density detennined from standard penetration tests and/or cone penetration tests. To 
evaluate liquefaction potential, the probability for ground-shaking levels sufficient to induce 
liquefaction (liquefaction opportunity) must be detennined from a probabilistic ground-shaking 
evaluation (Section C). 

A site-specific liquefaction potential report should include accurate maps of the area showing 
any proposed development, the location of bore holes and/or test pits, and the site geology. Logs of 
bore holes and test pits should be included in the report and any ground water encountered should 
be noted on the logs. The location of and depth to liquefiable soils should be noted, and the 
probability of ground-shaking levels needed to induce liquefaction in these soils detennined. 
Recommendations for hazard-reduction techniques should also be included. 
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SECTIONF: 
OTHER EARTHQUAKE HAZARDS 

by 

Bill D. Black 
and 

Barry J. Solomon 

INTRODUCTION 

A variety of phenonema that can damage property and/or threaten lives may accompany 
earthquakes. The principal hazards are addressed in other sections of this report, covering 
surface fault rupture, ground shaking, liquefaction, tectonic subsidence, landslide, and rock-fall 
hazards. Other potentially damaging but less understood phenonema associated with earthquakes 
include: (1) ground failure due to loss of strength in sensitive clays, (2) subsidence in granular 
materials due to ground shaking, (3) flooding caused by seiches in Great Salt Lake, (4) flooding 
caused by surface drainage disruptions, and (5) flooding caused by increased ground-water 
discharge. 

GROUND FAILURE DUE TO LOSS OF STRENGTH IN SENSITIVE CLAYS 

Characteristics and Effects 

Most clays lose strength when disturbed; sensitive clays experience a particularly large 
loss of strength. Sensitive clays are wet clays whose undisturbed shear strength is lost abruptly 
following a shock or disturbance (Parry, 1974). The sensitivity of clays is defined as the ratio of 
shear strength in an undisturbed condition to shear strength after being severely disturbed (Costa 
and Baker, 1981). Rosenqvist (1953, 1966) proposes that these clays originate as platy clay 
particles deposited in an edge-to-edge "house of cards" (flocculated) structure in saline 
environments, in which sodium and other cations in water provide bonding strength. Later, when 
this saline water is leached out by fresh ground water, the clays are left in an unstable 
arrangement subject to collapse or liquefaction when disturbed or shaken. One triggering 
mechanism for ground failure is ground shaking generated by earthquakes. During and after 
disturbance, the clays may revert from a flocculated soil structure in which ground water fills the 
interstitial pore spaces, to a dispersed soil structure in which the interstitial water is expelled, 
liquefying the clay (Costa and Baker, 1981). 

The potential for ground failure in sensitive clays is related to the intensity and duration 
of ground shaking, and sensitivity of the clays. Clays with high sensitivities (ratio of undisturbed 
shear strength to disturbed shear strength of 10 or more) may be prone to failure during 
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earthquake-induced ground shaking (Earthquake Engineering Research Institute, 1986). The 
existence of such clays and intensity and duration of ground shaking needed to induce failure 
have not been investigated in Tooele Valley and the WDHIA. Therefore, the probability of this 
type of failure has not been determined. However, sensitive clay horizons have been identified 
within lake sediment sequences along the central Wasatch Front (Parry, 1974). 

The principal effect of disturbance of sensitive clays is ground failure. The kinds of 
ground failure associated with sensitive clays are similar to those accompanying liquefaction, 
including flow failures, slump-type landslides, and lateral-spread or translational landslides 
(Chapter E; Costa and Baker, 1981; Earthquake Engineering Research Institute, 1986). Liquefied 
sensitive clays may flow downhill on slopes as low as 2 percent or less (Costa and Baker, 1981). 
The most devastating damage resulting from the 1964 Alaska earthquake (magnitude 8.6) was 
due to translational landslides partly from failure of sensitive clays. The largest of these 
landslides damaged 7 5 homes in the Tumagain Heights residential area in Anchorage (Hansen, 
1966). 

Hazard Reduction and Site Investigations 

Ground failure due to sensitive clays has the potential to cause damage to most types of 
structures. Possible actions which may be taken if sensitive clays are present include: (1) 
improving site conditions by converting the clays from a flocculated soil structure to a dispersed 
structure using preconstruction vibration techniques, and/or dewatering the site; and (2) 
designing the structure to withstand the potential effects of ground failure using structural 
solutions such as end-bearing piles placed below the sensitive clays, caissons, or fully
compensated mat foundations designed for the anticipated failure type. 

The distribution and extent of sensitive clays in Tooele Valley and the WDHIA is 
unknown, and maps have not been produced which show their extent. Fine-grained lake 
sediments underlie much of both areas, deposited by lakes occupying the Great Salt Lake Basin 
during the last 15 million years (Currey and others, 1984). Many of these lake sediments are 
silicate clays, some of which have been classified as sensitive in the Wasatch Front area (Parry, 
197 4 ). Assessment of this hazard should be undertaken at the site-specific level, as part of a 
standard geotechnical investigation, in areas where the depth to shallow ground water is less than 
30 feet (9 m). 

Site investigations for sensitive clays require sampling and testing of foundation 
sediments. Testing involves applying axial loads to unconfined cylindrical samples first in an 
undisturbed state and then in a disturbed state (Spangler and Handy, 1973) to determine the soil 
sensitivity. Additional study is then needed to determine the levels of ground shaking necessary 
to cause ground failure in sensitive clays. Sensitive clays should be considered in site-specific 
studies for all major construction in clayey soils, particularly critical facilities. 
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SUBSIDENCE IN GRANULAR MATERIALS CAUSED BY GROUND SHAKING 

Characteristics and Effects 

Loose granular materials such as sand and gravel may be prone to subsidence when 
shaken. Earthquake ground shaking can effectively compact these materials as individual 
particles move closer together. This rearrangement decreases the volume of the material, causing 
subsidence. During the 1964 Alaska earthquake, ground shaking caused as much as 5.9 feet (1.8 
m) of subsidence at some locations (Costa and Baker, 1981). 

Differential settlement can occur in deposits that are susceptible to vibratory subsidence. 
This may result in building damage or foundation cracking as one part of a foundation settles 
more than another (Costa and Baker, 1981 ). Structural failure of building members may also be 
caused by excessive settlement (Dunn and others, 1980). Even minor differential settlement can 
cause extensive damage to earthen-fill structures such as railway embankments, highway 
foundations, bridge abutments, and dikes and levees. Buried utility lines and connections may 
also be severed by settlement. Rate of subsidence is an important factor that must be considered 
in evaluating the potential for damage (Dunn and others, 1980). Subsidence due to earthquake 
ground shaking would be virtually instantaneous. 

Hazard Reduction and Site Investigations 

Structural methods to reduce settlement damage include supporting structures on piles, 
piers, caissons, or walls founded below the susceptible material (U.S. Bureau of Reclamation, 
1985). Where structural measures to reduce settlement in granular soils are not possible, other 
actions to reduce the hazard include: (1) improving site conditions by removing or compacting 
in-place granular materials prior to construction, and (2) properly engineering and compacting fill 
materials. 

Maps delineating areas susceptible to vibratory subsidence in granular soils have not been 
prepared for Tooele Valley and the WDHIA, and the extent of soils subject to subsidence is 
unknown. However, areas of Tooele Valley and the WDHIA are underlain by deposits that may 
be prone to vibratory subsidence, such as clean sand and gravel deposited in Pleistocene Lake 
Bonneville. If not adequately compacted during placement, artificial fill may also be susceptible 
to vibratory subsidence (Schmidt, 1986). 

Levels of ground shaking necessary for subsidence vary with conditions, and assessment 
of this hazard must be undertaken on a site-specific basis as part of geotechnical investigations. 
Standard penetration and cone penetrometer tests are commonly used to evaluate the potential for 
subsidence (Dunn and others, 1980). The potential for subsidence should be considered during 
soil-foundation investigations for all major construction, especially for critical facilities. 
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FLOODING CAUSED BY SEICHES IN GREAT SALT LAKE 

Characteristics and Effects 

Oscillations in the smface of a landlocked body of water can produce unusually large 
waves, or seiches, similar to oscillations produced by sloshing water in a bowl when shaken or 
jarred (Nichols and Buchanan-Banks, 1974). Seiches may be generated by wind, landslides, 
and/or earthquake effects such as ground shaking or surface fault rupture. The magnitude of 
seiches caused by landslides or surface fault rupture depends on the amount of water and ground 
displacement. For wind- and ground-shaking-induced seiches, the magnitude is determined by 
the degree of resonance between the water body and the periodic driving force. The magnitude is 
greatest when this driving force is oscillating at the same frequency at which the body of water 
naturally oscillates (Costa and Baker, 1981). A lake's natural oscillation period is determined by 
parameters such as water depth, lake size and shape, and shoreline configuration, much as the 
natural frequency of a pendulum is determined by its physical characteristics (Lin and Wang, 
1978). 

Studies of wind seiches in Great Salt Lake conclude that the maximum wave amplitude is 
expected to be about 2 feet (0.6 m) (Lin and Wang, 1978); no systematic or theoretical studies of 
landslide or earthquake-induced seiches have been made. However, seiches were reported along 
the southern shoreline of Great Salt Lake at Saltair and the Lucin trestle during the 1909 Hansel 
Valley earthquake (magnitude 6) (Williams and Tapper, 1953). The elevation of the lake was 
4202.0 feet (1280.7 m) at this time (U.S. Geological Survey lake elevation records). The seiche 
generated by this earthquake overtopped the Lucin cutoff railroad trestle at an elevation of 
4214.85 feet (1284.69 m) (Southern Pacific Transportation Company records). Assuming lake 
and trestle elevation records and reports of the seiche are accurate, the seiche was more than 12 
feet (3.7 m) high (Lowe, 1993). 

Studies from other areas have shown that seiches may raise or lower a water surface from 
a few inches to several yards (Blair and Spangle, 1979). Seiches may cause damage from 
flooding and erosion in areas around the margins of lakes, and are a hazard to shoreline 
development, dams, and in-lake structures. The principal area at risk in Tooele County is along 
the shore of Great Salt Lake. 

Hazard Reduction and Site Investigations 

Dikes protected against erosion on the lakeward side and engineered breakwaters can be 
used to protect development or dissipate wave energy. Shoreline buildings can also be 
floodproofed, elevated, and constructed or reinforced to withstand the lateral forces of seiches 
(Costa and Baker, 1981). 

Landslide and earthquake-generated seiches are a hazard to shoreline development and 
in-lake construction. They should be taken into consideration when planning development in 
Great Salt Lake and within the proposed Great Salt Lake Beneficial Development Area (Utah 
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Division of Comprehensive Emergency Management, 1985). Accounts of the seiche generated 
by the 1909 Hansel Valley earthquake suggest that maximum wave amplitudes generated by 
earthquakes may far exceed those associated with wind, and that areas above 4,217 feet (1,285 
m) (Section J) may be affected by seiches during high lake levels. 

Because no comprehensive studies have been completed for Great Salt Lake, maps have 
not been produced that show the likely area to be affected by seiches in Tooele Valley. Site 
investigations and recommendations for proposed development in lake-flooding areas are 
discussed in Section J. However, because they may far exceed normal flood elevations, it is 
recommended seiches be considered for any development at elevations less than 4,220 feet 
(1,286 m). 

FLOODING DUE TO SURFACE-DRAINAGE DISRUPTIONS 

During earthquakes, ground shaking, surf ace fault rupture, ground tilting, and landsliding 
can cause flooding if water tanks, reservoirs, pipelines, or aqueducts are ruptured, or if stream 
courses are blocked or diverted. Areas where such flooding may occur can be predicted to some 
extent by defining known active faults, active landslides, and potentially unstable slopes. 
Damming of streams by landslides can cause upstream inundation and, if the dam subsequently 
fails, cause catastrophic downstream flooding (Schuster, 1987). Maps delineating active faults 
and landslides are available with this report (plate 1; figures B-3 and G-2). 

Site-specific studies which address earthquake and slope-failure hazards should be 
completed prior to construction for all major water-retention structures or conveyance systems so 
that hazard-reduction measures can be recommended. To prepare for water-system breaks, shut
off valves and emergency response/repair plans should be in place. For existing facilities, studies 
can evaluate the possible locations and extent of flooding and recommend drainage modifications 
to prevent floods or divert flood waters. Potential flooding from diversion of stream courses is 
more difficult to evaluate, but should be considered in hazards evaluations for critical facilities. 

INCREASED GROUND-WATER DISCHARGE 

The effects of earthquakes on ground-water systems have not been extensively studied 
and, consequently, are not well understood. Increases in spring flow and expulsion of water from 
shallow bedrock aquifers caused surface flooding during the 1983 Borah Peak, Idaho, 
earthquake. Stream flow increased by more than 100 percent following the earthquake, and flow 
remained high for 2 weeks before declining to near original levels (Whitehead, 1985). Although 
this earthquake appeared to cause a more profound effect on ground water than other 
earthquakes, similar effects may occur during large-magnitude earthquakes in Tooele Valley. 
Flooding from increased spring flow in mountain drainages will be confined to stream channels, 
and adherence to Federal Emergency Management Agency flood-plain regulations should 
effectively reduce the risk. However, increased spring flow on valley floors could result in 
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ponded water and basement flooding. 
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SECTIONG: 
LANDSLIDES 

by 

Kimm M. Harty 
and 

Bill D. Black 

INTRODUCTION 

Landslides are downslope movements of rock or soil under the influence of gravity, including 
both deep-seated and shallow slope failures. Deep-seated slope failures have failure planes generally 
greater than 10-feet (3-m) deep, and include rotational and translational slides and associated earth 
flows (Varnes, 1978). This section addresses the landslide hazard posed by deep-seated slope 
failures. Rock falls and earth movements of shallow origin (failure plane generally less than 10 feet 
[3.0 m] deep), such as debris flows, are addressed in sections I and Hof this report. 

Landslides may be caused by oversteepening of slopes, loss of lateral support, weighting of 
the head, and increased pore pressure (static conditions). 1n addition, landslides may also be induced 
by earthquakes (dynamic conditions). Older landslides may reactivate due to conditions in the 
landslide such as increased permeability and established failure planes. Landslides can damage 
buildings, transportation routes, and utility lines by displacement of the ground, and cause flooding 
due to discharge of springs and damming of streams. 

Because of the predominance of relatively slide-resistant rock, deep-seated landsliding 
historically has caused little damage in Tooele Valley. The landslide hazard is greatest in the 
Oquirrh and Stansbury Mountains at the southern end of Tooele Valley, where the slide-prone 
Mississippian-age Manning Canyon Shale crops out or lies just below the ground surface. There is 
no significant landslide hazard in the WDHIA. The areas most susceptible to dynamic landsliding 
are generally those areas most susceptible to static (non-earthquake) landsliding. 

CHARACTERISTICS 

Two types of landslides are common. Rotational slides generally have a curved failure plane 
and are called slumps. The head of a slump is back-tilted compared to the original slope. Many 
slumps include an earth flow at the toe where material moves onto the land surface below the slump 
(figure G-1). Translational slides generally have a more planar failure surface, and may be broken 
into discrete blocks. Slumps and translational slides may move slowly and progressively over 
periods of years, or rapidly in a matter of a few seconds. 
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Figure G-1. Block diagram of a rotational landslide (slump) and earth flow (modified from 
Varnes, 1978). 

Landslides may occur in Tooele Valley in a moderate to strong earthquake. Slopes 
considered unstable under static conditions will be even less stable during an earthquake, and some 
slopes that are stable under static conditions may also fail as a result of earthquake ground shaking, 
particularly if wet. Most landslides caused by earthquakes are new slope failures, not reactivated 
older landslides (Keefer, 1984). Deep-seated slumps and translational slides commonly accompany 
earthquakes with Richter magnitudes greater than 4.5 (Keefer, 1984). In Utah, slope failures 
(predominantly rock falls or rock slides) have been noted in earthquakes (magnitudes 4.3 to 6.6) 
from 1850 to 1986 (Keaton and others. 1987). The September 2, 1992 magnitude 5.8 St. George 
earthquake caused a large, destructive translational landslide near Springdale, Utah, 27 miles (44 km) 
from the epicenter (Black, 1994 ). Earthquakes of magnitude 7 .0 could cause deep-seated slope 
failures as far as 100 miles (161 km) from the epicenter (Keefer, 1984). 
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Landslides are also likely in years of above-average precipitation, such as during the wet 
cycle of the 1980s (1982-1986). However, few deep-seated landslides occurred during this time in 
Tooele Valley because most rock and sediment in the valley and surrounding mountains is not 
susceptible to landsliding. 

Factors such as slope steepness, precipitation, ground-water regime, and bedrock structure 
are important in determining landslide susceptibility, but the most important factor is rock type. 
Rock units containing low-strength, moisture-sensitive shale or clay are usually the most susceptible 
to landsliding. Landslides are not numerous in the mountains in the WDHIA or those surrounding 
Tooele Valley, and only one geologic unit, the Mississippian-age, clay-rich Manning Canyon Shale, 
is particularly susceptible to landsliding. The general lack of landslides in the northern Stansbury 
and Oquirrh Mountains, and in the Cedar Mountains, is due mainly to a lack of susceptible geologic 
units (Harty, 1990). 

The Manning Canyon Shale has been involved in many damaging landslides in northern 
Utah, particularly in the foothill slopes of the Wasatch Range in and east of Provo (Harty, 1991 ). In 
the Stansbury Mountains, the Manning Canyon Shale mainly crops out south of South Willow 
Canyon (Sorenson, 1982), and from Magpie Canyon north to about Miners Canyon (Rigby, 1958; 
Sorenson, 1982). In 1983, a large landslide in Manning Canyon Shale occurred at the confluence 
of Morgan and East Hickman Canyons about 2.5 miles (4.0 km) south of the study area boundary. 
The slide took out the East Hickman Canyon road, and only since 1990 has the road been restored 
(Paul Dart, Range Technician, U.S. Forest Service, verbal communication, December, 1990). In the 
Oquirrh Mountains, the Manning Canyon Shale crops out in the southeastern part of the study area, 
in Soldier Canyon. Here, it was likely involved in the large, middle-to-early Holocene-age Soldier 
Canyon landslide about 3.5 miles (5.6 km) up the canyon on its southern flank. 

Landslides may also occur in the unconsolidated sediments of Pleistocene Lake Bonneville. 
Many landslides along the Wasatch Front have occurred in Lake Bonneville sediments, especially 
in the highest shoreline and delta deposits that typically form steep slopes. However, there are no 
landslides mapped in unconsolidated sediments in Tooele Valley and the WDHIA. 

EFFECTS 

Landslide movement may be preceded by cracks at the landslide head and a bulge at the toe 
(figure G-1 ). Damage from a landslide can occur either on or adjacent to the slide mass. The top 
of most landslides is characterized by an arcuate downslope-facing scarp (main scarp) created by 
downward displacement (figure G-1). A building that straddles the main scarp loses foundation 
support and may collapse. Structures upslope from the landslide head are at risk because the newly 
formed main scarp is commonly unstable and may progressively fail, forming new scarps upslope. 
Buildings within the central mass of the landslide may experience differential displacement on minor 
scarps and movement in both vertical and horizontal directions. The toe of a landslide will normally 
move horizontally and upward and may proceed downslope causing extensive damage. Table E-2 
shows the relationship between ground displacement and expected levels of damage to structures. 
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Landslides have damaged numerous structures, including roads, railroads, and utility lines. 
Rupture of canals, aqueducts, sewers, and water lines can cause flooding and add water to the slide 
plane and promote further movement. Floods may occur during landslides due to damming of 
streams causing upstream flooding as water is ponded, and downstream flooding if the impounded 
water overtops and breaches the landslide dam. 

HAZARD REDUCTION 

Many methods have been developed for reducing landslide hazards. Proper planning or 
avoidance are made possible if slide-prone areas are identified early in the planning process. Where 
avoidance is not feasible, various engineering techniques are available to stabilize slopes. Care in 
site grading, with proper compaction of fills and engineering of cut slopes, is necessary for hillside 
development. De-watering (draining) can stabilize slopes and existing landslides. Retaining 
structures built at the toe of a landslide may help stabilize the slide and reduce the possibility of 
smaller landslides. In some cases, piles may be driven through the landslide mass into stable 
material beneath the slide. If the dimensions of the landslide are known, and the landslide is not 
excessively large, removing the landslide may be effective. Diversion of drainage away from a slide 
reduces the destabilizing effects of infiltrating ground water. Other techniques used to reduce 
landslide hazards include bridging, weighting, or buttressing slopes with compacted earth fills. A 
more complete list of landslide-hazard-reduction techniques can be found in Costa and Baker (1981 ), 
and Kockelman (1986). Chapter 70 of the Uniform Building Code (UBC) (International Conference 
of Building Officials, 1994) includes specifications for site grading and slope design. 

USE OF HAZARD MAPS 

Plate 1 shows the slope stability of natural slopes under static (non-earthquake) conditions 
for Tooele Valley and the WDHIA (figure G-2). Slope stability was estimated from geologic maps, 
slope steepness, and the presence of existing landslides. Four categories were used: high, moderate, 
low, and very low. 

Included on plate 1 are existing landslides in Tooele Valley determined from geologic maps 
and aerial photographs; there are no existing landslides in the WDHIA. The Soldier Canyon 
landslide, originally mapped by Tooker and Roberts (1988), is the only major slump-type failure 
identified in Tooele Valley. The Bear Trap Flat area in Settlement Canyon was mapped as a possible 
landslide by Colton (1988), however, subdued topography and heavy forest cover make it difficult 
to confirm. Several bedrock blocks are also mapped as landslides in and north of Black Rock 
Canyon at the northern end of the Oquirrh Mountains. These rocks, including the locally well
known "Black Rock" on the shore of Great Salt Lake, are believed to have been dislodged by ancient 
Lake Bonneville wave erosion (Tooker and Roberts, 1971) and are not considered a hazard. Two 
large rock slides in upper Settlement Canyon are shown on both the landslide and debris-slide/flow 
maps (plate 3) because the slopes on which they occurred may be subject to different types of failure. 
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Figure G-2. Index map of areas (crosshatched) where landslide hazards are mapped on plate 1. 
Letters are used in plate designations. Study area boundaries are shown by dashed lines. 

Slopes included in the high-hazard category are slopes on or adjacent to existing landslides. 
Existing landslides pose a particular problem for development because of their tendency to 
reactivate. The only areas where a high hazard was assigned is in the vicinity of the Soldier Canyon 
landslide and on the rock-slide slopes in Settlement Canyon. 

The moderate-hazard category includes slopes greater than 15 percent (9 degrees) that also 
meet one of the following criteria: ( 1) slopes underlain by slide-prone material; (2) slopes composed 
of unconsolidated Lake Bonneville sediments; or (3) slopes that show evidence of sloughing, such 
as those along some stream-channel banks. All of the moderate-hazard areas in the Stansbury 
Mountains are areas where the Manning Canyon Shale crops out. In eastern Tooele Valley, most of 
the moderate designations are slopes in Lake Bonneville deposits. 

Low-hazard areas include slopes that are equal to or greater than 15 percent, and underlain 
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by slide-resistant material. Most slopes in the Oquirrh and Stansbury Mountains, and in the 
Grayback Hills, are in this hazard class. Unlike debris slides and flows (Section H), which 
commonly occur on steep slopes, deep-seated landslides such as slumps usually occur on moderate 
slopes; many deep-seated landslides in Utah have initiated on slopes of about 15 percent A 
statewide survey shows that the lower limits of slope for rotational slumps range from 7 to 18 
degrees (12-32.5 percent), and earth flows range from 4 to 20 degrees (7-36 percent) (Sidle and 
others, 1985). The lower limit of 15 percent (9 degrees) is a conservative choice for the hazard 
maps. Landslide susceptibility is designated "very low" where slopes are less than 15 percent. Most 
of Tooele Valley and the WDHIA is in this hazard category. 

ill areas where potentially unstable slopes are bounded by flat, stable surfaces, 
landslide-hazard boundaries extend beyond the base and top of the unstable slope. This happens 
along the stream banks of Settlement and Middle Canyons, and at the Stockton bar, where potential 
instability in the steep portion of the slope may affect areas both above and below. The width of the 
landslide-hazard zones in these areas depends on the height, steepness, ground-water conditions, and 
strength of the material underlying the slope. ill these areas, a conservative stable slope angle 
through the center of the steep slope was taken to determine the area potentially affected. Rollins, 
Brown, and Gunnel (1977) recommend that this conservative slope angle should be 2 horizontal to 
1 vertical (2:1; 50 percent) for dry granular soils, and 2.5:1 (40 percent) for moist fine-grained 
material. 

Tooele County has a zoning ordinance provision whereby a conditional-use permit approved 
by the planning committee must be obtained before building on slopes greater than 15 percent (9 
degrees) (Barry Formo, Tooele County Engineering Department, verbal communication, May 28, 
1991 ). Obtaining the conditional-use permit generally requires that an engineering study of the site 
be performed, with report reviews by the Tooele County Engineering Department before approval 
is granted or denied. The criteria used for the landslide-hazard maps fit with the existing 15-percent 
slope-ordinance provision. 

The landslide-hazard maps are intended for planners to identify areas where site-specific 
investigations addressing slope stability should be performed prior to development. Site 
investigations are recommended on all slopes mapped as high and moderate hazard. Slope-failure 
potential should be determined and, if necessary, hazard-reduction measures recommended in 
site-specific engineering-geologic reports as outlined in table 1. 

The landslide-hazard maps provide a general indication of where the hazards may exist, and 
serve as a means for determining the need for site-specific studies. These maps are at a regional 
scale and, although they can be used to gain an understanding of the potential for landslides 
occurring in a given area, they are not designed to replace site-specific evaluations. Mapped areas 
rated as having high or moderate landslide hazards may contain areas that are not prone to 
landsliding, even during earthquake ground shaking, and areas in the low or very low hazard 
category may contain areas that are susceptible to landsliding. 
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SITE INVESTIGATIONS 

Site investigations • for landslides and potentially unstable slopes, including 
earthquake-induced landslides, should be performed prior to construction of any structure for human 
occupancy in high and moderate hazard areas on the maps. Investigation reports should include 
maps showing the proposed development, existing landslides, moderate to steep slopes, and the site 
geology. An assessment of present slope stability, and effects on slope stability due to development 
or slope modifications, should be included. Where necessary, a factor-of-safety analysis can be 
computed by a geotechnical engineer or engineering geologist to determine the stability of natural 
or proposed cut slopes. Slope-stability analyses should include an assessment of the potential for 
movement under static, development-induced, and earthquake-induced conditions as well as likely 
ground-water conditions. Site grading, including design of cuts and fills, should comply with 
Chapter 2 and 70 of the most current edition of the Uniform Building Code. A useful guide for 
preparing site-investigation reports is found in Utah Geological Survey Miscellaneous Publication 
M, "Guidelines for Preparing Engineering Geological Reports in Utah," by the Utah Section of the 
Association of Engineering Geologists (1986). 
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SECTIONH: 
DEBRIS SLIDES, FLOWS, AND FLOODS, 

AND STREAM AND DAM-FAILURE FLOODS 

by 

Kimm M. Harty 
and 

Bill D. Black 

INTRODUCTION 

Debris slides, debris flows, and debris floods consist of mixtures of soil, rock, water, and 
organic material that move downslope and can present a hazard to life and property. Debris 
slides are generally shallow slope failures, with slide planes less than about IO-feet (3-m) deep. 
They form on steep slopes and usually lack sufficient water (less than 10-30 percent) to travel far 
from their source areas. Debris slides thus present a hazard primarily on and adjacent to steep 
slopes, usually in mountainous areas. Debris flows are a muddy slurry (70-90 percent solids by 
weight; Costa, 1984) much like wet concrete, that flow downslope usually in surges or pulses. 
They generally are confined to slopes and stream channels in mountains, but may deposit debris 
over large areas on alluvial fans at and beyond canyon mouths. Debris floods, also called 
hyperconcentrated floods, are mixtures of soil, organic material, and rock debris that are 
transported by fast-moving flood waters (Wieczorek and others, 1983). Solids account for 40 to 
70 percent of the material by weight (Costa, 1984). Like debris flows, debris floods can transport 
material great distances from their source areas. Stream floods occur when the stage or height of 
water exceeds some given datum such as the banks of the normal stream channel (Costa and 
Baker, 1981 ). In normal stream flow, solids account for less than 40 percent of the 
water/sediment mixture by weight (Costa, 1984). Dam-failure floods consist of an unintentional 
release of impounded water. 

Tooele Valley is susceptible to debris flows, debris floods, and stream flooding from the 
steep mountains that border the valley. Debris slides are typically only a hazard in the mountains 
because they rarely make it to the valley. Susceptibility to these hazards is lower in the WDHIA 
because of subdued topography. Debris flows, debris floods, and stream flooding have occurred 
in Tooele Valley during historical time and have caused significant damage to engineered 
structures and property. Early accounts usually did not distinguish debris flows or debris floods 
from clear-water stream flooding, making it difficult to separate these events. From 1878 to 
1969, 13 cloudburst floods affecting the city of Tooele were reported in local newspapers 
(Woolley, 1946; Butler and Marsell, 1972). At least five of these events deposited debris on 
roads, or in ditches and houses. Of the six cloudburst storms reported to have affected 
Grantsville during this period, three deposited debris. In late July, 1887, a severe rainstorm in the 
Stansbury Mountains generated a debris flow that covered 0.5 acres (0.2 ha) of cropland in 
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Grantsville to a depth of 2.5 feet (0.8 m) (Deseret News, July 28, 1887, in Woolley, 1946). 

Stream flooding in Tooele Valley and the WDHIA occurs as the result of spring 
snowmelt in the mountains and summer cloudburst rainstorms. These events may also contribute 
to dam-failure flooding. Floods occurring in Tooele Valley and the WDHIA between 1970 and 
1982 are not comprehensively documented. However, the Federal Emergency Management 
Agency (FEMA) (1989a) and the local newspaper (Tooele Transcript-Bulletin, June 14, 1983) 
report that major flooding occurred in Tooele City during the spring of 1973, when snowmelt 
runoff from an above-average snowpack rapidly filled the Settlement Canyon Reservoir, causing 
an uncontrolled release of water over the spillway from early May until the latter part of July. 

Snowmelt flooding caused about $4.5 million in damage in Tooele County during the 
abnormally high precipitation years of 1983 and 1984 (FEMA, in Transcript-Bulletin, July 24, 
1984). Most of the major canyons in the Oquirrh and Stansbury Mountains, including Middle, 
Settlement, Soldier, North Willow, and South Willow Canyons carried floodwaters onto farm 
and grazing land, and into populated areas. In 1983, stream inflow exceeded that which could be 
safely released from the Settlement Canyon Reservoir, and on May 30th, the overflow outlet 
began releasing floodwaters into Tooele Valley. In May 1984, Settlement Canyon Reservoir 
again released floodwaters. During both events, floodwaters inundated streets in Tooele City, 
and house and property damage occurred when floodwaters breached a dike (Tooele Transcript
Bulletin, May 31, 1983; May 15, 1984). Major damage caused by the flooding included road 
destruction in Middle, Settlement, and Soldier Canyons; rupture of the main culinary water line 
in Middle Canyon; deposition of sediment on fann.land; and inundation of roads, farm and 
grazing land, residential property, and houses in Stockton, Erda, Grantsville, Tooele, and 
surrounding areas. 

Many debris slides occurred in the Oquirrh Mountains during the spring and summer of 
1983 and 1984. Although most of the damage sustained in Tooele Valley during these years was 
related to stream flooding, a number of debris flows and debris floods also caused damage. A 
rainstorm on July 31, 1983 generated a debris flow about 7 miles ( 11.3 km) up Settlement 
Canyon that buried a large part of the canyon road (Tooele Transcript-Bulletin, August 2 and 9; 
1983 ). Kaliser ( 1989) reports that a debris flow or debris flood that occurred sometime between 
July 31 and August 19, 1983 destroyed four sections of a main culinary water line in Soldier 
Canyon. On May 14, 1984, a series of debris flows and floods from an unnamed tributary 
channel in Settlement Canyon trapped three men in the canyon for seven hours. A truck parked 
in the canyon washed away during these events (Tooele Transcript-Bulletin, May 15, 1984). 
Debris flows and floods flowed into Settlement Canyon Reservoir and covered an irrigation 
intake pipe 60 feet (18.3 m) below the water level with about 6 to 7 feet (1.8 to 2.1 m) of 
sediment (Tooele Transcript-Bulletin, May 22, June 12, 1984). Also, on May 14, 1984, a debris 
flow from Baltimore Gulch near the head of Pine Canyon in the Oquirrh Mountains struck and 
killed a man operating a bulldozer at the Carr Fork mine. 
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CHARACTERISTICS 

Debris Slides, Flows, and Floods 

Debris slides, flows, and floods, and normal stream flow form a continuum of 
sediment/water mixtures that grade into each other with changes in the relative proportion of 
sediment to water, and stream gradient (Pierson and Costa, 1987). Debris flows and debris 
floods present a greater hazard to valley areas than debris slides. Deposition of sediment 
transported by debris flows and debris floods may take place on alluvial fans at and beyond 
canyon mouths. Deposition on alluvial fans is caused by the decrease in channel gradient and 
increase in channel width, resulting in a decrease in depth and velocity of flow and an increase in 
internal friction of the flowing debris as the stream leaves its constricted channel and enters the 
main valley floor (Jochim, 1986). 

Debris flows can form in at least two different ways. In the Oquirrh and Stansbury 
Mountains, where cloudburst rainstorms are common, overland flow and flood waters can scour 
materials from the ground surface and stream channels, thereby increasing the proportion of soil 
materials to water until the mixture becomes a debris flow (Wieczorek and others, 1983). The 
size and frequency of debris flows generated by rainfall are dependent upon several factors 
including the amount of loose material available for transport, the magnitude and frequency of 
the storms, the density and type of vegetative cover, and the moisture content of the soil 
(Campbell, 1975; Pack, 1985; Wieczorek, 1987). Debris flows can also mobilize directly from 
debris slides once the slide reaches a stream, or when the water content in the slide increases by 
some other means until sufficient to permit flow. Many debris slides occurred in the Oquirrh 
Mountains during the 1983-84 wet years. 

As the relative proportion of water to sediment increases with either the addition of water 
or removal of sediment by deposition, debris flows become debris floods. Debris floods can also 
originate through progressive incorporation of materials into flood waters (Waitt and others, 
1983; Wieczorek and others, 1983). 

Many of the debris slides and flows that occurred in the Oquirrh Mountains in 1983-1984 
were generated by rapid melting of an unusually thick snowpack. Of the 102 debris slides and 
flows identified, over 70 percent occurred on south-facing slopes. The high percentage on south
facing slopes was due in part to weather conditions. During the winters of 1983 and 1984, the 
greater-than-average snowpack was preserved by cool early-spring temperatures (Wieczorek and 
others, 1989). The more intense solar radiation received by south-facing slopes, combined with 
sudden, sustained high temperatures in late spring, caused rapid melting of the snowpack. 
Kaliser and Slosson (1988) report that landslides occurring in 1983 generally followed the 
melting snowline, generating debris slides and flows at progressively higher elevations. 
Infiltration of meltwater into porous colluvium on steep mountain slopes probably exceeded the 
rate of drainage into the underlying bedrock, causing a rapid rise in pore-water pressure in the 
colluvium, resulting in loss of frictional resistance and sudden failure of the shallow colluvial 
layer. 
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Pore-water pressure in colluvium may increase with draining of bedrock aquifers into the 
colluvium. Mathewson and others (1990) found evidence of this in Davis County by observing 
sustained spring flow from debris-slide scars. We are uncertain whether such flow occurred 
following debris slides in the Oquirrh Mountains. However, because south-facing slopes in the 
Oquirrh Mountains produced more than twice the number of shallow failures than north-facing 
slopes, accelerated snowmelt on southern slopes was likely the dominant process creating debris 
slides. 

Stream Floods 

Stream floods may be caused by direct precipitation, melting snow, or a combination of 
both. In Tooele Valley, floods are most common in April through June during spring snowmelt. 
High flows are sustained from a few days to several weeks (Federal Emergency Management 
Agency, 1989a). Snowmelt floods are somewhat predictable because flood levels depend on the 
volume of snow in the mountains and the rate of temperature increase. Localized cloudburst 
storms centered over the mountains are also effective in causing floods. These storms typically 
last from a few minutes to several hours, and generally occur between mid-April and September. 
The flooding potential of cloudburst rainstorms is dependent upon many factors including: (1) 
the rate ofrainfall, (2) the duration of rainfall, (3) the distribution ofrainfall and direction of 
storm movement, (4) soil characteristics, (5) antecedent soil-moisture conditions, (6) vegetation 
conditions, (7) topography, and (8) drainage pattern. Because many of these conditions are 
generally not known until rain is actually falling on critical areas, the magnitude of flooding from 
a given cloudburst storm is difficult to predict. Summer cloudburst floods account for localized 
but often very destructive flooding and can occur with little warning. Tooele Valley 
communities have experienced many cloudburst floods in historical times; those occurring 
between 1850 and 1969 are shown in table H-1. 

Table H-1. Historic cloudburst floods, Tooele Valley, Utah, 1850-1969 (Woolley, 1946; Butler 
and Marsell, 1972). 

CITY YEAR 

Grantsville 1881, 1887, 1913, 1930 (2), 1955, 1961 

Erda 1957 

Lake Point 1927 

Tooele 1881, 1934(2), 1954(2), 1957, 1961, 1963, 1965, 1967, 1968, 
1969 

Stockton 1936 
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Dam-Failure Floods 

Flooding can result from the failure of dams, and may occur with little warning. The 
severity of flooding depends on the size of the reservoir and the extent of failure. The term dam 
failure includes all unintentional releases of water from the dam, including complete failure and 
release of all impounded water (Harty and Christenson, 1988). Only eight of 3 3 dam failures 
documented in Utah prior to 1984 were complete failures; most were due to overtopping and/or 
erosion around spillways and outlets during flood events (Harty and Christenson, 1988). 
Although dam failures have many causes, the most common cause is structural and foundation 
failures resulting from piping (Dewsnup, 1987). Uncontrolled release of water over the spillway 
was the cause of repeated flooding from the Settlement Canyon Reservoir in the Oquirrh 
Mountains. 

Most historical dam failures in Utah have been small dams in rural areas; larger dams are 
less prone to failure because of more rigorous design, construction, and inspection practices 
(Harty and Christenson, 1988). Earthquake-induced ground shaking, liquefaction, landslides, 
and seiches (flood waves) may occur in Tooele Valley and could cause dam failures. 

EFFECTS 

Loss of life during debris slides, flows, and floods may result from drowning, 
high-velocity impact, or burial. Damage associated with debris flows has been described by 
Campbell (1975), and is summarized here. Damage to residential structures ranges from simple 
inundation to complete destruction by high-velocity impact. The velocity of a debris flow is an 
important consideration in determining the level of damage to structures. Many debris flows 
move with speeds on the order of 40 feet/second (12.2 m/sec), but others move as slowly as l 
foot/second (0.3 m/sec) as they flow down relatively gentle slopes. Debris flows of sufficient 
volume and momentum have destroyed residential structures and removed the remains from their 
foundations. Debris flows of relatively small volume but high momentum have broken through 
walls and passed completely through structures. Low-velocity debris flows may enter dwellings ' 
through doors and windows. Debris flows and floods may fill basements with mud, water, and 
debris, or pile debris around structures. Debris may also bury yards, streets, parks, driveways, 
parking lots, and other ground-level structures. In the distal parts of alluvial fans, damage is 
usually comparatively minor, consisting primarily of mud and water damage to outer walls of 
buildings, basements, and yards. 

Loss of life during stream and dam-failure floods may occur by drowning where 
floodwaters are deep or flowing swiftly. Water damage depends largely on depth of inundation, 
and damage potential increases dramatically with increases in floodwater velocity (Federal 
Emergency Management Agency, 1985). High-velocity floodwaters can cause structures to 
collapse due to pressures applied by fast-moving water. Flowing water can also induce erosion 
and undermine structures. Areas subject to rapid inundation by flash floods pose special threats 
to life and property because there is insufficient time for evacuation, emergency floodproofing, or 
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other protective measures (Federal Emergency Management Agency, 1985). 

HAZARD REDUCTION 

Debris Slides, Flows, And Floods 

Methods for reducing debris-related hazards include: (1) avoidance, (2) source-area 
stabilization, (3) transportation-zone modification, and (4) defensive measures in the 
depositional zone (Hungr and others, 1987). Different methods or combinations of methods may 
be appropriate for different drainages or types of development. 

Debris-flow hazards may be reduced by avoiding, either permanently or at the time of 
imminent danger, areas at risk (source areas, transportation zone, and depositional zones). 
Permanent avoidance is not possible in all areas because some Tooele Valley communities are on 
active alluvial fans (potential depositional zones) where damage from debris flows may occur. 
Reduction of debris-flow hazards could be required for proposed new development through 
creation and enforcement of foothill (zoning) ordinances that prohibit or regulate development in 
deposition zones. 

Warning systems may be used to avoid life threats from debris flows at the time of 
imminent danger, generally through evacuation of threatened areas. Hungr and others ( 1987) 
identify three categories of debris-flow warning systems: pre-event, event, and post-event. 
Pre-event warning systems identify when climatic conditions have increased the potential for 
debris-flow occurrence. Event warning systems provide an alarm when a debris-flow event is 
occurring (Hungr and others, 1987). Post-event warning systems, such as slide-warning fences, 
are usually designed to warn of disruption of transportation routes (Hungr and others, 1987). 

Source-area stabilization reduces the amount of hillside material available for 
incorporation into debris slides, flows, or floods. Improving drainage-basin vegetation is one 
method of source-area stabilization. Prevention of wildfires, overlogging, and overgrazing will 
protect existing vegetation. Terracing of mountain slopes, such as that done in the 1930s in 
Davis County by the Civilian Conservation Corps (Bailey and Croft, 1937), may be useful in 
preventing debris flows caused by erosion during cloudburst storms. Additional hazard
reduction techniques used near the source area include: (1) control of subsurface drainage, (2) 
diversion of surface drainage, (3) grading of source areas to a uniform slope, ( 4) riprap repair of 
source areas, and (5) retaining walls (Baldwin and others, 1987). 

Transportation-zone modifications are generally designed to reduce incorporation of 
channel material into debris flows and floods, and to improve the ability of the channel to pass 
debris dovvnstream. The transportation zone consists of the debris-flow track between the source 
and deposition zone. Scour of material in stream beds and undercutting of unstable stream banks 
are two of the most important processes contributing to the growth of debris flows (Hungr and 
others, 1987). Check dams (small debris-retention structures placed in unstable channels) are 
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used to arrest or retard debris flows, and prevent incorporation of channel material (Hungr and 
others, 1987). Stream-bed stabilization is also achieved by lining the channel. The ability of 
channels to pass debris surges downstream may be improved through: ( 1) removal of channel 
irregularities, (2) enlargement of culverts with upstream removable grates to prevent blockage, 
and (3) flumes, baffles, deflection walls, and dikes (Jochim, 1986; Baldwin and others, 1987). 
Structures crossing potential debris-flow channels may be protected by: (1) bridging the channels 
to allow debris to pass under structures, (2) constructing debris sheds designed to allow debris 
flows to pass over structures, and (3) designing structures to withstand debris-flow impact, 
burial, and re-excavation (Hungr and others, 1987). 

Defensive measures in debris-flow deposition zones are designed to control the extent of 
deposition and prevent damage to structures (Hungr and others, 1987). Defensive measures 
include deflection devices, impact walls, and debris basins. Deflection devices are used to 
control the direction and reduce the velocity of debris flows (Baldwin and others, 1987). 
Deflection devices include: ( l) pier-supported deflection wa1ls, (2) debris fences ( a series of steel 
bars or cables placed horizontally at increasing elevations above the stream channel), (3) berms, 
(4) splitting-wedge walls (reinforced concrete walls in the shape of a "V" with the point facing 
uphill), and (5) gravity structures like gabions (hollow wire baskets filled with rocks) (Jochim, 
1986; Baldwin and others, 1987). 

Impact walls and debris basins are methods commonly used to reduce debris-flow 
hazards. Impact walls are designed to sustain the instantaneous force of impact from debris 
flows while containing the soil and vegetation debris until it can be removed (Baldwin and 
others, 1987). Impact walls include concrete, soldier pile, and soil and/or rock gravity walls 
(including gabions) (Baldwin and others, 1987). Two types of debris basins, open and closed, 
are used to constrain the area of debris deposition. Open debris basins have a basin-overflow 
spillway designed to direct excess material either to an insensitive area or back into the stream 
channel. Closed debris basins generally have a straining outlet to pass water, and a spillway to 
handle emergency debris overflow (Hungr and others, 1987). Both types of debris basins require 
access for removal of entrapped debris and maintenance. 

Stream Floods 

Methods for reducing stream-flood hazards and risk include: (1) avoidance, (2) drainage
basin improvement, (3) flow modification and detention, (4) flood warning and evacuation, and 
(5) floodproofing. Avoidance is not possible in a few areas in Tooele Valley because some 
structures are on active alluvial fans which are subject to periodic flooding. Flood hazards in 
many undeveloped areas in Tooele Valley and the WDHIA may be avoided by discouraging 
development on alluvial fans and flood plains of streams, or by regulating uses vulnerable to 
flood losses. Methods for discouraging new development and removal or conversion of existing 
development on flood plains are described in detail in Kockelman (1977) and later in this section. 

Drainage-basin improvement consists primarily of measures to increase infiltration and 
decrease runoff. Improving drainage-basin vegetation is one method of decreasing runoff. The 
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prevention of wildfires and forest fires combined with protection against overgrazing will protect 
existing vegetation. Slope terraces may be useful in decreasing runoff during rainstorms and 
spring snowmelt. 

Flow modification and detention can effectively lower flood hazards. Flood losses often 
lead to demands for public-works programs to provide protection such as dams, ditches, canals, 
sluices, holding basins, and detention reservoirs; channel deepening, straightening, widening, and 
paving; bypass or diversion channels, dikes, revetments, floodwalls, levees, and underground 
drainage facilities; or combinations of several of these (Kockelman, 1977). Construction of 
flood-control works can, however, create problems and unrealistic expectations. As urban 
development of flood plains continues, population and property values in areas subject to 
flooding tend to increase at rates greater than that at which protection can be provided 
(Kockelman, 1977). Most flood-control works are expensive and require periodic maintenance. 
During dry cycles the public becomes complacent and is unwilling to see tax dollars spent on 
maintaining structures it deems unneeded. The presence of flood-control structures may lead the 
public to believe that flood hazards have been eliminated rather than simply lowered. Flood
control structures may not prevent losses from great and infrequent floods that exceed design 
criteria, often with catastrophic results. Unfortunately, after such catastrophes, the public 
commonly assumes that flooding occurred because flood-control structures were inadequately 
designed. 

Flood warning and evacuation may be the best means of reducing life loss due to floods 
where flood-control structures are inadequate or non-existent. Reliable and timely flood 
warnings permit temporary evacuation of people and some personal property from flood-hazard 
areas. 

Floodproofing may be the most effective way oflowering flood damage in areas where 
floods are of short duration and have low stages and velocities. Floodproofing measures include 
using special cements for flooring; providing adequate electric fuse protection; anchoring 
buoyant tanks; sealing the outside walls of basements; installing automatic sump pumps, 
sewer-check valves, seal-tight windows and doors, and door and window flood shields; and using 
wire-reinforced glass (Kockelman, 1977). Structural modifications may be necessary, including 
reinforcing basement walls and floor underpinnings to withstand increased hydrostatic pressures, 
permanently sealing exterior openings to basements, erecting low floodwalls, and elevating the 
lowest floor and access roads to at least 2 feet (0.61 m) above the 100-year flood elevation. 

Requiring flood insurance in areas of frequent flooding is another means of dealing with 
flood hazards. In Tooele Valley, Flood Insurance Rate Maps are only available for major 
drainages in Tooele City (Federal Emergency Management Agency, 1989b); there are no such 
maps for the WDHIA. These maps are designed to be used in conjunction with the Federal 
Insurance Administration's National Flood Insurance Program, which permits construction of 
new structures in floodways only if accompanying increases in flood heights are less than 1.0 
foot (0.30 m) and hazardous velocities are not produced (Federal Emergency Management 
Agency, 1989a). The program requires new development in and around floodways to be elevated 
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above the level of the 100-year flood, and flood insurance be purchased if property is within the 
boundary of the 100-year flood. The Utah Division of Comprehensive Emergency Management 
may be contacted for infonnation regarding the National Flood Insurance Program. County and 
city planning offices can provide information regarding zonation on the FEMA Flood Insurance 
Rate Maps. 

Dam-Failure Floods 

Little can practically be done through land-use planning to reduce hazards from dam
failure floods. Methods used to reduce hazards from stream flooding, such as proper land use 
along flood plains, will help decrease damage due to dam-failure flooding to some extent. 
Emergency evacuation based on dam-failure-inundation maps is the principal means of reducing 
hazards due to dam-failure flooding. The Utah Division of Water Rights, Dam Safety Section, is 
the agency regulating dam safety in Tooele County. 

USE OF HAZARD MAPS 

Debris-slide, debris-flow, debris flood, and stream-flood hazards are shown on plate 3 
(figure H-1 ). The plates show locations of debris slides and debris flows, and give a relative 
rating of slope-failure susceptibility to indicate slopes expected to generate debris slides and 
debris flows. They also show areas that may experience flooding and deposition of sediment 
from debris flows, debris floods, or stream floods. To date, no dam-failure inundation studies 
have been performed on dams in Tooele County, thus no inundation maps are available. 

Mapped on plate 3 are 104 debris slides and flows in the Oquirrh Mountains, most of 
which occurred during 1983 and 1984. They were identified using 1 :40,000-scale air photos and 
field reconnaissance. Where identifiable, the travel paths and deposits of these failures are also 
shown. No debris slides or debris flows were identified in the Stansbury Mountains or the 
WDHIA. There are two probable pre-historic debris flows which originated near Stockton. 
Debris slides and flows in the Oquirrh Mountains occurred only in the southern half of the study 
area, between Soldier Canyon on the south and Flood Canyon on the north. All but a few are in 
Settlement, Middle, Pass, and Flood Canyons. No debris flows and only four debris floods 
deposited material beyond canyon mouths during 1983 or 1984, when debris floods in Pass and 
Swensons Canyons in the Oquirrh Mountains deposited sand and gravel on alluvial fans east of 
the town of Lincoln up to 1.5 miles (2.4 km) from the base of the mountains. Two small, 
unnamed canyons in the northern Stansbury Mountains northwest ofTimpie Valley also yielded 
debris floods that deposited material on alluvial fans beyond the canyon mouths. 

Slope-failure susceptibility in debris-flow source areas (source-area susceptibility on plate 
3) provides a relative rating of susceptibility to failure, but does not estimate probability or 
likelihood of failure for a given time period. The frequency of occurrence (recurrence) of debris
slide and debris-flow events in a drainage basin depends upon climatic factors as well as the 
availability of debris. The map ratings are based mainly on the presence of pre-existing slope 
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Figure H-1. Index map of areas (crosshatched) where debris-slide, debris-flow, debris-flood, 
and stream-flood hazards are mapped on plate 3. Letters are used in plate designations. 
Study area boundaries are shown by dashed lines. 

failures and slope angle. Other factors considered included vegetation type and density, rock and 
soil type, geologic structure, slope aspect, and elevation. 

With a few exceptions, areas with a "high" susceptibility rating are generally slopes that 
produced debris slides and flows during 1983 and 1984. These slopes mainly include the upper 
reaches of Flood and Pass Canyons, the south-facing slope of Clipper Ridge in Middle Canyon, 
and the Kelsey Canyon area of Settlement Canyon. Although only one debris flow was identified 
in the Shingle Gulch area of Middle Canyon, adjacent slopes are included in the "high" 
susceptibility category because geologic and topographic conditions mirror those on the Clipper 
Ridge slopes. Slopes in the Left Hand Fork area of Settlement Canyon are included in the "high" 
category because conditions there are similar to those in the Kelsey Canyon area. Slopes 
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surrounding rock slides at the head of Settlement Canyon are also included in the "high" 
susceptibility category because bedrock in this area dips doMtslope and is prone to bedding
plane failures. If the rock slides in this area are not considered, the susceptibility would instead 
be "moderate". 

The "moderate" susceptibility category includes slopes that are steeper than 30 percent 
(17 degrees) that did not experience debris slides or flows during the wet years. All areas with 
slopes greater than 30 percent are considered potential debris-flow sources. The "low" 
susceptibility category includes slopes less than 30 percent. Few debris slides or flows occur on 
slopes less than 30 percent, and no such slope failures have occurred on these slopes in the 
WDHIA or Tooele Valley study area. 

A number of Wasatch Front communities have hillslope building ordinances that require 
studies or restrict development in areas of 30 percent slope and greater. Virtually all mountain 
slopes not in the high susceptibility group are in the moderate category; most valley areas and 
much of the WDHIA are in the low category. Site investigations addressing slope stability 
should be performed in all areas of high and moderate susceptibility. 

Plate 3 also shows areas of potential debris deposition and flooding (OFF) where 
site-specific studies are recommended. Hazard areas were defined from surficial geologic 
mapping by Solomon (1993), and show active (and potentially active) alluvial fans and stream 
channels where debris-flow, debris-flood, and stream-flood hazards may occur. Debris flows 
that reach canyon mouths generally deposit sediment on the heads of alluvial fans at canyon 
mouths close to mountain fronts. Therefore, hazard areas along the fronts of the Oquirrh, 
Stansbury, and Cedar Mountains, and the Grayback Hills, have the greatest debris-flow hazard. 
Site investigations addressing the potential for sediment deposition and flooding from debris 
flows should be performed in OFF areas in canyon bottoms and at canyon mouths along 
mountain fronts, where no debris basin or other flood control structure exists above the site. 
However, debris floods and stream floods can affect areas farther away from mountain fronts 
than debris flows. Therefore, site investigations addressing these hazards ( or disclosure of the 
hazards) may also be required for OFF areas in the valley, as deemed neccesary by the local 
government. Because of the scale of the maps, some small hazard areas are not shoMl. In 
addition, boundaries of OFF areas could change depending on activities such as road 
construction and residential development (which can change drainage patterns). Therefore, 
studies are recommended for critical facilities even outside of the mapped hazard areas. 

The adequacy of existing dams, debris basins, or structures built to divert debris flows or 
minimize flooding was not considered during preparation of the hazard maps. Such structures, 
where properly placed and of sufficient size, may limit the extent of deposition and flooding and 
reduce the potential hazard. Estimates of flooding and potential sediment yields from large 
events are necessary in evaluating the adequacy of these structures. 

In addition to active alluvial fans and stream channels, the hazard maps also show areas 
in Tooele City expected to be inundated by floods with 100- and 500-year recurrence intervals 
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(plate 3H; Federal Emergency Management Agency, 1989b). Although these flooding events 
have only a 1.0 and 0.2 percent chance, respectively, of being equaled or exceeded during any 
year (Federal Emergency Management Agency, 1989a), most of these areas were flooded in 
1983-84. Although these recurrence intervals represent the "long-term average" period between 
floods of a specific magnitude, rare floods could occur at shorter intervals or even within the 
same year (Federal Emergency Management Agency, 1989a). Methods used to produce the flood 
maps are outlined in more detail in Federal Emergency Management Agency (1989a). 

For areas of Tooele City contained within flood zones outlined by Federal Emergency 
Management Agency ( 1989b) (plate 3H), no new development is permitted in the 100-year flood 
plain unless: (1) detailed engineering studies show that the proposed development will not 
increase the flood hazard to other property in the area; (2) the proposed development is elevated 
above the 100-year flood base elevation; and (3) for federally-insured loans, flood insurance is 
purchased from a company participating with the Federal Insurance Administration or a private 
carrier. Areas outside the 100-year flood zone are not restricted, but could experience flooding if 
high peak flows overtop man-made waterways or if flood problems are aggravated by debris 
deposits or flood plain development (Federal Emergency Management Agency, I 989a). 

SITE INVESTIGATIONS 

Site-specific investigations for debris-flow, debris-slide, and debris-flood hazards should 
include an assessment of: (1) the potential for an area to produce debris flows and floods based 
on the presence of debris slides and colluvium-filled slope concavities, the amount of debris 
available for scour from the channel, and an estimate of the largest probable volumes likely to be 
produced during a single event; (2) stream-channel conditions to determine if the channel will 
supply additional debris, impede flow, or contain debris in the area of the proposed development; 
and (3) engineered structures upstream that may contain, divert, or deflect debris flows and 
debris floods. In addition, the report should include recommendations concerning necessary 
channel improvements, flow-modification and catchment structures, direct-protection structures, 
or floodproofing measures to help protect the proposed development. 

The storage capacity of reservoirs or debris basins upstream from the site of critical 
facilities within hazard areas must be evaluated, and quality of debris-basin maintenance should 
be addressed. Wieczorek and others ( I 983 ), Pack (I 985), and Keaton and others (1988) identify 
factors to be considered when evaluating debris-flow hazards, and should be consulted when 
conducting site investigations. 

Tooele City is a member of the National Flood Insurance Program and, therefore, 
development is required by FEMA to comply ,vith National Flood Insurance Program standards 
along drainages for which Flood Insurance Rate Maps are available. FEMA has established 
guidelines for amending Flood Insurance Rate Maps for areas where the mapping is inaccurate or 
conditions have changed, such as areas where debris basins or retention ponds have been 
established after the maps were completed. ln addition, not all areas subject to flooding were 
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mapped, particularly those that are undeveloped or adjacent to small local drainages (Federal 
Emergency Management Agency, 1989b ). Flood hazard studies should determine elevation of 
the structure with respect to the 100-year flood plain, and recommend floodproofing or other 
hazard-reduction techniques if needed. No special site investigations are required for 
development in dam-failure inundation zones, except where they coincide with stream-flood
hazard areas. 
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SECTION I: 
ROCKFALL 

by 

Kimm M. Harty 
and 

Bill D. Black 

INTRODUCTION 

Rock fall is a natural erosional process in mountainous areas of Tooele Valley and the 
WDHIA. As urban development advances towards the mountains, the risk from falling rocks 
increases. Rock falls can damage structures, roadways, and vehicles and may pose a significant 
safety hazard. The potential for rock-fall hazards is greatest along the Oquirrh Mountains in 
eastern Tooele Valley; however, a lesser rock-fall hazard also exists along the Stansbury 
Mountains and South Mountain in Tooele Valley, and along the Grayback Hills in the WDHIA. 

Rock falls originate when weathering and erosion of supporting rock and sediment 
destabilize and eventually dislodge rocks from slopes. The most susceptible slopes are those 
with outcrops broken by bedding surfaces, joints, or other discontinuities into abundant loose 
individual rock fragments called clasts. Shoreline benches eroded by Lake Bonneville and 
alluvium or glacial till also contain clasts that may dislodge and fall. When the clast falls or rolls 
from the slope, it may travel great distances by sliding, rolling, and bouncing. 

CHARACTERISTICS AND EFFECTS 

A primary mechanism responsible for triggering rock falls is water in outcrop 
discontinuities. In Norway, for example, 60 percent of all rock falls occur in April and May 
during maximum snowmelt and October and November during periods of heavy rainfall (Costa 
and Baker, 1981). In addition, rock falls are also the most common type of slope instability 
initiated by earthquakes. Case (1987a) estimates that a major Wasatch Front earthquake (magni
tude 7-7 .5) could produce thousands of rock falls along the Wasatch Front, including Tooele 
Valley. Keefer (1984) indicates that rock falls may occur in earthquakes as small as magnitude 
4.0. In August 1988, the San Raphael Swell earthquake (magnitude 5.3) in central Utah 
produced hundreds of rock falls, temporarily obscuring the surrounding cliffs in clouds of dust 
(Case, 1988a). The September 1992, ML 5.8 St. George earthquake caused numerous rock falls 
that caused minor damage (Black and Christenson, 1993). 

Rock falls are hazardous because a large rock mass traveling at high speed can damage 
structures and increase risk to personal safety. Rock falls that occur in remote or uninhabited 
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regions often go unnoticed. A 1987 rock fall near Dead Horse Point, Utah, was large enough to 
register on seismographs as far away as Blanding (Case, 1987b). Along the Wasatch Front, rock 
falls have historically caused problems along canyon roads by damaging paved surfaces, blocking 
traffic, or striking vehicles. The structures most often affected by rock falls in canyons are roads 
and above-ground aqueducts. Water service in both Big Cottonwood and Provo Canyons has 
been suspended due to aqueduct damage by impact and puncture from falling rocks. Homes built 
along the mountain front are also subject to rock falls. 

HAZARD REDUCTION 

Techniques for reducing rock-fall hazards include rock stabilization or modification of 
exposed structures or facilities. Rock-stabilization techniques such as bolting, cable lashing, 
burying, and grouting discontinuities; and removal or break-up of potential rock clasts are all 
physical methods of reducing the hazard. Deflection berms, slope benches, and rock-catch 
fences may stop or at least retard falling rocks. Strengthening a structure to withstand impact is 
an example of modifying structures at risk. Twenty-seven techniques for reducing landslide 
hazards, including rock falls, are described by Kockelman (1986). Hazard-reduction problems 
can arise when rock-fall source areas are located on land not owned by those in the rock-fall 
runout zone. 

In areas where the rock-fall hazard is present but is determined through site-specific 
investigation to be low, disclosure of potential hazards to land owners and residents may be an 
acceptable alternative to avoidance or mitigation, at least for single-family residences. 
Disclosure ensures that buyers are informed of the hazard, acknowledge the risks, and willingly 
accept them. 

USE OF HAZARD MAPS 

Plate 4 shows areas that may be susceptible to a rock-fall hazard in Tooele Valley and the 
WDHIA (figure 1-1). The primary factor in determining these areas is the presence of a source 
for rock-fall clasts. If there are no rocks on a slope, the rock-fall hazard is low. Case (1987c, 
1988b) identified some of the range-front slopes, called spurs, along the Oquirrh Mountains in 
Tooele Valley on which a rock-fall source was found. Additional source areas along the Oquirrh, 
Stansbury, and Cedar Mountains, South Mountain, and the Grayback Hills, were identified 
during this study. 

The hazard area for each susceptible spur was determined using a computer model called 
the Colorado Rock-fall Simulation Program (CRSP) (Pfeiffer and Higgins, 1988). This program 
was primarily designed to predict rock bounce heights, but was used here to simulate maximum 
travel distances of rock clasts. The program incorporates factors such as velocity, rock size and 
shape, roughness of the travel surface, and topography of the slope. Rock-fall events were 
simulated using the highest and steepest potential rock-fall source areas. Rocks were started with 
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Figure 1-1. Index map of areas (crosshatched) where rock-fall hazards are mapped on plate 4. 
Letters are used in plate designations. Study area boundaries are shown by dashed lines. 

an initial velocity (throw) of 1 foot/second (0.30 m/sec). The size of rock-fall clasts used in the 
simulation was based on the largest clast observed on the slopes below the rock-fall source area. 
The program simulates 100 rock falls for each source area: the clast traveling the longest distance 
from its source was used to delineate rock-fall-hazard areas. Possible decceleration of rock clasts 
by existing structures, such as roads, railroad tracks, and fences, was not used in the analysis. 
Thus, the hazard areas represent conservative, worst-case rock-fall events. 

Rock-fall simulations were run only on susceptible slopes along mountain-front areas; 
mountain interiors generally contain numerous rock-fall source areas and all canyons were 
included in the hazard areas. Using a conservative approach, mountain-front slopes greater than 
30 percent were also generally included in the hazard areas. Exceptions to this rule were mainly 
steeper areas where the rock-fall hazard is lessened by the presence of a dense vegetation cover, 
such as in the southwestern South Mountain area, and in the Stansbury Mountain foothills 
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between Box Elder and North Willow Canyons. Rock-fall hazard was not evaluated in the Flux 
vicinity due to active quarry operations that continuously alter the natural slopes. 

Rock-fall hazard areas are numerous along the base of the Oquirrh Mountains in Tooele 
Valley due to steep slopes created by active mountain uplift and valley down-drop along the 
Oquirrh fault zone, and by erosion along the Lake Bonneville shoreline bench. In contrast, 
slopes along the eastern base of the Stansbury Mountains are generally gradual and more heavily 
vegetated than those along the Oquirrhs. Thus, the rock-fall hazard is lower along the Stansbury 
Mountains. Rounded basalt boulders and short, steep slopes contribute to the rock-fall hazard 
along the Grayback Hills in the WDHIA. 

SITE INVESTIGATIONS 

Prior to development, site-specific rock-fall evaluations may be appropriate in the hazard 
areas. Hazard potential should be assessed in site-specific engineering-geologic reports, 
including, if necessary, recommendations for hazard-reduction measures or dislosure. 

Site investigations should define rock-fall sources and estimate runout paths and 
distances from each source. Rock-fall sources may be outcrops or individual clasts on a slope. 
Size, shape, depth of burial, and slope geometry are all factors to be considered in defining 
sources as well as runout paths and distances. Computer models are available to simulate runout, 
but physical evidence such as extent of clast accumulations below sources, topographic 
configuration, damaged vegetation, and natural barriers are also important considerations. 
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SECTION J: 
LAKE FLOODING, PONDING, 

AND SHEET FLOODING 

by 

Bill D. Black 

INTRODUCTION 

A flood is the stage or height of water above some given datum, such as a commonly 
occupied lake shoreline. Floods are recurrent natural events which become a hazard to residents 
of a flood plain or shoreline whenever water rises to the extent that life and property are 
threatened. Tooele Valley is subject to flooding from rises in Great Salt Lake, and both Tooele 
Valley and the WDHIA are subject to local ponding and sheet flooding. 

CHARACTERISTICS AND EFFECTS 

Although fluctuating water levels are a problem in lakes, they are especially acute on 
lakes which, like Great Salt Lake, have no outlet Natural factors causing fluctuations include 
precipitation, evaporation, runoff, ground water, ice, aquatic growth, and wind; human factors 
include dredging, diversions, consumptive use, and regulation by engineered works (Federal 
Emergency Management Agency, 1985). Lake-level fluctuations may be grouped into three 
categories: (1) long term, (2) seasonal, and (3) short term. Fluctuations of Great Salt Lake have 
occurred in prehistoric and historic time, and flooding due to rising water levels is a hazard in 
Tooele Valley. 

Long-term fluctuations are the result of persistent low or high water-supply conditions for 
more than one year. Figure J-1 shows the effects of long-term excess precipitation during the 
1980s on Great Salt Lake elevation. Long-term climatic trends play a major role in determining 
lake levels, as do diversions of water sources by man. The intervals between periods of high and 
low lake levels, as well as the length of such periods during long-term fluctuations, vary widely 
and erratically (Federal Emergency Management Agency, 1985). Extreme lake levels are likely 
to persist even after the factors which caused them have changed. 

Seasonal fluctuations reflect the annual hydrologic cycle. Lake levels are lowest in winter 
and generally rise in the spring due to melting snow, heavier rains, and cooler temperatures, until 
the lake peaks in early summer (Federal Emergency Management Agency, 1985). During the 
summer, more persistent winds, drier air, and warmer temperatures intensify evaporation; runoff 
and ground-water flow to the lake decrease significantly. As the amount of water supplied to the 
lake becomes less than that removed by evaporation. the water level drops to winter minima 
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Figure J-1. Graph showing the effect of cumulative excess precipitation on Great Salt Lake 
elevation. Lake elevations have been adjusted to remove seasonal water-level variations 
and the effects of the Great Salt Lake causeway and Amax dike breaches (Atwood and 
Mabey, written communication, 1989). 

(Federal Emergency Management Agency. 1985). Great Salt Lake elevations fluctuate 
approximately two feet (0.6 m) between winter low and summer high lake levels. 

Short-term fluctuations are caused by strong winds and sharp differences in barometric 
pressure (Federal Emergency Management Agency, 1985). These fluctuations usually last less 
than one day and do not represent any changes in the amount of water in the lake. 

In prehistoric time, water levels in lakes occupying the Great Salt Lake basin, such as 
Lake Bonneville, fluctuated with great elevation differences between high and low stands (figure 
J-2). Geologic evidence indicates that Great Salt Lake reached a post-Lake Bonneville high of 
approximately 4,221 feet (1286 m) about 2,000 years before present (Murchison, 1989). 
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Figure J-2. Diagram showing a hydro graph of probable lake levels in the Lake Bonneville 
(Great Salt Lake) basin for the past 150,000 years (modified from Currey and Oviatt, 
1985; and Machette and others, 1987). 

Archaeological evidence indicates that the most recent high stand of Great Salt Lake was at 4,217 
feet (1285 m) sometime during the 1600s (Utah Division of Comprehensive Emergency 
Management, 1985; Murchison, 1989). 

Water levels in Great Salt Lake have also fluctuated in historical time. Until mid-1986, 
the historic high of Great Salt Lake was about 4,211.5 feet (1283.6 m) (Arnow and Stephens, 
1990). This level was reached in the early 1870s and is based on a relative elevation estimate of 
water depth over the Stansbury bar (Gilbert, 1890). Direct measurements of the lake's elevation 
began in 187 5 (Currey and others, 1984 ). The lake dropped slowly from its high in the 1870s, 
reaching an historic low of 4,191.35 feet (1277.46 m) in 1963. Above-average precipitation in 
the 1980s caused Great Salt Lake to attain a new historical high of 4,211.85 feet (1283.71 m) in 
June, 1986 (Arnow and Stephens, 1990) and April, 1987 (U.S. Geological Survey records). This 
rise in lake level caused damage to structures and property along the shoreline and within the 
lake (power lines, causeways, dikes, buildings, and refuse dumps). Figure J-3 summarizes 
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historical levels of Great Salt Lake and illustrates that significant lake fluctuations can occur 
within a relatively short time. 
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Figure J-3. Historical Great Salt Lake hydrograph. 

Rush Lake has fluctuated from the size of a "small pond" in the early 1860s (Gilbert, 
1890) to marsh-like and dry in the late 1950s to mid-1970s (Harty and Christenson, 1988). The 
lake was at or near 4,979 feet (1,518 m) when measured in 1872 (Gilbert, 1890), and reached it's 
highest elevation in 1876 or 1877, although no measurements were made at that time (Harty and 
Christenson, 1988). Like Great Salt Lake, water levels in Rush Lake also rose in the 1980s; 
between 1983 and 1985 Rush Lake rose nearly 10 feet (3 m), damaging powerlines and croplands 
surrounding the lake (Harty and Christenson, 1988). 

Ponding and sheet flooding are flood hazards that could occur in mudflats of the western 
WDHIA and in northern Tooele Valley, usually resulting from periods of intense, cloudburst 
rainfall, or rapid melting of snow. Any runoff or precipitation that reaches the mudflats usually 
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evaporates, but ponding often occurs in the winter and early spring. Localized, high-intensity, 
cloudburst rainstorms, which last from a few minutes to a few hours, are unpredictable and likely 
cause most of the ponding and sheet flooding. These rainstorms are characterized by high peak, 
high velocity, short duration, and small volume runoff. Snow melt floods may also cause 
ponding and sheet flooding. These floods are generally predictable, and are characterized by 
large volume runoff, moderately high peak flows, and marked diurnal fluctuation in flow. 

Water damage accompanies flooding and ponding, and the amount of damage largely 
depends upon depth of inundation and duration. Along the shore of Great Salt Lake, the 
problems associated with water damage are also compounded by the presence of salt in the water. 
In areas where flooding is deep and of long duration, such as along the shoreline of Great Salt 
Lake, water damage to structures is especially serious. Although this flooding generally is not 
life-threatening, it will likely cause permanent property loss or damage. 

HAZARD REDUCTION 

Hazard-reduction methods for lake flooding include avoidance, diking, diverting inflow 
to the lake, and increasing outflow and/or evaporation through pumping (Utah Division of Water 
Resources, 1977). Avoidance, floodproofing, and site grading can reduce ponding and sheet
flooding hazards. Different methods or combination of methods may be appropriate for different 
types of flooding or development. 

Using the best available historical and scientific data on Great Salt Lake, government 
policy makers and lake experts have recommended that a beneficial development strategy should 
exist for lake-shore areas up to 4,217 feet (1,285 m) in elevation (Utah Division of 
Comprehensive Emergency Management, 1985). This strategy establishes a "Beneficial 
Development Area" along the shore of Great Salt Lake between 4,191.4 feet (1,277.5 m) (historic 
low stand, 1963) and 4,217 feet (1,285 m). Within this area, it is recommended that development 
take place in a manner that will encourage the maximum use of the land for the people of Utah, 
while avoiding unnecessary disaster losses (Utah Division of Comprehensive Emergency 
Management, 1985). The most effective way to reduce hazards would be to adopt this beneficial 
development strategy and ensure that development within this area is either compatible with or 
protected from the flood hazard. 

Recent shoreline flooding around Great Salt Lake has been locally controlled by dikes. 
However, this is not a long-term solution. Stabilization of the water level may be accomplished 
in several ways, including pumping to adjacent basins to increase evaporation, and diversion of 
inflow. 

Flooding around the margins of Great Salt Lake has been controlled by increasing 
evaporation through pumping. Lake water was pumped into the west desert to increase surf ace 
area subject to evaporation. Although these pumps are effective in controlling lake levels during 
wetter-than-normal years, it is possible for precipitation during a very wet period to exceed the 
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capabilities of pumping and evaporation. 

Shoreline flooding around Great Salt Lake could also be controlled by diverting water 
from rivers which flow into the lake. This option has been most frequently discussed with regard 
to the Bear River. To be effective, the water must be diverted completely out of the Great Salt 
Lake basin. Bear River water could be discharged into the Snake River drainage. 

Avoidance is one method of dealing with ponding and sheet flooding, although it may not 
be possible where population centers are on relatively flat valley floors. Floodproofing is also an 
effective way of reducing flood damage in areas where floods are of short duration and have low 
stages and velocity. Floodproofing measures include the use of special cements for flooring, 
adequate electrical fuse protection, anchors for buoyant tanks, sealed outside walls and 
basements, wire-reinforced glass, automatic sump pumps, sewer-check valves, sealed windows 
and doors, and window and door flood shields (Kockelman, 1977). Modifications of site grade, 
such as elevating structures and access roads, may also be needed. 

USE OF HAZARD MAPS 
AND SITE INVESTIGATIONS 

Plate I depicts areas that may be subject to ponding and sheet flooding, and lake flooding 
(figure J-4). Areas subject to ponding and sheet flooding are restricted to mudflats in the western 
WDHIA, northern Tooele Valley, and Rush Lake. Areas in Tooele Valley along the southern 
shoreline of Great Salt Lake, where the proposed lake flooding beneficial development strategy is 
recommended, include all areas below an elevation of 4,217 feet (1,285 m). The location of the 
4,217-foot (I ,285-m) contour has been interpolated from 1 :24,000 scale U. S. Geological Survey 
topographic quadrangle maps. Areas in northern Rush Valley include areas below an elevation 
of 4,979 feet (1,518 m), which were defined as the potential flood boundary for Rush Lake in 
Harty and Christenson (1988). However, these lines are only approximate and accurate field 
surveys should be performed prior to development. 

Site investigations for proposed development in lake-flooding areas near Great Salt Lake 
need only indicate site elevation, whereas ponding and sheet-flooding hazards need to be 
addressed in a hydrologic report for the site. Development proposals in areas with elevations less 
than 4,217 feet (1,285 m) for Great Salt Lake, or 4,979 feet (1,518 m) for Rush Lake, should be 
reviewed by the county planning department with respect to lake-flooding potential and 
compatibility of proposed use. Hydro logic reports for ponding and sheet flooding should 
consider factors such as precipitation, drainage area, and soil permeability, and should also 
contain recommendations for design of floodproofing or other hazard-reduction strategies. 
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Figure J-4. Index map of areas ( crosshatched) where lake-flooding, ponding, and sheet-flooding 
hazards are mapped on plate 1. Letters are used in plate designations. Study area 
boundaries are shown by dashed lines. 
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SECTIONK: 
SHALLOW GROUND WATER 

by 

Bill D. Black 

INTRODUCTION 

Ground water is water in saturated zones beneath the land surface in various materials at 
various depths. Ground water fills fractures and pore spaces in rocks and voids between grains in 
unconsolidated deposits ( clay, silt, sand, and gravel). Ground water is considered shallow when 
the water table is within 30 feet (9 m) of the ground surface (Hecker and others, 1988). 

Shallow ground water in rock is not considered here because it poses a relatively 
insignificant geotechnical hazard. Foundations and conventional waste-water disposal systems in 
rock are uncommon, and foundation stability is not appreciably reduced by saturated conditions 
(Hecker and others, 1988). 

However, most construction takes place in areas of unconsolidated sediments subject to 
various hazards associated with shallow ground water. Such hazards include flooding of 
subsurface facilities such as basements and buried facilities, destabilization of foundations or 
excavations, surface flooding, and liquefaction of soils during earthquakes. Shallow ground 
water is found in northern Tooele Valley and in much of the WDHIA, and must be taken into 
consideration when siting waste-disposal facilities and septic-tank soil-absorption systems. 

Flooding due to shallow ground water in basements, foundations, and excavations is 
generally only a hazard when the saturated zone is within the depth to which most building 
foundations are excavated, usually about 10 feet (3 m) or less. Surface flooding due to shallow 
ground water can occur anytime ground water rises to the surface. Liquefaction during 
earthquakes, and potential ground failure, may occur in saturated sandy soils where the depth to 
ground water is less than 30 feet (9 m) (Youd and others, 1978) (Section E). Earthquakes may 
also cause rises in water tables and increased ground-water discharge (Section F). 

CHARACTERISTICS 

Ground water in unconsolidated deposits, chiefly stream alluvium, alluvial-fan, and 
lacustrine sediments, occurs under unconfined and confined conditions in geologic units known 
as aquifers. These units are permeable enough to yield water in usable quantities to wells and 
springs (Heath, 1983). 
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An unconfined aquifer is generally not saturated throughout its entire thickness; the top of 
the saturated zone in unconsolidated sediments is termed the water table (figure K-1 ). Localized 
occurrences of unconfined ground water above the water table are called "perched zones" (figure 
K-1 ). Perched ground water commonly occurs above localized layers of low-permeability 
sediments, such as clay. 

Where ground water saturates the entire thickness of an aquifer below an areally 
extensive low-permeability layer, termed a confining bed, the aquifer is said to be under confined 
conditions. Ground water under confined conditions (artesian water) is usually under hydrostatic 
pressure exerted by higher water levels in recharge areas. Water in wells which penetrate a 
confined aquifer usually rises above the top of the aquifer to the potentiometric surface (well B, 
figure K-1), which is determined by hydrostatic pressure in the aquifer. However, confining beds 
in unconsolidated deposits are generally semi-permeable and may allow water to leak upward 
and help maintain the water table above the confined aquifer (Hely and others, 1971; Razem and 
Steiger, 1981) (figure K-1 ). 

Shallow ground water is replenished by infiltration from streams, lakes, precipitation, 
lateral subsurface flow from adjacent higher ground-water areas, and upward leakage from 
underlying confined aquifers (Heath, 1983). The shallowest water tables are generally found in 
the central parts of valleys, where leakage from underlying artesian aquifers is greatest and 
potentiometric surfaces are commonly above the ground surface (figure K-1 ). Man influences 
local water levels through irrigation, pumping from wells, and surface-drainage diversions and 
reservoirs (Hecker and others, 1988). 

The shallow water table is dynamic and fluctuates in response to a variety of conditions. 
Ground-water levels may rise and fall with seasonal variations in precipitation, long-term 
climatic changes, or changes in rates of irrigation or pumping. A series of years with greater
than-average precipitation beginning in the late 1960s, but particularly between 1982 and 1986, 
increased ground-water recharge to basins and elevated ground-water levels statewide. Drought 
conditions in the late 1980s caused a general decline. 

EFFECTS 

The most significant hazards associated with shallow ground water are flooding of 
subsurface facilities (such as basements) and damage to underground utility lines; inundation of 
landfills and waste dumps and effects on septic-tank soil-absorption fields; and possible damage 
to foundations, roads, and airport runways from soils affected by moisture. Structures extending 
below the water table may experience water damage to their foundations and/or contents; 
underground utilities may also experience water damage. Landfills and waste dumps may 
become inundated and contaminate aquifers, and septic-tank soil-absorption fields can become 
flooded and cause ground-water contamination as well as system failure. In addition, certain 
foundation soils can settle or expand when wet, causing damage to foundations and structures 
(Section L ). Roads and airport runways may buckle or settle as bearing strength of foundation 
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Figure K•l. Diagram of ground water in Tooele Valley showing: unconfined and confined 
aquifer, confining bed, perched water, water table, potentiometric surface, recharge area, 
and area of shallow ground water. Note level of water in well B rises above water table 
due to artesian ( confined) conditions ( modified from Hely and others, 1971 ). 

soils is reduced by saturation. 

Shallow ground water may also erode and dissolve subsurface materials, resulting in soil 
piping and settlement (Section L). Water flowing through bedrock fissures in limestone or 
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gypsiferous rocks can dissolve the rock and create holes which may also collapse. 

Contaminants are easily introduced into shallow ground water because it is readily 
accessible from the surface. Pollutants will flow with the ground water and may enter deeper 
aquifers or seep into wells. About 85 percent of Utah's wells are located within basin-fill 
aquifers; some are becoming increasingly contaminated (Waddell and Maxell, 1987). 

HAZARD REDUCTION 

Avoidance, although not always possible, is one method of reducing shallow ground
water problems. Construction techniques may be employed which reduce or eliminate the 
adverse effects of ground-water flooding. Water-proofing of subsurface structures may be the 
most common technique, and may include drainage systems around basements. Water-proofing 
requirements are given in the Uniform Building Code (International Conference of Building 
Officials, 1994). Slab-on-grade buildings, which have no basement, are common in areas with a 
shallow water table. Pile foundations may also be used to increase foundation stability. 
Occasionally it is necessary to add fill to raise building elevation. 

Pumping to lower the water table is also possible, but is typically used only during the 
construction phase. Pumping is an expensive and unreliable technique for permanently lowering 
a water table. Basement sump pumps are usually effective for individual homes. 

Septic-tank soil-absorption fields do not function properly if inundated by shallow ground 
water. Utah State Health Department regulations therefore require that the base of the drain lines 
be at least two feet (0.6 m) above the highest seasonal ground-water table. Wisconsin mound 
septic-tank soil-absorption systems are currently experimental in Utah, but may be an alternative 
system that could be used in shallow ground-water areas. The drain lines in this type of system 
are buried in a mound above the natural ground surface to increase evaporation and the soil 
thickness above the water table. 

USE OF HAZARD MAPS 
AND SITE INVESTIGATIONS 

Plate 4 shows areas where a shallow ground-water hazard may be found in the WDHIA 
and Tooele Valley (figure K-2). In areas for which no maps were prepared, depth to ground 
water is generally greater than 50 feet ( 15 m). Ground-water depths are grouped into four zones 
on the maps: (1) less than 10 feet (3 m), (2) 10 to 30 feet (3 to 9 m), (3) 30 to 50 feet (9 to 15 m), 
and (4) greater than 50 feet (15 m). Information on Tooele and Rush Valley is from Razem and 
Steiger ( 1981 ), Hood and others (1969). and well-log data from the Utah Division of Water 
Rights. Information on the WDHIA is from Dames & Moore and others (1987), Stephens 
(1974), and U.S. Department of Energy ( 1983). Springs and phreatophytes (plants whose roots 
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Figure K-2. Index map of areas where the depth to shallow ground water is mapped on plate 4. 
Letters arc used in plate designations. Study area boundaries are shown by dashed lines. 

intersect the water table) also provided information regarding the presence of shallow ground 
water. 

Most problems associated with shallow ground water occur when the water table is 
within about 10 feet (3 m) of the ground surface. Ground water at this depth is found in both the 
WDHIA and Tooele Valley. Site-specific shallow ground-water studies are recommended for all 
types of construction with subsurface facilities in areas where the water table is likely to be 
within 10 feet (3 m) of the ground surface. All proposed construction in these areas (particularly 
of buildings with basements or using septic-tank soil-absorption fields) should address shallow 
ground-water hazards in site-specific investigations. 

Site-specific studies should identify the highest ground-water level recorded or visible in 
sediments, as well as the present and highest expected water table. To do this, it may be 
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necessary to use additional information about long-term water-level fluctuations from 
measurements in wells over time to define a range of seasonal and annual fluctuation. Water
table measurements during known wet periods, such as 1982-1986, can also be used to 
approximate highest levels. Shallow ground-water hazards can be addressed in a soil-foundation 
report for the site or in testing for soil-absorption systems. If a hazard is found and construction 
is still planned, the report should include recommendations for stabilizing or lowering the water 
table and any floodproofing designs or other hazard-reduction strategies deemed necessary. Such 
studies must also address soil conditions and the potential for collapse, piping, dissolution, or 
swelling of saturated soils. 
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SECTIONL: 
PROBLEM SOILS AND SUBSIDENCE 

by 

Bill D. Black 

INTRODUCTION 

Problem soil is a broad category of geologic hazards which result from unconsolidated 
surficial geologic materials with characteristics that make them susceptible to volumetric 
changes, collapse, subsidence, or other engineering-geologic problems. These hazards include 
expansive soil, gypsiferous soil, piping, and mine subsidence. Expansive soil is a hazard in both 
Tooele Valley and the WDHIA; deposits susceptible to piping may also occur in these areas. 
Gypsiferous soil may be found in mudflats of northern Tooele Valley and western portions of the 
WDHIA, whereas mine subsidence is generally only a hazard in the Oquirrh Mountains east of 
Tooele Valley. 

Geology is the main factor influencing the extent of problem soil, and the geologic parent 
material largely determines the type of problem present. For example, expansive soil is most 
often associated with clay and shale, whereas dissolution features commonly form in limestone 
and gypsiferous material. Climate is an additional factor for soils subject to dissolution and 
collapse. However, one subsidence problem is not soil related; mine subsidence is due to the 
collapse of underground mines and is related solely to the activities of man. 

CHARACTERISTICS 

Expansive Soil 

Expansive soil is clay rich. Clay minerals cause the soil to expand and contract with 
changes in moisture content. All clay minerals expand to some degree, but some varieties such 
as montmorillonite (the most common variety of clay in Utah) can swell to 2,000 times their 
original dry volume (Tourtelot, 1974). Expansive soil may be found in fine-grained lake deposits 
in northern Tooele Valley and the western half of the WDHIA. 

Clays may swell in two ways when wetted, either by absorption of water between clay 
particles or by absorption of water into the crystal lattice that makes up individual particles 
(figure L-1 ). In both processes, the absorbed water causes the clay to expand. Montmorillonite 
commonly swells by absorption of water between individual crystals. As the material dries, the 
loss of water causes it to shrink. The processes of wetting, drying, freezing, and thawing chum 
and disturb the surface of expansive deposits, giving some of them a characteristic "popcorn" 
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Figure L-1. Diagram of water-absorption processes in clay minerals (modified from Mulvey, 
1992). 

texture. This texture is a good indicator of the presence of expansive soil. 

Gypsif erous Soil 

Gypsum is soluble, and gypsiferous soil may be subject to dissolution. Settlement may ' 
occur due to loss of internal structure and volu.me from dissolution. Gypsum-rich soil may be 
formed as a secondary mineral leached from surficial layers and concentrated lower in the soil 
profile, or may be transported by wind or water from outside sources. The most common sources 
for airborne gypsum are playas, on which crusts of gypsum salts are formed as the wetted playa 
surface dries during warmer months. These gypsum crusts are easily eroded and transported by 
wind. Gypsiferous soil may occur in wind-blown deposits in the western half of the WDHIA. 

Piping and Mine Subsidence 

Piping is a common process in arid climates where fine-grained, uncemented, 
unconsolidated deposits are incised by streams. Piping occurs when ground water, moving along 
permeable, noncohesive layers in unconsolidated materials and exiting at a free face that 
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intersects the layer, causes subsurface erosion (Cooke and Warren, 1973; Costa and Baker, 
1981). Removal of fine-grained particles (silt and clay) by this process creates voids that act as 
minute channels which direct the movement of water (figure L-2). As channels enlarge, water 
moving through the conduit increases velocity and removes more material, forming a "pipe." 
The "pipe" becomes a preferred avenue for ground-water flow, growing in size as larger volumes 
of water are intercepted. Increasing the pipe size removes support for its walls and roof, causing 
eventual collapse. Collapse features form on the surface above the pipes, directing even more 
surface water into them. Eventually, total collapse forms a gully that concentrates erosion along 
a line of interconnected collapse features. 

Hole in ground surface 
created by headward 

. \ erosion of pipe Cross section 

:_. •.. ' 01 active pipe Free face of 

tream 

\ 

Figure L-2. Cross section of a pipe in Holocene alluvium (modified from Mulvey, 1992). 

Deposits susceptible to piping in Tooele County include fine-grained marl and silt 
deposited by Lake Bonneville (Mulvey, 1992). Several conditions are necessary for piping. 
Water must be present in volumes large enough to soak into the subsurface and reach layers or 
zones (animal burrows, decayed plant roots) which conduct the water to a free face. The local 
surface topography must also have enough relief to create a hydraulic head, and move water 
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through the subsurface. Deposits susceptible to piping must be fine grained and uncemented, but 
permeable enough to allow subsurface movement of water. Finally, a free face or cliff is 
necessary for water and sediment to exit the deposit (Costa and Baker, 1981). 

Mine subsidence occurs above both active and abandoned mines. The removal of rock 
from the subsurface can cause subsidence of the land surface above, as the void left by mining is 
filled by collapse of overlying material (figure L-3). The long history of mining in Utah has 
created many areas with surface subsidence or sinkholes. Companies removing rock from the 
subsurface are now required by law to devise a mining method that reduces the potential for 
surface subsidence, monitor subsidence, and file a report with the Utah Division of Oil Gas and 
Mining (DOOM) each year. The subsidence investigations are based on surveyed grids laid out 
over mining areas. If subsidence occurs, the mine is required to alter their mining methods to 
prevent further subsidence (AC. Keith, Utah Geological and Mineral Survey, personal 
communication, January, 1990). The Bingham mining district, in the Oquirrh Mountains on the 
western edge Tooele Valley, may be subject to this hazard, although there are no documented 
occurrences of mine subsidence. 

Depth 
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Figure L-3. Cross section of a subsidence pit. under a house, in an area of thick soil cover 
(modified from Turney, 1985). 
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EFFECTS 

Expansive Soil 

Problems commonly associated with expansive soil are cracked foundations (figure L-4), 
heaving and cracking of road smfaces, and failure due to plugging of septic-tank wastewater soil
absorption systems. Single family homes are particularly susceptible to expansive soil because 
foundation loads (1,500 to 2,500 lbs/ft2) [7,323 to 12,205 kg/m2

] may be less than the expansive 
pressures (3,000 to 11,200 lbs/ft2) [14,646 to 54,678 kg/m2

] caused by the swelling material, 
making them subject to heave (Costa and Baker, 1981). Larger, heavier buildings are better able 
to withstand the expansive pressure, and are less susceptible. Sidewalks, roads, buried utilities, 
and slabs-on-grade are also susceptible to cracking and damage due to differential expansion and 
contraction of underlying material. 

Extreme 
structural 
distress 

Figure L-4. Typical major house damage from expansive soils (from Holtz and Hart, 1978). 
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Wastewater disposal systems using soil-absorption fields can also be effected by 
expansive soil. Clay-rich deposits develop cracks when dry, leaving voids which allow large 
volumes of water to infiltrate initially. Once saturated, the clay minerals swell, closing the voids. 
Soil-absorption systems installed in expansive soil work until the soil becomes saturated and 
swells. The soil quickly becomes impermeable and the systems clog and fail, causing wastewater 
to flow to the surface creating a health hazard. 

Gypsif erous Soil 

Gypsiferous soil has the potential to cause damage to foundations and/or cause land 
subsidence and sinkholes. When wetted by irrigation for crops or landscaping, or by water from 
wastewater disposal systems, gypsiferous soil may subside due to dissolution. In some cases 
large underground solution cavities may form and then collapse. Gypsum is also a weak material 
with low bearing strength. When gypsum weathers it forms sulfuric acid and sulphate (Bell, 
1983). These compounds may react with certain types of cement, weakening foundations by 
damaging the exterior surface. 

Piping and Mine Subsidence 

Piping and mine subsidence can cause damage to any overlying structure. Earthfill 
structures such as dams may be susceptible to piping, and piping of fine-grained embankment 
materials at the base of the Quail Creek dike, near St. George, contributed to its failure in 1989 
(James and others, 1989). In the Uinta Basin, irrigation of cropland adjacent to incised drainages 
has caused extensive piping. In areas where piping is common, roads are most frequently 
damaged because they commonly parallel stream drainages and cross-cut numerous pipes. In 
addition, their construction commonly disturbs natural runoff, concentrating it near the roads. 
Collapse of underground mine adits may damage overlying structures and alter local surface 
topography. Mine subsidence is affected by factors such as depth of the mine, size and 
orientation of adits, and subsurface geology. Unlike other problem soil hazards, mine subsidence 
is man-related and is only a hazard in areas of underground mining. 

HAZARD REDUCTION 

Expansive Soil 

The best method to reduce the hazard from expansive soil is to restrict changes in water 
content. Drainage conditions affecting soil moisture are important in areas of expansive soil. 
When water from sprinkler systems or runoff from roofs and roads reaches deposits beneath the 
structure. damage may occur as the material expands. 

To reduce damage from expansive soil, several techniques can be used. For structures, 
these include: (1) using gutters and downspouts to direct water at least 10 feet (3m) away from 
foundation slabs; (2) avoiding vegetation that concentrates or draws large amounts of water from 
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the soil near foundations; (3) insulating floors or walls near heating or cooling units, which 
prevents evaporation and local changes in soil moisture; (4) strengthening house foundations by 
reinforcing concrete with steel bars; and (5) driving pilings into the soil to a depth below the 
active zone to support walls (Costa and Baker, 1981). Wide shoulders and good drainage along 
highways can prevent road damage. In highway foundations, a combination of hydrated lime, 
cement, and organic compounds can be added to road subgrade materials to stabilize the 
underlying soil (Costa and Baker, 1981). For wastewater-disposal systems, a 24-hour "presoak" 
of the material (prior to determining percolation rates) may yield a more reliable percolation rate 
on which to base system design and approval. 

Gypsiferous Soil 

Damage to structures from gypsiferous soil can be limited by several methods. The outer 
walls of structures can be coated with impermeable membranes or bituminous coatings to protect 
them from deterioration. Special sulfate-resistant concrete can also be used. Because gypsum is 
dissolved by contact with water, runoff from roofs and gutters should be directed away from the 
structure. Landscaping close to the house should not include plants which require regular 
watering. 

Piping and Mine Subsidence 

Damage caused by piping can be reduced by controlling drainage in susceptible soil. 
Runoff concentrated or ponded along paved surfaces allows greater infiltration and encourages 
piping. Culverts to collect runoff, and closed conduits to carry the water away from the road, 
will prevent damage. Concrete-lined drainage ditches, and concrete or asphalt around culvert 
inlets and outlets, can also limit damage. Damage to cropland can be reduced by limiting the 
amount of irrigation along incised stream drainages. Avoidance is the easiest and most cost
effective hazard-reduction technique for mine subsidence. In areas above mines, assessment of 
the potential for collapse should be made prior to development. 

USE OF HAZARD MAPS 

Plate 5 shows the likely extent of expansive and gypsiferous soils, based on surficial 
geology, in the WDHIA and Tooele Valley (figure L-5). The map is designed to highlight areas 
where these soils may be present and should be evaluated in standard soil-foundation 
investigations prior to development. In hazard areas, improperly designed roads and structures 
can be susceptible to damage. The maps are generalized and other localized areas may occur 
outside of mapped problem-soil areas. Areas where piping or mine subsidence may be found 
were not mapped. 
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Figure L-5. Index map of areas (crosshatched) where problem soils are mapped on plate 5. 
Letters are used in plate designations. Study area boundaries are shown by dashed lines. 

SITE INVESTIGATIONS 

Most hazards created by problem soil can be reduced or avoided once they are identified. 
A standard soil-foundation investigation can indicate the presence of problem soil, and such 
investigations are recommended to provide information for foundation design even for areas that 
lie outside of the mapped problem-soil areas. Investigations should determine if clay is present 
and, if present, the type of clay and it's expansive qualities. Studies must also identify if gypsum 
is present, and in what quantity. If problem soils are found, the report should recommend 
appropriate hazard reduction strategies. The potential for piping should also be addressed. 

The potential for mine subsidence should be considered for all development in areas of 
historic mining activity, such as the Bingham Mining District. The Utah Division of Oil Gas and 
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Mining (DOOM) can provide infonnation regarding mining activity and the potential for 
subsidence in these areas. 
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SECTIONM: 
INDOOR RADON 

by 

Bill D. Black 
and 

Barry J. Solomon 

INTRODUCTION 

Most geologic hazards are natural, dynamic, earth processes that alter the landscape and 
adversely affect the works of society. The occurrence of high radon concentrations in buildings, 
although not a process of landscape alteration like most geologic hazards, is recognized as a geologic 
hazard. 

Radon is a naturally occurring gas derived from geologic materials. When inhaled, radon can 
be a significant cause of lung cancer. Whereas high levels of radon gas in uranium mines have long 
been recognized as a health hazard to miners, the hazard from indoor radon at lower levels has only 
recently been recognized. Radon has been found in many buildings throughout the United States in 
sufficient concentrations to represent a health hazard to building occupant..:.;. Concern for the health 
consequences associated with long-term indoor-radon exposure has prompted scientists and health 
officials, at both the national and state levels, to assess the radon hazard and determine the extent 
of the problem. 

CHARACTERISTICS 

Radon is an odorless, tasteless, and colorless radioactive gas which forms as a product of 
radioactive decay. The most common source of radon is decay of uranium (238U) to stable lead 
(w6Pb) (figure M-1 ). During this decay sequence, new isotopes form which emit radiation. One such 
isotope, radon (222Rn), forms directly from decay of radium (226Ra). Two other isotopes of radon 
(219Rn and 220Rn) also occur in nature and may contribute to the indoor-radon problem. However, 
222Rn is the most abundant of the radioactive radon isotopes, has the longest half-life at 3.825 days, 
and is considered to be the most significant contributor to the indoor-radon hazard. Subsequent 
references to radon imply 222Rn derived from the 238U decay chain. 

In nature, radon is found in small concentrations in nearly all rocks and soils. The exposure 
to the hazard, in most cases, depends on factors such as geology, foundation condition, building 
ventilation, construction material, and occupant lifestyle. Tanner (1986) suggests four prerequisites 
for elevated indoor-radon concentrations. The home must: (1) be built on ground that contains a 
radon source material, (2) have underlying soils that promote easy movement of radon, (3) have 
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porous building materials or openings below grade, and (4) have a lower atmospheric pressure inside 
than out,;ide. 
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Figure M-1. Uranium (238U) decay series. Radon (222Rn) is derived from radium (226Ra) and is 
the only isotope in the series that is a gas. Because it is inert, radon also ha,; the ability to 
move with air or water without participating in chemical reactions (modified from Durrance, 
1986). 

There are several geologic factors which affect the radon hazard. The first is the distribution 
of uranium-enriched rock and soil. Granite. metamorphic rocks, some volcanic rocks, and black, 
organic-rich shales are generally associated with indoor-radon hazards. Once uranium is present in 
a rock or soil, other factors can enhance or impede radon production and movement including 
permeability and water saturation (Tanner, 1964, 1980; Barretto, 1975). A high permeability 
enhances radon movement by allowing the gas to diffuse through the rock or soil. Water saturation 
inhibits radon migration by filling pore spaces and restricting the flow of soil gas (Tanner, 1980). 
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Although radon may move with the water, the flow of water through geologic materials is usually 
much slower. However, water does provide an effective means to carry radon from its rock source 
(Tanner, 1980). Where domestic water sources contain high levels of radon, they may contribute 
to indoor-radon levels (Vitz, 1989). 

Radon is highly mobile and can find its way into buildings through small basement cracks 
or other foundation penetrations such as utility pipes (figure M-2). Although outdoor radon 
concentrations never reach dangerous levels because air movement dissipates the gas, people can be 
subject to a radon hazard in buildings that have poor air circulation. Maximum radon concentrations 
are often found in basements or low crawl spaces (Fleischer and others, 1982), which are in contact 
with the ground and usually poorly ventilated. 

Cracks in -us 

Slab joints 

Figure M-2. Various pathways for radon to enter a home. Most of the entry routes are in the 
basement, because that is the part of the house with the greatest surface area exposed to the 
surrounding soil (modified from U.S. Environmental Protection Agency, 1992). 
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Radon concentration is measured in picocuries per liter of air (pCi/L), which represents a 
decay of 2 radon atoms per minute per liter of air. Most buildings throughout the United States 
usually have concentrations less than 3 pCi/L (Nero and others, 1986). The U.S. Environmental 
Protection Agency (U.S. EPA, 1992) recommends that action be taken to reduce indoor levels when 
they exceed 4 pCi/L. 

Changes in building practices over the past 15 years have contributed to the radon problem. 
Since the 1973 oil embargo, conservation of non-renewable energy resources has been a national 
goal through energy-efficient practices. Although the building industry has made structures more 
energy efficient, they have not improved ventilation systems to accommodate restricted natural air 
flow. Buildings constructed before 1973, including single-family homes, often did not use energy
efficient measures and allowed indoor air to escape through above-grade joints and uninsulated walls 
and attics. Energy-efficient homes and buildings prevent the loss of indoor air to the outside. 
Studies have shown that newer, energy-efficient buildings with under-designed ventilation systems 
generally have higher indoor-radon levels compared with older, conventional buildings (Fleischer 
and others, 1982; Nero and others, 1982). 

EFFECTS 

Radon and other sources of natural radiation are widespread in low levels, but most natural 
background radiation is not a health threat. Most buildings throughout the United States contain 
some radon, but concentrations are usually less than 3 pCi/L. Long-term exposure to these levels 
is generally considered a small health risk. However, health officials believe breathing elevated 
levels of radon over time increases a person's risk of lung cancer because of internal radiation 
damage to the lungs from decaying radon and radon progeny (Jacobi and Eisfeld, 1982; National 
Council on Radiation Protection and Measurements, 1984a, 1984b; Samet, 1989; figure M-3). 

The greater your exposure to radon, the greater your risk of developing lung cancer. The 
EPA estimates that from 8,000 to 40,000 Americans will die each year from lung cancer caused by 
long-term radon inhalation (Schmidt and others, 1990). If you regularly drink household water 
containing radon, it is not considered a health risk. Waterborne radon is a problem only when the 
radon is released from the water and enters the household air. Estimates of the contribution of radon 
in water to airborne radon range from 1 to 2.5 pCi/L in air for every 10,000 pCi/L in water. 

Inhalation of radon is not thought to be the primary source of internal radiation because radon 
atoms are inert and do not attach themselves to the lining of the lungs. In addition, most radon atoms 
are exhaled before they can decay and emit dangerous alpha particles to lung tissue. The radioactive 
isotopes formed from radon decay are of more concern because they are not inert and readily attach 
themselves to the first charged surface they come in contact with (typically dust or smoke in the air). 
People who smoke place the occupants of a building at greater risk because the smoke increases the 
number of airborne particles, to which radon progeny then become attached and are inhaled into the 
lungs. Once dust or smoke particles with attached radon progeny become lodged in the lungs, these 
particles allow tissue to be directly bombarded and damaged by energetic alpha particles as 
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radioactive decay occurs. 

RADON RISK IF YOU SMOKE* 

Radon If 1,000 people who smoked were The risk of cancer from radon WHAT TO DO: 
level exposed to this level over a lifetime ... exposure compares to ... Stop smoking and ... 

•100 times the risk of drowning 
20pCi/L About 135 people could get lung cancer Fix your home 

•100 times the risk of dying in a home fire 
IOpCi/L About 71 people could get lung cancer Fix your home 

&pCi/L About 57 people could get lung cancer Fix your home 

4 pCi/L About 29 people could get lung cancer ..,, 100 times the risk of dying in an airplane Fix your home 
crash 

2pCi/L About 15 people could get lung cancer •'2 times the risk of dying in a car LTash Consider fixing your 
home between 2 and 4 

pCi/L 

1.3 pCi/L About 9 people could get lung cancer (Average indoor radon level) (Reducing radon levels 
below 2 pCi/L is 

0.4 pCi/L About 3 people could get lung cancer (Average outdoor radon level) difficult) 

*If you are a former smoker, your risk may be lower. 

RADON RISK IF YOU DON'T SMOKE* 

Radon If 1,000 people who smoked were The risk of cancer from radon WHAT TO DO: 
level exposed to this level over a lifetime ... exposure compares to ... Stop smoking and ... 

20pCi/L About 8 people could get lung cancer ...rrbe risk of being killed in a violent crime Fix your home 

lOpCi/L About 4 people could get lung cancer Fix your home 

g pCi/L About 3 people could get lung cancer •IO times the risk of dying in an airplane Fix your home 
crash . 

4 pCi/L About 2 people could get lung cancer Fix your home 
•The risk of drowning 

2 pCi/L About 1 person could get lung cancer •The risk of dying in a home fire Co11Sider fixing your 
home between 2 and 4 

pCi/L 

1.3 pCi/L Less than 1 person could get lung cancer (Average indoor radon level) (Reducing radon levels 
below 2 pCi/L is 

0.4 pCi/L Less than I person could get lung cancer (Average outdoor radon level) difficult) 

*If you are a former smoker, your risk may be higher. 

Figure M-3. Radon risk evaluation chart. The U.S. Environmental Protection Agency (1992) has 
developed this chart to provide comparable risks for people to evaluate their personal risk 
from radon. 
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HAZARD REDUCTION 

If elevated indoor-radon levels are discovered in a home, a number of methods can be 
considered for reducing levels. These methods fall into two categories: (1) preventing radon from 
entering the house, and (2) removing radon (or decay products) after entry. The specific method 
chosen will depend upon the initial radon concentration, house design, and construction. 

Some actions may be taken immediately, and can be done quickly with a minimum of 
expense. Discourage smoking inside a home; this not only reduces the risk from radon exposure but 
also the overall chance of developing lung cancer. Radon collects in the basement and low areas of 
a home; spending less time in these areas of higher radon concentrations will reduce the risk. 
Ventilation can be improved by opening windows and turning on fans, but is not always possible 
during cold winter months. 

Although immediate actions are effective, they are not long-term solutions. The selection 
of permanent radon-reduction methods requires identification of radon-entry routes and driving 
forces, and diagnostic testing to aid in the selection of the most effective method. Professional 
assistance is often required. There are five classes of permanent methods: (1) increased ventilation 
through natural means (such as opening windows) or ventilators; (2) sealing to restrict movement 
of radon from soil into the house and gas flow through entry routes (known as "closure"); (3) soil 
ventilation to withdraw radon-contaminated soil gas and divert it outdoors; (4) house pressure 
adjustments to restrict flow of soil gas into the house by altering pressure differentials between the 
house and soil; and (5) air cleaning to remove radon decay products (which are solid particles) from 
the air after radon entry (U.S. EPA, 1989). Once appropriate radon-reduction methods are chosen 
and implemented, diagnostic tests should also be conducted to ensure that radon levels have been 
reduced. 

An effective method of hazard reduction is to prevent radon from entering the structure. 
Prevention is advisable in new construction, particularly in high hazard areas. New design and 
construction may incorporate methods to restrict radon entry by minimizing: ( 1) soil gas entry 
pathways; and (2) indoor-outdoor pressure differences, because these differences are the driving 
force for soil gas to enter a home (Osborne, 1988). Features can also be incorporated during 
construction that facilitate radon removal. Although these features are technical in nature and not 
discussed here, the information is available from the EPA 

If there is no measured problem with airborne radon in a home, there is generally no need to 
test household water for radon. If indoor levels are high, low-cost water test kits are available from 
commercial laboratories. Testing of water from municipal water supplies is generally not necessary; 
radon contamination usually only occurs in well water and is not common. 

If a water test indicates radon problems, the radon may either be removed from the air after 
it has left the water or from the water before it reaches indoor air (U.S. EPA, 1987). Good 
ventilation of bathrooms, laundry rooms, and kitchens, particularly during periods of water use, may 
be adequate to remove radon from indoor air. Methods to remove radon from water include: (1) 
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storing water for several days to allow radon time to decay, which may require large storage tanks: 
(2) home aeration systems that spray water through an air-filled chamber and use fans to remove the 
contaminated air; and (3) devices which use granular activated charcoal to remove radon from water. 
Activated charcoal devices are presently the least costly alternative for homes using their own wells 
and, to date, the most extensively tested and used method. 

USE OF HAZARD MAPS AND SITE INVESTIGATIONS 

Hazard Potential Maps 

Detailed maps have been prepared that show the extent of radon hazards in Tooele 
Valley, but not the WDHIA. However, site investigations addressing radon hazards are not 
required. The maps are included for information purposes to prioritize testing and show areas 
where radon-resistant construction should be considered. The UGS has prepared a statewide 
radon-hazard potential map, and the portion covering Tooele County is shown in figure M-4. 
Figure M-5 shows the results of a more detailed study in Tooele Valley (Black and Solomon, in 
preparation). Hazard potential on these maps was determined from geologic factors such as 
uranium concentration, soil permeability, and depth to shallow ground water (Black, 1993). 
Three categories of hazard potential are mapped: (1) high, areas where all geologic factors 
contribute to elevated indoor-radon levels; (2) moderate, areas where some geologic factors 
contribute to elevated indoor-radon levels; and (3) low, areas where no geologic factors 
contribute to elevated indoor-radon levels (Black, 1993; Black and Solomon, in preparation). It 
is important to note that these maps are generalized and show only the relative geologic potential 
for radon hazards. Actual indoor-radon levels may vary, and the map should not be used to 
predict indoor-radon levels. fudoor testing is the only reliable way to determine if a radon hazard 
exists, and is recommended in all areas regardless of radon-hazard potential. New construction 
in high hazard-potential areas may also wish to incorporate radon-reduction techniques. 

The radon-hazard potential of the WDHIA is mostly moderate (figure M-4). Isolated 
areas of high hazard potential are found in the Cedar Mountains, on the eastern edge of the 
WDHIA, and in the Grayback Hills. Deep ground water and highly permeable soils with 
moderate-to-high uranium levels are found in these areas. The hazard potential is low in the 
Great Salt Lake Desert, on the western edge of the WDHIA, where shallow ground water and 
impermeable, clay-rich soils are found. No indoor-radon concentrations have been measured in 
the WDHIA. Although radon emanation from low-level nuclear waste repositories such as Vitro 
and Envirocare is unknown, high on-site levels have been found at similar facilities (Tomczak 
and others, 1993). 
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Figure M-4. Radon hazard potential of Tooele County from geologic factors (modified from 
Black, 1993). 

Detailed studies by the UGS show the radon-hazard potential of Tooele Va11ey is also 
mostly moderate (figure M-5). Scattered areas of high hazard potential occur where deep ground 
water and highly-permeable soils with moderate-to-high uranium levels are found. Areas of low 
hazard potential occur in the northern part of the valley in low-lying areas surrounding Great Salt 
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• High radon-hazard potential. 
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□ Moderate radon-hazard potential. 

□ 
0 5 10 15 kilometers 

Low radon-hazard potential . . 

~ Not studied. 

Figure M-5. Radon hazard potential of Tooele Valley based on geologic factors (modified from 
Black and Solomon, in preparation). 
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Lake, where there is shallow ground water and impenneable, clay-rich soils. The Utah Division 
of Radiation Control (UDRC) measured indoor-radon concentrations in 70 homes in Tooele 
Valley, most of which were in moderate-hazard areas (Black and Solomon, in preparation). 
Mean concentration of these measurements was 2.2 pCi/L (81 Bq/m3

) (Black and Solomon, in 
preparation). The highest measured indoor-radon concentration in Tooele Valley was 8.0 pCi/L 
(296 Bq/m3

), with 18.6 percent of the measurements greater than or equal to 4 pCi/L (148 Bq/m3
) 

(Black and Solomon, in preparation). 

Indoor Testing 

Radon can be measured with both short-term and long-term passive detectors and 
electronic instruments. Some detectors can be placed by homeowners, whereas others require 
professional installation. Because most people want information quickly, they often select short
term monitoring methods. A short-tenn measurement is one conducted for a period less than 
three months. However, long-term monitoring, typically for a twelve-month period, provides 
more realistic information. 

Measurements taken over a few days or on a single day provide only a snapshot of 
indoor-radon levels for that particular time. Radon emissions from the ground, and resultant 
indoor-radon levels, can fluctuate daily, weekly, and monthly because of atmospheric changes. 
In addition, concentrations fluctuate seasonally because building ventilation is less in winter than 
summer, and indoor heating and air conditioning affect concentrations. A longer period of 
monitoring is recommended to smooth out short-term fluctuations. This provides a realistic 
picture of the yearly average concentration. The UDRC provides information on types of radon 
detectors available, their advantages and disadvantages, and comparative cost. 

Radon measurement protocols suggested by the EPA (U.S. Environmental Protection 
Agency, 1992) attempt to assure accuracy and consistency of data. The protocols were 
developed to balance the need for quick results with measurements that best reflect long-term 
indoor-radon levels. To accurately determine indoor-radon levels throughout a home, long-term 
monitoring is needed on each floor. However, short-term screening measurement which follows' 
EPA protocol (closed-house conditions) may be conducted in the lowest living area to determine 
if additional testing is required. Charcoal canisters are commonly used for short-term 
measurements; alpha-track detectors are commonly used for long-tenn measurements. 

EPA protocols emphasize immediate follow-up testing in homes with screening 
measurements exceeding 4 pCi/L (U.S. Environmental Protection Agency, 1992). Occupants of 
homes with radon levels exceeding 4 pCi/L should take action to reduce radon concentrations. 
Additional testing is not needed if a short-term screening measurement is less than 4 pCi/L and, 
although a small health risk is present, remediation is unnecessary. If a result is greater than 4 
pCi/L and less than 20 pCi/L, a 12-month follow-up measurement is recommended. If retesting 
confirms screening measurements, remediation should be done within the next few years. If a 
screening measurement is from 20 to 200 pCi/L, a 3-month follow-up measurement is 
recommended. If the measurement is confirmed, remediation should take place within a few 
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months. If a screening measurement exceeds 200 pCi/L, retest immediately. If confirmed, 
remediation should take place within weeks. 
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High; possible susceptible soil conditions and depth to ground water 
less than 10 feet (3 m). 

Moderate; possible suscepoble soil conditions and depth to ground 
water from 10 to 30 feet (3-9 m). 

Low; possible susceptible soil conditions and depth to ground water 
from 30 to 50 feet (9-15 m). 

Very low; rock. unsusceptible soil conditions, or depth to ground water 
grearer than 50 feet (15 m). 

* Special studies are recommended for certain land uses in areas of high and 
moderate liquefaction susceptibility (see table 1). 

Note: This map is not a liquefaction potential map, because it does not consider the 
probability of earthquake ground shaking needed to cause .liquetaction in areas of 
susceptible conditions. 

Base map from BONNEVILLE SALT FLA TS ~nd TOOELE, 
U.S.G.S. 30x60 minute topographic map series. 



Liquefaction susceptibility, Flux quadrangle, Tooele County, Utah. 
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FOR SAi£ BY U.S. GEOLOGICAL SURVEY, DENVER, COLORADO. 80225 
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EXPLANATION 

High; possible susceptible soil conditions and depth to ground water 
less than 10 feel 13 m). 

Moderate; possib!o susceptible soil conditions am.I depth to ground 
water from ·10 to 30 feet (3-0 ml. 

low; possiblo susceptible soil conditions and dep11l to ground water 
from 30 to 50 feet {9 ·15 m) . 

Very low; rock , unsusceplible soi l conditions, o, tlep\h to ground 
water greater than 50 foot (15 ml. 

• Special studios are rncommendetl for certa in land l1ses In areas of high and 
moderate liquefaction susceptibility (see table 1). 

Note: This m ap is no t a tiquofaction potontial map, because it does not consider the 
prohabilily ot earthquake ground shaking needed to cause liquefaction in areas or 
susceptible conditions . 
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EXPLANATION 

High; possible susceptible soil conditions and depth to ground water 
less than 10 fee t (3 m) . 

Moderate; possible susceptlblo soil condilions end depth to ground 
water ftom 10 to 30 fee t (3-9 m) . 

Low: possible susceptible soil condillons and depth to ground water 
from 30 to 50 feet (9- 15 m) . 

Very low; rock, unsusceptiblo soil conditions, or dop th to ground 
water greater than 60 fee t (15 ml . 

• Special studies arc recommended for ce rtain land uses In areas of high and 
motJerate liquefaction susceptibili ty (see table 1) . 

Note: This map Is not a liquefaction potential map, because it Uoes not consider tho 
probability of earthquake ground shaking needed to cause lique faction in areas of 
suscop tibto conllitions. 
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EXPLANATION 

High; poss ible susceptible soil conditions and depth to ground water 
less than 10 feet (3 m). 

Moderate; possible susceptible soil conditions and depth to ground 
water from 10 to 30 feet {3-9 ml. 

Low; possible suscept ible soil conditions and depth to ground water 
from 30 to 50 feet {9- 15 ml. 

Very low; rock, unsusceptible soil conditions, or depth to ground 
water greater than 50 feet (15 m). 

* Special studies are recommended for certain land uses in areas of high and 
moderate lique fa ction susceptibility (see table 1). 

Note: This map is not a liquefaction potential map, because it does not consider the 
probability of earthquake ground shaking needed to cause liquefaction in areas of 
suscep tible conditions . 
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EXPLANATION 

High; possible susceptible soi! conditions and depth to ground water 
less than 10 fee t (3 m). 

Moderate; possible susceptible so il conditions and depth to ground 
water from 10 to 30 feet (3-9 m) . 

low; poss ible suscept ible soil conditions and depth to ground water 
from 30 to 50 feet (9- 15 m) . 

Very low; rock, unsusceptible soi l cond it ions, or depth to ground 
water greater than 50 feet (15 mL 

* Special studies are recommended for certa in land uses in areas of high and 
moderate liquefaction susceptibility (see table 1). 

Note; This map is no t a liquefact ion potential map, because it does not consider the 
probability of earthqu.ike ground shaking needed to cause liquefaction in areas of 
susceptible conditions . 
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EXPLANATION 

High; possible susceptible so il conditions and depth to ground water 
less than 1 0 feet (3 m). 

Moderate; possible susceptible soil conditions and depth to ground 
wate r from 10 to 30 feet (3-9 rn) . 

Low; possib le susceptible soil conditions and depth to ground water 
from 30 to 50 feet (9-15 m). 

Very low; rock, unsusceptible soil conditions, or depth to ground 
water greater than 50 foet f l 5 m) . 

* Special studies are recommended for certain land uses in areas of high and 
moderate liquefaction susceptibility (see table 1) . 

Note: This map is not a liquefaction potential map, because it does not cons ider the 
probabi lity of earthquake ground shaking needed to cause liquefaction in areas of 
susceptible conditions . 
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Liquefaction susceptibility, South Mountain quadrangle, Tooele County, Utah. 
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EXPLANATION 

High; possible susceptible soi l conditions and depth to ground water 
less than 10 feet (3 m). 

M·* Moderate; possible susceptible soi l conditions and depth to ground 
wate r from 10 to 30 feet (3-9 ml . 

L low; possible susceptible soi l conditions and depth to ground water 
frorn 30 to 50 feut (9- 15 rn) . 

VL Very low; rock, unsusceptible soil conditions, or depth to ground 
water greater than 50 feet (15 m) . 

11- Specia l stud ies ara recommended for certain land uses in areas of high and 
moderate liquefaction susceptibility (see table 1) . 

Note: Th is map is not a liquefaction potentia l map, because it does not consider the 
probability of earthquake ground shaking needed to cause liquefaction in areas of 
susceptible conditions. 
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EXPLANATION 

Source-area susceptibility 

High; includes slopes that failed during the 1983~ wet years. 
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Debris deposition and flood hazard areas 
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Possible sediment deposition and flooding from deQris flows, debris floods, and stream 

floods. 

• Special studies are recommended in areas of high and moderate source-area susceptibility, and in 
areas or possible sediment deposition and flooding (see table 1}. 
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Debris-slide, debris-flow, debris-flood, and stream-flood hazards, Burmester 
quadrangle, Tooele County, Utah. 
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EXPLANATION 
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Oobrls deposition and flood hazard 

Poss ible sediment deposition and flooding from debris flows, debris 
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Debris-slide, debris-flow, debris-flood, and stream-flood hazards, Farnsworth 
Peak quadrangle, Tooele County, Utah. 
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EXPLANATION 
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High; includes slopes that fai led during the 1983-84 wet years. 

Moderate. 

Low. 

Debris deposition and flood hazard 

Possible sedimen t deposition and flooding from debris flows, debris 
floods, and stream floods; includes 1983-84 debds deposits 
(crosshatched) . 

* Special studies are recommended in areas of high and moderate source-area 
susceptibility, and in areas of possible sediment deposition and flooding (see 
table 1). 
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EXPLANATION 

Source-area susceptibility 

High; includes slopes that failed during the 1983-84 wet years. 

Moderate. 

Low. 

Debris deposition and flood hazard 

Possible sediment deposition and flood ing from debris flows , debr is 
floods, and stream floods ; includes 1983-84 debris deposits 
(crosshatched). 

* Special studies are reconimend9d in arees of high and modera te source -area 
susceptibility, and in areas of possible sediment deposition and flooding {see 
table 1). 
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Debris-slide, debris-flow, debris-flood, and stream-flood hazards, Tooele 
quadrangle, Tooele County, Utah. 
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EXPLANATION_ 

QUADRANGLE LOCATION 

Debris depoi,ition and flood hazard 
Source scar T 
Travel pa1h \ 

Debris slide or debris flow . 

H* 

M* 

L 

Source-area susceptibili ty 

High; includes slopes that failed during the 1983-84 
wet years . 

Moderate. 

Low. 

Possible sediment deposition and flooding from debris flows, · 
debris floods, and stream floods ; includes 1983-84 debris 
deposits (crosshatched) . 

* Special studies are recommended in areas of high and moderate source
area suscepti tl i!ity, and in areas of possible sediment deposition and 
flooding" {see table 1 ). 
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EXPLANATION 

Sourco-area susceptibility 

H * High; includes slopes that fai led duri ng the 1983-84 wet years . 

M ~ Moderate. 

L low. 
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Debris deposition and flood hazard 

Possible sediment deposition and flooding from debris flows , debris 
floods, and stream floods; includes 1983-84 debris deposits 
(crosshatched) . 

* Special studies are recommended in areas of high and moderate source-area 
susceptibility, and in areas of possible sediment deposition and flooding (see 
table 1) . 
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EXPLANATION 

Source-area susceptibili ty 

High; includes slopes that failed during the 1983~84 wet years . 

Moderate . 

Low. 

Debris deposition and flood hazard 

Possible sediment deposition and flooding from debris flows, debris 
floods, and stream floods; includes 1983-84 debris deposits 
(crosshatched) . 

* Sp"!c ial stu,:lies are recommended in areas of high and moderate source-area 
susceptibi lity, and in areas of possible sed iment deposition and flooding (see 
table 1 )-. 
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Source•area susceptibility 
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EXPLANATION 

Debris slide or debr is flow . 

Source-area susceptibil ity 

High; inc ludes slopes that failed during the 1983-84 wet 
years . 

Moderate. 

L low. 

' :» Spacial studies are recommended in areas of high and moderate source-area 
susceptibility (see tabf0 1). · 
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EXPLANATION 

Rock fall 

Potentially subject to impact by rock fall. 

Depth to ground water 

Less than 10 feet (3 m}. 

10 to 30 feet (3-9 m}. 

30 to 50 feet (9-15 m}. 

Greater than 50 feet (15 m). 
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• Special studies are recommended in areas subject to rock fall and where the depth to 
ground water is less than 10 feet (3 m) (see table 1}. 
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EXPLANATION 

Rock fall 

Potentlally subjec t to impact by rock foll (crosshatched area not 
s tudied) . 

Dep lh to ground water 

Less than 10 feet (3 m) . 

10 to 30 feot (3 ·9 m) . 

30 to 50 feet (9· 15 m). 

Grea ter than 50 fee t (1 6 ,n}. 

~ Speclal s tudies ;;uo recommended in areas subject to rock fall and where the depth 
to ground water is less than 10 feet 13 ml (see table 1) . 
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EXPLANATION 

De11th to ground water 

A• Less than 10 feet (3 m) . 

B 10 to 30 leot (3-9 ml . 

C 30 to 60 foal (9-16 m). 

D Greater than 50 leet (15 m) . 

* Special studies are recommended in areas where the depth to ground water Is less 
than 10 leet (3 m) (see table 1 ). 
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Rock-fall hazard and depth to ground water, Mills Junction quadrangle, Tooele 
· County, Utah . 
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EXPLANATION 

Rock fall 

• Potentlally .subject to Impact by ro ck fall . 

Depth to ground water 

A' Loss than 10 leot {3 m) . 

B 10 to 30 feet (3-9 m) . 

C 30 to 60 feet {9 - IG m) . 
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to ground water Is less than 10 feot (3 ml (see table II . 
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Tooele County, Utah. 
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EXPLANATION 

Rock fall 

Potentially subject to impact by rock fall. 

,Dep th to ground water 

Less than 10 fee t (3 m). 

10 to 30 feet (3-9 m). 

30 to 50 feet (9 -15 m) . 

Greater than 50 feet (15 m). 

* Special studies are recommended in areas subject to rock fall and where the dopth 
to ground water is less than 10 feet (3 rn) {see tablo 1). 
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EXPLANATION 

Depth to ground water 

Less than 10 feet (3 m) . 

10 to 30 feet {3-9 m) . 

30 to 50 feet (9-15 m) . 

Greater than 50 feet (15 m) . 

* Special studies are recommended in areas where the depth to ground wate r is less 
than 10 feet (3 ml (see table 1). 
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Rock-fall hazard and depth to ground water, Tooele quadrangle, Tooele County, 
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EXPLANATION 

Rock fall 

Potentially subject to impact by rock fall. 

Depth to ground water 

Less than 10 feet !3 m) . 

10 to 30 feet (3-9 rn). 

30 to 50 feet (9-15 m) . 

Greater than 50 feet (15 m). 

* Special studies are rnr.:ommended in areas subject to rock fall and where the depth 
to ground water is less than 10 feet (3 m) (see table 1 ). 
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Rock-fall hazard and depth to ground water, Stockton quadrangle, Tooele 
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Problem soils, Grantsville quadrangle, Tooele County, Utah. 
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