UTAH GEOLOGICAL AND MINERAL SURVEY

REPORT OF INVESTIGATION

NO. 201

THE HILL CREEK OIL-IMPREGNATED SANDSTONE DEPOSIT

> by J. Wallace Gwynn, Ph.D.

> > September 1985

TABLE OF CONTENTS

INTRODUCTIO PURPOSE STRATIGRAPH STRUCTURAL SOURCES OF ECONOMIC GE Area Lent Over Engi Lanc REFERENCES APPENDIX A. APPENDIX B.	DN.1HIC SETTING.2SETTING.2GEOLOGIC DATA.3TOLOGY.6al Distribution.6cicular Nature and Thickness.6cburden.8ineering Properties.10J Status.12CITED.141530
Table l.	Physical and Chemical Properties of the Hill Creek Oil-Impregnated Sandstones and Oilsll
Figure l.	Topographic Map of the Hill Creek Area, Showing the Outcrop of the Mahogany Oil-Shale Bed, Data Sites and the Approximate Area Underlain by the Oil-Impregnated Sandstone
Figure 2.	Cross Section 4 - Hill Creek 7
Figure 3.	Overburden Map of the Hill Creek Oil-Impregnated Sandstone Deposit Area. Contours are Drawn on the Top of the Mahogany Oil-Shale Bed
Figure 4.	Land Status Map of the Hill Creek Oil-Impregnated Sandstone Deposit

page

THE HILL CREEK OIL-IMPREGNATED SANDSTONE DEPOSIT prepared by J. Wallace Gwynn, Ph.D.

INTRODUCTION

The Hill Creek oil-impregnated sandstone deposit is located on the rugged, southern flank of the Uinta Basin, in Uintah County, Utah. It lies westward of the P.R. Springs oil-impregnated sandstone deposit, being separated by the Willow Creek drainage system. It also lies eastward of the Sunnyside oil-impregnated sandstone deposit, being separated by the Green River drainage.

The area of this report is bounded by latitude 30° 30' to 39° 45' north and 109° 37' 30" to 110° 00' 00" west. The USGS Firewater Canyon 15' quad, the Agency Draw NW and the Flat Rock Mesa 7.5' quads cover the area.

Two federal administrative units exist within the study area. They are 1) the Naval Oil Shale Reserve No. 2, which covers Townships 12 and 13 South, 18 and 19 east, and 2) a portion of the Uintah and Ouray Indian Reservation.

PURPOSE

This report is to present a compilation, interpretation and discussion of the geological and technical data that are currently available on the study area. Funding for the project was provided by the U.S. Department of the Interior, Bureau of Land Management. The major stratigraphic units or formations that are present in the Hill Creek area are the Eocene Green River Formation and the underlying Wasatch Formation. The Green River Formation is broken into a number of individual members. Members of particular interest in the Hill Creek area, in ascending order, are the Douglas Creek, Parachute Creek and Evacuation Creek. The important Mahogany oil-shale bed occupies a stratigraphic position at the base of the Parachute Creek Member and conformably overlies the Douglas Creek Member.

Oil-impregnated sandstones of the Hill Creek deposit are positioned stratigraphically both above the Mahogany oil-shale in the lower Parachute Creek Member and below it in the upper Douglas Creek Member. These oil-impregnated sandstones are part of a persistent set of sandstone beds that are traceable for hundreds of miles throughout the southern portion of the basin. The Mahogany oil shale is of great economic importance and has been used as a key marker bed in studies within the area and throughout the Uinta Basin.

STRUCTURAL SETTING

The general structural setting, within the southern flank of the Uinta Basin, is that of a variety of sedimentary lithologies dipping gently northward towards the central portion of the basin. In the vicinity of the Hill Creek area, the dip of the beds is about 1.5 degrees as determined from structural contours drawn on top of the Mahogany oil-shale bed (Cashion, 1967; plate 1).

The Hill Creek anticline, the only major structural feature which interrupts the gentle, northward regionally dipping beds (Cashion, 1967, p.22), is a northwest-trending structure occurring within the southeast quarter of the study area. Faulting and jointing along the southern flank of the Hill Creek anticline also create a zone of disturbance and weakness within the southeastern quarter of the study area, just south of Flat Rock Mesa and through Lower Wagon Canyon.

SOURCES OF GEOLOGIC DATA

Stratigraphic data and field observations pertaining to the Hill Creek oil-impregnated sandstone deposit have been taken from the following sources: Baldwin (1971), Blair (1971), Cashion (1959), Cashion (1967), Gwynn and Dalton (1969), Peterson (1975), and Quigley (1970).

Data from Cashion (1959) consist of short, graphic logs of core holes within the Naval Oil-Shale Reserve No. 2. Both the location and surface elevation are given for each hole; the presence of tar sand was determined from lithologic log descriptions.

Data from Cashion (1967) consist of portions of measured sections from throughout the southern Uinta Basin. The general locations of the sections and the presence of any oil-impregnated sandstone are noted. Neither surface elevation nor depth below the surface are given on the logs. Data from Peterson (1975) consist of carefully documented stratigraphic or lithologic logs of three core holes from the Flat Rock Mesa area.

Data from Baldwin (1971) consist of brief notes concerning oil-impregnated outcrops within the area. Exact locations, elevations and stratigraphic relationship to the Mahogany oil shale bed are not provided.

Data from Gwynn and Dalton (1969) consist of brief notes concerning oil-impregnated outcrops or very general lithologic sections. These data do not contain accurate elevations or stratigraphic reference to the Mahogany oil shale.

Data from Quigley (1970) and from Blair (1971) consist of brief reports on field investigations as reported in work progress reports.

Point locations represented by the above data or observations are described in appendix A, and are plotted on figure 1, (a 1:100,000 scale topographic map), using the following symbols.

Cashion (1959)	
Cashion (1967)	
Peterson (1975)	
Baldwin (1971)	
Gwynn and Dalton (1969)	
Quigley (1970)S. Quigle	∋y - l
Blair (1971)S. Blair	-1

Area underlain by oil-impregnæted sandstone

Figure 1 - Topographic map of the Hill Creek Area, showing the outcrop of the Mahogany oil-shale bed, data sites and the approximate area underlain by the oil-impregnated sandstone.

ECONOMIC GEOLOGY

The economic aspects of the Hill Creek oil-impregnated sandstone deposit to be considered include its areal extent, its lenticular nature, thickness, overburden, engineering properties and land status.

Areal Distribution

From an interpretation of available data, it is estimated that some 120 square miles within the study area are underlain by oil-impregnated sandstones, as indicated on figure 1. The saturation is abruptly terminated on the south by a system of joints which trend approximately N 66° W. To the northeast, the saturation appears to become very weak, and the beds become thin. To the west, saturation is not found within the deeply incised canyons extending eastward from the Green River.

Lenticular Nature and Thickness

The oil-impregnated sandstones of the Hill Creek area do not consist of either vertically- or horizontally-continuous, massive units. Instead, the deposit actually consists of zones of individual oil-impregnated sand lenses, separated by non-impregnated lithologic units. Vertically, both the thickness and the stratigraphic pattern within a zone can change from one location to another. These changes can readily be seen in figure 2, which shows a cross-section through the Flat Rock Mesa area, developed from the Hill Creek cores number one through three from Peterson (1975). This same type of

Figure 2 - Croes Section 4, Hill Creek Taken from Peterson (1975)

changing oil-impregnated sandstone pattern has also been observed by the author in the P.R. Springs deposit to the east.

The thickest and the richest sections of oil-impregnated sandstone within the Hill Creek deposit appear to be located within the general vicinity of Flat Rock Mesa. Northward from this area, both the thickness and grade of the individual beds or lenses seem to diminish. The data that are available concerning the presence, thickness and richness of oil-impregnated sands at the numerous sites indicated on figure 1 are given in appendix A.

Overburden

The thickness of overburden, or that non-impregnated rock which covers the oil-impregnated sandstones, varies from less than 100 feet to more than 1000 feet within the bounds of the study area. Due to a lack of stratigraphic data, however, an accurate representation of the overburden thickness cannot be given in this report.

A generalization of the overburden thickness can be made by using the thickness of strata above the top of the Mahogany oil-shale bed, as shown in figure 3. This generalized map was developed, using Cashion's (1967) structural contours drawn on the top of the Mahogany oil-shale bed.

To obtain the actual overburden thickness, the thickness of non-impregnated rocks sandwiched between the top of the Mahogany bed and the bottom of the overlying oil-impregnated sands as well as the thickness of these sands, must be subtracted from the generalized overburden thickness.

Figure 3 - Overburden map of the Hill Creek oil-impregnated sandstone deposit area. Contours are drawn on the top of the Mahogany Oil-Shale bed.

EXPLANATION

Note: The thickness of the overburden is measured from the top of the Mahogany Oil-Shale bed, and not from the top of the uppermost oil-impregnated sandstone bed above the oil-shale. Zones of lenticular, oil-impregnated sandstone units, of variable thickness, often separated by non-impregnated units, are found both above and below the Mahogany Oil-Shale zone throughout some or all of the area.

The actual location and elevation of an overburden measurement must also be taken into consideration. In the vicinity of Flat Rock Mesa, for example, the apparent overburden thickness is about 400 feet but, after subtracting the appropriate values (as indicated above), the actual thicknesses range from 40 feet at the HC-1 core site to 310 feet at the HC-3 site.

Farther to the north and east of Flat Rock Mesa, the thicknesses of the "mahogany-to-impregnated rock" interval appear to increase, both above and below the Mahogany oil-shale bed. An interpretation of Cashion's work (1959 and 1967) suggests that these thicknesses can be at least as great as 65 feet above the top of the Mahogany, and at least 50 feet below the bottom of the Mahogany. The thickness of the oil-impregnated zone and of the individual beds above the non-impregnated interval varies greatly.

Engineering Properties

Important factors in evaluating the economic potential of an oilimpregnated sandstone include permeability, porosity, pore saturation, gallons of bitumen per ton, percent volume, percent weight, percent sulfur and oil API gravity. A listing of these data taken from Peterson (1975) is given in appendix B, pages a-g, and a summary of these data is given in table 1. These data show a definite west-to-east trend in the sands as follows: an increase in the permeability, an increase in the porosity, a decrease in pore saturation for oil but an increase in water, a decrease in the gallons per ton of oil, its percent of the volume, and its weight percent. The percent sulfur, and the gravity (API/density) of the oil vary, but not in a consistent manner.

				Por	е					Grav.
<u>Core Hole</u>	Permea <u>Before</u>	bility <u>After</u>	Porosity	Satur <u>Oil</u>	ation <u>Water</u>	Gal/ <u>Ton</u>	% Vol	% <u>Wt.</u>	% <u>S</u>	Ext. Oil API/Dens.
*HC-1	41.02	228.4	21.6	45.09	9.57	10.63	9.80	4.30	.39	7.5/1.018
(low value)	.01	2.4	11.6	13.80	2.00	4.30	4.40	1.80		
(high value)	240.00	1355.0	30.5	82.10	27.40	21.10	20.10	8.50		
*HC-2	108.42	341.9	22.56	34.46	15.86	8.36	7.59	3.37	.45	10.5/0.996
(low value)	.01	2.4	14.9	6.90	1.00	2.60	1.20	0.50		
(high value)	412.00	980.0	30.1	67.90	89.20	15.30	14.20	6.20		
*HC-3	277.78	367.09	23.59	23,93	29.38	5.93	5.48	2.40	.41	6.5/1.026
(low value)	.60	2.50	16,50	3.70	7.90	1.00	0.90	0.40		
(high value)	1140.00	1145.00	28.30	73.10	64,50	17.70	17.20	7.20		

Table 1. Physical and Chemical Properties of Hill Creek Oil-Impregnated Sandstones and Oils.

* Average value

Other engineering data are found in Johnson, L.A., Marchant, L.C., and Cupps, C.Q., 1976.

Land Status

The major portion of the Hill Creek oil-impregnated sandstone deposit is on the Uintah and Ouray Indian Reservation, as shown on figure 4. Townships 12 and 13 South, Ranges 18 and 19 East constitute the Naval Oil Shale Reserve No. 2, and the remainder of the land consists of patented, BLM and State land.

Figure 4 - Land Status map of the Hill Creek oil-impregnated sandstone deposit.

EXPLANATION

Naval Oil Shale Reserve No. 2

8LM land

8

Ρ

S

- Patented Land
- State Land

Wintah and Ourav Indian Reservatio

Note: Much of the Uintah and Ouray Indian Reservation and the BLM land is also covered by other Federal Agency Protective withdrawals. Land ownership taken from BLM 1:100,000 scale metric topographic map, Seep Ridge, Utah-Colorado, 1981. REFERENCES CITED.

- Baldwin, T.A., 1971, unpublished data furnished to the Utah Geological and Mineral Survey by Tetra Tech, Inc.: UGMS files.
- Blair, G.N., and Blair, A.S., 1971, unpublished "work progress report to the Utah Geological and Mineral Survey": UGMS files.
- Cashion, W.B., 1959, Geology and oil-shale resources of Naval Oil-Shale Reserve No. 2, Uintah and Carbon Counties, Utah: U.S. Geological Survey Bulletin 1072-0, p. 753-793.
- Cashion, W.B., 1967, Geology and fuel resources of the Green River Formation, Southeastern Uinta Basin, Utah and Colorado: U.S. Geological Survey Professional Paper 548, 48 p.
- Gwynn, J.W., and Dalton, E., 1969, unpublished data consisting of notes taken on specific oil-impregnated sandstone sites for the Utah Geological and Mineral Survey within the Hill Creek deposit: UGMS files.
- Johnson, L.A., Marchant, L.C., and Cupps, C.Q., 1976, Properties of Utah tar sands - Flat Rock Mesa Area, Hill Creek Deposit: Laramie Energy Research Center, 18 p.
- Peterson, P.R., 1975, Lithologic logs and correlation of core holes, P.R. Spring and Hill Creek oil-impregnated sandstone deposits, Uintah County, Utah: Utah Geological and Mineral Survey Report of Investigation No. 100, 30 p.
- Quigley, S., 1970, unpublished report to Utah Geological and Mineral Survey: UGMS files.

APPENDIX A

APPENDIX A

For each of the seven references cited, either a summary, direct insert or an illustration will be included within this appendix.

Cashion, W.B., 1959: These data, copies of lithologic logs, are found on pages a-c of this appendix.

Cashion, W.B., 1967: Data interpreted from Plate 3, Stratigraphic Sections, is as follows.

(A) Big Canyon - Section 14, T. 13 S., R. 17 E. and Sec. 7, T.
13 S., R. 18 E.: No oil-impregnated sandstone shown in the 480 feet above, or in the 1550 feet below the Mahogany oil shale.

(B) Wild Horse Canyon - Secs. 15 and 16, T. 14 S., R. 17 E.: No oil-impregnated sandstone shown in the 2250 feet below the Mahogany oil shale; stratigraphic section does not extend above oil shale.

(G) Green Canyon - Secs. 7, 8, 9 and 10, T. 13S., R. 20 E.: No oil-impregnated sandstone shown in the 950 feet above the Mahogany oil shale; stratigraphic section does not extend below the oil shale.

Data interpreted from plate 4, Stratigraphic Sections, showed no oil-impregnated sandstone to be present in any of the following eight locations. The distance above or below to which the section extended from the top or bottom of the Mahogany oil-shale bed is given.

No.	Sec.	Twp.	Rng.	Location	Above	Below
12	26	14	17	Near Wild Horse Canyon	. 75	40
13	8	14	18	Firewater Canyon	100	25
14	· 1	14	19	Mouth Horsecorn Canyon	75	25
16	6	14	19	Tabyago Canyon 🔸 🕺	60	40
16	22	14	19	Horsecorn Canyon	60	40
17	36	14	20	Flat Rock	50	60
21	9	15	18	Chandler Canyon	60	50
22	17	15	20	Wagon Canyon	70	50

Peterson, P.R., 1975: Data presented (see figure 2 of this report) as Cross Section 4-Hill Creek.

Baldwin, T.A., 1971: These data include some eleven, short. site-specific observations. The observations are as follows: (1) Sec. 14, T. 13 S., R. 19 E.: 15' of "Channel ss" w/ good oil stn at top of "Colored School Section." (2) Sec. 19, T. 13 S., R. 20 E.: 15' channel ss w/ good oil stain, out into top of "Hacky" unit. (3) Sec. 13, T. 13 S., R. 18 E.: "Hacky" ss w/ v slt oil stn. (4) Sec. 32, T. 13 S., R. 18 E.: 15' ss w/ slt oil stain @ 80 feet "Hacky" mbr. (5) Sec. 23, T. 13 S., R. 19 E.: "Towave", No permeable ss. (6) Sec. 23, T. 13 S., R. 19 E.: 5' of "Towave" sd w/ lt. speckled oil stain. (7) Sec. 22, T. 13 S., R. 19 E.: 20' of Towave sd w/ oil stain, rich at top, weak @ bottom. (8) Sec. 26, T. 13 S., R. 19 E.: 15' of "Towave: Sd w/ good oil sat. in top l' grading down to v slt stn at bottom. (9) Sec. 27, 34, T. 13 S., R. 19 E.: 40' of "Towave" w/ 30' of oil stain grading from saturated in top 3' to slt specks @ bot. (10) Sec. 3 T. 14 S., R. 19 E.: "Towave", No permeable ss. (11) Sec. 35, T. 14 S., R. 19 E.: "Towave", 10' w/ 6' of good oil saturation. Gwynn, J.W., and Dalton, E., 1969: These data consist of notes on

specific localities and are found on pages d-j of this appendix.

Quigley, S., 1970: This reference consists of a short progress report, and is included in this appendix as page k.

Blair, (1971). This reference consists of a short "work progress report," and is included in this appendix as page 1.

NAVAL OIL-SHALE RESERVE NO. 2, UTAH

Depth to top of	Thickness	Description	Depth to top of	Thickness	Description
unit (feet)	(feet)		unit (feet)	(feet)	
Cor	e hole 1	SE4SE4 sec. 36, T.	12 S., R. 1	9 E.; gro	ound elev 5,658 ft
61.0	5.0	Maristone, gray and brown; lower half is	87.3	6.0	Maristone, tan, with chert stringers 2-10mm
66.0	.1	Tuff, yellow-brown.	93.3	6.2	Oil shale, dark-gray.
70.3	.4	Tuff, tan.	101.4	1.9	Oil shale, dark-gray.
70.8	2.7	Maristone, gray.	103.3	7.0	Maristone, gray and tan.
75.3	3.9	Maristone, grav.	110.3	9.9	Maristone, tan and
79.2	8.1	Oil shale, dark-gray.			brown, varved; upper 1.5 feet is silty
Core	hole 5;	NE14NW14 sec. 30, T.	12 S., R. 1	9 E.; gr	ound elev 5.536 ft
105.0	6.5	Siltatone blue grav lime	125.0	40	Oil shele dark-gray.
111.5	3.5	Maristone, brown, silty.	140.8	.3	Oil shale, dark-gray, with
115.0	1.8	Marlstone, brown.			tuff stringers.
130.5	13.7	Ust shale, dark-gray. Tuff_oil-stained	141.1	2.0	Maristone, brown.
130.6	.4	Oil shale, with tuff	145.8	3.0 I	Oil shale, dark-gray.
121 0		stringer at top.	148.8	.4	Oil shale with stringers
131.0	1.7	Oil shale dark-gray	140.2	9	Maristone brown.
134.2	. i.7	Maristone, brown.			
ore hol	e 7; NV	V 1/4 SW 1/4 sec. 26, T.	13 S., R.	18 E. (unsurveyed); ground
		elev 6	,881 ft		
200.0	60.2	Sandatono, fina ta madium	460.2	0.7	Limmetone tan with
390.0	60.3	rained limy and inter-	409.2	0.7	contorted bedding at
		bedded blue-gray marl-			base.
110 1		stone.	100.0		Madatona tan containing
450.3	3.2	Dil shale, dark-grav.	409.9	1.4	contorted tuff bed.
456.4	.9	Lost core.	471.3	1.1	Oil shale, dark-gray.
457.3	6.8	Oil shale, dark-gray.	472.4	.6	Conglomerate, with peb-
464.2	.9	Marlstone, tan.	473.0	3.1	Maristone, tan.
465.1	3.6	Oil shale.	476.1	.3	Oolite.
468.7	.5	Maristone, tan.	476.4	2.4	fine-grained.
Core	hole 8;	SW ¼ NW ¼ sec. 14, T.	13 S., R. 1	9 E.; gr	ound elev 6,247 ft
130.0	26.0	Siltstone and marlstone.	167.8	7.9	Oil shale, dark-gray, with
		interbedded.			brown contorted tuff
156.0	2.0	Oil shale, dark-gray.	175 7	10	atringer at base.
100.0	<i>4.</i> 0	with 0.2 in. tuff bed.	176.7	1.5	Oil shale, dark-gray.
160.6	7.2	Oil shale, dark-gray, with	178.2	2.7	Maristone, tan.
		tun bed U.I it thick	180.9	2.3	Tuff. tan.
			183.3	6.1	Oil shale, dark-gray.
			189.4	2.2	Maristone, tan.
Core	hole 9;	NE¼NW¼ sec. 27, T.	12 S., R. 1	19 E.; gr	ound elev 5,887 ft
475.0	4.2	Oil shale, dark-gray.	523.0	2.9	Maristone, tan.
479.2	15.4	Marlstone, brown.	525.9	10.1	Oil shale, dark-gray.
494.0	15.0	Maristone, brown.	536.0 538.A	2.0	Oil shale, dark-gray, with
509.9	4.1	Oil shale, dark-gray.			tuff 0.1 ft thick near
514.0	1.9	Maristone, tan.	540 7	e 4	Mariatona gray and
522.8	.2	Tuff(?).	04U.7	a.¶	brown.
<u> </u>		SEM NUMBER OF	10.0 5	10 5	
Core	note 10;	5 5 1/1 N W 1/4 Sec. 34, T	. 13 S., K.	19 EL; g	rouna eiev 6,763 ft
125.0	23.0	Sandstone, gray, fine-	163.4	4.6	Maristone, brown and
		bedded gray limy	168.0	2.2	Oil shale, dark-gray.
148.0		siltstone.	170.2	2.5	Maristone, brown.
110.0	2.9	brown.	172.7	9.9	Sandstone, asphaltic.
150.9	2.0	Oil shale, dark-gray.			and interbedded gray.
152.9	4.1	Maristone, brown.	<u> </u>	[limy siltstone.
107.0	0.4	on shale, dark-gray.	11		

Lithologic logs of cores from holes 1–18, Naval Oil-Shale Reserve No. 2, Uintah and Carbon Counties, Utah

NAVAL OIL-SHALE RESERVE NO. 2, UTAH

Lithologic logs	of cores	from holes	1–18,	Naval	Oil-Shale	Reserve
No. 2, Uintah	and Carl	bon Countie	s, Uta	hCor	tinued	

Depth to top of unit (feet)	Thickness (feet)	Description	Depth to top of unit (feet)	Thickness (feet)	Description
Core	hole 11;	NW14SW14 sec. 31, T	. 12 S., R.	19 E.; g	round elev 5,871 ft
97.0	14.0	Marlstone, gray and brown.	133.9	1.8	Siltstone, gray, sandy, with oil-shale stringers;
111.0 112.4	1.4 1.2	Lost core. Marlstone, brown, with some pyrite stringers.	135.7	2.7	bleeding small amount of oil 0.6 ft below top. Oil shale, dark-brown, with
113.6 113.8	.2 4.9	Tuff, yellow-brown. Oil shale, dark-gray and brown, with limestone	138.4 138.5	.1 2.5	stringers of gray tuff. Tuff, yellow-brown. Oil shale, dark-brown,
118.7	7.3	atringers. Maristone, gray and brown.	141.0	3.9	tuff. Siltstone, gray, with thin
126.0 126.8	.8 5.2	Siltstone, gray, limy. Oil shale, dark-gray	144.9	1.0	tuff beds. Maristone, gray and
$\begin{array}{c} 132.0\\ 133.2 \end{array}$	1.2 .7	snd orown. Siltstone, gray, tuffaceous. Oil shale, brown, bedding contorted.	145.9 , 146.4	.5 4.1	Silustone, gray, tuffaccous. Maristone, gray, tuf- faccous; silty at base.
Core hol	e 15; N	W14SE14 sec. 26, T. elev 5,	12 S., R. 690 ft	18 E. ((unsurveyed); ground
10.0	20.9	Siltstone, gray, limy, with	95.5	0.1	Tuff, yellow-brown.
30.9	1.9	a few thin beds of very fine grained sandstone. Maristone, dark-grav	95.6 96.2	.6	and brown. Maristone, gray and
32.8	1.0	and brown. Marlstone, gray, silty.	96.9	1.3	brown, silty. Siltstone, gray and brown.
33.8	. 2.0	Siltstone, gray, limy,	98.2	1.1	Maristone, gray and
39.0	1.2	Oil shale, gray and brown, with several very thin	99.3	2.2	Oil snale, dark-gray and brown.
40.2	1.4	stringers of nancolite. Maristone, gray and	101.5	2.1	Maristone, dark-gray, silty.
41.6	2.4	Siltstone, gray, limy,	103.6	27.7	Tuff, yellow-brown,
44.0	3.0	Marlstone, gray and brown.	131.4 133.3	1.9	Siltstone, gray and brown. Tuff, yellow-brown,
47.0 47.1	.1 .7	Tuff, yellow-brown. Maristone, gray and	133.4	1.6	oil-stained. Siltstone, gray and brown.
47.8 48.3	.5	Oil shale, gray and brown. Tuff, yellow-brown.	135.0	6.4	Diaristone, gray and brown, silty. Oil shale, dark-gray
48.4	4.3	oil-stained. Oil shale, dark-gray and	143.6	3.3	and brown. Marlstone, gray and
52.7	.1	brown. Tuff, yellow-brown.	146.9	2.5	brown. Siltstone, gray, limy.
52.8	1.2	Oil shale, brown.	149.4	.6	Maristone, brown.
62.0	1.3	Maristone, gray, inicaceous.	150.0		and brown.
63.3	3.6	Siltstone gray, micaceous.	150.9	1.5	Marlstone, gray, silty.
00.9	1.3	brown.	152.4	1.0	Tuff, vellow-brown,
68.2	4.0	Oil shale, dark-gray and brown.	153.8	2.6	Maristone, gray and brown; upper half
72.2 76.0	3.8 7.7	Maristone, brown, cherty. Oil shale, dark-gray	156.4	2.7	is silty. Siltstone, gray, micaceous.
83.7 83.8	3.8	Tuff, yellow-brown. Oil shale, dark-gray	159.4	2.0	oil-stained.
87.6	2.9	and brown. Maristone, gray and	161.4	.9	Oil shale, dark-gray and brown.
90.5	.9	brown. Oil shale, dark-gray.	162.3	3.1	Maristone, gray and brown.
91.4	1.0	Tuff, yellow-brown.	165.4	1.2	Oil shale, gray and brown.
92.5	2.5	Marlstone, gray and brown.	169 1	د.ت ۱۹	of siltstone.
95.0	.5	Oil shale, dark-gray and brown.			Charlone, Bray, reasceous.

Core hole 16; SE¹/₄SW¹/₄ sec. 28, T. 12 S., R. 18 E. (unsurveyed); ground alay 5 890 ft

10.0	14.4	Siltstone, gray, limy.	47.5	5.1	Maristone, gray and
24.4	1.2	Maristone, brown, silty.			brown, silty.
25.6	1.8	Siltstone, gray, limy.	52.6	. 1	Tuff, yellow-brown.
27.4	.9	Maristone, gray and	52.7	1.8	Siltstone, gray, hmy.
		brown, silty.	54.5	1.6	Sandstone, brown, hne-
28.3	.1	Tuff, yellow-brown.	1		grained, ou-stained.
28.4	1.1	Oil shale, dark-gray	56.1	1.9	Siltstone, gray, luny.
1		and brown.	58.0	2.6	Sandstone, brown, hnc-
29.5	3.6	Silts'one, gray and brown,			grained, on-stained.
		limy.	60.6	1.0	Siltstone, gray, huny.
33.1	2.7	Maristone, gray and brown.	61.6	2.5	grained, oil-stained.
35.8	.1	Tuff, vellow-brown,	64.1	.3	Siltstone, gray, limy.
35.9	3.9	Oil shale, dark-gray and brown.	64.4	7.0	grained, oil-stained.
39.8	.1	Tuff, yellow-brown.	71.4	9.5	Siltstone, gray, huny.
39.9	1.6	Maristone, gray and brown.	80.9	4.0	Sandstone, gray, fine- grained.
41.5	6.0	Siltstone, gray, limy,	84.9	4.1	Siltstone gray, micaceous

NAVAL OIL-SHALE RESERVE NO. 2, UTAH

Lithologic logs of cores from holes 1-18, Naval Oil-Shale Reserve No. 2, Uintah and Carbon Counties, Utah—Continued

Depth to top of unit (feet	Thickness (feet)	Description	Depth to top of unit (feet)	Thickness (feet)	Description
Core ho	le 16; SI	E¼SW¼ sec. 28, T. elev 5,890 ft	12 S., R. —Conti nu	18 E. (1 ed	unsurveyed); ground
89.0	3.8	Maristone, gray and	109.9	0.8	Marlstone, brown. Oil shale, dark-gray
92.8 95.0	2.2	Siltatone, gray, limy. Marlstone, gray and	111.7	.1	and brown. Tuff, yellow-brown.
100.4	2.0	brown, silty. Oil shale, dark-gray	111.8	3.9	Oil shale, dark-gray and brown.
102.4	.9	and brown. Siltatone, gray, with thin	115.7 115.8	3.4	Tuff, yellow-brown. Oil shale, dark-gray
103.3	1.1	stringers of oil shale. Oil shale, dark-gray	119.2	.1	and brown. Tuff, yellow-brown.
104.4	.1	and brown. Tuff, yeilow-brown.	119.3 120.3	1.0	Oil shale, dark-gray. Siltstone, gray, micaceous.
104.5	.8	Oil shale, dark-gray and brown.	120.6 120.8	.2 .1	Oil shale, dark-gray. Tuff, yellow-brown.
105.3	2.9	Maristone, brown. Tuff, yellow-brown.	120.9 122.6	1.7	Siltstone, gray, micaceous. Oil shale, dark-gray.
108.3 109.8	1.5	Marlstone, brown. Tuff, yellow-brown.	122.9	11.6	Siltstone, gray, micaceous.
Core ho	ele 17; Sy	W14NW14 sec. 3, T.	13 S., R.	18 E. (unsurveyed); ground
		2127 0	,030 11		
10.0 29.0	19.0 1.9	Siltstone, gray, micaceous, Maristone, gray and	123.8	7.3	Uil shale, dark-gray and brown.
30.9		brown. Tuff, yellow-brown,	131.1	.1	iun, yellow-brown, oil-stained.
31.0	5.0	oil-stained. Oil shale, dark-gray and	131.2	1.3	and brown.
36.0	.1	Tuff, yellow-brown.	132.5	1.0	brown.
37.5	4.5	Siltstone, gray, micaceous.	139.1	.9	and brown. Marktone gray and
43 2		brown, silty.	133.0	2.5	brown. Oil shale dark-gray.
43.3	1.9	Marlstone, gray and brown silty	138.4	.1	Tuff, yellow-brown. Oil shale, dark-gray.
45.2 49.4	4.2 1.5	Siltstone, gray, micaceous. Maristone, brown.	139.4	2.4	Marlstone, brown. Oil shale, dark-gray
50.9 51.9	1.0	Siltstone, gray, limy. Sandstone, dark-gray.	142.1	.1	and brown. Tuff, yellow-brown.
55.9	1.1	micaceous, oil-stained. Siltstone, gray, limy.	142.2	.5	Oil shale, dark-gray and brown.
57.0	8.2	Sandstone, gray and brown, fine-grained.	142.7	2.3	Maristone, gray and brown, silty.
65.2 116.4	51.2 .9	Siltstone, gray, limy, Maristone, gray and	145.0 145.8	.8 .1	Oil shale, dark-gray. Tuff, yellow-brown.
117.3	4.1	Oil shale, dark-gray	145.9	3.0	Maristone, gray and
121.4	2.4	Maristone, brown.	149.1	2.1	Siltstone, brown, limy.
Cor	e hole 18;	SW1/4SW1/4 sec. 7, T.	13 S., R.	19 E.; gr	ound elev 6,275 ft
10.0 15.0	5.0 6.1	Maristone, gray, silty. Maristone, gray and brown.	55.0	4.0	Sandstone, gray and brown, fine to medium- grained.
21.1	2.2	Oil shale, dark-gray and brown.	59.0	2.5	Maristone, gray and brown, silty.
23.3	7.3	Maristone, gray and brown, silty.	61.5	2.0	Sandstone, gray and brown, very fine grained.
30.6 32.6	2.0 12.4	Siltstone, brown. Sandstone, gray and brown, very fine	63.5 65.0	$\begin{array}{c} 1.5\\ 7.0\end{array}$	Siltstone, gray, limy. Sandstone, gray and brown, very fine to
45.0	2.3	mained, with several thin beds of siltstone. Marlstone, gray and brown, silty.	72.0	30.4	Siltstone, gray, with a few thin beds of lime-
47.3	5.7	Sandstone, gray and brown, fine to medium-	102.4	2.8	Marlstone, gray and brown, silty.
53.0	2.0	grained. Siltstone, gray.	105.2	1.6	Oil shale, dark-gray.
106.8	3.9	Maristone, gray and	129.4	1.0	Marlstone, gray and
110.7	6.2	Oil shale, dark-gray and	130.4	2.4	Siltstone, gray.
116.9 117.0	1.5	Tuff, yellow-brown. Oil shale, dark-gray and	132.5		brown. Tuff. vellow-brown.
118.5	1.5	brown. Maristone, gray and	133.8	1.0	Maristone, gray and brown.
120.0 120.6	1.6	brown. Oil shale, dark-gray. Maristone, gray and brown	134.8 137.1 138.4	2.3 1.3 2.7	Maristone, brown. Oil shale, brown. Maristone, gray and
122.2 123.0	.8	Oil shale, dark-gray. Tuff, yellow-brown	141.1	1.5	Siltstone, gray. Maristone, gray and
$\begin{array}{c} 123.1 \\ 123.9 \end{array}$.8 2.2	Oil shale, dark-gray. Marlstone, gray and	143.2	1.0	brown. Oil shale, dark-grav
126.1	.5	brown. Oil shale, dark-gray.	144.2	1.5	and brown. Maristone, gray, silty.
126.6	.5	Maristone, gray and brown.	145.7	.8	Siltatone, gray, limy.
441.1	2.3	stringers of oil shale and tuff.			AD

NOTES ON LOCALITIES EXAMINED IN SURVEY FOR OIL-IMPREGNATED SANDSTONES, HILL CREEK DEPOSIT, UINTAH COUNTY

Locality Description

#1 NE SW Sec. 30 T14S R20E

Porous Sandstone - Persistent joint system very highly saturated throughout. Several seeps. Thick section approx. 60 feet thick (total section). Elevation is about 7,080. There are a few thin zones of shale and saturated sandstone above the main 40' zone (make up the 60').

- #2 NW NW Sec. 30 T14S R20E Joints running N66^oW
- #3 SE NE Sec. 19 T14S R20E Saturation continues but weakens. Rock becomes less massive and finer grained. Joints strike N65°W.
- #4 NE NE Sec. 18 T14S R20E No saturation found at 7,080' elevation - later

found that saturation was to west at lower elevation of about 6,800'.

#5 NWSE Sec. 7 T14S R20E

No saturation found at suspected 7,080' horizon, but found about 6,820 feet at a location 1/3 mile to northeast.

#6 NE SE Sec. 7 T14S R20E No saturation found at suspected 7,080 feet, rather found 1/4 mile to west at 6,680'.

#7 NE NW Sec. 31 T14S R20E

About 40-50' of good massive saturated sandstone medium to fine grained and porous. On the road going down into canyon - Analyzed sample from this location.

- #8 SE (SE cor) NE Sec. 36 T14S R19E The following lithologic section was measured:
 - --5' saturated sandstone coarse grained

-40' brown sandy shale

-50' saturated sandstone - coarse grained

#9	NE SW Sec. 5 T15S R20E About 71' of saturated sandstone in the section. In general, not massive. Bleeding in places. Sandstone was coarse to medium grained.
#10	SW SW Sec. 9 T15S R20E No saturation throughout or well below suspected zone. Although there are favorable sands present - Also presence of thick massive cap rock not noted before to the north.
#11	NW SE Sec. 6 T15S R20E About 73' of saturated sandstone. Thinbedded at top becoming more massive towards the bottom. It is a medium to coarse grained sandstone. There are current ripple marks within the sat. sandstone zone which are running S80 ^o W.
#12	NW SE Sec. 2 T15S R20E About 5-10' of weakly saturated sandstone.
#13	NW SW Sec. 14 T15S R20E No saturation in favorable beds at suspected horizon.
#14	NW NE Sec. 18 T15S R20E No saturation in favorable beds at suspected horizon.
#15	NW SE Sec. 13 T14S R20E Approximately. 5 miles down from head of Ute Canyon there is a 3' zone of weakly saturated sandstone at top of a thick favorable sandstone. Lower in the same area - 50 to 75' lower is another zone about 28' thick of weak to moderately saturated sandstone. Both are below suspected 7,080' horizon, but down about 6,680' approx.
#16	NW NW Sec. 24 T14S R20E Suspected horizon is not present - possibly farther to east possibly down about 6,680' to 6,800'.

#17	SW NE Sec. 23 T14S R20E Agency Draw - No saturation found at suspected horizon - however oil shale was found below cap rock. There was found suspected saturation possibly one mile to the north.
#18	NW NE Sec. 27 T14S R20E The following measured section is given: 4' moderate saturation -15' shale (brown) 4' weakly saturated sandstone
#19	SW SE Sec. 15 T14S R20E About 15' of weakly to moderately saturated sandstone, medium to coarse graine size. Same thickness persists across canyon to the east. Possibly a channel.
#20	C Sec. 15 T14S R20E About 3.5' of saturated sandstone.
#21	C W1/2 NE1/4 Sec. 15 T14S R20E About 5 feet of saturated sandstone (weakly sat.) Joints noted trend N60 [°] W. Probably a channel sand.
#22	NW NE Sec. 15 T14S R20E Saturation and favorable sand seem to be lensing out towards the east and the north. There is about two (2) feet of very weak questionable saturation.
#23	C E1/2 Sec. 17 T14S R20E About 10 feet of weakly saturated sandstone.
#24	NE SE Sec. 7 T14S R20E The following section was measured: 2' weak saturation in medium grained sandstone -25' barren brown sandstones and shales 8' weakly sat. med gr. sandstone 6' barren brown sandstones and shales 3' weakly saturated, medium grained sandstone It appears that favorable horizon is lensing out to N and E.

#25	About NE1/4 Sec. 6 T14S R20E There are two thin zones of very weakly saturated fine grained sandstone separated by perhaps 10-15' of barron siltstones and shales. Tap bed about 2' and lower about 3'. Texture and thickness may indicate termination of saturation to the north.
#26	 About C of NE Sec. 24 T14S R19E The following section was measured. -18' fairly massive medium gr. wk-med. sat. sandstone. -35' brown siltstones and shales. -2' weakly saturated marlstones and siltstones. -6' brown siltstones and shales -6' weakly saturated fine-grained sandstone -8' brown thin bed siltstone and thin bed sat. ss. -33' weak to mod. med. gr. sandstone - some dry chunks of tar. (massive [sandstone]).
#27	NE SE Sec. 35 T14S R19 E (School Section Canyon) Top zone about 10' thick saturated sandstone fractures trend N65 [°] W. Bottom massive sand is not saturated.
#28	NW SE Sec. 35 T14S R19E (School Section Canyon) Jointing N65°W dip 80°N to vertical. Sandstone is barren. Pyrite and limonite fitted joint shows 3/4" solid saturation on south of joint, (none on north), stringers extend south into sandstone for perhaps 6". [the foregoing for the bottom zone]. Top zone is somewhat saturated.
#29	Just north and east of #28 Southward extent of saturation in lower massive sandstone. Following is measured section. Horse Bench sandstone. 200' shales (according to topo map] -12' massive saturated sandstone. -27' thin bed brn ss shales and marlstones -22' thin sat beds interbed with brn siltstones and shales -38' more saturated to the north than to the south) massive sandstone.

#30	SW NE Sec. 27 T14S R19E Ripple marks S70W (direction of flow) also the following measured section. -12' saturated sandstone -23' barren sandstones and shales -23' saturated sandstone
#31	SE Sec. 2 T14S R19E No saturation found in either upper or lower sandstone indicating possible joint control of oil migration southward as on Flat Rock.
#32	 NW SE Sec. 15 T14S R19E [Horsecorn Canyon] Joints trending N65°W. Following is measured section: 8' Barren sandstone -30' siltstones and shales with few possible beds wk sat ss. -23' thinbed bit ss interbed with non sat siltstones and shale -12' massive ss - tap 6' slightly sat. bottom-barren
#33	 NW1/4 Sec. 2 T14S R19E Following is measured section. Brown shales -2' wk sat. med. gr. ss. -14' brown shales -8' sat. med. gr. sandstone 2. 5' brown shales 5' saturated sandstone with brown shales -5' brown shales -7' wk sat. (main) with some brown shales 8. 5' brown shales -7' wk sat ss - massive - med gr. -6' brn shales with siltstones (no saturation) -7' massive med. gr. med. sat. ss. (joints N70W) -22' brown shales -18' alt. oil and gray shales brown barren med. gr. sandstone
#34	C Sec. 26 T13S R19E [West Squaw Creek] The following section was measured: Brown shales 1' tuffaceous rock -21' gray shales 8' wk sat. ss. 8' brown shales -16' wk sat. ss.

#34 (continu	 14' gray mudstones 18' brown shales 25' Pred oil shales and gray shales 5' brown siltstones and shales 19' sandstone - lower 4' barren tap 15' weak- moderately saturated Mudstones in creek
#35	SE SE Sec. 14 T13S R19E
	o' we sat sandstone at top only.
#36	SE SW Sec. 27 T13S R19E The following section was measured: -30' massive ss sat. wk 2/3 sat at bottom top 1/3 barren
Fault was	-60' mainly ss. slight sat. in massive parts. Inter-
noticed in th	his bedded with siltstone - forms slope and are barren
area, also	-25' brown shales
sample was	l'oil shale
taken for	17.5' brown shales
analysis.	3' coarse gr. sat. sandstone - fair sat.
#37	C NW Sec. 32 T13S R19E Following section was measured: Shales -14' saturated sandstone -11' brown shales -5' poorly saturated sandstone -5' brown shales and barren sandstones -12' sat. med. gr. sands. -19' brown shales -5' barren brown sandstones -10' brown shales -22' gray and oil shales interbedded -11' weakly sat. ss. -8' brn siltstones with minor barren sandstones -15' massive sandstone brown and barren
#38	SE SE Sec. 13T13S R18E [Pine Canyon] Joints N65 ^o W. Following is measured section: 16 (-5' total sat. (wk.) sandstone 11' alt. 11 feet brown shales. 6' sandstone with spotty wk. sat.

Trend at south extent of saturation--joint system. Start at S1/4 corner between Sec. 13 and 24 T15S R19 E and

#38 (continued)

moving N65[°]W through 1/4 corner between Sec. 1 and Sec. 6 between T15S R19 and 20E. South of this line no saturation was found, north of this line - saturation is found.

The sediments are dipping off to the north at about 2⁰ off from the Hill Creek Anticline or projections thereof.

Field notes by Wally Gwynn and Ed Dalton Summer 1969 Transcribed for files, April 1976

Sept. 28, 20 Som Quigley

Wild Horse CANYON.

Investigation of Wild Horse CANYON ShowED NO Oil-IMPREG-NATED SANDS, EithER JUST Below The MahogANY OR ALL The WAY Down the section where the WASATCH TONGUES INTER BED with The Green River. No Hoat WAS FOUND IN MAIN WILL HORSE OR IN TRIBUTARY LEADING OUT of CANYON EAST to Horse Bench HAFS.

S. Wair 1

WORK PROGRESS REPORT FOR THE MONTH OF JUNE FOR GORDON N BLAIR & ANN STAUB BLAIR - U.G.M.S.

Date:

June 24- July 1.

June 5-6. Survey of Keg Mtms. by private vehicle to look for possible campaites, and to familiarize self with road systems. June 3-14 Climbed 5 peaks in Keg Mtms. moting and sampling lithologies to establish units for mapping. June 11 was spent in vehicular survey of small area of Kegs Mtms south of Weiss Highway. No climbing that day due to raymy weather.

June 16-21. Returned to Kegs to investigate Willow Springs area, 16-17. Left for Hill Creek Extension of Ute Indian Reservation on 18. Investigated stratigraphic sections in Big and Firewater Canyons as per instructions. Initial results were negative. Returned to Salt Lake to have auxillary gas tank installed on truck June 22.

S. Blair 1

Returned to Indian Reservation, examined two more sections in Big and Firewater Canyons. Still megative as per tar sands, but some asphaltic substance moted in one area as fracture filling. Adjacent rocks non-petroliferous and source of substance could not be determined. Investigated Canyons between Wild Horse and Firewater Canyons. No sign of any tarsands was found. Left for Green River Utah on the 29th, in order to find a route up to Florence Creek area in Green River Canyon. An attempt was made to reach the desired ares along the east side of the river. This was found to be impossible by vehicle. An alternate route up Tusher Canyon was also attempted but abandoned. An indirect route through Dragerton -Range Creek may be successful if and when we can obtain a gate key to pass through the Wilcox property. Other, more difficult alternatives are being considered

Appendix A - Page 1

APPENDIX B

APPENDIX B

For the following reference, engineering property data from core holes HC-1, HC-2 and HC-3 are given on page numbers a-g: Peterson, P.R., 1974.

Page 1 of 2

		H GEO		AND MIN	ERAL SU	RVEY	NF: 31.	-178-20	OF SI	г. м. (1	1271	FNT.	1819	(.ाजन
				<u></u>	,	IIint		$n + \pi $	tob			<u></u>		/
				REACE	- Tndian	<u>UIIU</u>		IIS	<u>1811 – – – – – – – – – – – – – – – – – –</u>		VISUA	AL CLA	SSIFICA	TION
			v. 726	1 22 -		""		268			CLAS	SIMPR	EGNAT	ION
	ELE	NATION	nat 20	$\frac{1973}{1973}$	COMPLET	1017 TT. A116	mist 2	2, 197	3		T		VE	RY
	500			<u>,</u> Dar	comple	Creek		<u></u>		1 and	IV	11/1	C RU	сн
	109	5: 50	RFACE		aciiuos	UI CON	(Sum	(face)	DATUN	i (msi)	Ш		MC	20
			PAt	ACHUIE	CREEK				7005		П		WE	AK
			N 0.01	IAHUGAN	IY UIL SH	IALE ZUN	E		<u></u>		T			RY
	c o	RES	001	JGLAS CI	REEK	POR		2 at	nalyses	3 <	L			
Sample		VIS	PERME	ABILITY	POROS.	SATUR	ATION	GALS /	eraged		?6	EXT	RET	s ^{34/s³²}
Number		CLASS	BEFORE	AFTER	<u>*'a</u>	OIL.	WATER	TON	% vo!	<u>≪ wt</u>	SULF		01	RATIO
459	41.	IV	38	359	24.1	60.2	9.6	15.4	14.6	6.2				
460	42	IV	22	428	22,5	_49.4	16.0	12.0	11.2	4.9		a ,		
461	43 _	IV	_24_	704	_23.2	61.2	9.5	15.4	_14.3	6.2	0.37	1.00		25
462	44 _	IV	0.25	324	23.2	74.2	9.9	17.8	17.3	7.2				
463	45 -	IV.	0.05	700	22.6	78.4	8.0	18.8	17.8	7.6]
464	46 _	III	0.45	34	23.3	35.1	27.4	8.7	8.2	3.5				
465	47 _	<u>II</u>	1.3		30.5	13.8	21.3	4.3	4.4	1.8				
466	68 _	III	0.50	· 20	28,2	66.0	7.8	20.2	18,7	8.1				
467	69 -	III	2.2		25.7	_51.7	_10.5	14.4	13.4	5.8				
468	70	III	0.03	2.	4 29.1	68.8	6.5	20.7	20.1	8.3				
469	71	III_	3.0	545	25_0	_46.1	21.1	12.5	11.6	5.0				
470	72 _	III	24	98	23.3	66.6	7.7	16.8	15.6	6.8				
471	73	III	6.2	726	24.0		9.2	18.8	17.4	7.6				
472	_ 88	III	0.90	12	25.4	_22.4	17.3	6.3		2.5				
473	87	III	3.0	12	_24.5	29.0	18.3	7.7	7.1			55	21	
474	92 .	III	28	102	22.3		11.6	7.8	7.1	3.2	0.34	1.03	ڊ آ و آ	\$7
475	93 .	III	57	430	22.1	35.3	7.7	8_8	8.0	3.5				
476	94		24	54	21.8	36.6	8.3	8.8	8,2					
411	96		3.7	15	18.8	_ 43.5	9_6	8.8	8./	3.5				
478	97	III TTT	203	_377_	24.3	_30.3	10.7	8.6	7.6					
4.19	98		46	14.2	20.2	37.5	14.3	8.3	7.7					
480	- 99	<u></u>	124	330	21.9	30.1	- 2.9	7.6	6.7	<u> </u>				
401	112	┷┷┷ ┯┯┯	70 EE	214	20.1	44.0	<u> </u>	<u> </u>	<u> </u>	و و				
402	11,	*** ***		240	20.1	-44•4			<u> </u>	4.0	0.14	7.6	20.0	5
402	114	<u>+++</u> 777	27	- 007	20.1	-24-2		-11.0		4.1	0.40	1.017	-0 ,9	34{
105	112	*** ***	20	156	22.3	40.1	2.0		9.4	4				
405	110	<u>+++</u> TTT	<u></u> 81	210	27 6	40.0	0 0	<u> </u>	9_0	4.0				
187	118	<u> </u>	1.0	08	10 3	44.44	1/ 5	0 0	9.1	3.6			<u> </u>	
188	110	*** TTT	81	116	22 1	32 5	0.5	8 2	73	3 /				
189	120	TTT	78	755	24.1	39 0	7 9	10.6	9.5	1.3				
490	123	TTT	72	1355	21./	13.8	8 0	10.6	9.5	1.3				
491	124	III	177	475	21_0	34.7	1.3	8.2	73	3.1				
492	125	TIT	133	1015	22.3	42.2	5.8	10.6	9.5	1.3				
493	126	III	81	1320	24.7	45.7	5.1	12.6	21.2	· 5_1				
494	127	III	43	382	22.5	42.2	12.4	10.6	9.7	4.1				
495	130	III	4.5	96	23.6	29.2	25.3			3.1				
· · ·	7				1									12 m

Appendix B - a

Fage 2 of 2

	UTA	UTAH GEOLOGICAL AND MINERAL SURVEY												
				<u></u>	,	Πint.	ah Com	tv. Ut	ah					-,
	LAN	D STAT	rus sui	RFACE		Q_117 0.	INERALS				VISUA	AL CLA	SSIFICA	TION
	ELE		726	1 (BOUND	 TOT		268			CLAS	SIMPR	EGNAT	ION
	SPU	D:		······································	COMPLE	т Е :					V		VE RI	RY CH
	ТОР	S: SU	RFACE IN	······			TOP	,	DATUM	(msti	IV	Hill	XX RI	сн
			PAF	RACHUTE	CREEK						Π	VIIII	/ MO	סכ
			N	AHOGAN	IY OIL SH	IALE ZON	IE				Ш		we	AK
			DOL	JGLAS CI	REEK	<					I	[RY AK
	co	RES				PORE 2 analyses						GRAV	GRAV	_ 34/_ 32
Sample	DEPTH	VIS CLASS	PERMEA	ABILITY	POROS.	SATUR	ATION	GALS /		er. 141	?% St11 ₽	EXT OIL	RET OIL	S. /S
Number 106	121	$\frac{1}{\tau\tau}$	0.60	557	22 /	10.1	Ø E	12.6	17 2	5 7	3021			
490	13/	╏╺╹ ┯	3.6	03	22.4	27 6	20 /	7 5	66	3 7				
471	125		12	272	25 6	20 0	20.4	0 2	7 5	2/				
1,99	136		15	260	27.0	27.8	12 7	63	6.1	2.5				
500	137	II	6.7	72	21.3	26.7	16.4	6.3	5.8	2.5				
501	138	Π	12	124	21.8	29.8	4.7	6.8	6.6	2.7				
502	189	III .	1.2	21	11.6	65.5	10.3	7.8	7.7	3.2				
503	190	III	23	· 87	13.2	59.1	3.0	8.7	7.9	3.5				
504	195	III	240	640	24.0	46.7	1.7	13.1	11.4	5.3				
505	196	III	12	734	19.9	66.4	7.5	14.8	13.4	6.0				
506	197	III	0.01	17	18.9	64.6	2.1	12,0	12.3	5.4				
507	198	III	113	295	22.6	37.5	3.1	9.4	8.4	3.8				
508	199 _	II.	2.2	20	15.1	55.6	2.6	9.2	8.5	3.7				
509	200	II	72	116	20.3	42.8	2.0	9.7	8.8	3.9				
510	202		_15	_40	21.6	28.5	4.2	9.4	8.4	8				
511	203	II	16	78	21.5	41.3	7.0	10.2	9.0	4.1				
512	204	II	2.8	52	20.8	72.2	4.3	16.5	15.3	6_8				<u> </u>
513	205	II	116	162	20.0	31.9	2.0	7.1	6.5	2.9				
514	214 _	II	0.13	52	23.4	82.1		_21.1	_19.5	8_5				
515	215	II_	0.05	57	21.7	_52.2	3_2	12.6	_11.4				ļ	
516	216		0.25	17	13.1	47.7	10.7	6.6	6.5	_2.6				
517	223		40	182	12.8	65.6	7.0	8.7	8.5	3.5				
510	224 _		20	35	16.6	38.0	12.0	7_1	6.4	2.9				├ ───┤
519	~~~		34	10	13.1	41.8	8.4	5.8	5.5	2.3				<u>├</u>
520	227	+- Å Å +++-+	265		21.8	25.2	6.4	6_6	6	2.6				
521	~~~			400		_ <u></u>	2.7	6.8	Q.⊥					
	-													
	-													
1	-													11
	-													
	-													
	_													
	-							-						
1	-													

	UTA	H GEOL		UTAH GEOLOGICAL AND MINERAL SURVEY										
	LOR	EHOLE		<u> </u>	,	<u>Ilintah</u>	Count	v. IItai	<u></u> h					-7'
	LAN	D STAT	US SUF	RFACE		<u>, 11 (11)</u>	MINERALS	. U.S.		<u></u>	VISU	L CLA	SSIFICA	TION
	ELE	VATION	. 748	3 0	ROUND	<u></u> тот	AL DEPT	н 488			CLAS	SIMPR	EGNAT	ION
	SPU	D: Aug	. 23	1973	COMPLE	TE: Aug	. 28,	1973			Y		VE RI	RY CH
	TOP	S: SU	RFACE IN	Eva	cuatio	n Cree	K TOF	•	DATUM	(msli	IV			сн
			PAR	ACHUTE	CREEK		8	0 👔	7403	X	Ш	<u>. V/////</u>	MC MC	30
			м	AHOGAN	Y OIL SH	ALE ZON	VE	<u></u>	4743	5	Ξ		WE	AK
			DOL		REEK		_30	Ð	7183	-	LI			
	co	RES			•	POF	RE	, <u></u> 2	analys:	es,		GRAV	GRAV	34/ 32
Sample	DEPTH	CLASS	BEFORE	AFTER	POROS.	OIL	WATER	GALS 7			% SULF	OIL.	OIL	S /S RATIO
522	326	TTT	8.8	162	14.9	59.7	17.4	9.7	8.8	3.7				
523	327		64	521	20.9	67.9	11.5	15.3	14.2	6.2	0.45	10.5	22.	
524	328	III	0.01	52	24.0	48.7	10.4	13.1	11.7	5.3		0.990	- 0-7	÷1
525	329	III	39	980	22.3	49.3	15.2	12.5	11.1	5.0				
526	329	III	40	446	22.5	44.4	27.1	11.0	10.0	4.4				
527	330	III	96	760	19.3	64.3	15.5	13.7	12.4	5.5				
528	331 _	III	130	697	24.3	48.1	13.2	13.2 12.0	¹¹ 17_C	5.1				
529	333 -	III	29	78	18.4	48.3	19.0	9.8	8.9	4.0				
530	334 -	III	38	255	23.4	41.8	20.9	· 91.0	^{9.8} 9.7	4.7.6				
531	335 _	III	_20	76	27.6	42.0	1.8	12.2	11.6	4.9				
532 ·	336 _	III	24	203	24.6	45.2	10.1	11.7	_11_1	4.7				
533	337 -	III	<u>98</u>	717	27.5	37.0	13 1	_11.0	10.2	4_4				
534	340 -	III	145	673	23.6	44.1	3.8	5	10.4	4.6				
535	343	III	116		23.5	39.1	3.8	10.3	9.1	4.0		_		·
536	364	11	281	451	26.4	20.4	32.1	6.0		2.4				
537	365 .		295	451	30.1	19.9	23.9	6.7	<u> </u>	2.7				
538	366	╺┈╧┷╌	139	232	20.4	20.4	19.7	6.0	5.4	2.4			<u> </u>	
5/0	270	·	412 2 1	2/0	24.4	22 0	10 2	6 5		2.6				
540	375		28	<u> </u>	27 7	22 5	10.2	2.6	21	2.0				
5/2	376	TT	78	223	17.4	6.9	89.8	1.2	1.2	0.5				
543	428	ΤT	84	168	23.8	23.5	2.5	6.5	5.6	2.6			····	
544	432	II	225	284	23.9	21.7	2.5	6.0	5.2	2.4				
545	433	II	46	67	18.7	19.2	18.2	3.8	3.6	1.6				
546	448	ĪĪ	130	133	15.3	19.6	15.0	3.1	3.0	1.3				
-547	449	_Π_		142	21.9	22.4	5.0	5.5	4.9	2.2				
548	456	_II	272	336	21.2	23.6	1.9	5.8	5.0	2.3				
549	457	II	_98	119	19.5	17.4	1.0	3.8	3.4	1.6				
	-													
	-					<u> </u>								
	-				•									
	-													
	-								•					
	-													<u> </u>
·	-													
	-													
1	-	⊢					ļ						1	L

	UTA	H GEOI	LOGICAL	AND MIN	IERAL SU	RVEY				1			\	
	COR	E HOLE	ENO _	HC-3	<u> </u>	<u>e ne n</u>	<u>E_3-1</u> 4	<u>55–20E</u>	S.L.M	(156	FNL,	_443_	FEL)	-,
					<u>.U.</u> 	intan (Jounty	Utan		<u></u>				
	LAN	D STAT		RFACE _	Indian	M	INERALS	0.5.				SUMPD	ECNAT	
	ELE	VATION	4: <u>740</u>	90	ROUND	TOT.	AL DEPTI	4 <u>500</u>			T	SHOTH	VE	RY
	SPUI	D: <u>Aug</u>	28,	1973	COMPLE	TE: <u>SOD</u>	t. 2,	1973				K///00		
	TOP	S: SU	RFACE IN		cuation	n Gree	5 TOP	76	DATUS	g(msti			M MI	
			PAF	RACHUTE	CREEK		389		-102	5				
			N	IAHOGAN	IY OIL SH	ALE ZON	E	10- ?	716	2-2_				AY
	со	RES	DOU	JGLAS CF	REEK			<u>70 </u>	<u>4±1</u> analvs	25.			<u></u> WE	
		VIS	PERMEA	BILITY	POROS.	POR SATUR	E ATION	ai	reraged		%	GRAV	GRAV. RE'I	s ³⁴ /s ³²
Number	DEPTH	CLASS	BEFORE	AFTER	•'o	OIL.	WATER	TON	% vo!	≌⊊wt_	SULF	011.	OIL	RATIO
550	306 _	II	1.1	35	23.1	73.1	13.0	17.7	17.2	7.2				
551	307	II	2.5	37	16.7	34.7	34.7	6.1	5.9	2.5				
552	308	III	69	214	24.2	43.7	8.7	12.2	10,8	_4.9				
553	309_	III	0.01	440	20.2	69.6	9.8	15.5	14.4	6.3	0.41		21.0	28
554	310_	III	7.0	353	22.1	69.8	16.2	16.5	15.7	6.7				i-
555	311	III	4.9	400	24.3	51.9	16.8	14.1	12.7	5.7				<u> </u>
556	312	III	6.9	235	21.6	53.2	7.9	12.9	11.7	5.2				
557	313 _	III	43	.214	19.4	45.7	15.9	9.7	9.0	3.9				
558	314 _	III	15	200	21.2	54.7	19.7	12.2	11.8	4.9				ļ
559	317 _	II	68	353	22.2	43.2	19.8	10.5	9.7	4.2				
560	318	II	19	35	23.7	22.3	47.7	5.9	5.4	2.4				
561	320	II	0.60	2.5	16.5	45.9	23.0	7.8	7.7	3.2				
562	321	II	113	412	26.5	28.7	27.9	8.6	7.7	3.5	-			
563	322 _	II	275	174	25.5	18.8	42.8	5.4	4.9	2.2				
564	323	Π	200	290	24.0	22.1	62.1	5.9	5.4	2.4				
565	324	II	71	116	20.8	16.3	64.5	3.7	3.5	1.5				
566	325	II	99	182	22.0	15.9	41.2	3.9	3.6	1.6				
567	326	II	_68	107	24.1	20.3	34.8	5.4	5.0	2.2			<u> </u>	
568	404	II	111	119	25.5	16.8	16.8	4.9	4.4	2.0			L	
569	406	I	110	139	26.7	10.8	13.8	3.4	3.0	1.4	-			
570	474	_I	240	252	24.6	7.3	16.7	_2.2	1.9	0.9				
571	415	I	67	64	_26.5	8.3	24.5	25	_2.4	1.0				ļ
572	417	I	568	620	25.8	8.1	42.7	2.5	2.2	1.0			L	
573	418	I	782	782	24.4	3.7	49.6	1.0	0.9	0.4				
574	419	I	685	900	23.3	_3.9	43.8	1.0	0.9	0.4				
575	420	I	_574_	614	_24.3	. 6.2	38.6	7	1.5	0.7				
576	421	I	828	840	24.9	3.4	_34.1	2.5	2.2	1.0			L	1
577	422	<u> </u>	.995	1010	25.2	6.0	28.1	1.7	1.5	_0.7				
578	423	I_	1140	1150	26.5	7.9	28.3	2.5	_2.1	1.0		Ļ		
579	424		920	940	24.4	9.4	31.5	2.7	2.4	1.1				
580	425	I	955	1015	24.9	_9.6	12.4	2.9		1.2				
581	426	I	1030	1145	28.3	8.8	22.9	2.9	2.6	1.1				
582	433	II	113	130	21.2	11.8	35.3	2.7	2.6				 	
583	455	II	89	113	24.1	12.8	49.8	3.4	3.2	1.4				+
584	456	II	55	73	25.5	4	42.8	2.7	2.5	1.1			 	
585	457	_II_	53	68	2.2.5	9.8	22.2	_2.5	2.2	1.0			 	
586	458	II	77	99	24.7	10.5	27.1	2.9	2.7	1.2				ļ
587	459	11	<u>61</u> -		-25.3	-10.3 ⁴	27.2	-2.9	2.7	1.2		ł	lppen	dix B

- d

CORE LABORATORIES, Inc. Casper, Wyoming 82601 AC 307-265-2731

OIL-IMPREGNATED SANDSTONE ANALYSIS RESULTS

.

Page 1

Sample Identi	ification AS PROVIDED (SEE BELOW)		$\frac{11-7-73}{11-7-73}$
OIL-IMPREGNA	TED SANDSTONE FROM DEPOSITS		Chemist <u>Cross</u>
	RR		
P. R. SPRING	$= \frac{V}{V}$		
HILL LICLER			
	SULFUR DET	ERMINATION	
33-1-101	0-37	HC-2-327	0 + 6
PR-3A-40	0.48	HC-3-309	
-53	0.44		0.47
-64	0.42		
PR-3B-120	0.45		
-133	0.42		
-146	0.30		
PR-30-222	0.44		
-235	0.40		
-247	0.42		
PR-3D-376	0.43		
-379	0.48		
	0.40		
F3-4-70 PP_5-150	0.43		
-168	0.58		
-218	0.18		
-225	0.57		
PR-1-176	0.42		
÷242	0.42		
-250	0.16		
PR-2-45	0.46		
-52	0.41		
PR-6-170	0,50		
-176	0.43		
-192	0.48		
-229	0.45		
-339			
PPS-1-12			
_02	0.41		
	0-49		
-200	0.76		
PRS-2-62	0.73		
-76	0.39		
-193	0.43		
PRS-3-25	0.33		
-36	0.35		
HC-1-43	0.37		
- 92	0.34		
-114	0.46		

Appendix B - e These analyses, opinons or interpretations are based on observations and materials supplied by the client to whom, and for whose exclusive and confidential pro-this report is made. The interpretations or oppnions econosised represent the best information of shore tan rationals. Inc. tail errors and confidential pro-

Page ____

Company	-	UTAH	GEOI	LOGICA	L SU	RVEY	
Sample	Ident	tifica	tion	AS PR	OVIDED	(SEE	BELOW)
OIL-IN	1PREG	NATED	SAND	STONE	FROM	DEPOS	5/75
RIM	ROCK	= R1	2				
<i>P.R.</i>	SPRIN	G = F	PREF	<u>78</u>			
HILL	CREEK	$\zeta = h$	IC				

	RETORTED OTT			r.
	SPECIFIC GRAVITY	APIO	SPECIFIC GRAVITY	API
RR-1-101	0.930	20.6	1.026	6.5
PR-3A-40	0.928	21.0	1,015	7.9
-53	0.922	22.0	1.023	6.8
-64	0.918	22.6	1,016	7.8
PR-3B-120	0.917	22.8	1.019	7.4
-133	3 0.928	21.0	1.022	7.0
-146	0.926	21.3	1.018	7.5
PR-3C-222	2 0.920	22.3	1.030	5.9
-235	5 0.924	21.6	1.027	6.3
-247	7 0.927	21.1	1.031	5.8
PR-3D-376	0.932	20.3	1.010	8.6
-379	9 0.939	20.0	1.024	6.7
-383	3 0.940	19.0	1.020	7.2
PR-4-58	0.924	21.6	0.992	11.2
PR-5-159	0.927	21.1	0,982	12.6
-168	0.919	22.5	0.997	10.5
-218	0.927	21.1	1.012	8.4
-225	0.930	20.6	1.018	7.5
PR-1-176	0.935	19.8	0.978	13.1
-242	0.921	22.9	0.994	10.9
-250	0.923	21.8	1.009	8.8
PR-2-45	0.927	21.1	0,974	13.8
-52	0.935	19.8	0.964	15.3
PR-6-170	0.912	23.6	0.973	14.1
-176	0.909	24.2	0.973	14.1
-192	0.919	22.5	0.987	11.6
-229	0.920	22.3	1.029	6.0
-339	0.923	21.8	1.007	9.1
PR-7-30	0.910	24.0	1.001	9.9
PRS-1-42	0.916	23.0	0.999	10.1
-93	0.928	21.0	0.991	11.3
-159	0.937	19.5	0.995	10.6
-200	0.928	21.0	1.010	8.5
PRS-2-62	0.931	20.5	1.007	7.7
-76	0.918	22.6	0.999	10.1
-193	0.935	19.8	0.974	13.8
PRS-3-25	0.922	22.0	1.002	9.7
-86	0.925	21.5	1.002	9.7

Appendix B - f

.

These analyses, opinons or interpretations are based on observations and materials supplied by the client to whom, and for whose exclusive and contributed use, this report is made. The interpretations or opinions expressed represent the best judgment of Core Laboratories, has real errors and omission os e per plan.

File <u>RP-4-2820</u> Date

Chemist KB-RH

CORE LABORATORIES, Inc. Casper, Wyoming 82601 AC 307-265-2731

Page _____

Compar	UTAH GEOLOGICAL SU	URVEY	File <u>RP-4-28</u>			
Sample	Identification <u>TAR SAN</u>		Date <u>Chemist KB-1</u>			
	RETORTED OIL SPECIFIC GRAVITY	API ⁰	EXTRACTED OI SPECIFIC GRAVITY	L API ⁰		
2-1-43	0.925	21.5	1.004	9.4		
-92	0.927	21.1	1.033	5.5		
-114	<u>0</u> .934	20.0	1.017	7.6		
2-2-327	0.921	22.1	0.996	10.5		
2-3-309	0.928	21.0	1.026	6.5		