

GREAT SALT LAKE BRINE CHEMISTRY DATABASES AND REPORTS – 1966-2006



OPEN-FILE REPORT 485 UTAH GEOLOGICAL SURVEY a division of Utah Department of Natural Resources 2007

GREAT SALT LAKE BRINE CHEMISTRY DATABASES AND REPORTS – 1966-2006

by J. Wallace Gwynn

Walter Katzenberger (left), Utah Geological Survey, and Jay Christianson (right) State Parks and Recreation, taking brine samples on Great Salt Lake in about 1977. Photo from Utah Geological Survey photo archives.

Cover photo: Reddish-brown brine shrimp eggs floating on Great Salt Lake. Photo by Bill Case.

2007

OPEN-FILE REPORT 485 UTAH GEOLOGICAL SURVEY *a division of* Utah Department of Natural Resources

STATE OF UTAH

Jon Huntsman, Jr., Governor

DEPARTMENT OF NATURAL RESOURCES

Michael Styler, Executive Director

UTAH GEOLOGICAL SURVEY

Richard G. Allis, Director

PUBLICATIONS

contact Natural Resources Map/Bookstore 1594 W. North Temple Salt Lake City, Utah 84116 telephone: 801-537-3320 toll-free: 1-888-UTAH MAP Web site: http://mapstore.utah.gov email: geostore@utah.gov

THE UTAH GEOLOGICAL SURVEY

contact 1594 W. North Temple, Suite 3110 Salt Lake City, Utah 84116 telephone: 801-537-3300 fax: 801-537-3400 Web site: http://geology.utah.gov

Although this product represents the work of professional scientists, the Utah Department of Natural Resources, Utah Geological Survey, makes no warranty, expressed or implied, regarding its suitability for any particular use. The Utah Department of Natural Resources, Utah Geological Survey, shall not be liable under any circumstances for any direct, indirect, special, incidental, or consequential damages with respect to claims by users of this product.

The Utah Department of Natural Resources receives federal aid and prohibits discrimination on the basis of race, color, sex, age, national origin, or disability. For information or complaints regarding discrimination, contact Executive Director, Utah Department of Natural Resources, 1594 West North Temple #3710, Box 145610, Salt Lake City, UT 84116-5610 or Equal Employment Opportunity Commission, 1801 L. Street, NW, Washington DC 20507.

CONTENTS

ABSTRACT	1
INTRODUCTION AND BACKGROUND	
LAKE-BRINE SAMPLING AND CHEMICAL ANALYSIS	2
Sampling Sites	2
Sampling Procedure	3
Brine Analyses	3
LAKE-BRINE CHEMISTRY FILES	3
LAKE-BREACH AND LAKE-BRINE DENSITY FILES	3
OTHER SOURCES OF LAKE-BRINE CHEMISTRY	3
LAKE-BRINE CHEMISTRY INTERPRETIVE REPORTS PUBLISHED BY UGS	4
SOUTH AND NORTH ARM WATER ELEVATIONS	4
FUTURE OF THE UGS LAKE-BRINE SAMPLING PROGRAM	5
REFERENCES	6
APPENDICES	8
Appendix A – Pre-1966 Chemistry and Density Data, Great Salt Lake, Utah	8
Appendix B – Annotated References for Pre-1966 Great Salt Lake Brine Chemistry listed in Appendix A	.11
Appendix C – Locations of Sampling Sites	
Appendix D – Details of Great Salt Lake Brine Databases	
Appendix E – USGS Great Salt Lake Datum Correction	

FIGURES

Figure 1.	UGS brine-sampling locations	2
Figure 2.	Brine density versus lake elevation	4

GREAT SALT LAKE BRINE CHEMISTRY DATABASES AND REPORTS – 1966-2006

by

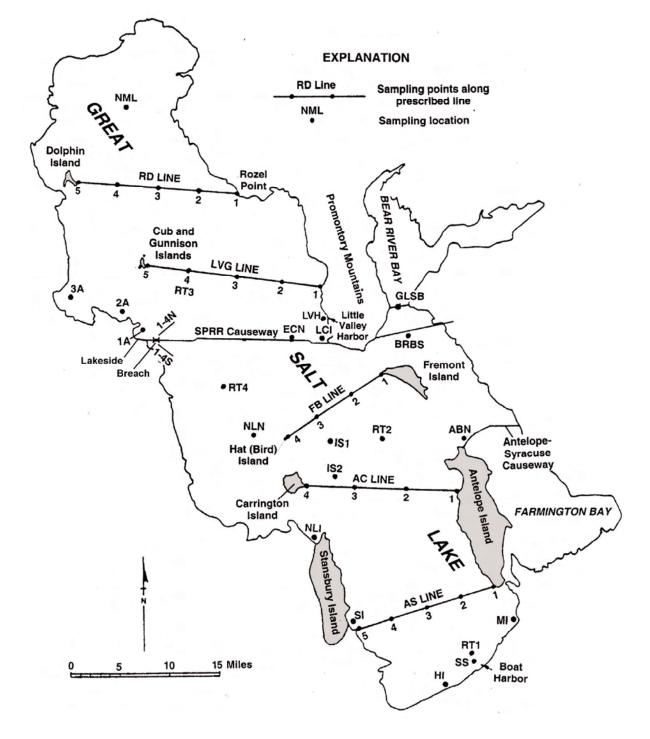
J. Wallace Gwynn

ABSTRACT

Prior to the construction of the solid rock-fill railroad causeway across the central part of Great Salt Lake in 1959, the water was able to mix throughout the lake. Through this mixing, the salinity and chemistry were relatively constant both vertically and laterally. After the causeway's completion in 1959, the main body of the lake was physically divided into a north arm and a south arm. As a result of this division, the north arm of the lake became much more saline than the south arm, and the south arm became density stratified. This report presents the post-1966 brine density and chemistry data that have been collected by the Utah Geological Survey (UGS) through its Great Salt Lake brine collection and analysis program. Chemical and density analyses have been run on Great Salt Lake brine since the early-to-mid 1800s. These data, gleaned from the literature, are also presented. The UGS brine-sampling program began in 1966, and has run continuously to the present time. The databases resulting from this work contain several thousand chemical analyses and density values. Since 1963, over a dozen scientific interpretive reports about the lake have been published by UGS. Copies of these reports, in PDF format, and a file containing U.S. Geological Survey (USGS) provisional lakelevel data, are included as part of this CD. Lake-brine analyses done by the USGS and the Utah Division of Water Quality are noted, but not included in this report.

INTRODUCTION AND BACKGROUND

Chemical and density analyses have been run on Great Salt Lake brine since the early- to mid-1800s. Until 1959, these analyses were made on brines that were taken periodically at various places around the lake. These analyses are considered fairly representative of the entire lake because the brine was free to mix throughout the entire lake. This was true, even after the Southern Pacific Railroad's Lucin Cutoff was constructed across Great Salt Lake in 1904, because the central 13-mile portion of the cutoff was built as an open, wooden trestle which permitted mixing to take place (see figure 1).


In the mid-1950s, the Southern Pacific Railroad determined that the wooden Lucin Cutoff trestle needed replacement. In 1955, work began to replace the trestle with a rockfill causeway located parallel to, and 1500 feet north of the trestle, and by 1959, the work was completed. When the UGS began to sample lake brines on a regular and systematic basis in 1966, two major changes were noted between the north and south arms of the lake. First, the north arm became much saltier than the south arm, and second, the water column in the south arm became stratified, developing a dense, brown-colored, fetid brine layer (6 to 10 feet thick) on the bottom of the lake, overlain by a layer of clear, less-dense brine (20 to 25 feet thick). A transitional zone or interface separated the upper and lower brine layers. The stratification of the brine in the south arm makes it difficult to collect samples representative of the upper and lower brine types if the depth of the interface is unknown.

This report presents and discusses Great Salt Lake brine chemistry and density for two time periods: first, that collected prior to the completion of the rock-fill causeway, and second, that collected after the causeway's completion. First, the data given in appendix A give pre-causeway chemical and density data though some chemistry for the period 1959 to 1966 is included. Appendix A is followed by appendix B that gives annotated references for the citations in appendix A. These references are separate from the main body of the report. Second, the remainder of the report addresses the UGS sampling program and the databases that have been created, other sources of lake-brine chemistry, interpretative reports, the USGS south- and north-arm provisional lakelevel records from 1847 to 2006. Appendix C gives the location of the UGS's sampling sites, appendix D gives details of the Great Salt Lake brine databases, and appendix E gives the USGS's Great Salt Lake datum correction.

LAKE-BRINE SAMPLING AND CHEMICAL ANALYSIS

Sampling Sites

Initially, brine sampling by the UGS was done at relatively frequent intervals and at numerous sites throughout the lake. This was done to ensure that the samples were representative of the lake, both in space and time. Eventually, both the frequency of sampling and the number of sampling sites decreased due to time and monetary constraints, and recognition of the lack of significant chemical variability from site to site. Figure 1 shows the location and designation of the sites that have been sampled during the life of the program. These designations, such as AS2 and LVG4, are the same as those used in appendices. Appendix C gives the latitude and longitude of each of the sampling sites and other points of interest.

Figure 1. UGS brine-sampling locations and their designations on both the north and south arms of Great Salt Lake, from 1966 to 2005. Sampling sites are keyed to sites listed in appendices C and D.

Sampling Procedure

At each site, samples are taken vertically from the surface to the bottom of the lake at regular depth intervals, typically five feet. To collect the samples, a weighted plastic tube or hose, marked in feet and attached to a pump at the surface (normally positioned in a boat), is lowered incrementally to each sampling depth. When the end of the hose reaches a new sampling depth, sufficient brine is pumped through the hose to purge the old brine before a sample of new brine is pumped into a bottle. Sufficient brine (typically 8 oz) is collected for chemical analysis. Initially, brine temperature and density were determined at the time of sampling, but these measurements are not made now due to time constraints.

Brine Analyses

After collection, the samples are submitted to an outside laboratory for brine density determination and chemical analysis. The usual analytical suite includes the major cations (sodium, potassium, magnesium, and calcium) and the major anions (chloride and sulfate). The minor elements (lithium, bromine, and boron) were also determined, though these were dropped from the analytical schedule in recent years due to monetary constraints and laboratory capabilities. Bicarbonate is not part of the UGS's analytical suite because of its very low concentration in the lake brine.

Sturm (1986) lists the analytical laboratories that have analyzed the lake brines for UGS, and their years of service:

1966-1974	Utah Geological and Mineral Service Laboratory (old University of Utah Engineering Experiment Station Lab- oratory)
1975-1978	Chemical and Mineralogical Services
1979-1981	American Chemical and Research

1981-Present Chemical and Mineralogical Services

Sturm (1986) also lists the analytical procedures used by the above laboratories to determine the individual ions or elements. Unfortunately, the quality of the lake-brine analyses has not been uniform. The analyses performed after 1974 are better than those done earlier, due to better equipment, improved laboratory techniques, and more qualified laboratory personnel.

LAKE-BRINE CHEMISTRY FILES

The following lake-brine chemistry database Excel® files are found on the accompanying CD: SOUTH OLD, NORTH OLD, MISC, BRBS, GSLB, AS2 & FB2, and LVG4, ECN & RD2.

The SOUTH OLD, NORTH OLD, BRBS, GSLB, and MISC files are compilations of brine analyses from numerous sampling sites in the south and north arms of the lake. Most of these sites are no longer sampled. Files AS2 & FB2 and LVG4, ECN & RD2 contain analyses from the AS2 and FB2 sites in the south arm, and from LVG4, RD2, and ECN sites in the north arm, respectively (figure 1). These sites have been sampled at least once each year from 1966 to 2006. One exception to the LVG4, ECN & RD2 file is that the ECN site sampling is not continuous, but was substituted for the RD2 site when the RD2 site could not be reached for a short period of time due to bad weather. Appendix D gives more detailed information on the above databases.

LAKE-BREACH AND LAKE-BRINE DENSITY FILES

On August 1, 1984, the State of Utah breached (created an opening in) the Southern Pacific Railroad causeway near the west shore of the lake, approximately 0.25 miles east of Lakeside (figure 1). The purpose of the breach was to reduce the head differential that had developed across the causeway; the south arm was about 3.5 feet higher than the north arm. Just before the breach was opened, the UGS instituted an incremental sampling program designed to monitor the changes in lake-brine densities that would take place as a result of the breach. The monitoring program consisted of taking samples from the top to the bottom of the lake at onefoot increments. On the south arm, samples were collected at sites RT2, RT4, and 1S through 4S. On the north arm, samples were collected at sites RT3 (LVG4), 1A to 3A, and 1N to 4N (figure 1).

The incremental sampling program was successful in monitoring the changes in density that occurred in both the south and north arms of the lake due to the breach. The measured densities showed that after the breach enormous volumes of south-arm brine rushed into the north arm as surface flow. Density data also showed that equally large volumes of dense, north-arm brine flowed into the south arm as return flow through the bottom of the breach opening, where it greatly increased both the density and volume of the deep, south-arm brine layer (Gwynn and Sturm, 1987). Incremental sampling continues at sites RT2, RT3, and RT4.

OTHER SOURCES OF LAKE-BRINE CHEMISTRY

In addition to the lake-brine chemical analyses discussed and presented in this report, the USGS and the Utah Division of Water Quality (DWQ) have also analyzed the lake brines. Chemical analyses performed by the USGS have been done periodically at various locations throughout the lake, and mainly for nutrients, temperature, and salinity. The chemical analyses done by DWQ have been done on brine samples collected at various locations throughout the lake, to include some of the sites sampled by the UGS. DWQ collects samples from the top, middle, and bottom of the water column only, and analyzes these samples for the major ions, metals, and nutrients. These analyses are not presented as part of this report, but are online at the following Web sites. For USGS brine analyses, go to http://nwis.waterdata.usgs.gov/nwis/ wq. The brine analyses compiled by the DWQ (analyzed by the Utah Department of Health) are on the Environmental Protection Agency's Storet Web site at http://www.epa.gov/ storet.

LAKE-BRINE CHEMISTRY INTERPRETIVE REPORTS PUBLISHED BY UGS

Great Salt Lake has been the focus of numerous studies related to its chemistry, lake-level fluctuations, and history. Since 1963, over a dozen scientific interpretive reports about the lake have been published by the UGS: Hahl and Mitchell (1963), Dickson and McCullom (1965), Peck and Dickson (1965), Hahl (1968), Hahl and Handy (1969), Dickson and Rickers (1970), Madison (1970), Waddell and Bolke (1973), Whelan (1973), Whelan and Petersen (1975), Waddell and Fields (1977), Whelan and Petersen (1977), Sturm (1986), and Gwynn and Sturm (1987). Digital scanned copies of these reports are included in this CD as PDF files, in the folder "Lake-Brine Interpretive Reports" by the UGS.

SOUTH AND NORTH ARM WATER ELEVATIONS

The increase in lake volume (rise) and decrease in lake volume (fall) of Great Salt Lake influence the salinity of its brines. As the lake rises, its volume increases, and the salinity of the water decreases. This is enhanced for the south arm of the lake because this arm receives the majority of the tributary inflow. The north arm of the lake receives only inflow of water from the south arm. Most of the time, evaporation is greater than the dilution effects of the south-arm inflow into the north arm. As a result, the salinity of the north-arm brine remains relatively high, despite the volumetric fluctuations of the lake. The north-arm brine salinity decreased during the heavy flooding of the 1980s because evaporation was less than the high influx of lower-salinity south-arm brine. The relationship between brine salinity (Wt.% total-dissolved-solids) and lake elevation is shown in figure 2.

This report contains the USGS's provisional water elevations for both the south and north arms of the lake. These records are in the CD file folder titled "South and North Arm Water Elevations" as file GSLSL1. Water-elevation data are presented for the south arm from 1847 to 2005 and from 1966 to 2005 for the north arm. During the period from April 16, 1984 through April 30, 2001, discrepancies in lake elevations led to revisions of the base datum and the water-level records. The subsequent corrections to the lake-level records and a detailed explanation of these corrections are given in appendix E.

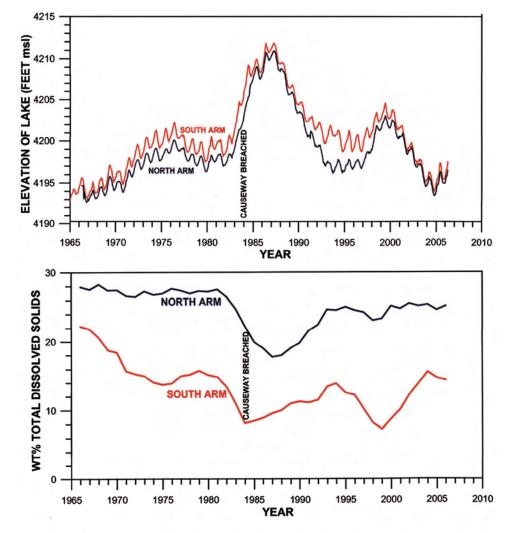


Figure 2. Yearly average brine density versus lake elevation for the south and north arms of Great Salt Lake, 1966 to 2006.

FUTURE OF THE UGS LAKE-BRINE SAMPLING PROGRAM

The UGS intends to continue to collect and analyze brine samples from Great Salt Lake. Currently, samples from the south arm are collected at sites AS2 and FB2 for chemistry, and at sites AC2, RT2, and RT4 for density only (figure 1). In the north arm of the lake, samples are collected from site LVG4 (RT3) for chemistry and density, site RD2 for chemistry, and site ECN for chemistry if site RD2 samples cannot be collected due to bad weather. If possible, samples from site NML at the northern end of the lake will be collected. Presently, the Utah Division of Wildlife Resources provides boat transportation to the north and south arm sites, and the Utah Division of Water Quality collects the samples. We anticipate that the lake-brine samples will continue to be analyzed by Chemical and Mineralogical Services, Salt Lake City, Utah, into the foreseeable future.

- Adams, T.C., 1938, Recent deposition of salt from Great Salt Lake: Journal of Geology, v. XLVI (Jan-Dec), p. 637-646.
- Arnow, Ted, 1984, Water-level and water-quality changes in Great Salt Lake, Utah, 1847-1983: U.S. Geological Survey Circular 913, 22 p.
- Clarke, F.W., 1911, Data of geochemistry: U.S. Geological Survey Bulletin 491, p. 143-146.
- —1916, Data of geochemistry: U.S. Geological Survey Bulletin 616, p. 154-156.
- Connor, J.G., and Mitchell, G., 1958, A compilation of chemical quality data for ground and surface water in Utah: Utah State Engineer Technical Publication no. 10, 256 p.
- Daines, L.L., 1910, Physiological experiments on some algae of Great Salt Lake: Salt Lake City, University of Utah, M.S. thesis, 12 p.
- D'Arcy, R.G., Riley, J.M., and Crocker, L., 1967, Preliminary process development studies of desulfating Great Salt Lake brines and sea water: U.S. Bureau of Mines Report of Investigation 6928, 34 p.
- Diaz, A.M., 1963, Dissolved salt contribution to Great Salt Lake, Utah: U.S. Geological Survey, Professional Paper 450-E, p. 163-165.
- Dickson, D.R., and McCullom, Cornel, Jr., 1965, Part II Evaporation from the Great Salt Lake as computed from eddy flux techniques, Evaporation studies Great Salt Lake: Utah Geological and Mineralogical Survey Water-Resources Bulletin 6, p. 15-36.
- Dickson, D.R., and Rickers, A.E., 1970, Evaluation of eddy flux techniques in computing evaporation from the Great Salt Lake: Utah Geological and Mineralogical Survey Water Resource Bulletin 15, 24 p.
- Done, R.S., 1938, Low temperature equilibria between salts and solution in Great Salt Lake: Salt Lake City, University of Utah, M.A. thesis, 29 p.
- Eardley, A.J., 1938, Sediments of Great Salt Lake, Utah: Bulletin of the American Association of Petroleum Geologists, v. 22, no. 10, October, p. 1305-1411.
- Eardley, A.J., and Cohenour, R.E., 1964, Great Salt Lake *in* Crawford, A.L, editor, Geology of Salt Lake County: Utah Geological and Mineralogical Survey Bulletin 69, p. 79-87.
- Ebaugh, W.C., and Mac Farlane, W., 1910, Comparative analysis of water from Great Salt Lake: U Pamphlet 34 (Reprinted from the Journal of Industrial and Engineering Chemistry, v. 2, no. 11, November 1910, p. I.
- Eckel, E.C., 1904, The salt industry in Utah and California: U.S. Geological Survey Bulletin 225, p. 488-495.
- Flint, Gerhard, 1971, Great Salt Lake Chemicals: Reprinted from Kirk-Othmer Encyclopedia of Chemical Technology, Supplemental Volumes, 2nd Edition, p. 438-467.
- Frederick, Elfriede, 1924, On the bacterial flora of Great Salt Lake and the viability of other microorganisms in Great Salt Lake water: Salt Lake City, University of Utah, M.S. thesis, 65 p.
- Glassett, J.M., and Anderson, B.J., 1964, The recovery of salts from the waters of Great Salt Lake: Salt Lake City, Utah Engineering Experiment Station Bulletin 128, v. 55, no. 21, 80 p.
- Garrett, V.B., 1960, A study of hatching Artemia salina of Great

Salt Lake: Salt Lake City, University of Utah, M.S. thesis, 49 p.

- Gwynn, J.W., and Sturm, P.A., 1987, Effects of breaching the Southern Pacific Railroad causeway, Great Salt Lake, Utah
 physical and chemical changes, August 1, 1984-July, 1986: Utah Geological and Mineral Survey Water Resources Bulletin 25, 25 p.
- Hague, A., and Emmons, S.F., 1877, Report of the geological exploration of the 40th Parallel, *in* Descriptive Geology, Clarence King in Charge: Professional Papers of the Engineering Department, U.S. Army, no. 18, p. 436.
- Hahl, D.C., 1968, Dissolved-mineral inflow into Great Salt Lake and chemical characteristics of the Salt Lake brine -Summary for Water-years 1960, 1961, and 1964: Utah Geological and Mineralogical Survey Water-Resources Bulletin 10, 35 p.
- Hahl, D.C., and Handy, A.H., 1969, Great Salt Lake, Utah chemical and physical variations of the brine, 1963-1966: Utah Geological and Mineralogical Survey Water-Resources Bulletin 12, 33 p.
- Hahl, D.C., and Mitchell, C.G., 1963, Dissolved-mineral inflow to the Great Salt Lake and chemical characteristics of the Salt Lake brine – part 1- selected hydrological data: Utah Geological and Mineralogical Survey Water-Resources Bulletin 3 – Part 1, 40 p.
- Hahl, D.C., Wilson, M.T., and Langford, R.H., 1965, Physical and chemical hydrology of Great Salt Lake, Utah: U.S. Geological Survey Professional Paper 525-C, p. C183.
- Handy, A.H., and Hahl, D.C., 1966, Great Salt Lake chemistry of the water, *in* Stokes, W.L., editor, Great Salt Lake – Guidebook to the geology of Utah: Utah Geological Society Guidebook 20, p. 135-151.
- Harbeck, G.F., Jr., 1955, The effect of salinity on evaporation: U.S. Geological Survey Professional Paper 272-A, 6 p.
- Jones, D.K., 1933, A study of the evaporation of the water of Great Salt Lake: Salt Lake City, University of Utah, M.S. thesis, 33 p.
- Kirkpatrick, Ruth, 1934, The life of Great Salt Lake with special reference to algae: Salt Lake City, University of Utah, M.S. thesis, 30 p.
- Madison, R.J., 1970, Effects of a causeway on the chemistry of the brine in Great Salt Lake, Utah: Utah Geological and Mineralogical Survey Water-Resources Bulletin 14, 52 p.
- Miller, D.E., 1969, Great Salt Lake past and present: Salt Lake City, Publishers Press, 2nd edition, 50 p.
- Milne, D.B., 1934, Economic possibilities of brines found in Great Salt Lake: Salt Lake City, University of Utah, M.S. thesis, 120 p.
- Nylander, A.F., and Jensen, J.H., 1964, Magnesium chloride from naturally occurring brines and evaporites: Journal of Metals, September, p. 718-20.
- Peck, E.L., and Dickson, D.R., 1965, Part I Evaporation and ground water, Great Salt Lake, *in* Evaporation studies Great Salt Lake: Utah Geological and Mineralogical Survey Water-Resources Bulletin 6, p. 1-14.
- Perschon, A.R., 1947, The recovery of magnesia from the Great Salt Lake brine utilizing oolitic sand from the lake shorelines: Salt Lake City, University of Utah, MS thesis, 29 p.

- Smith, W.W., 1933, Evidence of bacterial flora indigenous to the Great Salt Lake in Utah: Salt Lake City, University of Utah, M.S. thesis, 101 p.
- State Chemist, 1939, Analysis of Great Salt Lake water made August 1939: Department of Agriculture (no other information available).
- Sturm, P.A., 1986, Utah Geological and Mineral Survey's Great Salt Lake brine sampling program - 1966 to 1985 -history, database, and averaged data: Utah Geological and Mineral Survey Open-File Report 87, variously paginated.
- Waddell, K.M., and Bolke, E.L., 1973, The effects of restricted circulation on the salt balance of Great Salt Lake, Utah: Utah Geological and Mineral Survey Bulletin 18, 54 p.

- Waddell, K.M., and Fields, F.K., 1977, Model for evaluating the effects of dikes on the water and salt balance of Great Salt Lake, Utah: Utah Geological and Mineral Survey Bulletin 21, 54 p.
- Whelan, J.A., 1973, Great Salt Lake, Utah chemical and physical variations of the brine, 1966-1972: Utah Geological and Mineralogical Survey Water-Resources Bulletin 17, 24 p.
- Whelan, J.A., and Petersen, C.A., 1975, Great Salt Lake, Utahchemical and physical variations of the brine, Water-Year 1973: Utah Geological and Mineral Survey Water-Resources Bulletin 20, 29 p.
- —1977, Great Salt Lake, Utah chemical and physical variation of the brine, Water-Years 1974 and 1975: Utah Geological and Mineral Survey Water-Resources Bulletin 22, 47 p.

APPENDIX A

PRE-1966 CHEMISTRY AND DENSITY DATA, GREAT SALT LAKE, UTAH

Date 1815	Reference¹ Frederick, E (1924)	Density ² 1.123	Wt% ³	Na	к	Mg	CI	SO₄	Ca	CO ₃ /HCO ₃	Units	TDS⁴
1850 1850 1850 1850	Ebaugh, W.C. (1910) Ebaugh, W.C. (1910) Eckel, E.C. (1904) Eckel, E.C. (1904)	1.170 1.170 1.170 1.170	22.28 22.45 22.28 22.48								g/l g/l	261 262
1850 1850 1850	Frederick, E (1924) Garrett, V.B. (1960) Miller, D.E. (1960)	1.170 1.175	22.40 22.40 22.40									
1869 1869 1869 1869	Clarke, F.W. (1916) Ebaugh, W.C. (1910) Eckel, E.C. (1904) Garrett, V.B. (1960)	1.111 1.111 1.108	14.99 14.99 14.99	33.15	1.60	2.52	55.99	6.57	0.17		DWt% g/l	167
1869 1869	Hague, A. (1877) Milne, D.B. (1934)		14.80	4.97 46.92	0.24 2.90	0.38 3.81	8.39 79.68	0.99 9.39	0.03 0.23		Wt% Moles/1000	
1873 1873 1873 1873 1873 1873	Ebaugh, W.C. (1910) Eckel, E.C. (1904) Frederick, E (1924) Frederick, E (1924) Kirkpatrick, R. (1934) Miller, D.E. (1960)	1.102 1.102 1.110	13.42 13.42 13.42 14.00 13.70								g/l	148
1877	Clarke, F.W. (1916)		13.79	33.45	?	3.18	56.21	6.89	0.20	0.07	DWt%	
1879	Clarke, F.W. (1916)		15.67	33.17	1.59	2.60	55.57	6.86	0.21		DWt%	
1883	Milne, D.B. (1934)			39.64	9.91	3.04	73.53	8.84	0.53		Moles/1000	
1885 1885	Ebaugh, W.C. (1910) Eckel, E.C. (1904)	1.123 1.223	16.72 16.72								g/l	188
1888 1888 1888	Ebaugh, W.C. (1910) Eckel, E.C. (1904) Frederick, E (1924)	1.126 1.126 1.261									g/I	
1889 1889 1889 1889	Clarke, F.W. (1916) Ebaugh, W.C. (1910) Ebaugh, W.C. (1910) Eckel, E.C. (1904)	1.148 1.157 1.148	19.56 19.56	33.39	1.08	2.60	56.54	5.97	0.24		DWt% g/l g/l	226
1889 1889	Eckel, E.C. (1904) Jones, D.K. (1933)	1.157	19.56 19.56	33.39	1.00	2.60	56.54	5.97	0.42		DWt%	
1892 1892 1892 1892 1892	Ebaugh, W.C. (1910) Ebaugh, W.C. (1910) Eckel, E.C. (1904) Eckel, E.C. (1904) Frederick, E (1924)	1.156 1.168 1.156 1.168 1.168	20.51 21.47 20.51 21.47								g/l g/l	238 251
1892 1892	Stokes, W.L. (1966) [a] Clarke, F.W. (1916)		14.99 23.04	33.15 32.92	1.60 1.70	2.52 2.10	55.99 55.69	6.57 6.52	0.17 1.05		DWt% DWt%	230
1893 1893	Ebaugh, W.C. (1910) Eckel, E.C. (1904)		20.05 20.05								g/l	

Date	Reference ¹	Density ²	Wt% ³	Na	к	Mg	CI	SO₄	Ca	CO ₃ /HCO ₃	Units	TDS ⁴
1894	Ebaugh, W.C. (1910)	1.154	21.16								g/I	244
1894	Eckel, E.C. (1904)	1.154	21.16									
1894	Frederick, E (1924)	1.154										
1895	Ebaugh, W.C. (1910)	1.158	21.39								g/I	248
1895	Eckel, E.C. (1904)	1.158	21.39									
1895	Frederice, E (1924)	1.158										
1896	Stokes, W.L. (1966) [b]		22.83	33.22	1.71	1.23	56.22	6.57	1.05		DWt%	
1900	Ebaugh, W.C. (1910)	1.158	20.90								g/l	242
1900	Ebaugh, W.C. (1910)	1.171	22.89								g/I	268
1900	Ebaugh, W.C. (1910)	1.181	23.36								g/l	276
1900	Ebaugh, W.C. (1910)	1.186	24.03								g/I	285
1900	Eckel, E.C. (1904)	1.158	20.90								3	
1900	Frederick, E (1924)	1.158										
1901	Ebaugh, W.C. (1910)	1.198	25.22								g/I	302
1903	Ebaugh, W.C. (1910)	1.221	27.72	9.58	0.73	0.16	15.27	1.86	0.05		Wt%	338
1903	Frederice, E (1924)		27.72									
1904	Clarke, F.W. (1916)		27.72	34.65	2.64	0.57	55.25	6.73	0.16		DWt%	
1904	Ebaugh, W.C. (1910)	1.191	25.20	01.00	2.01	0.01	00.20	0.10	0.10		Wt%	300
1904	Ebaugh, W.C. (1910)	1.212	26.71	8.77	0.89	0.43	14.54	1.82	0.06		Wt%	324
1904	Jones, D.K. (1933)	1.2.12	27.72	35.65	2.64	0.57	55.25	6.73	0.16		DWt%	024
1905				00.00	2.04	0.07	55.25	0.75	0.10		DVVI/0	
	Kirkpatrick, R. (1934)		26.00									
1907	Clarke, F.W. (1916)		22.99	32.97	3.13	1.96	55.11	6.66	0.17		DWt%	
1907	Ebaugh, W.C. (1910)	1.181	22.92	7.58	0.72	0.45	12.67	1.53	0.04		Wt%	271
1907	Jones, D.K. (1933)		22.99	32.97	3.13	1.96	55.11	6.66	0.17		DWt%	
1909	Ebaugh, W.C. (1910)	1.156	20.89	7.25	0.76	0.45	10.91	1.39	0.08		Wt%	242
1910	Clarke, F.W. (1911)		17.68	32.81	4.99	2.22	53.72	5.95	0.31		DWt%	
1910	Daines, L.L. (1920)			85.10	8.82	5.18	126.35	16.00	0.98		g/l	242
1910		1.133	17.68	5.79	0.88	0.39	9.48	1.05	0.06		Wt%	200
1913	Clarke, F.W. (1916)		20.35	33.17	1.66	2.67	55.48	6.68	0.16	0.09	DWt%	
1913	Stokes, W.L. (1966) [b]		20.35	33.17	1.66	2.76	55.48	6.68	0.16	0.09	DWt%	
1914	Frederick, E (1924)		19.71									
1914	Thomas, M.D. (1914)	1.152	19.71	74.18	4.34	6.06	127.81	14.57	0.46		g/l	228
1914	Thomas, M.D. (1914)	1.147	19.19	72.63	4.12	5.89	122.70	14.38	0.37		g/I	220
1914	Thomas, M.D. (1914)	1.149	19.45	73.49	4.56	5.97	125.00	14.42	0.40		g/I	224
1930	Conner, J.G. (1958)			69200	3380	5780	199500	11400	361	221	ppm	209800
1930	Stokes, W.L. (1966) [c]		21.00	32.90	1.61	2.75	57.05		0.17		DWt%	209000
1932	Harbeck, G.F. (1955)										ppm	251000
1935	Smith, W.W. (1933)	1.210	26.00									
1935	Smith, W.W. (1933)	1.220	27.00									
1935	Smith, W.W. (1933)	1.220	21.00	120.06		8 33	186.29	10 44	0.40	0.06	a /l	
1935	Smith, W.W. (1933)	1 220	27.00	120.00		0.52	100.29	13.44	0.40	0.00	g/l	
		1.220										
1935	Smith, W.W. (1933)	1.218	26.80									

Date	Reference ¹	Density ²	Wt% ³	Na	к	Mg	CI	SO4	Ca	CO ₃ /HCO ₃	Units	TDS ⁴
1936	Adams, T.C. (1938)		27.60			2.47	55.40	5.78	0.12	0.01 M	oles/1000)
1936	Smith, W.W. (1933)											
1936	Smith, W.W. (1933)	1.217	26.75									
1936	Smith, W.W. (1933)	1.218	26.80									
1938	Done, R.S. (1838)			10.00	0.50	0.80	15.00	2.00	0.06		pph	
1939	State Chemist (1939)	1.223	27.85	111.60	7.50	8.83	185.23	27.15		0.07	g/l	341
1946	Nylander, A.F. (1964)			15.66	1.84	4.10	31.16	9.02	0.07		?	
1946	Perschon, A.R. (1947)	1.183	25.25									
1954	Conner, J.G. (1958)			86500	4070	6940	143000	17700	407	263	ppm	268000
1954	Conner, J.G. (1958)			88200	3980	7000	143000	17800	388	288	ppm	268000
1959	Glassett, J.M. (1964)	1.170	24.00	8.16	0.42	0.60	13.29	1.15			Wt%	
1959	Glassett, J.M. (1964)	1.170	24.00	34.00	1.75	2.50	55.44	6.31			DWt%	
1959	Hahl, D.C. (1965)	1.221	23.34	92200	5570	9440	158000	22600	463	398	ppm	286000
1960	Diaz, A.M. (1963)		27.00								Wt%	
1960	Glassett, J.M. (1964)	1.216	29.80	9.65	0.59	0.81	16.85	1.89			Wt%	
1960	Glassett, J.M. (1964)	1.208	26.10	8.22	0.59	0.85	14.56	1.88			Wt%	
1960	Glassett, J.M. (1964)	1.216	29.80	32.40	1.98	2.72	56.56	6.34			DWt%	
1960	Glassett, J.M. (1964)	1.208	26.10	31.50	2.25	3.25	55.80	7.20			DWt%	
1960	Hahl, D.C. (1965)	1.208	21.77	85700	4550	8050	147000	17400	319	327	ppm	263000
1960	Stokes, W.L. (1966) [c]		24.70	32.71	1.71	2.91	55.88	6.60	0.12	0.06	DWt%	
1961	Glassett, J.M. (1964)	1.098	14.40	1.63	0.32	0.45	7.90	1.08			Wt%	
1961	Glassett, J.M. (1964)	1.098	14.40	32.18	2.19	3.15	54.93	7.55			DWt%	
1961	Hahl, D.C. (1965)	1.186	20.23	77800	3810	6920	133000	12100	265	266	ppm	240000
1961	Stokes, W.L. (1966) [c]		26.90	31.55	1.95	3.49	54.63	8.21	0.10	0.07	DWt%	
1962	D'Arcy, R.G. (1967)			93.00	6.00	11.00	177.00	23.90	0.20		g/l	
1962	D'Arcy, R.G. (1967)			96.00	8.00	15.00	181.00	26.20	0.20		g/l	
1962	D'Arcy, R.G. (1967)			91.00	5.50	12.47	166.00	23.40	0.20		g/l	
1963	Eardley, A.J. (1964)	1.216	27.30	33.19	2.10	1.09	56.25	9.28			DWt%	
1963	Miller, D.E. (1960)		26.00									
1964	Stokes, W.L. (1966) [d]		22.10	32.25	2.12	3.22	54.81	7.29	0.10	0.08	DWt%	
1965	Stokes, W.L. (1966) [d]		22.20	32.58	2.06	3.31	54.14	7.67	0.12	0.09	DWt%	

EXPLANATION

¹ Reference listed in Appendix B ² Density is given in grams per cubic centimeter (g/cc) ³ WT% is weight percent salt in the brine

⁴ Units: g/l = grams per liter DWt% = dry weight percent or percent of ion in the salt only

ppm = parts per million Moles/1000 = Moles of ion per 1000 moles of water

Blank cells indicate analysis not made

APPENDIX B

ANNOTATED REFERENCES FOR PRE-1966 GREAT SALT LAKE BRINE CHEMISTRY LISTED IN APPENDIX A

Adams, T.C., 1938, Recent deposition of salt from Great Salt Lake: Journal of Geology, v. XLVI (Jan-Dec), p. 637-646.

Six of seven analyses given are already recorded from other sources. Analysis given from Zobell (written communication, 1936).

Arnow, Ted, 1984, Water-level and water-quality changes in Great Salt Lake, Utah, 1847-1983: U.S. Geological Survey Circular 913, 22 p.

Data have been reported elsewhere.

Clarke, F.W., 1911, Data of geochemistry: U.S. Geological Survey Bulletin 491, p. 143-146.

One sample not listed in 1926 issue as follows: W. Mac Farlane, Science v. 32, 1910. Collected Feb. 1910.

Clarke, F.W., 1916, Data of geochemistry: U.S. Geological Survey. Bulletin 616, p. 154-156.

Samples collected as follows:

- (a) O.D. Allen, USGS Expl 40th parallel, Coll. 1869.
- (b) C. Smart, Res. and attractions of Terr. UT., Anal. 1877.
- (c) E. von Cochenhausen, Coll by Ochsenius April 16, 1879.
- (d) J.E. Talmage, Sci. V. 14, 1892 Sample collected 1889.
- (e) E. Waller, Sch. Mines Quart. v. 14, 1892. Sample not dated.
- (f) W. Blum, Rep. By Talmage, collected 1904.
- (g) W.C. Ebaugh, collected October, 1907.
- (h) R.K. Bailey, collected by Gale, Oct. 24, 1913. Also gives Br, Li, Fe₂O₃, Al₂O₃, and SiO₂.
- Connor, J.G., and Mitchell, G., 1958, A compilation of chemical quality data for ground and surface water in Utah: Utah State Engineer Technical Publication no. 10. p. 276.

Three Analyses on Great Salt Lake as follows:

- (a) Lucien Cutoff main body, surface (1930)
- (b) W. of Antelope Island, main body, Surface (1954)
- (c) Main body, bottom -24' depth (1954)
- Daines, L.L., 1910, Physiological experiments on some algae of Great Salt Lake: Salt Lake City, University of Utah, M.S. thesis, 12 p.

Total solids = 242.25, Salinity = 213.32

D'Arcy, R.G., Riley, J.M., and Crocker, L., 1967, Preliminary process development studies of desulfating Great Salt Lake brines and sea water: U.S. Bureau of Mines Report of Investigation 6928, 34 p.

Also gives following:	Li	Normality
-----------------------	----	-----------

(a) South Shore	.06	5.3	
-----------------	-----	-----	--

- (b) N side SPRR causeway .07 5.6
- (c) S side SPRR causeway .05 5.2
- Diaz, A.M., 1963, Dissolved salt contribution to Great Salt Lake, Utah: U.S. Geological Survey Professional Paper 450-E, p. 163-165.

During 1960, 20 brine samples indicated lake was nearly saturated and TDS of lake was about 27 percent. Estimated lake load was 4.5 x 109 tons at end of 1960 Water Year.

Done, R.S., 1938, Low temperature equilibria between salts and solution in Great Salt Lake: Salt Lake City, University of Utah, M.A. thesis, 29 p.

Analysis from about $1938 - \text{parts per hundred } H_{20} - 72$, $CO_3 = .02$.

Eardley, A.J., 1938, Sediments of Great Salt Lake, Utah: Bulletin of the American Association of Petroleum Geologists, v. 22, no. 10, October, p. 1305-1411.

Gives eight analyses from Clarke, 1924, these analyses are similar to those given by Clarke (1922 or 1916).

Eardley, A.J., and Cohenour, R.E., 1964, Great Salt Lake *in* Crawford, A.L., editor, Geology of Salt Lake County: Utah Geological and Mineralogical Survey Bulletin 69, p. 79-87.

Analysis for sample taken 4-15-63; chemical analyses given in terms of assumed chemical combinations.

Ebaugh, W.C., and MacFarlane, W., 1910, Comparative analysis of water from Great Salt Lake: U [University of Utah] Pamphlet 34 (Reprinted from the Journal of Industrial and Engineering Chemistry, v. 2, no. 11, November 1910).

The following is a tabulation of Great Salt Lake brine data, and the source of that data, made by Ebaugh, W.C., and Mac-Farlane (1910).

Date	Specific Gravity	TDS Wt. %	Grams/Liter	Authority
1850	1.170	22.282	260.69	L.D. Gale
Summer 1869	1.111	14.9934	166.57	O.D. Allen
August 1873	1.102	13.42	147.88	H. Bassett
December 1885	1.1225	16.7162	187.65	J.E. Talmage
February 1888	1.1261	—	—	J.E. Talmage
June 1889	1.148	—	—	J.E. Talmage
August 1889	1.1569	19.5576	226.263	J.E. Talmage
August 1892	1.156	20.51	238.12	E. Waller
September 1892	1.1679	21.47	250.75	J.E. Talmage
1893		20.05		J.T. Kingsbury
December 1894	1.1538	21.16	244.144	J.E. Talmage
May 1895	1.1583	21.39	247.760	J.E. Talmage
June 1900	1.1576	20.90	241.98	H.N. McCoy & Thomas Hadley
July 1900	1.1711	22.89	268.09	H.W. Sheley
August 1900	1.1805	23.36	275.765	H.W. Sheley
October 1900	1.1860	24.03	285.020	H.W. Sheley
September 1901	1.1979	25.221	302.122	I.J. Seckles
October 1903	1.2206	27.72	338.36	Wm. Blum
June 1904	1.1905	25.196	299.96	J.E. Talmage
November 1904	1.2120	26.71	323.71	Wm. Blum
October 1907	1.1810	22.92	270.685	W.C. Ebaugh & Kenneth Williams
October 1909	1.1561	20.887	242.25	Wallace MacFarlane
February 1910	1.1331	17.681	200.32	Wallace MacFarlane

Eckel, E.C., 1904, The salt industry in Utah and California: U.S. Geological Survey Bulletin 225, p. 488-495.

Densities, weight percent salt, and total dissolved solids are as given in Ebaugh, W.C., and Mac Farlane, W. (1910) above. Chemical analyses are also given as salts.

Flint, Gerhard, 1971, Great Salt Lake Chemicals: Reprinted from Kirk-Othmer Encyclopedia of Chemical Technology, Supplemental Volumes, 2nd Edition, p. 438-467.

Data are not date specific (1963-65) other than sample taken between Promontory Point and Fremont Island which may show dilution from the Bear River.

Frederick, Elfriede, 1924, On the bacterial flora of Great Salt Lake and the viability of other microorganisms in Great Salt Lake water: Salt Lake City, University of Utah, M.S. thesis, 65 p.

Includes one analysis from Prof. O.D. Allen (1873) and three from M.D. Thomas thesis (1914, 1873, and 1903).

Glassett, J.M., and Anderson, B.J., 1964, The recovery of salts from the waters of Great Salt Lake: Salt Lake City, Utah Engineering Experiment Station Bulletin 128, v. 55, no. 21, 80 p.

Samples are as follows:

- (a) Sunset Beach, Aug. 29, 1959
- (b) Black Rock, July 2, 1960
- (c) Boat Harbor, Nov. 20, 1960
- (d) Boat Harbor, Sept. 4, 1961

Garrett, V.B., 1960, A study of hatching Artemia salina of Great Salt Lake: Salt Lake City, University of Utah, M.S. thesis, 49 p.

1850-52 reference from Howard Stansbury and the 1869-70 reference from Clarence King.

Hague, A., and Emmons, S.F., 1877, Report of the geological exploration of the 40th Parallel, *in* Descriptive Geology, Clarence King in Charge: Professional Papers of the Engineering Department, U.S. Army, no. 18, p. 436.

Includes water analysis as follows: Great Salt Lake (1869), Sevier Lake, Oroomcah Sea, Dead Sea, Atlantic Ocean and the Mediterranean Sea. Analyses are given as assumed salts.

Hahl, D.C., and Mitchell, C.G., 1963, Dissolved-mineral inflow to the Great Salt Lake and chemical characteristics of the Salt Lake brine – part 1- Selected hydrological Data: Utah Geological and Mineralogical Survey Water Resources Bulletin 3 – Part 1, 40 p.

Contains many good analyses, mainly between 1959 and 1961.

Hahl, D.C., Wilson, M.T., and Langford, R.H., 1965, Physical and chemical hydrology of Great Salt Lake, Utah: U.S. Geological Survey Professional Paper 525-C, p. C183.

Several trace elements are also reported, all data reported in ppm.

- (a) June 1959
- (b) November 1961
- (c) Average of analyses collected in southern arm of lake in April, July, and October, 1960, and January to February, 1961.
- Handy, A.H., and Hahl, D.C., 1966, Great Salt Lake chemistry of the water, in Stokes, W.L., editor, Great Salt Lake Guidebook to the Geology of Utah: Utah Geological Society Guidebook 20, p. 135-151.

Computed from data reported by Richardson (1906, p. 34). (a) - 1850 (b) Aug., 1892

Reported by Clarke (1924) (a) 1896, (b) 1913.

Hahl and Mitchell (1963, p. 38) 2 mi W. Prom. Pt. so. of causeway. (a) March 1930, (b) April 1960, (c) Nov. 1961.

Sample collected 1 mile south of causeway in 25 feet of water at 5-foot depths. (a) July, 1964, (b) July, 1965. Analyses also given for SiO₂, Fe, Li, and B.

Harbeck, G.F., Jr., 1955, The effect of salinity on evaporation: U.S. Geological Survey Professional Paper 272-A, 6 p.

Pan brine (experiment) was 251,000 ppm. Work done by Adams, July-Oct., 1932.

Jones, D.K., 1933, A study of the evaporation of the water of Great Salt Lake: Salt Lake City, University of Utah, M.S. thesis, 33 p.

Analyses: (a) J.E. Talage (1889); (b) W. Blum (1904); and (c) W.C. Ebough [sic] (1907). Also shows Trace for Br and Li respectively.

Kirkpatrick, Ruth, 1934, The life of Great Salt Lake with special reference to algae: Salt Lake City, University of Utah, M.S. thesis, 30 p.

Highest level was 1873 (14% salt). Lowest level was 1905 and 1906 (greater than 26% salt), at time of investigation, lake level low (almost 26%).

Madison, R.J., 1970, Effects of a causeway on the chemistry of the brine in Great Salt Lake, Utah: Utah Geological and Mineralogical Survey Water-Resources Bulletin 14, 52 p.

Contains many good analyses, mainly during 1967-68.

Miller, D.E., 1969, Great Salt Lake – past and present: (Distributed by Dr. David E. Miller, University of Utah) Salt Lake City. 2nd Edition.

The following is reported, (a) Stansbury, 1850, (b) extreme high water mark, 1873 and (c) 1962.

Milne, D.B., 1934, Economic possibilities of brines found in Great Salt Lake: Salt Lake City, University of Utah M.S. thesis, 120 p.

Ref. (a) 1850 by L.O. Gale; (b) Summer 1869 by A.D. Allen and (c) August 1883-4? by Bassett. Data are converted back from proposed compounds, originally given as % in 1000 moles ? water.

Nylander, A.F., and Jensen, J.H., 1964, Magnesium chloride from naturally occurring brines and evaporites: Journal of Metals, September, p. 718-20.

Gives four analyses for typical sea water, Dead Sea, Bonneville, and Boccana de Viorita Sechura samples. Analyses are pre-1946.

Perschon, A.R., 1947, The recovery of magnesia from the Great Salt Lake brine utilizing oolitic sand from the lake shorelines: Salt Lake City, University of Utah, M.S. thesis, 29 p.

Sample taken on June 1, 1946, near Black Rock.

Smith, W.W., 1933, Evidence of bacterial flora indigenous to the Great Salt Lake in Utah: Salt Lake City, University of Utah, M.S. thesis, 101 p.

1935 sample from Adams (hydrometer), and 1935-36 samples taken by Twleves (pychmometer). Actual chemical analysis for Dec. 29, 1935 given, includes 6.2 ml N2, 0.57 ml O₂, and 129.2 ml CO₂. Other analyses include densities (a) 1.220 (9-11-35), (b) 1.218 (11-30-35), (c) 1.217 (1-23-36), and (d) 1.218 (1-23-36).

State Chemist, 1939, Analysis of Great Salt Lake water made August 1939: Department of Agriculture (no other information available).

Several elements other than these reported.

Thomas, M.D., 1914, A study of the water of Great Salt Lake: Salt Lake City, University of Utah, B.A. thesis, 14 leaves.

- (a) Sample collected on February 14, 1914. Height of water (Saltair gauge) 5.5 feet. Wt. Percent and percent of solids also given.
- (b) Sample collected April 20, 1914, gauge = 6.0 feet.
- (c) Sample collected March 14, 1914, gauge = 5.8 feet.

RT3

APPENDIX C

LOCATIONS OF GREAT SALT LAKE BRINE-SAMPLING SITES

SITE LATITUDE LONGITUDE UTM-NORTH UTM EAST SITE-LOCATION DESCRIPTION 15 41.2317 -112.403 496398.573 34719.8954 SE FROM BREACH OPENING 25 41.247 -112.833 496392.0520 34001.0999 SE FROM BREACH OPENING 48 41.0683 -112.8353 496392.0520 34914.8008 SE FROM BREACH OPENING 481 10.0683 -112.2317 4466397.7560 349618.6135 NO FATELOPE & CARRINGTON ISLANDS AC2 40.0900 -112.4453 4438954.6000 349641.0637 LINE FROM ANTELOPE & CARRINGTON ISLANDS AC3 40.0000 -112.4454 4429548.2270 378961.4005 LINE FROM ANTELOPE & CARRINGTON ISLANDS AC4 40.0034 -112.2451 4429349.2770 490183.9415 JUNE FROM ANTELOPE & STANSBURY ISLANDS AS3 40.0166 -112.2451 4429349.2770 349185 7437 JUNE FROM ANTELOPE & STANSBURY ISLANDS AS4 40.9166 -112.2936 45969.2930 379792.8102 JUNE FROM ANTELOPE & STANSBURY ISLANDS AS5 40.7968 +12.2936 <td< th=""><th>SOUTH</th><th>ARM SAMPL</th><th>ING SITES</th><th></th><th></th><th></th></td<>	SOUTH	ARM SAMPL	ING SITES			
15 41.237 -112.8408 495688.5730 345718964 EFROM BREACH OPENING 28 41.267 -112.8373 495683.2680 34600.8098 EFROM BREACH OPENING 38 41.2088 -112.8373 495687.0203 SE FROM BREACH OPENING ABN 41.088 -112.822 495695.0503 39651.6313 N OF ANTELOPE ISLAND CALSINGS MAY BRIDGE AC1 40.9933 -112.2454 442856.270 376581.4006 LINF FROM ANTELOPE & CARRINGTON ISLANDS AC3 40.0000 -112.4456 442856.270 376581.4006 LINF FROM ANTELOPE & CARRINGTON ISLANDS AC4 40.0024 -112.4456 442856.6303 386177.3222 LINF FROM ANTELOPE & STANSBURY ISLANDS AS3 40.3530 -112.2540 452086.9403 39418.57247 LINF FROM ANTELOPE & STANSBURY ISLANDS AS4 40.9108 -112.3241 450690.5770 38768.2010 LINF FROM ANTELOPE & STANSBURY ISLANDS AS5 40.7533 -112.8456 456670.5770 38768.2102 LINF FROM ANTELOPE & STANSBURY ISLANDS BRFBACH 11.2814 45667	SITE	LATITUDE	LONGITUDE	UTM-NORTH	UTM EAST	SITE-LOCATION DESCRIPTION
28 41.267 112.833 4963420.527 346744.086 SE FROM BREACH OPENING 48 41.2683 112.8323 496420.527 346744.086 SE FROM BREACH OPENING ABN 41.0683 112.2317 4964807.796 346941.087 SE FROM BREACH OPENING AC1 40.9893 112.2317 4964807.796 346941.087 ILINE FROM ANTELOPE & CARRINGTON ISLANDS AC2 40.9960 112.448 4428956.833 308694.1568 ILINE FROM ANTELOPE & CARRINGTON ISLANDS AC4 40.0024 112.846 4428956.833 398877.382 ILINE FROM ANTELOPE & CARRINGTON ISLANDS AS3 40.8483 112.12.850 450208.940 394887.940 ILINE FROM ANTELOPE & CARRINGTON ISLANDS AS4 40.8168 112.333 4518478.813 3032482.002 ILINE FROM ANTELOPE & STANSBURY ISLANDS BRBS 41.233 112.3869 456907.133 39786.812 ILINE FROM ANTELOPE & STANSBURY ISLANDS BRBS 41.233 112.3869 456907.570 34738.3102.10 ILINE FROM ANTELOPE & STANSBURY ISLANDS BRBS 41.						
S 41,2167 -112,8353 4562058,0570 34671,448,086 SE EFROM BREACH OPENING ABN 41,0683 -112,2317 456365,7750 336671,0311 N DF ANTELOPE (SLAND CAUSEWAY BRIDGE AC1 40,9933 -112,2302 4563856,0600 396441,0307 N DF ANTELOPE (SLAND CAUSEWAY BRIDGE AC2 40,9960 -112,2453 453867,0570 386641,060 UINE FROM ANTELOPE & CARRINGTON ISLANDS AC3 40,0004 -112,4553 4422545,2270 376841,060 UINE FROM ANTELOPE & CARRINGTON ISLANDS AC4 40,0024 -112,841 4422545,2270 37681,400 UINE FROM ANTELOPE & CARRINGTON ISLANDS AS3 40,8163 -112,2521 451030,1130 382242,2403 UINE FROM ANTELOPE & STANSBURY ISLANDS AS5 40,7595 -112,3504 451694,3730 37760,8230 UINE FROM ANTELOPE & STANSBURY ISLANDS BR5 41,215 -112,3504 456530,0770 345136,2109 W END OF SPRR CAUSEWAY EARA LAKESIDE BR4 41,0716 -112,3504 4564730,3707 34576,2200 UINE ETWERNER TREMONT AND BIRD ISLANDS <						
44 41:2083 -112:8282 4562986.9050 346972.031 EFEROM BREACH OPENIAND CAUSEWAY BRIDGE AC1 40.9983 -112:2012 4538554.0900 394814.15087 UNE FROM ANTEL/OPE & CARRINGTON ISLANDS AC2 40.9990 -112:4483 4428955.6530 38684.15087 UNE FROM ANTEL/OPE & CARRINGTON ISLANDS AC4 40.0024 -112:4451 4428955.6530 38817.377 UNE FROM ANTEL/OPE & CARRINGTON ISLANDS AS2 40.0350 -112:2441 4428955.6530 38817.3722 UNE FROM ANTEL/OPE & CARRINGTON ISLANDS AS3 40.0360 -112:3241 4502380.1770 398238.0032 UNE FROM ANTEL/OPE & CARRINGTON ISLANDS AS4 40.8108 -112:3241 4509030.1530 398238.0032 UNE FROM ANTEL/OPE & CARRINGTON ISLANDS BR5 41:2233 -112:3406 456500.7780 3776750.2200 UNE OF OPENING IN SPARE AST OP PROM. POINT BR6ACH 41:2161 -112:4570 455455.5530 377457.521 UNE POT OPENING IN SPARE AST OP PROM. POINT BR73 41:12:610 455455.5530 377457.5210 UNE POT OPENING IN SPARE AST OP PROM. POI	3S	41.2167				
ABN 41.083 -112.2317 454687.7950 39691.8133 N OF ANTELOPE (SLAND CAUSEWAY BRIDDE AC2 AC1 40.9963 -112.2463 453867.6570 39694.1663 ILINE FROM ANTELOPE & CARRINGTON ISLANDS AC3 40.0004 -112.4458 4428548.2270 37681.4006 ILINE FROM ANTELOPE & CARRINGTON ISLANDS AC4 40.0024 -112.5443 4428548.2270 37681.4006 ILINE FROM ANTELOPE & CARRINGTON ISLANDS AS2 40.3853 -112.2540 452280.177 309823.6023 ILINE FROM ANTELOPE & CARRINGTON ISLANDS AS3 40.8169 -112.2361 452280.177 38422.4023 ILINE FROM ANTELOPE & STANSBURY ISLANDS AS4 40.8169 -112.3364 451890.3730 37769.8230 ILINE FROM ANTELOPE & STANSBURY ISLANDS AS5 40.7553 -112.4560 4554565.570 385716.210 W END OF SPRR CAUSEWAY EARA LAKESIDE FB3 41.1575 -112.450 4554565.5770 385716.210 W END OF SPRR CAUSEWAY EARA LAKESIDE FB3 41.0716 -112.450 455456.580 3774757.570 ILINE ETVEWERNMAT AND BIRD ISLANDS	4S	41.2058				
AC1 40.9933 -112.292 453854.0800 334441.607 LINE FROM ANTELOPE & CARRINGTON ISLANDS AC2 40.9960 -112.4453 442854.8270 376894.1506 LINE FROM ANTELOPE & CARRINGTON ISLANDS AC3 40.0004 -112.4453 4428955.830 38817.3322 LINE FROM ANTELOPE & CARRINGTON ISLANDS AS1 40.8433 -112.2451 4428955.830 38418.57247 LINE FROM ANTELOPE & STANSBURY ISLANDS AS4 40.8166 -112.2321 4510930.1530 38428.4023 LINE FROM ANTELOPE & STANSBURY ISLANDS AS4 40.8166 -112.3331 4518476.8130 38282.4023 LINE FROM ANTELOPE & STANSBURY ISLANDS BREACH 41.2216 112.4506 456590.7130 3976760.2230 LINE FROM ANTELOPE & STANSBURY ISLANDS BREACH 112.4506 456590.7130 392767.5210 LINE BETWEEN FREMONT AND BIRD ISLANDS FB1 41.1675 -112.8506 4565907.303 3927457.2510 LINE BETWEEN FREMONT AND BIRD ISLANDS FB2 41.0716 -112.8501 4554958.503 3977457.2510 LINE BETWEEN FREMONT AND BIRD ISLANDS <		41.0683				
AC2 40.0960 -112.4483 458976 5570 39684.5185 LINE FROM ANTELOPE & CARRINGTON ISLANDS AC3 40.0000 -112.4483 4429548 2270 376851.406 LINE FROM ANTELOPE & CARRINGTON ISLANDS AC4 40.0204 -112.8443 4429548 2230 368177.3822 LINE FROM ANTELOPE & CARRINGTON ISLANDS AS3 40.8168 -112.8241 4512956.940 384183.712 LINE FROM ANTELOPE & STANSBURY ISLANDS AS4 40.8108 -112.3241 4516950.8103 38822.8602 LINE FROM ANTELOPE & STANSBURY ISLANDS AS5 40.7595 -112.4003 4516970.3103 376760.820 LINE FROM ANTELOPE & STANSBURY ISLANDS BR8S 41.2333 -112.4003 4516970.7103 345182.710 LINE BETWEEN FREMORT AND BIRD ISLANDS FB1 41.1675 -112.8400 4554953.503 37723.141 LINE BETWEEN FREMORT AND BIRD ISLANDS FB2 41.1035 -112.8400 4551725.5690 38568.720 HARDY SALT INLET ON SOUTH END OF LAKE FB1 41.0716 -112.8401 4547969.330 38566.720 OPENING INSLANDS	AC1			4538554.0600		
AC3 40.000 -112.443 442854.82270 37681.406 Like FROM ANTELOPE & CARRINGTON ISLANDS AS1 40.0483 -112.443 4428955.6830 38817.324 Like FROM ANTELOPE & CARRINGTON ISLANDS AS2 40.850 -112.2550 4520966.9940 38817.324 Like FROM ANTELOPE & STANSBURY ISLANDS AS3 40.8108 -112.393 4516903.103 38822.400 Like FROM ANTELOPE & STANSBURY ISLANDS AS4 40.8108 -112.393 4516903.133 38822.400 Like FROM ANTELOPE & STANSBURY ISLANDS BR8B 41.2316 -112.4950 456907.130 38262.102 S OF OPENING IN SPRE RAST OF PROM. POINT BREACH 41.1675 -112.8950 455958.530 337676.2812 S OF OPENING IN SPRE RAST OF PROM. POINT FB1 41.1675 -112.8950 455958.530 337676.2812 S OF OPENING IN SPRE RAST OF PROM. POINT FB2 41.1330 -112.8960 455958.530 37675.1628 ILike ERTWEEN FREMORT AND BIRD ISLANDS FB4 41.0716 -112.8960 4547989.4550 375714.5826 INDUSTRY STIE NO.2	AC2					
AC4 40.0024 -112.5443 4429856.6830 368177.3822 LINE FROM ANTELOPE & CARRINGTON ISLANDS AS1 40.8453 -112.3441 4522380.1702 400183.6814 LINE FROM ANTELOPE & STANSBURY ISLANDS AS3 40.8156 -112.2450 4502080.9940 394185.727 LINE FROM ANTELOPE & STANSBURY ISLANDS AS3 40.8166 -112.3401 4519030.1830 382342.6031 LINE FROM ANTELOPE & STANSBURY ISLANDS AS5 40.7553 -112.4061 4519030.1830 387362.200 LINE FROM ANTELOPE & STANSBURY ISLANDS BR8S 41.2331 112.330 4598077.1303 376760.230 LINE FROM ANTELOPE & STANSBURY ISLANDS BR8S 41.2315 -112.4900 4554956.330 377457.5210 LINE BETWEEN FREMORT AND BIRD ISLANDS FB3 41.1033 -112.2400 455125.5560 37723.1414 LINE BETWEEN FREMORT AND BIRD ISLANDS FB4 41.0716 -112.8401 4547963.030 385460.120 OPEINING IN SELMES FB4 41.0716 -112.8475 456903.37713.3526 385401.120 OPEINING IN SELMES <t< td=""><td>AC3</td><td>40.0000</td><td></td><td></td><td></td><td></td></t<>	AC3	40.0000				
AS1 40.4843 -112.1841 422380.1770 400183.8646 LINE FROM ANTELOPE & STANSBURY ISLANDS AS2 40.8356 -112.250 4529966.9840 394185.7247 LINE FROM ANTELOPE & STANSBURY ISLANDS AS4 40.8108 -112.3933 4518476.8130 388238.6023 LINE FROM ANTELOPE & STANSBURY ISLANDS BR88 41.2333 -112.3866 456590.570 35760.2012 UNE FROM ANTELOPE & STANSBURY ISLANDS BREACH 41.2216 -112.8475 4664790.570 357760.2012 UNE BROM ANTELOPE & STANSBURY ISLANDS BREACH 41.2216 -112.8475 4664790.570 357763.2012 UNE BETWEEN FREMONT AND BIRD ISLANDS FB1 41.1675 -112.8975 455980.3730 32579.9969 LINE BETWEEN FREMONT AND BIRD ISLANDS GSLB 41.2717 -112.8975 4569803.9730 358460.1250 OPENING IN GSLM BRIDGE OVER BEAR RIVER IS1 41.056 -112.6961 4547598.0380 360523.5491 INDUSTRY SITE NO.1 IS2 41.0106 -112.8961 4547598.0380 360523.5491 INDUSTRY SITE NO.2						
AS2 40.350 -112.250 4520986.9840 394185.7247 LINE FROM ANTELOPE & STANSBURY ISLANDS AS3 40.3168 -112.333 4518476.8130 3882482.0403 LINE FROM ANTELOPE & STANSBURY ISLANDS AS5 40.7958 -112.4008 4516994.3730 376760.8230 LINE FROM ANTELOPE & STANSBURY ISLANDS BRBS 41.2331 -112.8475 456530.5770 345136.2109 W END OF SPRR CAUSEWAY NEAR OF PROM POINT BREACH 41.2216 -112.8475 45654790.5770 345136.2109 W END OF SPRR CAUSEWAY NEAR LAKESIDE FB1 41.1675 -112.8400 455195.5630 377247.5210 LINE BETWEEN FREMONT AND BIRD ISLANDS FB3 41.0716 -112.8400 4501455.600 386680.200 HRCM TAND BIRD ISLANDS GSLB 41.2717 -112.3805 456980.39730 386240.1250 DPENING IN GSLM BRIDGE OVER BEAR RIVER HI 41.0760 -112.4801 4507663.300 386586.201 HACV SALT NLET ON SOUTH END OF LAKE IS1 41.0695 -112.8401 4507673.30 376760.8230 MORTON INLET AT SOUTH END OF LAKE	AS1	40.8483	-112.1841	4522380.1770		
AS3 40.8166 -112.3241 41619030.1830 388328.6023 LINE FROM ANTELOPE & STANSBURY ISLANDS AS4 40.8108 -112.3080 451696130 382482.0403 LINE FROM ANTELOPE & STANSBURY ISLANDS BR8B 41.2333 -112.3086 4516904.3730 376760.8230 LINE FROM ANTELOPE & STANSBURY ISLANDS BREACH 41.2216 -112.8475 456470.0770 345132.020 W END OF SPRR CAUSEWAY IRAR LAKESIDE FB1 41.1675 -112.8497 456470.0770 345136.0210 UNE BETWEEN FREMONT AND BIRD ISLANDS FB3 41.1033 -112.5000 455459.5830 377475.7510 LINE BETWEEN FREMONT AND BIRD ISLANDS FB4 41.0716 -112.5001 456769.8300 306567.200 HARDY SALT MIDE OVER BEAR RIVER HI 41.717 -112.3001 450769.300 306580.2701 HARDY SALT MIDE OVER BEAR RIVER HI 41.0766 -112.6483 4540765.7450 375014.5226 INDUSTRY SITE NO.2 MI 40.9866 -112.6241 4516904.3730 376766.3200 COPINNO IN GSLM BRIDGE OVER BEAR RIVER NL	AS2	40.8350		4520986.9840		LINE FROM ANTELOPE & STANSBURY ISLANDS
A54 40.8108 -112.3933 4518476.8130 382482.0403 LINE FROM ANTELOPE & STANSBURY ISLANDS BRBS 41.3233 -112.3936 4516904.370 376760.320 LINE FROM ANTELOPE & STANSBURY ISLANDS BRBACH 41.2216 -112.8475 4564790.5770 34518.2100 W END OF SPR CAUSEWAY NEAR LAKESIDE BREACH 41.2216 -112.8475 4564790.5770 3362871.1477 LINE BETWEEN FREMONT AND BIRD ISLANDS FB3 41.1035 -112.4600 455182.5600 372359.596 LINE BETWEEN FREMONT AND BIRD ISLANDS FB4 41.0716 -112.5816 4547698.4550 377147.5210 LINE BETWEEN FREMONT AND BIRD ISLANDS SLS 41.2717 -112.3800 4507693.5000 38568.7200 HARDY SALT MUE ON SOUTH END OF LAKE IS1 41.0966 -112.6801 4547059.0330 366503.2712 WEST OF BIRO-HAT ISLAND IS2 41.0106 -112.4803 4361964.3730 376760.8230 MORTON INLET AT SOUTH END OF LAKE INL 40.9360 -112.5972 4547056.2580 336580.2716 WEST 1-2 MORT HOUT HANDRE	AS3	40.8166	-112.3241	4519030.1830	388328.6023	LINE FROM ANTELOPE & STANSBURY ISLANDS
BRBS 41.2333 -112.3366 4568305.0780 387982.8102 S OF OPENING IN SPRR EAST OF PROM. POINT BREACH 41.2216 -112.8475 4564700.577.030 382571.477 LINE BETWEEN FREMONT AND BIRD ISLANDS FB2 41.1350 -112.4600 455459.5803 377457.5210 LINE BETWEEN FREMONT AND BIRD ISLANDS FB3 41.1033 -112.2600 455125.5600 37230.99566 LINE BETWEEN FREMONT AND BIRD ISLANDS GSLB 41.2717 -112.3675 456963.5000 385460.1250 OPENING IN SSUM BRIDGE OVER BEAR RIVER HI 41.7120 -112.3601 4507663.5000 385698.200 HARVY SALT INLET ON SOUTH END OF LAKE IS1 41.06986 -112.4608 451904.3730 366580.201 MORTON INLET AT NORTH END OF LAKE IS1 41.06956 -112.4608 451904.3730 376760.8230 MORTON INLET AT NORTH END STANBURY ISLAND NLN 41.0656 -112.4608 451904.3730 3767760.8230 MORTON INLET AT NORTH END STANBURY ISLAND RT1 40.7525 -112.2441 451904.27400 77920476 RESEARCH TOWER NORTHWIST OF BIR	AS4	40.8108		4518476.8130	382482.0403	LINE FROM ANTELOPE & STANSBURY ISLANDS
BREACH 41 2216 112 2475 4564700.5770 345186.2100 WEND OF SORT CAUSEWAY NEAR LAKESIDE FB1 41.1675 -112.3950 4556077.1380 382971.1477 LINE BETWEEN FREMONT AND BIRD ISLANDS FB3 41.1033 -112.6200 455458.5830 3773477.5210 LINE BETWEEN FREMONT AND BIRD ISLANDS FB4 41.0716 -112.8316 4547698.4550 3721399.9596 LINE BETWEEN FREMONT AND BIRD ISLANDS GSLB 41.2717 -112.3675 4566803.9730 385440.1250 OPENING IN GSLM BRIDGE OVER BEAR RIVER HI 41.712 -112.3675 4566803.03730 367678.230 ORTON INLET AT SOUTH END OF LAKE IS1 41.0696 -112.6201 4547599.0380 360523.5491 INDUSTRY SITE NO. 1 IS2 41.0106 -112.4403 4540785.7430 376768.230 MORTON INLET AT SOUTH END OF LAKE NLN 40.9980 -112.2525 4532772.0000 371618.8800 NLINET AT SOUTH END STANSBURY ISLAND RT1 40.7525 -112.2441 4500257.1420 379704.076 RESTWR 2 - NEAR COUNTY(S) INTERSECTION	AS5	40.7958	-112.4608	4516904.3730	376760.8230	LINE FROM ANTELOPE & STANSBURY ISLANDS
BREACH 41.2216 -112.2875 4564700.5770 345136.2109 WEND OF SPRIC AUSEWAY NEAR LAKESIDE FB1 41.1075 -112.3600 455607.7130 38271.477 LINE BETWEEN FREMONT AND BIRD ISLANDS FB3 41.1033 -112.2600 455617.55.6600 372399.9596 LINE BETWEEN FREMONT AND BIRD ISLANDS GSLB 41.2717 -112.3675 4566803.9730 385460.1250 OPENING IN CSLM BRIDGE OVER BEAR RIVER HI 41.712 -112.3675 4566803.9730 385640.1250 OPENING IN CSLM BRIDGE OVER BEAR RIVER HI 41.0766 -112.4863 450785.7450 37501.4526 INDUSTRY SITE NO.1 IS2 41.0106 -112.4863 450785.7520 37501.4526 INDUSTRY SITE NO.2 MI 40.9755 -112.4863 450785.7520 37501.4526 INDUSTRY SITE NO.1 NLN 41.0666 -112.4872 451796.2580 37501.4528 INDUSTRY SITE NO.2 RT1 40.7525 -112.2424 4500257.1420 379704.0476 RESE ARCH TOWER NORTHWEST OF BIRD-HAT ISL. SITE LATITUDE	BRBS	41.2333	-112.3366	4565305.0780	387982.8102	S OF OPENING IN SPRR EAST OF PROM. POINT
FB2 41.1350 -112.4800 4554558.5830 377457.5210 LINE BETWEEN FREMONT AND BIRD ISLANDS FB3 41.1033 -112.5200 4551125.6690 372359.9696 LINE BETWEEN FREMONT AND BIRD ISLANDS GSLB 41.2717 -112.3675 4569603.9730 385460.1250 OPENING INSLEM PREMONT AND BIRD ISLANDS INI 41.0716 -112.5610 4547599.0380 360523.5491 INDUSTRY SITE NO.1 IS2 41.0106 -112.4863 4540785.7420 375014.8226 INDUSTRY SITE NO.1 IS2 41.0106 -112.2501 4532772.0000 371618.8000 NL INLET AN ORTH END OF LAKE NLN 41.0525 -112.2441 4511815.7500 394674.8295 RES. TWR 1- 2 M OFF SOUTH SHORE RT2 41.0342 -112.2412 4543083.6380 395663.2712 WEST OF BIRD-HAT ISLAND RT4 41.0366 -112.4421 455037.1420 37970.4476 RES TWR 1- 2 M OFF SOUTH SHORE RT2 41.0342 -112.2412 4543083.6380 395683.2016 RES TWR 1- 2 M OFF SOUTH SHORE RT4 41.0264 <	BREACH	41.2216	-112.8475	4564790.5770	345136.2109	
FB3 41.1033 -112.5200 4551125.5690 372359.9596 LINE BETWEEN FREMONT AND BIRD ISLANDS FB4 41.0716 -112.5816 4547698.4500 367123.1414 LINE BETWEEN FREMONT AND BIRD ISLANDS FB4 41.0716 -112.5801 4507663.5000 385968.7200 HARDY SALT INLET ON SOUTH END OF LAKE HI 41.7120 -112.6601 4547599.0380 360523.5491 INDUSTRY SITE NO. 1 IS2 41.0016 -112.4603 4547696.420 375014.5225 MORTON INLET AT SOUTH END OF LAKE NLI 40.9380 -112.5601 4530772.0000 376768.8230 MORTON INLET AT SOUTH END OF LAKE NLI 40.9380 -112.5601 453277.0000 376148.8205 NES.TWR 2 - NEAR COUNTY(S) INTERSECTION RT1 40.7525 -112.2441 4510815.7500 396583.2616 RES TWR 2 - NEAR COUNTY(S) INTERSECTION RT4 41.0966 -112.4324 4550257.1420 379704.0476 RES5 TWR 2 - NEAR COUNTY(S) INTERSECTION SITE LATTUDE LONGITUDE UTM-NORTH UTM EAST SUTH END OF GSL NEAR BOAT HARBOR	FB1	41.1675	-112.3950	4558077.1380	382971.1477	LINE BETWEEN FREMONT AND BIRD ISLANDS
FB4 41.0716 -112.5816 4547698.4550 367123.1414 LINE BETWEEN FREMONT AND BIRD ISLANDS GSLB 41.2717 -112.3675 4569603.9730 385460.1260 OPENING IN GSLM BRIDGE OVER BEAR RIVER HI 41.7120 -112.3601 4547599.0380 360523.5491 INDUSTRY SITE NO. 1 IS2 41.01696 -112.4608 4516904.3730 376760.8220 MORTON INLET AN SOUTH END OF LAKE NLI 40.9380 -112.5250 4532772.0000 371618.8800 NLINET AT NORTH END STANSBURY ISLAND NLN 41.0366 -112.5272 4547056.2580 395683.2016 RES TWR 1-2 MI OFF SOUTH SHORE RT2 41.0342 -112.2414 45180527.1420 395683.5633 NUNERST OF BIRD-HAT ISLAND RT4 41.0966 -112.4324 4510257.1420 37970.4076 RES TWR 1-2 MI OFF SOUTH SHORE RT4 41.0966 -112.4324 4510257.1420 37920.1500 MORTON INLET SOUTH END OF STANSBURY ISL. S1 40.8000 -112.4324 451742.000 37920.1500 MORTON INLET SOUTH END OF STANSBURY ISL. S4	FB2	41.1350	-112.4600	4554558.5830	377457.5210	LINE BETWEEN FREMONT AND BIRD ISLANDS
GSLB 41.2717 -112.3675 4569603.9730 385460.1250 OPENING IN GSLM BRIDGE OVER BEAR RIVER HI 41.17120 -112.3500 4507663.5000 385968.7200 HARDY SALT INLET ON SOUTH END OF LAKE IS1 41.0566 -112.4603 4540785.7450 375014.5826 INDUSTRY SITE NO. 1 IS2 41.0106 -112.4603 4540785.7450 376760.8230 MORTON INLET AT SOUTH END OF LAKE NLI 40.3956 -112.5250 4532772.0000 371618.8000 NLI INLET AT NORTH END STANSBURY ISLAND NLN 41.0556 -112.2412 4547056.2580 365800.2712 WEST OF BIRD-HAT ISLAND RT1 40.7525 -112.2412 4543083.6380 395663.2016 RES TWR 2 - NEAR COUNTY(S) INTERSECTION SI 40.8000 -112.4324 450257.1420 379201.5000 MORTON INLET SOUTH END OF STANSBURY ISL SI 40.8000 -112.4324 450257.1420 379201.5000 MORTON INLET AT NORTH WEST OF BIRD-HAT ISL SS 40.4758 -112.200 4481072.3540 396283.503 SOUTH END OF GSL NEAR BOAT HARBOR <	FB3	41.1033	-112.5200	4551125.5690	372359.9596	LINE BETWEEN FREMONT AND BIRD ISLANDS
HI 41.7120 -112.3500 4507663.5000 385968.7200 HARDY SALT INLET ON SOUTH END OF LAKE IS1 41.0696 -112.6501 4547590.0300 360523.5491 INDUSTRY SITE NO. 1 IS2 41.0106 -112.4603 450765.7450 375014.5226 INDUSTRY SITE NO. 2 MI 40.7558 -112.6501 4532772.0000 371618.800 NLINET AT NORTH END OF LAKE NLI 40.9360 -112.572 4547056.2580 36590.2712 WEST OF BIRD-HAT ISLAND RT1 40.7525 -112.2411 4514083.6380 395663.2016 RES TWR 2 - NEAR COUNTY(S) INTERSECTION RT4 41.0696 -112.4320 4517542.0000 379201.5000 MORTON INLET AS OUTH END OF STANSBURY ISL. SI 40.8000 -112.4320 4517542.0000 379201.5000 MORTON INLET SOUTH END OF STANSBURY ISL. SITE LATITUDE LONGITUDE UTM-NORTH UTM EAST SUTE-LOCATION DESCRIPTION 1A 41.2270 -112.8705 4565431.3230 343221.0837 OUT AND WESWARD FROM BREACH OPENING 3A 41.2267	FB4	41.0716	-112.5816	4547698.4550	367123.1414	LINE BETWEEN FREMONT AND BIRD ISLANDS
IS1 41.0696 -112.6601 4547599.0380 360523.5491 INDUSTRY SITE NO. 1 IS2 41.0106 -112.4863 4540785.7450 375014.5826 INDUSTRY SITE NO. 2 MI 40.7958 -112.4863 4540785.7450 376760.8226 INDUSTRY SITE NO. 2 NLI 40.9360 -112.5250 4532772.0000 371618.8800 NILINET AT NORTH END STANSBURY ISLAND NLN 41.0556 -112.2414 4511815.7500 394974.825 RES. TWR 1- 2 MI OFF SOUTH SHORE RT2 41.0342 -112.4324 4550357.1420 379704.0476 RESEARCH TOWER NORTHWEST OF BIRD-HAT ISL. SS 40.4758 -112.200 4481072.3540 396583.5633 SOUTH END OF SCRIPTION 1A 41.2257 -112.8705 4656341.320 343221.0837 OUT AND WESWARD FROM BREACH OPENING 2A 41.2257 -112.9004 4656336.1960 340274.1224 SOUTH END FROM BREACH OPENING 3N 41.2257 -112.8373 456523.1393 34020.1224 SOUTH AND WESWARD FROM BREACH OPENING 2A 41.2257 -112.837	GSLB	41.2717	-112.3675	4569603.9730	385460.1250	OPENING IN GSLM BRIDGE OVER BEAR RIVER
IS2 41.0106 -112.4863 4540785.7450 375014.5826 INDUSTRY SITE NO. 2 MI 40.7958 -112.4608 4516904.3730 376760.8230 MORTON INLET AT SOUTH END OF LAKE NLI 40.9360 -112.5250 4532772.000 371618.800 NL INLET AT NORTH END OF LAKE NLN 41.0656 -112.5272 4547056.2580 365800.2712 WEST OF BIRD-HAT ISLAND RT1 40.7525 -112.2412 454308.6380 396583.2016 RES TWR 1- 2 MI OFF SOUTH SHORE RT2 41.0342 -112.4212 454308.6380 396583.2016 RES TWR 1- 2 MI OFF SOUTH SHORE SI 40.8000 -112.4324 4550257.1420 379704.0476 RESEARCH TOWER NORTHWEST OF BIRD-HAT ISL. SS 40.4758 -112.200 4481072.3540 396583.201 SOUTH END OF SSL NEAR BOAT HARBOR NORTH ARM SAMPLING SITES STEE_LOCATION DESCRIPTION OUT AND WESWARD FROM BREACH OPENING OUT AND WESWARD FROM BREACH OPENING 3A 41.2277 -112.8705 4565431.3230 343221.0837 OUT AND WESWARD FROM BREACH OPENING 3A 41.2267	н	41.7120	-112.3500	4507663.5000	385968.7200	HARDY SALT INLET ON SOUTH END OF LAKE
MI 40.7958 -112.4608 4516904.3730 376760.8230 MORTON INLET AT SOUTH END OF LAKE NLI 40.9360 -112.5250 4532772.0000 371618.800 MORTON INLET AT SOUTH END OF LAKE NLN 41.0566 -112.5250 4532772.0000 371618.800 NL INLET AT NORTH END STANSBURY ISLAND RT1 40.7525 -112.2412 4543083.6380 395663.2016 RES. TWR 1-2 MI OFF SOUTH SHORE RT2 41.0342 -112.4324 4550257.1420 373704.0476 RESETWR 2 - NEAR COUNTY(S) INTERSECTION SI 40.8000 -112.4320 4517542.0000 379201.5000 MORTON INLET SOUTH END OF SANSBURY ISL. SS 40.4758 -112.2000 4481072.3540 396583.51633 SOUTH END OF GSL NEAR BOAT HARBOR NORTH ARM SAMPLING SITES SITE LATITUDE LONGITUDE UTM-NORTH UT AD WESWARD FROM BREACH OPENING 3A 41.2276 -112.9000 4565336.1960 340745.1224 OUT AND WESWARD FROM BREACH OPENING 3A 41.2267 -112.8413 45665231.920 338179.6714 OUT AND WESWARD FROM BREACH OPENI	IS1	41.0696	-112.6601	4547599.0380	360523.5491	INDUSTRY SITE NO. 1
NLI 40.9360 -112.5250 4532772.0000 371618.8800 NL INLET AT NORTH END STANSBURY ISLAND NLN 41.0556 -112.5972 4547055.2580 366800.2712 WEST OF BIRD-HAT ISLAND RT1 40.7525 -112.2411 4543083.6380 395663.2016 RES. TWR 1- 2 MI OFF SOUTH SHORE RT2 41.0342 -112.4324 4550257.1420 379704.0476 RESS TWR 2 - NEAR COUNTY(S) INTERSECTION RT4 41.0966 -112.4320 4517542.000 379201.0476 RES TWR 2 - NEAR COUNTY(S) INTERSECTION SS 40.4758 -112.200 4481072.3540 396583.5633 SOUTH END OF STANSBURY ISL. STFE LATITUDE LONGITUDE UTM-NORTH UTM EAST SITE-LOCATION DESCRIPTION 1A 41.2270 -112.8705 4565431.3230 343221.0837 OUT AND WESWARD FROM BREACH OPENING 3A 41.2232 4571779.6020 338179.6140 OUT AND WESWARD FROM BREACH OPENING 1N 41.2277 -112.8373 4566305.5870 345765.221 SOUTHEAST FROM BREACH OPENING 2N 41.2287 -11	IS2	41.0106	-112.4863	4540785.7450	375014.5826	INDUSTRY SITE NO. 2
NLN 41.0656 -112.5972 4547056.2580 365800.2712 WEST OF BIRD-HAT ISLAND RT1 40.7525 -112.2441 4511815.7500 394974.295 RES. TWR 2 - NEAR COUNTY(S) INTERSECTION RT4 41.0966 -112.4324 454308.3630 395683.2016 RES. TWR 2 - NEAR COUNTY(S) INTERSECTION RT4 41.0966 -112.4324 4550257.1420 379704.0476 RESEARCH TOWER NORTHWEST OF BIRD-HAT ISL. SI 40.8000 -112.4320 4517542.0000 379201.5000 MORTON INLET SOUTH END OF STANSBURY ISL. SS 40.4758 -112.200 4481072.3540 396583.5633 SOUTH END OF GSL NEAR BOAT HARBOR NORTH ARM SAMPLING SITES SITE LATITUDE LONGITUDE UTM-NORTH UTM EAST A 41.2257 -112.80705 4565431.3200 343221.0837 OUT AND WESWARD FROM BREACH OPENING 3A 41.2257 -112.9000 4565336.1960 340745 1224 OUT AND WESWARD FROM BREACH OPENING 3N 41.2237 -112.8076 4565473.3207 345766.5221 SOUTHEAST FROM BREACH OPENING 3N 41.2267	MI	40.7958	-112.4608	4516904.3730	376760.8230	MORTON INLET AT SOUTH END OF LAKE
RT1 40.7525 -112.2441 4511815.7500 394974.8295 RES. TWR 1- 2 MI OFF SOUTH SHORE RT2 41.0342 -112.2412 4543083.6380 395683.2016 RES TWR 2 - NEAR COUNTY(S) INTERSECTION RT4 41.0966 -112.4324 4550257.1420 379704.0476 RES TWR 2 - NEAR COUNTY(S) INTERSECTION SI 40.8000 -112.4320 4517542.0000 379201.500 MORTON INLET SOUTH END OF STANSBURY ISL. SS 40.4758 -112.200 4481072.3540 396583.5633 SOUTH END OF GSL NEAR BOAT HARBOR NORTH ARM SAMPLING SITES SITE LATITUDE LONGITUE UTM-NORTH UTM EAST SITE-LOCATION DESCRIPTION 1A 41.2270 -112.8705 4565431.3230 343221.0837 OUT AND WESWARD FROM BREACH OPENING 2A 41.2257 -112.800 4561705.020 34179.6714 OUT AND WESWARD FROM BREACH OPENING 3N 41.2257 -112.8373 456523.1900 345786.521 SOUTHEAST FROM BREACH OPENING 2N 41.2266 -112.8378 456523.1930 346706.7775 SOUTHEAST FROM BREACH OPENING 3N	NLI	40.9360	-112.5250	4532772.0000	371618.8800	NL INLET AT NORTH END STANSBURY ISLAND
RT2 41.0342 -112.2412 4543083.6380 395663.2016 RES TWR 2 - NEAR COUNTY(S) INTERSECTION RT4 41.0966 -112.4324 4550257.1420 379704.076 RESEARCH TOWER NORTHWEST OF BIRD-HAT ISL. SI 40.8000 -112.4320 4517542.0000 379201.5000 MORTON INLET SOUTH END OF STANSBURY ISL. SS 40.4758 -112.200 4517542.0000 395653.5633 SOUTH END OF GSL NEAR BOAT HARBOR NORTH ARM SAMPLING SITES SITE LATITUDE LONGITUDE UTM-NORTH UTM EAST SITE-LOCATION DESCRIPTION 1A 41.2270 -112.8705 4565431.3230 343221.0837 OUT AND WESWARD FROM BREACH OPENING 2A 41.2257 -112.8000 456538.1960 340745.124 OUT AND WESWARD FROM BREACH OPENING 3N 41.2237 -112.8338 4564786.2100 345665.0812 SOUTHEAST FROM BREACH OPENING 2N 41.2237 -112.8398 456500.5870 345786.5221 SOUTHEAST FROM BREACH OPENING 3N 41.2257 -112.8378 4565223.1930 346182.7149 SOUTHEAST FROM BREACH OPENING <t< td=""><td>NLN</td><td>41.0656</td><td>-112.5972</td><td>4547056.2580</td><td>365800.2712</td><td>WEST OF BIRD-HAT ISLAND</td></t<>	NLN	41.0656	-112.5972	4547056.2580	365800.2712	WEST OF BIRD-HAT ISLAND
RT4 41.0966 -112.4324 4550257.1420 379704.0476 RESEARCH TOWER NORTHWEST OF BIRD-HAT ISL. SI 40.8000 -112.4320 4517542.0000 379201.5000 MORTON INLET SOUTH END OF STANSBURY ISL. SS 40.4758 -112.200 4481072.3540 396583.5633 SOUTH END OF GSL NEAR BOAT HARBOR NORTH ARM SAMPLING SITES SITE LATIITUDE LONGITUDE UTM-NORTH UTM EAST SITE-LOCATION DESCRIPTION 1A 41.2257 -112.8005 4565431.3230 343221.0837 OUT AND WESWARD FROM BREACH OPENING 3A 41.2257 -112.8002 360745.124 OUT AND WESWARD FROM BREACH OPENING 1N 41.2217 -112.8398 4565005.5870 345786.5221 SOUTHEAST FROM BREACH OPENING 2N 41.2257 -112.8398 45650324.8950 346128.7149 SOUTHEAST FROM BREACH OPENING 3N 41.2256 -112.8358 4565324.8950 346128.7149 SOUTHEAST FROM BREACH OPENING 4N 41.2266 -112.8358 4565324.8950 346128.7149 SOUTHEAST FROM BREACH OPENING </td <td></td> <td>40.7525</td> <td>-112.2441</td> <td>4511815.7500</td> <td>394974.8295</td> <td>RES. TWR 1-2 MI OFF SOUTH SHORE</td>		40.7525	-112.2441	4511815.7500	394974.8295	RES. TWR 1-2 MI OFF SOUTH SHORE
SI 40.8000 -112.4320 4517542.0000 379201.5000 MORTON INLET SOUTH END OF STANSBURY ISL. SS 40.4758 -112.2200 4481072.3540 396583.5633 SOUTH END OF GSL NEAR BOAT HARBOR NORTH ARM SAMPLING SITES SITE LATITUDE LONGITUDE UTM-NORTH UTM EAST SITE-LOCATION DESCRIPTION 1A 41.2270 -112.8705 4565431.3230 343221.0837 OUT AND WESWARD FROM BREACH OPENING 3A 41.2832 -112.9303 4571779.6020 338179.671 OUT AND WESWARD FROM BREACH OPENING 3N 41.2237 -112.8413 4564786.2100 346565.0812 SOUTHEAST FROM BREACH OPENING 3N 41.2237 -112.8373 4565223.1930 346000.7775 SOUTHEAST FROM BREACH OPENING 4N 41.2266 -112.8558 4565324.8950 346128.7149 SOUTHEAST FROM BREACH OPENING 4N 41.2266 -112.8513 4565324.8950 346128.7149 SOUTHEAST FROM BREACH OPENING 4N 41.2266 -112.8516 4567272.8500 373418.1200 GSLM INLET SOUTH END PROMONTORY POINT <				4543083.6380	395663.2016	RES TWR 2 - NEAR COUNTY(S) INTERSECTION
SS 40.4758 -112.200 4481072.3540 396583.5633 SOUTH END OF GSL NEAR BOAT HARBOR NORTH ARM SAMPLING SITES SITE LATITUDE LONGITUDE UTM-NORTH UTM EAST SITE-LOCATION DESCRIPTION 1A 41.2270 -112.8705 4565431.3230 343221.0837 OUT AND WESWARD FROM BREACH OPENING 2A 41.2257 -112.9000 4565336.1960 340745.1224 OUT AND WESWARD FROM BREACH OPENING 3A 41.2832 -112.8323 4571775.6020 338179.6714 OUT AND WESWARD FROM BREACH OPENING 1N 41.2237 -112.8333 4565005.5870 345786.5221 SOUTHEAST FROM BREACH OPENING 2N 41.2257 -112.8358 4565005.5870 346100.7775 SOUTHEAST FROM BREACH OPENING 3N 41.2256 -112.8358 4565324.9950 346128.7149 SOUTHEAST FROM BREACH OPENING 4N 41.2266 -112.510 4563723.5000 373418.1200 GSLM INLET SOUTH END PROMONTORY POINT LVG1 41.2160 -112.5116 4572572.8500 373438.3679 LINE FROM LVH TO GUNNISON ISL.						RESEARCH TOWER NORTHWEST OF BIRD-HAT ISL.
NORTH ARM SAMPLING SITES UTM-NORTH UTM EAST SITE-LOCATION DESCRIPTION 1A 41.2270 -112.8705 4565431.3230 343221.0837 OUT AND WESWARD FROM BREACH OPENING 2A 41.2257 -112.9302 4571779.6020 338179.6714 OUT AND WESWARD FROM BREACH OPENING 3A 41.2257 -112.8398 456605.5870 345656.0812 SOUTHEAST FROM BREACH OPENING 1N 41.2257 -112.8398 4566005.5870 345766.5221 SOUTHEAST FROM BREACH OPENING 2N 41.2257 -112.8398 45650324.8950 346786.5221 SOUTHEAST FROM BREACH OPENING 3N 41.2256 -112.8558 4565324.8950 345786.8221 SOUTHEAST FROM BREACH OPENING ECN 41.2198 -112.5552 4564126.1930 366796.8237 N OF EAST CULVERY IN SPRR CAUSEWAY LCI 41.2150 -112.5116 4572572.8500 373418.1200 GSLM INLET SOUTH END PROMONTORY POINT LVG3 41.3146 -112.6766 4574824.9470 3566762.1862 LINE FROM LVH TO GUNNISON ISL. LVG4 41.3241 -112.6766						MORTON INLET SOUTH END OF STANSBURY ISL.
SITE LATITUDE LONGITUDE UTM-NORTH UTM EAST SITE-LOCATION DESCRIPTION 1A 41.2270 -112.8705 4565431.3230 343221.0837 OUT AND WESWARD FROM BREACH OPENING 2A 41.2257 -112.9000 4565336.1960 340745.1224 OUT AND WESWARD FROM BREACH OPENING 3A 41.2832 -112.9323 4571779.6020 338179.6714 OUT AND WESWARD FROM BREACH OPENING 1N 41.2237 -112.8398 4565005.5870 345786.5221 SOUTHEAST FROM BREACH OPENING 3N 41.2257 -112.8373 4565223.1930 346000.7775 SOUTHEAST FROM BREACH OPENING 4N 41.2266 -112.8358 4565324.8950 346128.7149 SOUTHEAST FROM BREACH OPENING CI 41.2198 -112.5052 4564126.1930 368796.8237 N OF EAST CULVERY IN SPRC AUSEWAY LVG1 41.2966 -112.5116 457272.8500 373438.3679 LINE FROM LVH TO GUNNISON ISL. LVG2 41.3075 -112.5916 4578902.7030 366762.1862 LINE FROM LVH TO GUNNISON ISL. LVG3 41.3146 <td>SS</td> <td>40.4758</td> <td>-112.2200</td> <td>4481072.3540</td> <td>396583.5633</td> <td>SOUTH END OF GSL NEAR BOAT HARBOR</td>	SS	40.4758	-112.2200	4481072.3540	396583.5633	SOUTH END OF GSL NEAR BOAT HARBOR
1A 41.2270 -112.8705 4565431.3230 343221.0837 OUT AND WESWARD FROM BREACH OPENING 2A 41.2257 -112.9000 4565336.1960 340745.1224 OUT AND WESWARD FROM BREACH OPENING 3A 41.2832 -112.9323 4571779.6020 338179.6714 OUT AND WESWARD FROM BREACH OPENING 1N 41.2237 -112.8413 4564786.2100 345656.0812 SOUTHEAST FROM BREACH OPENING 2N 41.2237 -112.8398 4565005.5870 345786.5221 SOUTHEAST FROM BREACH OPENING 3N 41.2257 -112.8358 4565023.1930 346000.7775 SOUTHEAST FROM BREACH OPENING 4N 41.2266 -112.8358 4565324.8950 346128.7149 SOUTHEAST FROM BREACH OPENING ECN 41.2198 -112.5652 4564126.1930 368796.8237 N OF EAST CULVERY IN SPRR CAUSEWAY LCI 41.2150 -112.5100 4563723.5000 373438.3679 LINE FROM LVH TO GUNNISON ISL. LVG2 41.3075 -112.5916 4573902.7030 366762.1862 LINE FROM LVH TO GUNNISON ISL. LVG3 41	NORTH	ARM SAMPL	ING SITES			
1A 41.2270 -112.8705 4565431.3230 343221.0837 OUT AND WESWARD FROM BREACH OPENING 2A 41.2257 -112.9000 4565336.1960 340745.1224 OUT AND WESWARD FROM BREACH OPENING 3A 41.2832 -112.9323 4571779.6020 338179.6714 OUT AND WESWARD FROM BREACH OPENING 1N 41.2237 -112.8413 4566786.2100 3345656.0812 SOUTHEAST FROM BREACH OPENING 2N 41.2237 -112.8373 456505.5870 345786.5221 SOUTHEAST FROM BREACH OPENING 3N 41.2257 -112.8373 4565024.8950 346128.7149 SOUTHEAST FROM BREACH OPENING 4N 41.2266 -112.8358 4565324.8950 346128.7149 SOUTHEAST FROM BREACH OPENING ECN 41.2198 -112.5652 4564126.1930 368796.8237 N OF EAST CULVERY IN SPRR CAUSEWAY LVG1 41.2150 -112.5100 4563723.5000 373438.3679 LINE FROM LVH TO GUNNISON ISL. LVG2 41.3075 -112.5116 4572572.8500 373438.3679 LINE FROM LVH TO GUNNISON ISL. LVG3 4	SITE	LATITUDE	LONGITUDE	UTM-NORTH	UTM EAST	SITE-LOCATION DESCRIPTION
3A 41.2832 -112.9323 4571779.6020 338179.6714 OUT AND WESWARD FROM BREACH OPENING 1N 41.2217 -112.8413 4564786.2100 345656.0812 SOUTHEAST FROM BREACH OPENING 2N 41.2237 -112.8398 4565005.5870 345786.5221 SOUTHEAST FROM BREACH OPENING 3N 41.2257 -112.8373 4565223.1930 346000.7775 SOUTHEAST FROM BREACH OPENING 4N 41.2266 -112.8358 4565324.8950 346128.7149 SOUTHEAST FROM BREACH OPENING ECN 41.2198 -112.5052 4564126.1930 368796.8237 N OF EAST CULVERY IN SPRR CAUSEWAY LCI 41.2196 -112.5116 4572572.8500 373438.3679 LINE FROM LVH TO GUNNISON ISL. LVG2 41.3075 -112.5116 4573902.7030 366762.1862 LINE FROM LVH TO GUNNISON ISL. LVG3 41.3241 -112.6766 4574824.9470 359661.5432 LINE FROM LVH TO GUNNISON ISL. LVG4 41.3241 -112.6766 4577156.6840 345474.7064 LINE FROM LVH TO GUNNISON ISL. LVG5 41.3330<	1A	41.2270	-112.8705	4565431.3230	343221.0837	OUT AND WESWARD FROM BREACH OPENING
1N 41.2217 -112.8413 4564786.2100 345656.0812 SOUTHEAST FROM BREACH OPENING 2N 41.2237 -112.8398 4565005.5870 345786.5221 SOUTHEAST FROM BREACH OPENING 3N 41.2257 -112.8373 4565223.1930 346000.7775 SOUTHEAST FROM BREACH OPENING 4N 41.2266 -112.8358 4565324.8950 346128.7149 SOUTHEAST FROM BREACH OPENING ECN 41.2198 -112.5652 4564126.1930 368796.8237 N OF EAST CULVERY IN SPRE CAUSEWAY LCI 41.2196 -112.5100 4563723.5000 373418.1200 GSLM INLET SOUTH END PROMONTORY POINT LVG1 41.2966 -112.5116 4572572.8500 373438.3679 LINE FROM LVH TO GUNNISON ISL. LVG2 41.3075 -112.6916 457392.7030 366762.1862 LINE FROM LVH TO GUNNISON ISL. LVG3 41.3146 -112.6766 4574824.9470 359661.5432 LINE FROM LVH TO GUNNISON ISL. LVG4 41.3241 -112.7608 4576019.2670 352634.7752 LINE FROM LVH TO GUNNISON ISL. LVG5 41.33	2A	41.2257	-112.9000	4565336.1960	340745.1224	OUT AND WESWARD FROM BREACH OPENING
2N 41.2237 -112.8398 4565005.5870 345786.5221 SOUTHEAST FROM BREACH OPENING 3N 41.2257 -112.8373 4565223.1930 346000.7775 SOUTHEAST FROM BREACH OPENING 4N 41.2266 -112.8358 4565324.8950 346128.7149 SOUTHEAST FROM BREACH OPENING ECN 41.2198 -112.5652 4564126.1930 368796.8237 N OF EAST CULVERY IN SPRR CAUSEWAY LCI 41.2150 -112.5100 4563723.5000 373418.1200 GSLM INLET SOUTH END PROMONTORY POINT LVG1 41.2966 -112.5116 4572572.8500 373438.3679 LINE FROM LVH TO GUNNISON ISL. LVG2 41.3075 -112.5916 4573902.7030 366762.1862 LINE FROM LVH TO GUNNISON ISL. LVG3 41.3146 -112.6766 4574824.9470 359661.5432 LINE FROM LVH TO GUNNISON ISL. LVG3 41.3330 -112.8166 4577156.6840 345474.7064 LINE FROM LVH TO GUNNISON ISL. LVG5 41.3330 -112.8466 4577156.6840 345474.7064 LINE FROM LVH TO GUNNISON ISL. LVH 41	ЗA	41.2832	-112.9323	4571779.6020	338179.6714	OUT AND WESWARD FROM BREACH OPENING
3N 41.2257 -112.8373 4565223.1930 346000.7775 SOUTHEAST FROM BREACH OPENING 4N 41.2266 -112.8358 4565324.8950 346128.7149 SOUTHEAST FROM BREACH OPENING ECN 41.2198 -112.5652 4564126.1930 368796.8237 N OF EAST CULVERY IN SPRR CAUSEWAY LCI 41.2150 -112.5100 4563723.5000 373418.1200 GSLM INLET SOUTH END PROMONTORY POINT LVG1 41.2966 -112.5116 4572572.8500 373438.3679 LINE FROM LVH TO GUNNISON ISL. LVG2 41.3075 -112.6766 4574824.9470 359661.5432 LINE FROM LVH TO GUNNISON ISL. LVG3 41.3146 -112.6766 4574824.9470 359661.5432 LINE FROM LVH TO GUNNISON ISL. LVG4 41.3241 -112.6766 4574824.9470 359661.5432 LINE FROM LVH TO GUNNISON ISL. LVG4 41.3241 -112.6766 4574824.9470 359661.5432 LINE FROM LVH TO GUNNISON ISL. LVG4 41.3241 -112.6766 4574824.9470 352634.7752 LINE FROM LVH TO GUNNISON ISL. LVG5 <t< td=""><td>1N</td><td>41.2217</td><td>-112.8413</td><td>4564786.2100</td><td>345656.0812</td><td>SOUTHEAST FROM BREACH OPENING</td></t<>	1N	41.2217	-112.8413	4564786.2100	345656.0812	SOUTHEAST FROM BREACH OPENING
4N 41.2266 -112.8358 4565324.8950 346128.7149 SOUTHEAST FROM BREACH OPENING ECN 41.2198 -112.5652 4564126.1930 368796.8237 N OF EAST CULVERY IN SPRR CAUSEWAY LCI 41.2150 -112.5100 4563723.5000 373418.1200 GSLM INLET SOUTH END PROMONTORY POINT LVG1 41.2966 -112.5116 4572572.8500 373418.1200 GSLM INLET SOUTH END PROMONTORY POINT LVG2 41.3075 -112.5916 4573902.7030 366762.1862 LINE FROM LVH TO GUNNISON ISL. LVG3 41.3146 -112.6766 4574824.9470 359661.5432 LINE FROM LVH TO GUNNISON ISL. LVG4 41.3241 -112.7608 4576019.2670 352634.7752 LINE FROM LVH TO GUNNISON ISL. LVG5 41.3300 -112.8466 4577156.6840 345474.7064 LINE FROM LVH TO GUNNISON ISL. LVH 41.2475 -112.5140 4567338.0000 373145.8000 ENTRANCE TO LITTLE VALLEY HARBOR NML 41.5510 -112.8865 4601431.7700 342663.3141 FAR NORTH END OF LAKE RD1 41.4366 -112.6675 4588354.8410 360683.9118 LINE FROM	2N	41.2237	-112.8398	4565005.5870	345786.5221	SOUTHEAST FROM BREACH OPENING
ECN 41.2198 -112.5652 4564126.1930 368796.8237 N OF EAST CULVERY IN SPRR CAUSEWAY LCI 41.2150 -112.5100 4563723.5000 373418.1200 GSLM INLET SOUTH END PROMONTORY POINT LVG1 41.2966 -112.5116 4572572.8500 373438.3679 LINE FROM LVH TO GUNNISON ISL. LVG2 41.3075 -112.5916 4573902.7030 366762.1862 LINE FROM LVH TO GUNNISON ISL. LVG3 41.3146 -112.6766 4574824.9470 359661.5432 LINE FROM LVH TO GUNNISON ISL. LVG4 41.3241 -112.7608 4576019.2670 352634.7752 LINE FROM LVH TO GUNNISON ISL. LVG5 41.3330 -112.8466 4577156.6840 345474.7064 LINE FROM LVH TO GUNNISON ISL. LVH 41.2475 -112.5140 4567338.0000 373145.8000 ENTRANCE TO LITTLE VALLEY HARBOR NML 41.5510 -112.8865 4601431.7700 342663.3141 FAR NORTH END OF LAKE RD1 41.4366 -112.6675 4588354.8410 360683.9118 LINE FROM ROZEL POINT TO DOLPHIN ISLAND RD2	3N	41.2257	-112.8373	4565223.1930	346000.7775	SOUTHEAST FROM BREACH OPENING
LCI 41.2150 -112.5100 4563723.5000 373418.1200 GSLM INLET SOUTH END PROMONTORY POINT LVG1 41.2966 -112.5116 4572572.8500 373438.3679 LINE FROM LVH TO GUNNISON ISL. LVG2 41.3075 -112.5916 4573902.7030 366762.1862 LINE FROM LVH TO GUNNISON ISL. LVG3 41.3146 -112.6766 4574824.9470 359661.5432 LINE FROM LVH TO GUNNISON ISL. LVG4 41.3241 -112.7608 4576019.2670 352634.7752 LINE FROM LVH TO GUNNISON ISL. LVG5 41.3330 -112.8466 4577156.6840 345474.7064 LINE FROM LVH TO GUNNISON ISL. LVH 41.2475 -112.5140 4567338.0000 373145.8000 ENTRANCE TO LITTLE VALLEY HARBOR NML 41.5510 -112.8865 4601431.7700 342663.3141 FAR NORTH END OF LAKE RD1 41.4366 -112.6775 4588354.8410 360683.9118 LINE FROM ROZEL POINT TO DOLPHIN ISLAND RD2 41.4416 -112.7475 4589041.8210 354011.0351 LINE FROM ROZEL POINT TO DOLPHIN ISLAND RD3	4N	41.2266	-112.8358	4565324.8950	346128.7149	SOUTHEAST FROM BREACH OPENING
LVG1 41.2966 -112.5116 4572572.8500 373438.3679 LINE FROM LVH TO GUNNISON ISL. LVG2 41.3075 -112.5916 4573902.7030 366762.1862 LINE FROM LVH TO GUNNISON ISL. LVG3 41.3146 -112.6766 4574824.9470 359661.5432 LINE FROM LVH TO GUNNISON ISL. LVG4 41.3241 -112.7608 4576019.2670 352634.7752 LINE FROM LVH TO GUNNISON ISL. LVG5 41.3330 -112.8466 4577156.6840 345474.7064 LINE FROM LVH TO GUNNISON ISL. LVH 41.2475 -112.5140 4567338.0000 373145.8000 ENTRANCE TO LITTLE VALLEY HARBOR NML 41.5510 -112.8865 4601431.7700 342663.3141 FAR NORTH END OF LAKE RD1 41.4366 -112.6675 4588354.8410 360683.9118 LINE FROM ROZEL POINT TO DOLPHIN ISLAND RD2 41.4416 -112.7475 4589041.8210 354011.0351 LINE FROM ROZEL POINT TO DOLPHIN ISLAND RD3 41.4483 -112.8250 4589919.3220 347551.9788 LINE FROM ROZEL POINT TO DOLPHIN ISLAND RD4	ECN	41.2198	-112.5652	4564126.1930	368796.8237	N OF EAST CULVERY IN SPRR CAUSEWAY
LVG2 41.3075 -112.5916 4573902.7030 366762.1862 LINE FROM LVH TO GUNNISON ISL. LVG3 41.3146 -112.6766 4574824.9470 359661.5432 LINE FROM LVH TO GUNNISON ISL. LVG4 41.3241 -112.7608 4576019.2670 352634.7752 LINE FROM LVH TO GUNNISON ISL. LVG5 41.3330 -112.8466 4577156.6840 345474.7064 LINE FROM LVH TO GUNNISON ISL. LVH 41.2475 -112.5140 4567338.0000 373145.8000 ENTRANCE TO LITTLE VALLEY HARBOR NML 41.5510 -112.8865 4601431.7700 342663.3141 FAR NORTH END OF LAKE RD1 41.4366 -112.6675 4588354.8410 360683.9118 LINE FROM ROZEL POINT TO DOLPHIN ISLAND RD2 41.4416 -112.7475 4589041.8210 354011.0351 LINE FROM ROZEL POINT TO DOLPHIN ISLAND RD3 41.4483 -112.8250 4589919.3220 347551.9788 LINE FROM ROZEL POINT TO DOLPHIN ISLAND RD4 41.4533 -112.9041 4590616.8340 340956.4235 LINE FROM ROZEL POINT TO DOLPHIN ISLAND	LCI	41.2150	-112.5100	4563723.5000	373418.1200	GSLM INLET SOUTH END PROMONTORY POINT
LVG3 41.3146 -112.6766 4574824.9470 359661.5432 LINE FROM LVH TO GUNNISON ISL. LVG4 41.3241 -112.7608 4576019.2670 352634.7752 LINE FROM LVH TO GUNNISON ISL. LVG5 41.3330 -112.8466 4577156.6840 345474.7064 LINE FROM LVH TO GUNNISON ISL. LVH 41.2475 -112.5140 4567338.0000 373145.8000 ENTRANCE TO LITTLE VALLEY HARBOR NML 41.5510 -112.8865 4601431.7700 342663.3141 FAR NORTH END OF LAKE RD1 41.4366 -112.6675 4588354.8410 360683.9118 LINE FROM ROZEL POINT TO DOLPHIN ISLAND RD2 41.4416 -112.7475 4589041.8210 354011.0351 LINE FROM ROZEL POINT TO DOLPHIN ISLAND RD3 41.4483 -112.8250 4589919.3220 347551.9788 LINE FROM ROZEL POINT TO DOLPHIN ISLAND RD4 41.4533 -112.9041 4590616.8340 340956.4235 LINE FROM ROZEL POINT TO DOLPHIN ISLAND RD5 41.4583 -112.9766 4591307.7820 334913.1111 LINE FROM ROZEL POINT TO DOLPHIN ISLAND	LVG1	41.2966	-112.5116	4572572.8500	373438.3679	LINE FROM LVH TO GUNNISON ISL.
LVG4 41.3241 -112.7608 4576019.2670 352634.7752 LINE FROM LVH TO GUNNISON ISL. LVG5 41.3330 -112.8466 4577156.6840 345474.7064 LINE FROM LVH TO GUNNISON ISL. LVH 41.2475 -112.5140 4567338.0000 373145.8000 ENTRANCE TO LITTLE VALLEY HARBOR NML 41.5510 -112.8865 4601431.7700 342663.3141 FAR NORTH END OF LAKE RD1 41.4366 -112.6675 4588354.8410 360683.9118 LINE FROM ROZEL POINT TO DOLPHIN ISLAND RD2 41.4416 -112.7475 4589041.8210 354011.0351 LINE FROM ROZEL POINT TO DOLPHIN ISLAND RD3 41.4483 -112.8250 4589919.3220 347551.9788 LINE FROM ROZEL POINT TO DOLPHIN ISLAND RD4 41.4533 -112.9041 4590616.8340 340956.4235 LINE FROM ROZEL POINT TO DOLPHIN ISLAND RD5 41.4583 -112.9766 4591307.7820 334913.1111 LINE FROM ROZEL POINT TO DOLPHIN ISLAND	LVG2	41.3075	-112.5916	4573902.7030	366762.1862	LINE FROM LVH TO GUNNISON ISL.
LVG5 41.3330 -112.8466 4577156.6840 345474.7064 LINE FROM LVH TO GUNNISON ISL. LVH 41.2475 -112.5140 4567338.0000 373145.8000 ENTRANCE TO LITTLE VALLEY HARBOR NML 41.5510 -112.8865 4601431.7700 342663.3141 FAR NORTH END OF LAKE RD1 41.4366 -112.6675 4588354.8410 360683.9118 LINE FROM ROZEL POINT TO DOLPHIN ISLAND RD2 41.4416 -112.7475 4589041.8210 354011.0351 LINE FROM ROZEL POINT TO DOLPHIN ISLAND RD3 41.4483 -112.8250 4589919.3220 347551.9788 LINE FROM ROZEL POINT TO DOLPHIN ISLAND RD4 41.4533 -112.9041 4590616.8340 340956.4235 LINE FROM ROZEL POINT TO DOLPHIN ISLAND RD5 41.4583 -112.9766 4591307.7820 334913.1111 LINE FROM ROZEL POINT TO DOLPHIN ISLAND	LVG3	41.3146	-112.6766	4574824.9470	359661.5432	LINE FROM LVH TO GUNNISON ISL.
LVH 41.2475 -112.5140 4567338.0000 373145.8000 ENTRANCE TO LITTLE VALLEY HARBOR NML 41.5510 -112.8865 4601431.7700 342663.3141 FAR NORTH END OF LAKE RD1 41.4366 -112.6675 4588354.8410 360683.9118 LINE FROM ROZEL POINT TO DOLPHIN ISLAND RD2 41.4416 -112.7475 4589041.8210 354011.0351 LINE FROM ROZEL POINT TO DOLPHIN ISLAND RD3 41.4483 -112.9041 4590616.8340 340956.4235 LINE FROM ROZEL POINT TO DOLPHIN ISLAND RD4 41.4533 -112.9766 4591307.7820 334913.1111 LINE FROM ROZEL POINT TO DOLPHIN ISLAND						
NML 41.5510 -112.8865 4601431.7700 342663.3141 FAR NORTH END OF LAKE RD1 41.4366 -112.6675 4588354.8410 360683.9118 LINE FROM ROZEL POINT TO DOLPHIN ISLAND RD2 41.4416 -112.7475 4589041.8210 354011.0351 LINE FROM ROZEL POINT TO DOLPHIN ISLAND RD3 41.4483 -112.8250 4589919.3220 347551.9788 LINE FROM ROZEL POINT TO DOLPHIN ISLAND RD4 41.4533 -112.9041 4590616.8340 340956.4235 LINE FROM ROZEL POINT TO DOLPHIN ISLAND RD5 41.4583 -112.9766 4591307.7820 334913.1111 LINE FROM ROZEL POINT TO DOLPHIN ISLAND						
RD1 41.4366 -112.6675 4588354.8410 360683.9118 LINE FROM ROZEL POINT TO DOLPHIN ISLAND RD2 41.4416 -112.7475 4589041.8210 354011.0351 LINE FROM ROZEL POINT TO DOLPHIN ISLAND RD3 41.4483 -112.8250 4589919.3220 347551.9788 LINE FROM ROZEL POINT TO DOLPHIN ISLAND RD4 41.4533 -112.9041 4590616.8340 340956.4235 LINE FROM ROZEL POINT TO DOLPHIN ISLAND RD5 41.4583 -112.9766 4591307.7820 334913.1111 LINE FROM ROZEL POINT TO DOLPHIN ISLAND						
RD2 41.4416 -112.7475 4589041.8210 354011.0351 LINE FROM ROZEL POINT TO DOLPHIN ISLAND RD3 41.4483 -112.8250 4589919.3220 347551.9788 LINE FROM ROZEL POINT TO DOLPHIN ISLAND RD4 41.4533 -112.9041 4590616.8340 340956.4235 LINE FROM ROZEL POINT TO DOLPHIN ISLAND RD5 41.4583 -112.9766 4591307.7820 334913.1111 LINE FROM ROZEL POINT TO DOLPHIN ISLAND						
RD3 41.4483 -112.8250 4589919.3220 347551.9788 LINE FROM ROZEL POINT TO DOLPHIN ISLAND RD4 41.4533 -112.9041 4590616.8340 340956.4235 LINE FROM ROZEL POINT TO DOLPHIN ISLAND RD5 41.4583 -112.9766 4591307.7820 334913.1111 LINE FROM ROZEL POINT TO DOLPHIN ISLAND						
RD4 41.4533 -112.9041 4590616.8340 340956.4235 LINE FROM ROZEL POINT TO DOLPHIN ISLAND RD5 41.4583 -112.9766 4591307.7820 334913.1111 LINE FROM ROZEL POINT TO DOLPHIN ISLAND						
RD5 41.4583 -112.9766 4591307.7820 334913.1111 LINE FROM ROZEL POINT TO DOLPHIN ISLAND						
RT3 41 2241 112 7609 4576010 2670 252624 7752 RESEARCH TOWER 2 AT LVCA SITE						

Note: Locations of sampling sites are shown on Figure 1.

-112.7608

4576019.2670

352634.7752 RESEARCH TOWER 3 - AT LVG4 SITE

41.3241

APPENDIX D

DETAILS OF GREAT SALT LAKE BRINE DATABASES

The following Excel® files are included in the Utah Geological Survey's Great Salt Lake brine database: AS2 & FB2.xls; LVG4, ECN & RD2.xls; SOUTH OLD.xls; NORTH OLD.xls; BRBS.xls; GSLB.xls; MISC.xls; DEN1-4S.xls; DEN 1-3A.xls; DEN 1-4N.xls; DENRT2.xls; DENRT3.xls; and DENRT4.xls. The following paragraphs give details of the contents of the individual files.

File **AS2 & FB2.xls** contains 1778 south-arm chemical analyses from the AS2 and FB2 sites (see figure 1) for the period 1966 to 2006, and file **LVG4**, **ECN and RD2.xls** contains 1243 north-arm chemical analyses from the LVG4, ECN and RD2 sites (see figure 1) for the period 1966 to 2006. Both of these files contain location (latitude, longitude, UTM-north, and UTM-east); date of sampling; depth of the sample from the surface in feet; laboratory density; concentration values for Na, Mg, K, Ca, Cl, SO4, and TDS all in terms of grams per liter; and Br, Li, and B in terms of parts per million. The above values are followed by WT%-TDS (weight percent of dissolved solids), LK-ELEV (lake elevation), SAMP-ELEV (sample elevation), and DWP_NA (dry-weight percent of the various major ions).

Files **SOUTH OLD.xls** and **NORTH OLD.xls** represent south- and north-arm data, respectively. The **SOUTH OLD.xls** file contains data from the following sampling sites: AC1-4, AS1-AS5, FB1-FB4, IS1, IS2, NLN, RT1 and RT2, and SS, and contains 5478 records. The **NORTH OLD.xls** file contains data from the following sampling sites: ECN, LVG1-LVG5, NML, RD1-RD4, and contains 2419 records. Both files contain location (latitude and longitude); date sampled; depth of sample from the surface; lake elevation and sample depth; F.Den (field density); L.Den (lab density); concentration values for Na, Mg, K, Ca, Cl, SO4, and TDS in terms of grams per liter; and Br, Li, and B in terms of parts per million. The above values are followed by WT%-TDS (weight percent of dissolved solids).

Files **BRBS.xls**, **GSLB.xls**, and **MISC.xls** present chemistry data from the Bear River Bridge (south), Great Salt Lake bridge, and miscellaneous sites (ABN, HI, LCI, LVH, MI, NLI, and SE locations). These files contain location (latitude, longitude, UTM-north, and UTM-east); date of sampling; depth of sample from the surface; field and lab density; brine temperature; the ions Na, K, Mg, Ca, Cl, SO4, and TDS in terms of grams per liter; Li, Br, and B in terms of parts per million; and weight percent total dissolved solids.

Files **DEN 1S-4S.xls**, **DEN 1A-3A.xls**, **DEN 1N-4N.xls**, **DEN RT2.xls**, **DEN RT3.xls** and **DEN RT4.xls** contain the following information: site, location (latitude, longitude, UTM-north, and UTM-east), date of sample, depth from surface, and laboratory density, lake elevation, and sample elevation. These files contain no chemical data.

APPENDIX E

USGS GREAT SALT LAKE DATUM CORRECTION

The following description of the adjustment of the elevation records is taken from the USGS Web site: http://ut.water.usgs.gov/gsl%20corr/gslcorrection.htm, accessed June 1, 2005.

ADJUSTMENTS TO 1966-2001 GREAT SALT LAKE WATER-SURFACE ELEVATION RECORDS AS A RESULT OF CORRECTED BENCHMARK ELEVATIONS

Introduction

Great Salt Lake is divided into a north and a south part by a rock-fill causeway. The U.S. Geological Survey (USGS) operates gages that collect water-surface elevation data on the south part of the lake at the Boat Harbor gage (USGS station 10010000), and on the north of the lake at the Saline gage (10010100). It has been known since the mid-1980s that the difference in water-surface elevation between the two parts of the lake as measured at the Boat Harbor and Saline gages was greater than the difference measured directly at the causeway. Because the lake surface is considered to be relatively flat on calm days and the gages were periodically checked against permanent benchmarks with surveying levels; the difference was assumed to be an error in the given elevations of the benchmarks to which the gages are referenced. During 1969-82 and 1997-99, a gage was operated on the south part of the lake at Promontory Point (USGS station 10010050), referenced to the same line of benchmarks as the Saline gage. The difference in water-surface elevation between the two parts of the lake as measured at the Promontory Point and Saline gages generally agreed with the difference measured directly at the causeway. Until this time (April 2001), there was no economically feasible way to verify the given elevations of the reference benchmarks of the Great Salt Lake elevation gages.

In 1999, a high-resolution Global Positioning System (GPS) survey was conducted by the National Geodetic Survey (NGS) in Utah. The U.S. Geological Survey and Utah Department of Natural Resources, Water Resources Division, participated in this survey to determine the elevation of five benchmarks around Great Salt Lake that are used for the determination of water-surface elevations of the lake. The final calculations from this survey were provided to the USGS by the NGS in March 2001. This survey provided the first direct check and comparison of the elevations of all of these benchmarks. When the Boat Harbor and Saline gages are adjusted to the new benchmark elevations, the difference in water-surface elevation between the two parts of the lake measured at the gages generally agrees with the difference measured directly at the causeway. The records of water-surface elevation will be adjusted at the Boat Harbor, Saline, and Promontory Point gages according to the 1999 NGS GPS benchmark elevations.

Findings

Water-surface elevations reported at the USGS Great Salt Lake gages are considered to be accurate to within +/- 0.10 foot of the datum in use. Of the five benchmarks surveyed by the USGS as part of the larger 1999 NGS GPS survey, only three were considered by the NGS to be accurate to within 0.10 foot (FMK 77 1966, Saltair, and WES DES UMPS). The elevation of the FMK 77 1966 benchmark, located near the Saline gage, was found by the GPS survey to be 4,231.155 feet National Geodetic Vertical Datum of 1929 (NGVD 29). Data from the establishment of the Saline gage in 1966 to the present are currently adjusted to the FMK 77 1966 benchmark with a given elevation of 4,230.888 feet. All Saline gage elevations from 1966 to 2001 need to be increased by 0.267 foot (0.27 foot, rounded) to account for the change in the given elevation of FMK 77 to 231.155 feet. The Promontory Point gage was referenced to the FMK 73 1966 benchmark, which is on the same line as the FMK 77 1966 benchmark. Because the GPS survey adjusted the FMK 77 benchmark 0.27 foot higher, and the datums of FMK 73 and 77 have historically agreed, it is assumed that the given elevation of FMK 73 should also be raised 0.27 foot. This will be verified with surveying levels in the near future. The Boat Harbor gage has been tied to two different permanent benchmarks since the 1960s. The first, BM H-39 1922, was used from sometime before the 1960s until 1985. Sometime between 1985 and 1989 it was destroyed by the construction of Interstate Highway 80. After 1985, the primary reference benchmark for the Boat Harbor gage was C-174 (1970). By using the new GPS survey elevation for the Saltair benchmark (located at the Boat Harbor gage) and the surveyed height differences between Saltair, C-174, and BM H-39 from previous levels, elevations for C-174 and BM H-39 corrected to the GPS survey were computed. From this it was found that the previously given elevation for the BM H-39 was 0.14 foot too high, and for the C-174 benchmark was 0.42 foot too high.

In addition to the changes in given elevations for the Boat Harbor gage reference benchmarks, all three gages used during 1980-2001 settled. Here is a synopsis of the findings on the settling of Boat Harbor gages from 1980 to 2001. During 1981-83, the gage settled 0.25 foot. This problem was discovered and corrected for in 1983. In 1985, the gage became inundated by the rising lake and had to be moved to a temporary location, attached to a large concrete sign nearby. This sign, and therefore the

gage, settled about 0.44 foot during the period it was operated from 1985 to 1989. This problem was not discovered until 2001 because the gage was established with BM H-39 (1922), which had a given elevation 0.14 foot too high, and had its datum checked when it was discontinued against benchmark C-174 (1970), which had a given elevation that was 0.42 foot too high. Although the gage settled about 0.44 foot, it appeared to the surveyors at the time to be off by only about 0.12 foot, and no changes were made. A prorated correction for this settling will need to be applied to the Boat Harbor water-surface elevation data from July 1985 to August 1989. Because the current gage was established off of the settled temporary gage, a constant - 0.44-foot correction will need to be applied to the data from August 1989 to September 1994, when the 0.44-foot error was removed.

The (current) gage installed in August of 1989 also settled during the first 6 or so years it was used. Levels indicate that the gage settled about 0.55 foot from September 1989 to July 1993, and about 0.11 foot from July 1993 to June 1995. The record was adjusted for part of this settling in 1995. In 1995, the 0.25-foot settling correction applied in 1983 was mistakenly applied to the 1984-1995 records. No evidence could be found in 2001 that this 0.25-foot correction was needed during 1984-1995. There is no indication that the gage has moved since 1995.

Changes to the Great Salt Lake Elevation Records on May 1, 2001

Saline Gage:

To adjust for the change in given elevation for benchmark FMK 77 (1966) (described above), 0.25 foot will be added to all Saline gage water-surface elevation data from April 1966 to April 30, 2001. From May 1, 2001, forward, reported water-surface elevation data will reflect the datum correction discovered by the 1999 GPS survey.

Promontory Point Gage:

To adjust for the change in given elevation for benchmark FMK 73 (1966) (described above), 0.25 foot will be added to the Promontory Point gage water-surface elevation data from 1969 to 1999.

Boat Harbor Gage:

It should be noted (as described above) that although GPS levels indicate that the benchmark BM H-39 had a given elevation that was 0.14 foot too high, the record will not be adjusted prior to 1984 for this apparent error at this time. This 0.14-foot error likely entered the record in the 1950s (or earlier), and not enough information is available to justify an adjustment back that far of such a small amount. Below is a tabular summary of the corrections that will be applied to the Boat Harbor gage watersurface elevation data on May 1, 2001. These corrections are actually the sum of a combination of corrections to the problems described above in the "Findings" section. From May 1, 2001 forward, reported water-surface elevation data will reflect the datum correction discovered by the 1999 GPS survey.

Period of time	Correction applied to Boat Harbor gage record May 1, 2001 (in feet)
4/16/1984 - 6/30/1985	+0.10
7/1/1985 - 6/30/1986	0.00
7/1/1986 - 6/30/1987	-0.10
7/1/1987 - 6/30/1988	-0.20
7/1/1988 - 8/21/1989	-0.35
8/22/1989 - 9/30/1990	-0.40
10/1/1990 - 9/30/1991	-0.40
10/1/1991 - 9/30/1992	-0.50
10/1/1992 - 9/30/1993	-0.50
10/1/1993 - 9/30/1994	-0.50
10/1/1994 - 9/30/1995	-0.40
10/1/1995 - 4/30/2001	-0.40