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ABSTRACT

The Lower Cretaceous section exposed in northeastern Utah 
includes the Cedar Mountain and Dakota Formations. The 
Cedar Mountain Formation consists of fluvial-lacustrine and 
pedogenic carbonate beds and includes important dinosaur 
sites. Its age in northeastern Utah is early to late Albian from 
a radiometric age (detrital U-Pb zircons) of 104.46 ± 0.95 
Ma associated with a well-preserved sauropod skull, che-
mostratigraphic analysis, and palynology in the overlying 
Dakota Formation. Part of the Cedar Mountain Formation 
was deposited during the Kiowa–Skull Creek depositional 
cycle.

The Dakota Formation consists of fluvial sandstone and 
mudstone beds; however, locally it includes a thin interval 
of marine mudstone and shale beds. Dinoflagellate cysts re-
covered from this basal marine interval represent peak sea 
level during the Kiowa–Skull Creek depositional cycle and 
the first marine incursion of the Cretaceous Western Interior 
Seaway into Utah. The age for this event is middle late Al-
bian. Only nonmarine palynomorphs were recovered from 
beds above the marine interval. An ash bed in the middle 
Dakota yielded a U-Pb zircon age of 101.4 ± 0.4 Ma, which 
correlates to the newly defined Muddy-Mowry depositional 
cycle.

The Mowry Shale consists of siliceous marine shale that 
represents widespread open-marine conditions for the area. 
The radiometric age of the Mowry is between 98.5 ± 0.5 Ma 
and 97.2 ± 0.7 Ma (40Ar/39Ar sanidine) from bentonite beds 
in Wyoming. However, the biostratigraphic age is contro-
versial because of downward revision to key neogastroplitid 
ammonite zones, revision of the Albian-Cenomanian bound-
ary age to 99.6 Ma, and recently published palynostrati-
graphic work.

INTRODUCTION

The well-exposed geology of northeastern Utah displays 
classic examples of sedimentological features, varied depo-

sitional environments, and geologic structures. The Creta-
ceous section preserved in the region is no exception (figures 
1 and 2). The focus of our work is on the stratigraphy and 
age of the Cedar Mountain and Dakota Formations. These 
formations represent a transition from nonmarine fluvial-
lacustrine deposition to marine deposition as the advancing 
Western Interior Seaway flooded areas of low relief at peak 
sea level in early late Albian time. 

Interest in the Cedar Mountain and Dakota Formations has 
recently increased because of regional mapping by the Utah 
Geological Survey (Sprinkel, 2006, 2007) and because they 
are significant petroleum reservoirs in the Uinta Basin. Ex-
posures of these formations in and around Dinosaur National 
Monument provide an opportunity to study their reservoir 
characteristics and regional stratigraphic relations (Currie 
and others, 2008). Also of significant interest is the recovery 
of marine microplankton from the basal Dakota Formation 
and recent radiometric data, which provide evidence of the 
timing of the first marine incursion of the Cretaceous West-
ern Interior Seaway into northeastern Utah. Finally, the dis-
covery of the well-preserved sauropod dinosaur skull (Aby-
dosaurus mcintoshi) in the upper Cedar Mountain Formation 
in Dinosaur National Monument (Chure and others, 2010) 
and excavation of an ornithopod dinosaur skeleton have in-
creased the need for refined geologic correlations of Lower 
Cretaceous units throughout Utah. This paper describes the 
local stratigraphy, offers a preliminary interpretation of the 
changes in the depositional environment through time, and 
briefly discusses the significance of the paleogeographic set-
ting of the Lower Cretaceous strata in northeastern Utah. 

STRATIGRAPHY

The Lower Cretaceous section is generally well exposed 
along the south and north flanks of the Uinta Mountains. 
Exposures along the south flank that are in and around Di-
nosaur National Monument form a sinuous outcrop belt that 
wraps around the limbs of Laramide folds associated with the 
Uinta Mountains uplift (figure 2). We measured five sections 
through the Cedar Mountain and Dakota Formations (figure 
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3; appendix A); two of the measured sections are along U.S. 
Highway 191 near Steinaker Reservoir State Park, two are near 
a major pipeline on the nose of Split Mountain anticline, and 
one is located near the Abydosaurus mcintoshi Quarry west of 
the famed Carnegie Quarry in Dinosaur National Monument 
(figure 2). These sections illustrate the stratigraphic succes-
sion as well as lithologies, thicknesses, and contacts for the 
region. In addition, they contain important radiometric, fossil 
vertebrate, and palynologic information. 

Cedar Mountain Formation

The Cedar Mountain Formation is recognized across central 
and eastern Utah. It was first described by Stokes (1944, 1952) 
from exposures on the flanks of its namesake northeast of 
Castle Dale, Utah, for beds of variegated mudstone with inter-
calated sandstone, lacustrine limestone, pedogenic carbonate, 
and a discontinuous basal conglomerate. Calcareous nodules 
and highly polished stones ("gastroliths") are common to the 
Cedar Mountain Formation. Stokes (1944, 1952) divided the 
formation into two members, the basal Buckhorn Conglomer-
ate Member and an informal upper shale member, and this 
basic two-fold subdivision is used in northeastern Utah. Kirk-
land and others (1997) and Kirkland and others (1999) also 

recognized the Buckhorn Conglomerate, but they subdivided 
the rest of the Cedar Mountain Formation into four mem-
bers based on lithostratigraphy and relationships observed 
throughout the outcrop belt on the Colorado Plateau south of 
the Uinta Basin. These members are (in ascending order) the 
Yellow Cat, Poison Strip, Ruby Ranch, and Mussentuchit. The 
lower three were initially assigned tentative ages based on di-
nosaur biostratigraphy: Barremian for the Yellow Cat Mem-
ber in the northern Paradox Basin, Aptian for the Poison Strip 
Member, and Aptian to middle Albian for the Ruby Ranch 
Member. Radiometric dates indicate a latest Albian to earli-
est Cenomanian age for the capping Mussentuchit Member 
(Cifelli and others, 1997; Kirkland and others, 1999; Garrison 
and others, 2007), which preserves a fauna indicating a strong 
affinity with Asia. The relationships of these strata in central 
Utah have been clarified in recent years with the recognition 
that the Yellow Cat Member extends below the interval of ex-
tensive calcretes development (Aubrey, 1998; Ayers, 2004) to 
include a strongly mottled iron-stained interval that also con-
tains common floating chert pebbles and preserves an Early 
Cretaceous dinosaur fauna (Kirkland and Madsen, 2007). In 
addition, the Yellow Cat Member is shown to be correlative, 
at least in part, with the Buckhorn Conglomerate (Greenhal-
gh and Britt, 2007). Some of the member names have been 

Figure 1. Lower Cretaceous strata form a sinuous outcrop belt (dashed line) in the western part of the Dinosaur National Monument area 
along the south flank of the Uinta Mountains.  Five sections were measured through the Cedar Mountain Formation and Dakota Formation.

Dinosaur

      National

           Monument

Lower Cretaceous outcrop

Lower Cretaceous outcrop

ap
pr

ox
im

at
e 

lo
ca

tio
n 

of
 p

ip
el

in
e

40

191

40

40

145

121

149

Red Fleet Reservoir

Steinaker Reservoir

Green River
S

ix M
i le D

raw

Vernal

Jensen

Naples

Dinosaur

C
O

LO
R

A
D

O
U

TA
H

0 2 4 6 8 10 Kilometers

UTAH

Map area

Split Mountain anticline

Strike Valley section

Steinaker Reservoir section

Pipeline Access section

Reef Quarry section

Dinosaur National Monument 
DNM 16 section

109° 30" 110° 00"

109° 30" 110° 00"

40° 30"40° 30"

Figure 1.  Lower Cretaceous strata form a sinuous outcrop belt (dashed line) in the western part of the Dino-
saur National Monument area along the south flank of the Uinta Mountains.  Five sections were measured 
through the Cedar Mountain Formation and Dakota Formation.



3Cedar Mountain and Dakota Formations around Dinosaur National Monument

applied to the Cedar Mountain Formation in the Vernal area 
by Chure and others (2010) although Kirkland and Madsen 
(2007) have refrained from extending this terminology across 
the Uinta Basin in the Vernal area.

Lithologic Description and Thickness

The Cedar Mountain Formation in northeastern Utah predom-
inantly consists of variegated mudstone, siltstone, and clay-
stone in hues of purple, red, green, and gray (figure 3; appen-
dix A). It is generally calcareous, but the base and top of the 
formation are generally noncalcareous. The base of the Cedar 
Mountain is marked by variable lithofacies that range from 
the Buckhorn Conglomerate Member (a chert-pebble con-
glomerate with sandstone lenses) to a mottled, yellow-orange 
chert-pebble mudstone to sandy mudstone, similar to what 
Greenhalgh and Britt (2007) described for the basal Cedar 
Mountain in the Green River and Moab areas. The Buckhorn 
Conglomerate is not present in our measured sections; how-
ever, as much as 30 m of the Buckhorn Conglomerate Mem-
ber forms the base of the Cedar Mountain in the eastern part 
of Dinosaur National Monument (Currie, 1997, 1998). The 
Buckhorn Conglomerate has also been mapped near the west-
ern side of Steinaker Reservoir (Haddox, 2005; Haddox and 
others, 2010). Elsewhere, the base of the Cedar Mountain For-
mation consists of a mudstone interval containing scattered 
chert pebbles generally less than 10 m thick. The interval has 
a persistent limonitic zone above the contact characterized by 
a strong mottled yellow-orange 
color (figures 4 through 7). 
This may represent an extensive 
weathered soil horizon or series 
of soil horizons developed at and 
above the top of the Morrison 
Formation during the early phas-
es of Cedar Mountain deposition 
(Bilbey, 1992). 

Above the basal chert-pebble 
mudstone interval, the Cedar 
Mountain Formation is a mud-
stone and siltstone unit 20 to 55 
m thick with interbedded pedo-
genic carbonate nodules and 
calcrete, discontinuous layers 
of red or white silcrete (chert), 
and discontinuous sandstone 
beds. Calcrete beds at the base 
of the interval are thicker in the 
Steinaker Reservoir and Dino-
saur sections, whereas multiple 
thin calcrete beds and intervals 
of pedogenic carbonate nodules 
are more common in the Strike 
Valley and Reef Quarry sections 
(figure 3; appendix A). This in-
terval typically yields abundant 

carbonate debris that covers the slopes, as well as common, 
highly polished multicolored pebbles, interpreted as "gastro-
liths" (Stokes, 1952), as is typical of the Ruby Ranch Member 
of east-central Utah. The nodules weather to a reddish color 
giving most exposures a similar purplish-gray appearance 
even at a distance. Discontinuous sandstone lenses and beds 
are also part of this unit. Sandstone beds in the upper Cedar 
Mountain Formation at Dinosaur National Monument have 
morphology or bed forms indicative of low-sinuosity anas-
tomosing river systems (Master and others, 2004). The sand-
stone beds are brown, highly calcareous, and cross-bedded, 
and often contain sandy brown concretions and display abun-
dant bioturbation (figure 8). The lowest sandstone is typically 
more massive than the other sandstone beds and usually con-
tains coarse pebbles and rip-up clasts of carbonate at its base; 
this sandstone fines upward and commonly shows polygonal 
structures and spheroidal weathering on bedding surfaces. 
One of the sandstone beds in the upper part of this interval 
from Dinosaur National Monument (appendix A; unit 27 in 
Dinosaur National Monument DNM 16 section) has yielded 
the first complete, well-preserved, Cretaceous sauropod skulls 
to be found in North America (figures. 3, 9), Abydosaurus mc-
intoshi (Chure and others, 2010).

The upper part of the Cedar Mountain Formation in this re-
gion is siltstone and mudstone with some interbedded thin 
sandstone, which is generally calcareous. The uppermost part 
is usually a light gray-brown mudstone, 0 to 20 m thick, char-

Figure 2. The Cretaceous section as exposed at Steinaker Reservoir State Park along U.S. Highway 
191.  The lower part of the Cedar Mountain Formation is exposed along the shore of the reservoir.  
The Dakota Formation is at road level (right side of photograph) and is overlain by the Mowry 
Shale.  The ridge is capped by the Frontier Formation.  View to the east.
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Dakota Formation
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Figure 2.  The Cretaceous section as exposed at Steinaker Reservoir State Park along U.S. Highway 191.  
The lower part of the Cedar Mountain Formation is exposed along the shore of the reservoir.  The Dakota 
Formation is at road level (right side of photograph) and is overlain by the Mowry Shale.  The ridge is 
capped by the Frontier Formation.  View to the east.



U
tah G

eological Survey
4

Figure 3. Graphical representation of the five sections measured through the Cedar Mountain Formation and Dakota Formation showing lithotypes, thicknesses, palynology, and U-Pb zircon 
sample locations.  U-Pb age in Cedar Mountain Formation at DNM 16 section is from Chure and others (2010).
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Figure 3.   Graphical representation of the five sections measured through the Cedar Mountain Formation and Dakota Formation showing lithotypes, 
thicknesses, palynology, and U-Pb zircon sample locations.  U-Pb age in Cedar Mountain Formation at DNM 16 section is from Chure and others (2010).
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Figure 5. Morrison through Frontier Formations as seen from the Strike Valley section.  The yellow iron-rich alteration zone forms the base of the 
Cedar Mountain Formation.  The resistant calcrete bed in the foreground forms the base of the sandy mudstone and calcrete interval.  View to the east.

Morrison Formation

Cedar Mountain Formation

Cedar Mountain Formation

Dakota Formation
Mowry Shale

Frontier Sandstone

Figure 5.  Morrison through Frontier Formations as seen from the Strike Valley section.  The yellow iron-rich altera-
tion zone forms the base of the Cedar Mountain Formation.  The resistant calcrete bed in the foreground forms the 
base of the sandy mudstone and calcrete interval.  View east.  

Figure 4. Strike Valley section. The base of the Cedar Mountain Formation is placed at the base of the sandy mudstone interval below 
the prominent calcrete ledge (in shadow).  The mudstone interval contains chert pebbles and the base commonly forms a yellow iron-rich 
alteration zone.  Note that the calcrete thins to a featheredge to the left.  View to the south.
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Mowry Shale

Figure 4.  Strike Valley section. The base of the Cedar Mountain Formation is placed at the base of the sandy 
mudstone interval below the prominent calcrete ledge (in shadow).  The mudstone interval contains chert pebbles 
and the base commonly forms a yellow iron-rich alteration zone.  Note that the calcrete thins to a featheredge to the 
left.  View south.  
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Figure 6. Steinaker Reservoir section.  Similar to the Strike Valley section, the Cedar Mountain Formation has a basal yellow-orange sandy 
mudstone with scattered chert pebbles, a mudstone and calcrete interval, and a capping light-gray mudstone.  The marine shale beds at the 
base of the Dakota Formation are not preserved in this section.  View to the east.

Morrison Formation

Dakota Formation
Mowry Shale

Frontier Formation

Cedar Mountain
Formation

Figure 6.  Steinaker Reservoir section.  Similar to the Strike Valley section, the Cedar Mountain Formation has a 
basal yellow-orange sandy mudstone with scattered chert pebbles, a mudstone and calcrete interval, and a capping 
light-gray mudstone.  The marine shale beds at the base of the Dakota Formation are not preserved in this section.  
View east.  

Figure 7. Well-exposed section of the Morrison and Cedar Mountain Formations in Six Mile Draw showing the thick yellow alteration zone 
at the base of the Cedar Mountain Formation.  Also seen are several resistant calcrete beds (yellow arrow) that are part of the mudstone and 
calcrete interval.  View to the northeast.

Morrison Formation

Cedar Mountain Formation

Figure 7.  Well-exposed section of the Morrison and Cedar Mountain Formations in Six Mile Draw showing 
the thick yellow alteration zone at the base of the Cedar Mountain Formation.  Also seen are several resis-
tant calcrete beds (yellow arrow) that are part of the mudstone and calcrete interval.  View northeast.
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acterized by a deeply weathered “popcorn” appearance and 
scattered gypsum crystals. This interval is reminiscent of the 
Mussentuchit Member of the Cedar Mountain Formation of 
the western San Rafael Swell, but is not as purely smectitic 
(there are bentonite mines near the type section) and does pre-
serve abundant organic matter that yielded the diverse palyno-
flora described by Tschudy and others (1984) from the west-
ern San Rafael Swell. As noted below in the "Discussion" sec-
tion, it is not the same age, based on radiometric ages obtained 
from ashes in the Mussentuchit on the San Rafael Swell (Cife-
lli and others, 1999; Garrison and others, 2007). The top of the 
Cedar Mountain Formation in northeastern Utah may include 
bleached beds. The Ruby Ranch Member of the Cedar Moun-
tain Formation in east-central Utah also exhibits bleaching in 
its type area where directly overlain by the Dakota Formation 
(Kirkland and others, 1997; Kirkland and others, 1999). 

The total thickness of the Cedar Mountain Formation varies 
from 70 m in Dinosaur National Monument to 21 m and 39 
m in the sections along U.S. Highway 191. Thinning of the 
Cedar Mountain may be due to subtle paleotopography de-
veloped on the underlying Morrison Formation, augmented 
by scouring the top of the Cedar Mountain by the overlying 
Dakota Formation (Currie, 1997; Currie and others, 2008).

Stratigraphic Contacts

The contact between the Morrison and Cedar Mountain For-
mations is somewhat subtle, especially where the Buckhorn 
Conglomerate Member is missing, because both formations 

tend to weather deeply, covering 
the contact with debris. Thus, 
trenching the section is the best 
means to locate the contact. The 
contact between the Morrison 
and Cedar Mountain Formations 
is unconformable. In the eastern 
part of Dinosaur National Monu-
ment the Buckhorn Conglomer-
ate was deposited in paleoval-
leys scoured into the underlying 
Morrison (Currie, 1997, 1998). 
Where the Buckhorn is miss-
ing, we place the contact at the 
base of a mottled, yellow-orange 
chert-pebble mudstone that un-
derlies the prominent calcrete 
zone (figures 4 through 7). We 
believe the yellow-orange-red 
chert-pebble mudstone in north-
eastern Utah is similar to the 
mottled, yellow-orange chert-
pebble mudstone in the Green 
River and Moab areas of Utah, 
where Cretaceous dinosaurs 
have been recovered from this 
unit at several sites across east-
central Utah. Evidence that sup-
ports the partial equivalence of 
the Buckhorn Conglomerate and 

Figure 8. Trace fossils formed mostly by burrowing organisms in 
one of the sandstone beds of the Cedar Mountain Formation.  Pick 
handle (about 40 cm) shown for scale.  Photograph taken along the 
east shore of Steinaker Reservoir.

Figure 8.  Trace fossils formed mostly by burrowing 
organisms in one of the sandstone beds of the Cedar 
Mountain Formation.  Pick handle (about 40 cm) shown 
for scale.  Photograph taken along the east shore of 
Steinaker Reservoir.

Figure 9. Dinosaur National Monument DNM16 section. The steeply dipping Lower Cretaceous 
strata provide exposures typical of the Cedar Mountain and Dakota Formations.  A newly named 
sauropod skull, Abydosaurus mcintoshi, was extracted from a sandstone bed in the upper part of the 
Cedar Mountain Formation (at about the yellow arrow).  Three detrital zircons (of 63 total), also 
obtained from the skull bed, yielded a U-Pb age of 104.46 ± 0.95 Ma that indicates the Abydosaurus 
mcintoshi skull bed is no older than middle Albian (Chure and others, 2010).  View to the west.
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Figure 9.  Dinosaur National Monument DNM16 section. The steeply dipping Lower Cretaceous strata provide 
exposures typical of the Cedar Mountain and Dakota Formations.  A newly named sauropod skull, Abydosaurus 
mcintoshi, was extracted from a sandstone bed in the upper part of the Cedar Mountain Formation (at about the 
yellow arrow).  Three detrital zircons (of 63 total), also obtained from the skull bed, yielded a U-Pb age of 104.46 ± 
0.95 Ma that indicates the Abydosaurus mcintoshi skull bed is no older than middle Albian (Chure and others, 
2010).  View west.  
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Yellow Cat Member are equivalents include: (1) the recogni-
tion that the Buckhorn Conglomerate laterally grades into a 
sandy lithofacies of the Yellow Cat west of Hanksville, Utah, 
and (2) lenses of pebbles and cobbles of a Buckhorn char-
acter in a mudstone matrix occur in the lower Yellow Cat at 
the western limits of its outcrop south of Green River, Utah 
(Greenhalgh and Britt, 2007; Kirkland, 2007; Kirkland and 
Madsen, 2007). In addition in the Vernal area, the mudstone 
beds below our proposed contact are medium-greenish-gray 
to purplish-gray to somewhat mottled yellow and smectitic, 
typical of the Brushy Basin Member of the Morrison Forma-
tion, and the mudstone beds above our contact are non-smec-
titic and grade upward to a pedogenic carbonate-rich interval 
typical of the Cedar Mountain Formation. For mapping pur-
poses, the base of the yellow-orange chert-pebble mudstone 
seems like a reasonable operational definition of the contact 
between the Morrison and Cedar Mountain Formations, espe-
cially where the Buckhorn Conglomerate is missing.

Locally, a brittle, light-gray, siliceous siltstone bed (porcel-
lanite) marks the top of the Morrison Formation (figures 3 
and 10). We initially interpreted this bed as an altered volca-
nic ash, but all of the recovered zircon grains were detrital, 

well rounded, and only a few tens of microns across (Paul 
O'Sullivan, Apatite to Zircon, Inc., 2010, personal commu-
nication). Laser ablation dating of the zircon grains revealed 
a population of grains with an age of 153.05 ± 3.69 Ma at ± 
2 sigma (appendices B and C), which suggests that these are 
reworked grains from the Upper Jurassic Morrison Formation 
(Kowallis and others, 1998). In addition to the zircon grains 
that are consistent with Morrison Formation, a large number 
of grains are Precambrian in age, which in total represent a 
typical spectrum of zircon ages found in coarser clastic sedi-
ments in the Morrison Formation (Dickinson and Gehrels, 
2008; Hunt and others, 2011). 

Age

The age of the Cedar Mountain Formation in central and south-
ern Utah is considered Barremian(?) to earliest Cenomanian 
based on dinosaur biostratigraphy (similar to the Wealden di-
nosaur fauna on the Isle of Wight in southern Britain) and ra-
diometric data (Kirkland and others, 1997; Kirkland and others, 
1999; Martill and Naish, 2001; Kirkland and Madsen, 2007; 
Ward and others, 2007; Biek and others, 2010). The age of 
the Cedar Mountain Formation exposed in northeastern Utah 

is poorly constrained. Three de-
trital zircons (of 63 total), dated 
at 104.46 ± 0.95 Ma using U-Pb 
analysis, indicate that the Abydo-
saurus mcintoshi skull bed is no 
older than middle Albian at Dino-
saur National Monument (Chure 
and others, 2010); however, Kirk-
land and others (1997) have noted 
the Cedar Mountain Formation in 
central Utah is older. In addition, 
Burton and others (2006) and 
Britt and others (2007) reported 
U-Pb detrital zircon ages ranging 
from 124 to 109 Ma (early Ap-
tian to middle Albian) collected 
at various stratigraphic horizons 
from other Cedar Mountain sec-
tions in central Utah. Additional 
evidence for the age comes from 
recent chemostratigraphic work 
measuring excursions of carbon 
isotopic ratios from paleosols in 
the Cedar Mountain Formation; 
this new technique may have 
great utility for dating calcare-
ous intervals where materials 
used for other dating techniques 
are lacking (Ludvigson and oth-
ers, 2010a). Smith and others 
(2001), Ludvigson and others 
(2003b), and Kirkland and others 
(2003) provide evidence for link-
ing these excursions with known 

Figure 10. Reef Quarry section. The yellow dashed line shows the approximate traverse of the 
measured section.  The solid yellow line is the contact between the Morrison and Cedar Mountain 
Formations.  The upper part of the Cedar Mountain Formation is light-gray-brown mudstone, and 
contained an ornithopod dinosaur skeleton that was completely excavated and fully reclaimed.  
Zircons were extracted from a bentonitic bed within the Dakota Formation; 44 of 50 grains yielded 
U-Pb ages between 96-109 Ma, and 21 grains yielded ages between 100 and 104 Ma, giving a final 
age of 101.4 ± 0.4 Ma at ± 2 sigma.  The Cedar Mountain Formation rests on a hard, brittle siltstone 
bed (porcellanite) containing zircons with spectra common to the Morrison Formation.  The yellow 
arrow points to Jim Kirkland standing on brittle siltstone bed for scale.  View to the north.

Morrison Formation

Cedar Mountain Formation

Dakota Formation

Mowry Shale

Figure 10.  Reef Quarry section. The yellow dashed line shows the approximate traverse of the measured section.  
The solid yellow line is the contact between the Morrison and Cedar Mountain Formations.  The upper part of the 
Cedar Mountain Formation is light-gray-brown mudstone, and contained an ornithopod dinosaur skeleton that was 
completely excavated and fully reclaimed.  Zircons were extracted from a bentonitic bed within the Dakota Forma-
tion; 44 of 50 grains yielded U-Pb ages between 96-109 Ma, and 21 grains yielded ages between 100 and 104 Ma, 
giving a final age of 101.4 ± 0.4 Ma at ± 2 sigma.  The Cedar Mountain Formation rests on a hard, brittle siltstone 
bed (porcellanite) containing zircons with spectra common to the Morrison Formation.  The yellow arrow points to 
Jim Kirkland standing on brittle siltstone bed for scale.  View north.  
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marine carbon isotope records, based in part on work done in  
Dinosaur National Monument. Chemostratigraphic evidence 
from the section containing the Abydosaurus mcintoshi skull 
bed in the monument suggests this horizon is early Albian age 
(Kirkland and others, 2003; Ludvigson and others, 2003a), in 
contrast to the middle Albian zircon age. A nearly 20-m-thick 
mudstone separates this horizon from the lowest Dakota Forma-
tion. A recently excavated ornithopod dinosaur skeleton from 
higher up section at the Reef Quarry section is currently under 
study; it may be of future use in correlating these strata with 
other Lower Cretaceous deposits yielding similar dinosaurs 
elsewhere in North America. The late Albian age of the upper 
Cedar Mountain Formation is constrained by a U-Pb zircon age 
of 101.4 ± 0.4 Ma and middle to late Albian palynomorphs ob-
tained from the overlying basal Dakota Formation (see age of 
Dakota Formation below and appendices D to F). 

Dakota Formation

The Dakota Formation is widely distributed throughout the 
eastern half of Utah. It was first named as the Dakota Group 
by Meek and Hayden (1862) for outcrops in Nebraska. Since 
then, the Dakota has been extensively studied in the Rocky 
Mountain region in which it has undergone a colorful history of 
nomenclature changes (see MacLachlan and others, 1996; U.S. 
Geological Survey, undated). Of note, Young (1960) referred 

to this interval on the Colorado 
Plateau as the Naturita Forma-
tion. Naturita has generally not 
been an accepted name for this 
section of rocks on the Colorado 
Plateau; only recently has Natu-
rita Formation been reapplied to 
these strata (Carpenter and oth-
ers, 2008). We use Dakota For-
mation for the strata that overlie 
the Cedar Mountain Formation 
and underlie the Mowry Shale 
in northeastern Utah. The term 
Dakota Sandstone has been for-
mally used in geologic maps 
and reports in the eastern Uinta 
Mountains (Hansen, 1965; Han-
sen and others, 1983; Sprinkel, 
2006, 2007); however, we revise 
the descriptive term to formation 
to reflect the lithologic heteroge-
neity of the Dakota in this region 
and to be consistent with usage 
elsewhere in Utah.

The Dakota Formation is com-
posed of medium to coarse-
grained sandstone, conglomer-
ate, carbonaceous mudstone and 
shale, and coal. Sandstone and 
mudstone (including shale) are 

the dominant lithologies and their percentages are about equal. 
The amount of sandstone in the formation ranges from as little 
as 25% to as much as 75%, and averages a little less than 50%. 
The amount of mudstone and shale also ranges from about 25% 
to 75%, with an average being a little more than 50%.

Typically, the Dakota Formation along the flanks of the Uinta 
Mountains consists of lower and upper light-colored and cross-
bedded sandstone ledges separated by dark-colored carbona-
ceous mudstone and shale. Hansen (1965) described this three-
fold division of the Dakota south of the Wyoming border in the 
vicinity east of Lucerne Valley; additionally he pointed out that 
the lower sandstone is locally missing. We also recognize this 
general threefold division in the Dinosaur National Monument 
area (figure 11), but we have also included within the Dakota 
Formation a mudstone and shale unit that, in places, separates 
the typical base of the Dakota from the typical top of the Ce-
dar Mountain Formation. We consider this mudstone and shale 
unit as the base of the Dakota Formation because of its overall 
lithology and palynomorph assemblage.

Lithologic Description and Thickness

A mudstone and shale unit forms the base of the Dakota For-
mation in many places, and consists of carbonaceous mud-
stone with sandstone stringers capped by shale. The carbo-

Figure 11. The Dakota Formation commonly consists of a basal sandstone, a middle carbonaceous 
mudstone, and an upper sandstone; a marine mudstone and shale locally underlies the basal 
sandstone.  In some places, the lower sandstone may also be missing or covered by debris.  The 
lowermost marine mudstone and shale unit of the Dakota is not preserved at this location.  The 
upper prominent sandstone unit is always preserved.  Photograph taken along U.S. Highway 191 
near Steinaker Reservoir.  View to the southeast.
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Figure 11.  The Dakota Formation commonly consists of a basal sandstone, a middle carbonaceous mudstone, and 
an upper sandstone; a marine mudstone and shale locally underlies the basal sandstone.  In some places, the lower 
sandstone may also be missing or covered by debris.  The lowermost marine mudstone and shale unit of the Dakota 
is not preserved at this location.  The upper prominent sandstone unit is always preserved.  Photograph taken along 
U.S. Highway 191 near Steinaker Reservoir.  View to the southeast.
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naceous mudstone layers are black and organic rich. The top 
of the unit is dark-gray, siliceous, fissile shale. This unit is 
important because it contains an assemblage of dinoflagellate 
cysts that indicate a marine to marginal marine environment 
of middle to late Albian age (table 1). The mudstone and shale 
unit varies from 0 to as much as 6 meters thick and is overlain 
by the lower sandstone unit. 

The lower sandstone unit is yellow gray to white, coarse 
grained, pebbly to very fine grained, upward fining, well sort-
ed, and cross-bedded. In most places, the lower sandstone is 
a single lens-like bed that is typically less than 2 m thick and 
tends to weather out into blocks. In some places, the lower 
sandstone is missing or covered by debris from the overlying 
carbonaceous mudstone unit.  

The middle carbonaceous mudstone unit is dark-gray, organ-
ic-rich, earthy mudstone with minor fine-grained sandstone 
beds and coal that forms slopes. Petrified wood and carbon-
ized logs are common in this lowest part of the unit. This unit 
varies in thickness from a few meters to as much as 20 m. 
The dark-gray carbonaceous mudstone unit may rest on thin 
marine shale beds of the basal mudstone and shale unit where 
the lower sandstone is not preserved, or on the Cedar Moun-
tain Formation where the lower two units are not preserved 
(figure 12).

The top of the Dakota Forma-
tion is the upper sandstone unit, 
which regionally forms a con-
tinuous and prominent ledge 
that is 5 to 28 m thick. The up-
per sandstone is similar to the 
lower sandstone beds but can be 
finer grained. At the Reef Quarry 
section (appendix A, figure 3) a 
pebble conglomerate bed caps 
the Dakota Formation. Around 
Dinosaur National Monument, 
the upper surface of this ledge is 
usually quite smooth and exhib-
its a distinct rusty orange color.

The total thickness of the Dakota 
Formation ranges from 24 to 53 
m. Thickness variation is likely 
the result of deposition on the 
paleotopography developed on 
the Cedar Mountain Formation.

Stratigraphic Contacts 

A close examination of the Ce-
dar Mountain and Dakota For-
mations in the northeastern Utah 
outcrop belt revealed the contact 

between them is complex. The contact may be at the base of 
the newly recognized basal marine to marginal marine mud-
stone and shale unit, the lower sandstone unit, or the carbona-
ceous mudstone unit depending on which of the lower three 
units overlies the Cedar Mountain Formation. In each case, 
the contact separates the typical variegated beds of the Ce-
dar Mountain Formation from organic-rich mudstone or shale 
beds or a yellow-gray to white coarse-grained sandstone of 
the Dakota Formation. 

Age

The Dakota Formation yields middle to late Albian palyno-
flora in northeastern Utah. We established this age from sam-
ples SV082200-2 (Strike Valley section), and PA060806-1, 
PA060806-2, and PA060806-3 (Pipeline Access section) col-
lected in the basal mudstone and shale unit, and from samples 
SKM-1 to SKM-7 (Strike Valley section) collected in the car-
bonaceous shale unit (figure 3). We recovered a diverse as-
semblage of spores, pollen, and marine dinoflagellate cysts 
(table 1; appendices E and F). The taxa that best help to define 
the age are Rugubivesiculites rugosus (appendix F, number 
25), which does not range below the late Albian, and Aptea 
polymorpha (appendix E, number 18), Ovoidinium scabro-
sum (appendix E, number 6) and O. verrucosum (appendix E, 
number 7), which do not range above the late Albian. Our taxa 
that define the age of the Dakota Formation in northeastern 

Figure 12. Contact (white arrow) between the Cedar Mountain Formation and overlying Dakota 
Formation.  Here, the carbonaceous mudstone unit of the Dakota Formation unconformably lies on 
the Cedar Mountain Formation; the lower two units (mudstone and shale unit and lower sandstone 
unit) of the Dakota Formation are not preserved.  Photograph taken near Island Park in Dinosaur 
National Monument.  View to the south.

Dakota Formation

Cedar Mountain Formation

Figure 12.  Contact (white arrow) between the Cedar Mountain Formation and overlying Dakota Formation.  Here, 
the carbonaceous mudstone unit of the Dakota Formation unconformably lies on the Cedar Mountain Formation; the 
lower two units (mudstone and shale unit and lower sandstone unit) of the Dakota Formation are not preserved.  
Photograph taken near Island Park in Dinosaur National Monument.  View to the south.
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Table 1.  Palynomorph species recovered from the Dakota Formation, northeastern Utah.
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Bold - tops (extinctions) are Late Albian R = Rare, less than 6 specimens/slide
Red - species that do not range below the Late Albian F = Frequent, 6 to 15 specimens/slide

C = Common, 16 to 30 specimens/slide
A = Abundant, over 30 specimens/slide

SPORES AND POLLEN MICROPLANKTON

Early Late Albian 
to Middle Albian

Late Albian
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Utah are similar to taxa described from the Dakota Forma-
tion and equivalents elsewhere in the Western Interior (Oboh-
Ikuenobe and others, 2007; Ludvigson and others, 2010b). 
We also report a new radiometric age from a thick volcanic 
ash (bentonite) in the middle carbonaceous interval. Extracted 
zircons yielded 44 of 50 grains with U-Pb ages between 96 to 
109 Ma, and 21 grains with ages between 100 and 104 Ma, 
giving a final age of 101.4 ± 0.4 Ma at ± 2 sigma (appendices 
B and D). This radiometric age is compatible with the late 
Albian age for this interval indicated by palynomorphs.

To the south, the Dakota Formation is Cenomanian based on 
the contained molluscan assemblage (Eaton and others, 1990; 
Cobban and others, 2006), radiometric ages (Cifelli and oth-
ers, 1997; Dyman and others, 2002; Kirschbaum and Schenk, 
2010), and palynology (Agasie, 1969; am Ende, 1991; Mole-
naar and Cobban, 1991).

Mowry Shale

The Mowry Shale is widely distributed in the northern and 
central Rocky Mountain region but is restricted to the north-
eastern part of Utah (Byers and Larson, 1979; Molenaar and 
Cobban, 1991; Ryer, 1993). It was first named by Darton 
(1904) as the Mowrie beds, a member of the Benton Forma-
tion exposed along Mowrie Creek (original spelling) in John-
son County, Wyoming; the spelling was changed to Mowry 
in 1906 (see Wilmarth, 1957). Since then, this formation has 
been extensively studied and undergone numerous revisions 
(see MacLachlan and others, 1996; U.S. Geological Survey, 
undated).

The Mowry Shale along the south flank of the Uinta Moun-
tains is an easily recognizable formation because it forms 
silver-gray outcrops that support little vegetation (figures 1, 
9, and 11). The Mowry is composed of siliceous shale that 
contains abundant fossilized scales, bones of teleost fish iden-
tified as belonging to the Beryciformes and Aleposaurids (Bil-
bey and Hamblin, 1992), and shark teeth (Carcharias amo-
nensis, Anderson and Kowallis, 2005) in the lower half of the 
formation. Stewart (1996) described several specimens of the 
sphenocephalid teleost fish Xenyllion zonensis from the Neo-
gastroplites americanus ammonite zone from in and around 
Dinosaur National Monument. 

The radiometric age of the Mowry Shale is well constrained 
from 40Ar/39Ar sanidine ages obtained from bentonite beds 
that bracket the Mowry in Wyoming; the basal Arrow Creek 
Bentonite is 98.5 ± 0.5 Ma and the capping Clay Spur Ben-
tonite is 97.2 ± 0.7 Ma (Obradovich, 1993). However, the 
biostratigraphic age of Mowry Shale is controversial be-
cause of the continued adjustment to the age of the Albian-
Cenomanian boundary based on a shift in ammonite zones 
associated with new radiometric ages from Japan, and the 
discrepancy between Western Interior endemic ammonite 
zones and cosmopolitan dinoflagellates used to correlate to 

European reference sections (Cobban and Kennedy, 1989; 
Obradovich, 1993; Gale and others, 1996; Obradovich and 
others, 2002; Oboh-Ikuenobe and others, 2007; Scott, 2007; 
Ogg and others, 2008). The Mowry was originally treated as 
Early Cretaceous (late Albian) in age based on regional work 
(Cobban and Reeside, 1951; Reeside and Cobban, 1960; An-
tweiler and others, 1989; Tysdal and others, 1989). However, 
Cobban and Kennedy (1989) recommended a downward shift 
of the Albian-Cenomanian boundary from the top of the five 
neogastroplitid zones to the top of the second zone, thus the 
making the Mowry Late Cretaceous (Cenomanian) in age 
(Obradovich, 1993). Numerous researchers (Oboh-Ikuenobe 
and others, 2007; Scott, 2007; Scott and others, 2009) have 
challenged their recommendation and made a case, supported 
by the regional correlation of cosmopolitan dinoflagellates, 
for the Mowry to remain Albian in age.

DISCUSSION

The Cedar Mountain Formation in northeastern Utah consists 
of the basal Buckhorn Conglomerate Member or a basal inter-
val of mottled, yellow-orange mudstone with scattered chert 
pebbles, overlain by a carbonate-rich mudstone that grades 
upward into a capping noncalcareous mudstone. The basal 
mottled chert-pebble mudstone beds may represent soil de-
velopment on floodplain deposits and likely grade laterally 
to the Buckhorn Conglomerate Member, as has been demon-
strated with the Yellow Cat–Buckhorn Members in central 
Utah (Greenhalgh and Britt, 2007). The bulk of strata exhib-
ited in our sections of the Cedar Mountain Formation best fit 
the Ruby Ranch Member. The Ruby Ranch Member in its 
type area (between Crescent Junction and Green River, Utah) 
is typically drab green and mauve variegated slope-forming 
mudstone whose most conspicuous features are numerous 
carbonate nodules that cover the surface and ribbon sandstone 
lenses (Kirkland and others, 1997; Ludvigson and others, 
2010a). 

The uppermost part of the Cedar Mountain in northeastern 
Utah is reminiscent of the Mussentuchit Member of the Ce-
dar Mountain Formation of the western San Rafael Swell, but 
radiometric data, dinosaur biostratigraphy, and palynomorph 
assemblages from sections in central Utah indicate these beds 
are not time equivalent (Tschudy and others, 1984; Cifelli and 
others, 1997; Kirkland and others, 1997; Kirkland and others, 
1999; Sprinkel and others, 1999; Garrison and others, 2007; 
Kirkland and Madsen, 2007). Radiometric (40Ar/39Ar sani-
dine) ages obtained from the lower part of the Mussentuchit 
Member of the Cedar Mountain Formation on the San Rafael 
Swell are 98.37 ± 0.07 Ma (Cifelli and others, 1997; 1999) 
and 98.5 ± 0.06 Ma (Garrison and others, 2007). These ages 
are similar to the radiometric age of the Arrow Creek Benton-
ite (Obradovich, 1993). A radiometric (40Ar/39Ar sanidine) age 
of 97.2 ± 0.06 Ma was obtained from near the top of the Mus-
sentuchit Member (Garrison and others, 2007) and is similar 
to the age of the Clay Spur Bentonite (Obradovich, 1993). 
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Thus, these dates indicate that the Mussentuchit Member in 
its type area on the southwest side of the San Rafael Swell is 
equivalent to the Mowry Shale in Wyoming. In addition, the 
discontinuous conglomerate that separates the Mussentuchit 
from the underlying Ruby Ranch member along the west side 
of the San Rafael Swell (Kirkland and Madsen, 2007; Lawton 
and others, 2010; Paul Kuehne, Utah Geological Survey, 2010 
written communication) may correlate with the Dakota For-
mation in northeastern Utah, based on late Albian radiometric 
age and palynomorph assemblage reported here.

Currently, we believe it is unwarranted to use the member 
names of the Cedar Mountain Formation defined by Kirkland 
and others (1997) and Kirkland and others (1999) in central 
Utah for the Cedar Mountain Formation in northeastern Utah 
because not all members may be represented. However, if 
the relationship between the Buckhorn Conglomerate Mem-
ber and the basal mottled chert-pebble mudstone unit can be 
demonstrated in northeastern Utah, as Greenlaugh and Britt 
(2007) have shown for the Buckhorn Conglomerate and Yel-
low Cat Members in central Utah, perhaps the terms Yellow 
Cat and Ruby Ranch Members can both be applied to the Ce-
dar Mountain Formation in northeastern Utah. If those terms 
are used, we believe the Mussentuchit Member should not be 
applied to the uppermost part of the Cedar Mountain Forma-
tion in northeastern Utah because the Mussentuchit in central 
Utah is time equivalent to the Mowry Shale in northeast Utah.

The initial transgression of the Cretaceous Western Interior 
Seaway in the Rocky Mountain region is recorded in Albian-
age marine strata, and the transgressive shoreline approached 
and possibly encroached into the northeastern corner of Utah 
by late Albian (Weimer, 1984; Ryer, 1993; Cobban and others, 
1994; Dickinson, 2006). Our palynomorph assemblage from 
the Dakota Formation (table 1) is similar to the assemblage 
from the Thermopolis Formation of central and southern Wy-
oming, and the Dakota Formation of Kansas, Nebraska, and 
Iowa (Oboh-Ikuenobe and others, 2007; Scott, 2007; Scott 
and others, 2009; Ludvigson and others, 2010b). The middle 
to late Albian microplankton recovered from the dark-gray, 
organic-rich shale in the basal Dakota Formation and the ir-
regular thickness of this interval indicate the initial marine in-
cursion into northeastern Utah was likely restricted to incised 
valleys and other low-lying areas, similar to the Dakota For-
mation found elsewhere along the Western Interior Seaway 
(Ludvigson and others, 2010b).

The middle Cretaceous within the Western Interior basin in-
cludes the Kiowa–Skull Creek marine depositional cycle (Al-
bian) and Greenhorn marine depositional cycle (Cenomanian) 
(Brenner and others, 2000). Recently, Ludvigson and others 
(2010b) proposed a new Muddy-Mowry depositional cycle 
that separates the Kiowa–Skull Creek and Greenhorn cycles. 
The Cedar Mountain Formation in northeastern Utah is, in 
part, the landward time-equivalent of the Kiowa–Skull Creek 
cycle (figure 13). The basal dinoflagellate-bearing mudstone 
and shale unit of the Dakota Formation represents peak sea 

level during the Kiowa–Skull Creek cycle and the initial ma-
rine incursion into northeastern Utah (figure 13). The over-
lying non-marine part of the Dakota Formation and marine 
Mowry Shale represent the newly recognized Muddy-Mowry 
cycle (figure 13). Marine environments did not transgress into 
central Utah until the late Cenomanian (Elder and Kirkland, 
1993; Cobban and others, 1994; Elder and Kirkland, 1994).

CONCLUSIONS

The Lower Cretaceous section exposed in northeastern Utah 
includes the Cedar Mountain and Dakota Formations. The 
Cedar Mountain Formation consists of fluvial-lacustrine and 
pedogenic carbonate beds and includes important dinosaur 
sites. The basal mottled chert-pebble mudstone beds may 
represent soil development on floodplain deposits and likely 
grade laterally to the Buckhorn Conglomerate Member, as has 
been demonstrated with the Yellow Cat–Buckhorn Members 
in central Utah (Greenhalgh and Britt, 2007). The bulk of 
strata exhibited in our sections of the Cedar Mountain Forma-
tion best fit the Ruby Ranch Member. The uppermost part of 
the Cedar Mountain in northeastern Utah is reminiscent of the 
Mussentuchit Member of the Cedar Mountain Formation of 
the western San Rafael Swell, but radiometric data, dinosaur 
biostratigraphy, and palynomorph assemblages from sections 
in central Utah indicate these beds are not time equivalent 
(Tschudy and others, 1984; Cifelli and others, 1997; Kirkland 
and others, 1997; Kirkland and others, 1999; Sprinkel and 
others, 1999; Garrison and others, 2007; Kirkland and Mad-
sen, 2007). 

The age of the Cedar Mountain Formation in northeastern 
Utah is early to late Albian from a radiometric age (detrital 
U-Pb zircons) of 104.46 ± 0.95 Ma associated with a well-pre-
served sauropod skull, chemostratigraphic analysis, and paly-
nology in the overlying Dakota Formation. Part of the Cedar 
Mountain Formation was deposited during the Kiowa–Skull 
Creek depositional cycle.

The Dakota Formation along the flanks of the Uinta Mountains 
typically consists of lower and upper light-colored and cross-
bedded sandstone ledges separated by dark-colored carbona-
ceous mudstone and shale. The sandstone and mudstone beds 
are nonmarine; however, locally the basal Dakota Sandstone 
includes a thin interval of marine mudstone and shale beds. 
Our palynomorph assemblage recovered from the basal Dakota 
Formation is similar to the assemblage from the Thermopolis 
Formation of central and southern Wyoming, and the Dakota 
Formation of Kansas, Nebraska, and Iowa (Oboh-Ikuenobe and 
others, 2007; Scott, 2007; Scott and others, 2009; Ludvigson 
and others, 2010b). The irregular thickness of this interval in-
dicates that the initial marine incursion into northeastern Utah 
was likely restricted to incised valleys and other low-lying ar-
eas, similar to the Dakota Formation found elsewhere along the 
Western Interior Seaway (Ludvigson and others, 2010b). 
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Figure 13. Correlation chart of Cretaceous formations from the San Rafael Swell in central Utah to southwest Wyoming and associated 
marine depositional cycles.  The paleogeographic map shows the Western Interior Seaway in late Albian time at peak sea level at the end of 
the Kiowa–Skull Creek marine cycle.  The approximate position of the stratigraphic columns A–D is shown on the map, which is modified 
from Cobban and others (1994) and Dickinson (2006).

Sprinkel et al., Fig13_paleomap.ai (jpg)
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Dinoflagellate cysts recovered from this basal marine interval 
represent peak sea level during the Kiowa–Skull Creek depo-
sitional cycle and the first marine incursion of the Cretaceous 
Western Interior Seaway into Utah. The age for this event is 
middle late Albian. An ash bed in the middle Dakota yielded 
a U-Pb zircon age of 101.4 ± 0.4 Ma, which correlates to the 
newly defined Muddy-Mowry depositional cycle.

The Mowry Shale consists of siliceous marine shale that rep-
resents widespread open-marine conditions for the area. The 
radiometric age of the Mowry is between 98.5 ± 0.5 Ma and 
97.2 ± 0.7 Ma (40Ar/39Ar sanidine) from bentonite beds in 
Wyoming. However, the biostratigraphic age is controversial 
because of downward revision to key neogastroplitid ammo-
nite zones, revision of the Albian-Cenomanian boundary age 
to 99.6 Ma, and recently published palynostratigraphic work.
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APPENDICES

Appendix A. Measured sections

•	 on CD: Sprinkel-etal_CedarMtn-Dakota_Appendix A.pdf
•	 online: geology.utah.gov/online/ss/ss-143/ss-143appx_a.pdf

Appendix B. Detrital zircon U-Pb report on UPbICP and Related Excel Workbooks: 
Software for Calculating U-Pb Zircon Ages and Presenting U-Pb Data Obtained by 
LA-ICP-MS

•	 on CD: Sprinkel-etal_CedarMtn-Dakota_Appendix B-UPbICP Report.pdf
•	 online: geology.utah.gov/online/ss/ss-143/ss-143appx_b.pdf

Appendix C. Detrital zircon U-Pb data for the Cedar Mountain Formation

•	 on CD: Sprinkel-etal_CedarMtn-Dakota_Appendix C-CedarMtn UPbICP Data_1131-02.xls
•	 on CD: Sprinkel-etal_CedarMtn-Dakota_Appendix C-CedarMtn UPbICP Data_1131-02.pdf
•	 online: geology.utah.gov/online/ss/ss-143/ss-143appx_c.xls

Appendix D. Detrital zircon U-Pb data for the Dakota Formation

•	 on CD: Sprinkel-etal_CedarMtn-Dakota_Appendix D-Dakota UPbICP-Data_1131-01.xls
•	 on CD: Sprinkel-etal_CedarMtn-Dakota_Appendix D-Dakota UPbICP Data_1131-01.pdf
•	 online: geology.utah.gov/online/ss/ss-143/ss-143appx_d.xls

Appendix E. Photomicrographs and plate descriptions of key marine microplankton 
from the Dakota Formation.

•	 on CD: Sprinkel-etal_CedarMtn-Dakota_Appendix E.pdf
•	 online: geology.utah.gov/online/ss/ss-143/ss-143appx_e.pdf

Appendix F. Photomicrographs and plate descriptions of key spores and pollen from 
the Dakota Formation.

•	 on CD: Sprinkel-etal_CedarMtn-Dakota_Appendix F.pdf
•	 online: geology.utah.gov/online/ss/ss-143/ss-143appx_f.pdf
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	Figure 1. Lower Cretaceous strata form a sinuous outcrop belt (dashed line) in the western part of the Dinosaur National Monument area along the south flank of the Uinta Mountains.  Five sections were measured through the Cedar Mountain Formation and Dako
	Figure 2. The Cretaceous section as exposed at Steinaker Reservoir State Park along U.S. Highway 191.  The lower part of the Cedar Mountain Formation is exposed along the shore of the reservoir.  The Dakota Formation is at road level (right side of photog
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	Figure 5. Morrison through Frontier Formations as seen from the Strike Valley section.  The yellow iron-rich alteration zone forms the base of the Cedar Mountain Formation.  The resistant calcrete bed in the foreground forms the base of the sandy mudstone
	Figure 6. Steinaker Reservoir section.  Similar to the Strike Valley section, the Cedar Mountain Formation has a basal yellow-orange sandy mudstone with scattered chert pebbles, a mudstone and calcrete interval, and a capping light-gray mudstone.  The mar
	Figure 7. Well-exposed section of the Morrison and Cedar Mountain Formations in Six Mile Draw showing the thick yellow alteration zone at the base of the Cedar Mountain Formation.  Also seen are several resistant calcrete beds (yellow arrow) that are part
	Figure 9. Dinosaur National Monument DNM16 section. The steeply dipping Lower Cretaceous strata provide exposures typical of the Cedar Mountain and Dakota Formations.  A newly named sauropod skull, Abydosaurus mcintoshi, was extracted from a sandstone bed
	Figure 10. Reef Quarry section. The yellow dashed line shows the approximate traverse of the measured section.  The solid yellow line is the contact between the Morrison and Cedar Mountain Formations.  The upper part of the Cedar Mountain Formation is lig
	Figure 11. The Dakota Formation commonly consists of a basal sandstone, a middle carbonaceous mudstone, and an upper sandstone; a marine mudstone and shale locally underlies the basal sandstone.  In some places, the lower sandstone may also be missing or 
	Figure 12. Contact (white arrow) between the Cedar Mountain Formation and overlying Dakota Formation.  Here, the carbonaceous mudstone unit of the Dakota Formation unconformably lies on the Cedar Mountain Formation; the lower two units (mudstone and shale
	Figure 13. Correlation chart of Cretaceous formations from the San Rafael Swell in central Utah to southwest Wyoming and associated marine depositional cycles.  The paleogeographic map shows the Western Interior Seaway in late Albian time at peak sea leve
	Table 1. Palynomorph species recovered from the Dakota Formation, northeastern Utah.
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