BASIN-WIDE EVALUATION OF THE UPPERMOST GREEN RIVER FORMATION'S OIL-SHALE RESOURCE, UINTA BASIN, UTAH AND COLORADO by Michael D. Vanden Berg # BASIN-WIDE EVALUATION OF THE UPPERMOST GREEN RIVER FORMATION'S OIL-SHALE RESOURCE, UINTA BASIN, UTAH AND COLORADO by Michael D. Vanden Berg **Cover photo:** A sample of Utah oil shale collected from the White River Mine. ISBN 978-1-55791-804-X ## STATE OF UTAH Jon Huntsman, Jr., Governor ## DEPARTMENT OF NATURAL RESOURCES Michael Styler, Executive Director ## UTAH GEOLOGICAL SURVEY Richard G. Allis, Director #### **PUBLICATIONS** contact Natural Resources Map & Bookstore 1594 W. North Temple Salt Lake City, Utah 84116 telephone: 801-537-3320 toll free: 1-888-UTAH MAP Web site: mapstore.utah.gov email: geostore@utah.gov #### **UTAH GEOLOGICAL SURVEY** contact 1594 W. North Temple, Suite 3110 Salt Lake City, Utah 84116 telephone: 801-537-3300 fax: 801-537-3400 Web site: geology.utah.gov Although this product represents the work of professional scientists, the Utah Department of Natural Resources, Utah Geological Survey, makes no warranty, expressed or implied, regarding its suitability for a particular use. The Utah Department of Natural Resources, Utah Geological Survey, shall not be liable under any circumstances for any direct, indirect, special, incidental, or consequential damages with respect to claims by users of this product. # **CONTENTS** | | CT | |-----------|---| | | UCTION AND BACKGROUND1 | | | OS | | | rce Calculations and Isopach Maps | | | urden Thickness | | | mic Constraints | | RESULT | | | | In-Place Resource | | | rce by Landownership | | | rce Conflict with Conventional Oil and Gas Fields | | | rce on BLM Lands Proposed for Commercial Leasing | | | ial Economic Resource | | | WLEDGMENTS | | | NCES | | APPEND | IX14 | | | | | | | | | FIGURES | | | | | | Oil-shale resource areas of Utah, Colorado, and Wyoming | | Figure 2. | Stratigraphy of the Parachute Creek Member of the upper Green River Formation illustrated by bulk density, | | | sonic, and oil-yield plots from well U044 | | Figure 3. | Reduced major axes regression relating bulk density and sonic log readings to oil yield | | | | | | TABLES | | | | | Table 1. | Equations used to calculate oil-shale richness from density and sonic logs | | | The Uinta Basin's total Green River Formation oil-shale resource, grouped by grade and thickness | | Table 2b. | The Uinta Basin's total Green River Formation oil-shale resource with less than 3000 feet of overburden, | | | grouped by grade and thickness | | | The Uinta Basin's total Green River Formation oil-shale resource grouped by grade, thickness, and landownership 9 | | | The amount of Uinta Basin oil-shale resource within existing conventional oil and gas fields | | Table 4b. | The amount of Uinta Basin oil-shale resource within existing conventional oil and gas fields and located under | | | less than 3000 feet of cover | | Table 5. | The amount of Utah's 25-GPT oil-shale resource found on lands proposed by the BLM as having commercial | | | oil shale leasing potential | | Table 6. | The Uinta Basin's potential economic oil-shale resource | | | | | | PLATES | | | | | Plate 1. | Isopach and overburden thickness for a continuous interval averaging 50 gallons per ton of rock | | Plate 2. | Isopach and overburden thickness for a continuous interval averaging 35 gallons per ton of rock | | Plate 3. | Isopach and overburden thickness for a continuous interval averaging 25 gallons per ton of rock | | Plate 4. | Isopach and overburden thickness for a continuous interval averaging 15 gallons per ton of rock | | Plate 5. | Ownership of lands containing oil-shale resources | | Plate 6. | Conventional oil and natural gas fields shown with isopach and overburden thickness for a continuous interval | | | averaging 25 gallons of oil per ton of rock | | Plate 7. | BLM lands available for application for leasing under the proposed plan amendment for commercial oil-shale | | | development in Utah | | Plate 8. | Uinta Basin's potential economic oil-shale resource | | | | # BASIN-WIDE EVALUATION OF THE UPPERMOST GREEN RIVER FORMATION'S OIL-SHALE RESOURCE, UINTA BASIN, UTAH AND COLORADO by Michael D. Vanden Berg #### **ABSTRACT** Due to the recent increase in crude oil prices and concerns over diminishing conventional reserves, the Utah Geological Survey has reexamined the Uinta Basin's oil-shale resource, primarily in the Mahogany zone of the Green River Formation. Past assessments, the first conducted in 1964 and subsequent studies continuing through the early 1980s, concentrated on the Eocene Green River Formation's Mahogany zone in the southeastern part of the Uinta Basin, and were limited in the amount of drill hole data available at the time. We have broadened the investigation to include the entire Uinta Basin, taking advantage of the hundreds of geophysical logs from oil and gas wells drilled over the last two decades. We created conversion equations by correlating available Fischer assays with corresponding density and sonic measurements as a way to predict oil yield from geophysical logs. In addition to the core-based Fischer assays obtained from 107 wells drilled specifically for oil shale, 186 oil and gas wells with oil yields calculated from digitized bulk density or sonic logs were used to create a basin-wide picture of the oil-shale resource in the Uinta Basin. These widespread data were used to map oil-shale thickness and richness and create isopach maps delineating oil yields of 15, 25, 35, and 50 gallons of shale oil per ton (GPT) of rock. Thicknesses were centered around the extremely rich Mahogany bed of the Mahogany zone (R-7) within the Parachute Creek Member of the Green River Formation. From these isopach maps, new basin-wide resource numbers were calculated for each richness grade. In addition, oil-shale resource numbers were adjusted according to different sets of constraints, including resources less than 3000 feet deep, resources located on specific landownership categories, and resources associated with conventional oil and gas fields. The thickest and richest oil-shale zones are located in central Uintah County in T. 8 S. to T. 12 S. and R. 20 E. to R. 25 E., Salt Lake Base Line and Meridian. Overburden in these areas ranges from zero at the outcrop in the east, to almost 4000 feet farther to the northwest. A continuous interval of oil shale averaging 50 GPT contains an in-place oil resource of 31 billion barrels in a zone ranging up to 20 feet thick. Where the 50 GPT interval is at least 5 feet thick and less than 3000 feet deep, the in-place resource drops to 26 billion barrels. An interval averaging 35 GPT, with a maximum thickness of 55 feet, contains an in-place oil resource of 76 billion barrels. Where this interval is at least 5 feet thick and less than 3000 feet deep, the total in-place resource drops to 61 billion barrels. The 25 GPT zone and the 15 GPT zone contain unconstrained resources of 147 billion barrels and 292 billion barrels, respectively. The maximum thickness of 25 GPT rock is about 130 feet, whereas the maximum thickness of 15 GPT rock is about 500 feet. Where these two intervals are at least 5 feet thick and less than 3000 feet deep, the 25 GPT resource drops to 111 billion barrels and the 15 GPT resource drops to 228 billion barrels. The 25 GPT resource calculated for U.S. Bureau of Land Management (BLM) lands that could be considered for commercial oil-shale leasing is approximately 69 billion barrels, roughly 50% of Utah's total oil-shale resource. The remaining resource is located on tribal (20%), private (16%), state trust (9%), U.S. Forest Service (3%), and protected land (2%) such as state wildlife reserves, national wildlife refuges, state sovereign lands, and state parks. Furthermore, approximately 25% of Utah's oil-shale resource lies within existing oil or gas fields, creating resource conflict issues that will need to be addressed as conventional and unconventional resources are developed. After placing several constraints on Utah's total in-place oil-shale resource, we determined that approximately 77 billion barrels of oil could be considered as a potential economic resource. This estimate is for deposits that are at least 25 GPT; at least 5 feet thick; under less than 3000 feet of cover; not in conflict with current conventional oil and gas resources; and located only on BLM, state, private, and tribal lands. ## INTRODUCTION AND BACKGROUND In the 1960s, the U.S. Department of Interior started an aggressive program to describe and estimate the Green River Formation oil-shale resource. The dramatic increase in petroleum prices resulting from the Organization of the Petroleum Exporting Countries (OPEC) oil embargo of 1973 triggered a second resurgence of oil-shale research during the 1970s and early 1980s. When oil prices plummeted in the mid-1980s, so did research associated with oil shale. With recent crude oil prices again rising to new heights, and as conventional crude oil supplies continue to diminish, interest in unconventional fuel sources such as oil shale has been renewed. The largest known oil-shale deposits in the world are in the Eocene Green River Formation, which covers portions of Utah, Colorado, and Wyoming (figure 1). Lacustrine sediments of the Green River Formation were deposited in two large lakes that occupied a 25,000-square-mile area in the Piceance, Uinta, Green River, and Washakie sedimentary basins. Fluctuations in stream inflow caused large expan- Figure 1. Oil-shale resource areas of Utah, Colorado, and Wyoming (adapted from Bartis and others, 2005, and Bunger and others, 2004). sions and contractions of the lakes, as evidenced by widespread intertonguing of marly lacustrine strata with beds of land-derived sandstone and siltstone. During arid times, the lakes
contracted in size and the lake waters became increasingly saline and alkaline (Dyni, 2003). The warm alkaline waters provided excellent conditions for the abundant growth of cyanobacteria (blue-green algae), which is thought to be the major precursor of the organic matter in the oil shale (Dyni, 2003). The organic matter preserved in the shale is called kerogen, which when heated can produce crude oil and natural gas. Figure 2 shows a stratigraphic section of the Parachute Creek Member of the upper Green River Formation in the Uinta Basin, Utah as it appears in corehole U044 (section 22, T. 9 S., R. 23 E., Salt Lake Base Line and Meridian [SLBLM]). The section with the richest oil shale is named the Mahogany zone (R-7), where individual beds, such as the Mahogany bed, can exceed 70 gallons of oil per ton of rock and the entire zone is commonly over 100 feet thick. The entire length of the Mahogany zone outcrop has been mapped at the 1:100,000 and/or 1:24,000 scale and defines the southern boundary of the study area. The southeastern extent of the outcrop was digitized from 14 7.5-minute quadrangles, and the remaining sections of outcrop were digitized from three 30' x 60' geologic maps. The 14 7.5-minute quadrangles are Agency Draw NE (Pipiringos, 1979), Agency Draw NW (Cashion, 1984), Bates Knolls (Pipiringos, 1978), Burnt Timber Canyon (Keighin, 1977a), Cooper Canyon (Keighin, 1977b), Davis Canyon (Pantea, 1987), Dragon (Scott and Pantea, 1985), Flat Rock Mesa (Pantea and Scott, 1986), Nutters Hole (Cashion, 1994), Rainbow (Keighin, 1977c), Southam Canyon (Cashion, 1974), Walsh Knolls (Cashion, 1978), Weaver Ridge (Cashion, 1977), and Wolf Point (Scott and Pantea, 1986). The 30' x 60' maps are the Huntington (Witkind, 1988), Price (Weiss and others, 1990), and Westwater (Gualtieri, 1988). Estimates of the in-place oil-shale resource within the entire Green River Formation range from 1.5 trillion (Smith, 1980; Dyni, 2003) to 1.8 trillion barrels (Culbertson and Pitman, 1973; U.S. Federal Energy Administration, 1974). Historical estimates of the Utah portion of this resource vary from 165 billion barrels (Smith, 1980) to 214 billion barrels (Trudell and others, 1983) to 321 billion barrels (Cashion, 1964). Colorado and Wyoming are thought to contain 1.0 trillion and 300 billion barrels, respectively (Smith, 1980; Pitman and others, 1989; Culbertson and others, 1980; Trudell and others, 1973). These in-place resource estimates are based on oil shale with a minimum grade of 15 gallons per ton with no constraints on overburden thickness, which in Utah can reach over 9000 feet. In addition, these in-place resource numbers should not be compared to conventional oil reserves, as is often the case (a resource is the total amount of a particular commodity available in the ground, a reserve is the amount of that commodity that can be economically recovered). No commercial technology is currently available to extract oil from oil shale; therefore, accurate reserve numbers can not be calculated. With previous Utah-based studies typically only utiliz- Figure 2. Stratigraphy of the Parachute Creek Member of the upper Green River Formation illustrated by bulk density, sonic, and oil-yield plots from well U044 (section 22, T. 9 S., R. 23 E., SLBLM). "R" refers to a rich oil-shale zone and "L" refers to a lean oil shale zone (stratigraphic nomenclature for oil-shale zones derived from Donnell and Blair, 1970, and Cashion and Donnell, 1972). ing oil-shale-specific wells drilled in Uintah County, earlier resource estimates had to rely heavily on extensive extrapolation into areas having no drill holes or oil-yield analyses. In addition, each study looked at different oil-shale horizons. For example, Trudell and others (1983) looked at oil shale only within and above the Mahogany zone, while significant resources are also available in the shales below this horizon (figure 2). Roughly 180 oil-shale-specific wells were drilled between 1954 and 1983 and their cores were analyzed for oil yield using the modified Fischer assay technique, as described by Stanfield and Frost (1949) and later adopted by the American Society for Testing and Materials (1980). This method was developed primarily for evaluating the Green River oil-shale resources. Generally, the assays of drill cores were made on crushed samples prepared from one- or twofoot lengths of quartered core. A complete database of Fischer assays for wells from the state of Utah can be found in Vanden Berg and others (2006). These wells were typically located in central to southern Uintah County, typically near the well-mapped outcrop of the Mahogany zone, the richest oil-shale horizon. A few wells, drilled farther west and north, reached the Mahogany zone at more than 2000 feet below the surface. Fischer assays were also performed on rotary cuttings from oil and gas wells averaged over 10-foot intervals. However, these data are unreliable due to contamination by mixing of cuttings, contamination from borehole cave-ins, and depth errors resulting when the samples were inaccurately lagged for travel time up the borehole. Also, with averages over such a wide spacing, accurate zone thicknesses could not be calculated, especially for the 50 GPT zone. Because these data are generally unreliable and typically underestimate the resource, assays from rotary cuttings were not used in this study. #### **METHODS** #### **Resource Calculations and Isopach Maps** The first step in creating a basin-wide oil-shale resource assessment was to determine how geophysical logs from hundreds of oil and gas wells in the region could be related to the oil yield of oil shale. Previous researchers determined that bulk density logs display an excellent inverse correlation to oil yield obtained using the modified Fischer assay technique; the more kerogen-rich the oil shale, the less dense the material (Bardsley and Algermissen, 1963; Tixier and Curtis, 1967; Smith and others, 1968; Dyni and others, 1991) (figures 2 and 3, table 1). A sonic log also shows a correlation with oil yield, albeit not as significant as bulk density, displaying higher travel times in the less dense, kerogen-rich intervals (figures 2 and 3, table 1). To characterize these correlations, UGS digitized old paper copies of bulk density and sonic logs from oil-shale wells that also had core-based oil yields determined by Fischer assay. The core-based Fischer assays were typically performed on a one-foot spacing, with half-foot spacing in the highest yielding zones and up to three-foot spacing in the leaner zones. Bulk density logs from 14 wells and sonic logs from nine wells were digitized using Neuralog software. Several other wells having both density or sonic logs and oil-yield data were available; however, many logs lacked identifiable scaling, while other wells contained large data gaps within the oil-yield analyses. After digitizing the logs at half-foot intervals, cross-plots were generated relating the bulk density or sonic measurements with oil yields after they were fitted to the same half-foot depth scale. Next, the cross-plots were analyzed using a simple linear regression model (table 1). In some cases, the log data needed to be manually shifted along the depth scale to match with the corresponding intervals measured for oil yield. This was done by visually comparing the two curves and matching various peaks and zones. In addition, spurious data spikes were eliminated from the Fischer assays and the digital logs. After analyzing the individual regressions, we discarded wells having poor results, typically R² values less than 0.7 for density logs and less than 0.6 for sonic logs. This left a total of eight wells relating bulk density to oil yield, with Mahogany bed depths ranging from 100 to 2650 feet, and four wells relating sonic to oil yield, with Mahogany bed depths ranging from 660 to 2230 feet (table 1). Since both variables, the geophysical and oil-yield logs, are subject to measurement errors, we decided to apply a reduced-major-axes fit to a combination of all the data. This was done separately for both the bulk density and sonic logs creating an equation for each (figure 3, table 1). This method provided two robust equations that could be applied to other wells with density or sonic logs located throughout the basin and at various depths. The equation for relating bulk density to oil yield in gallons per ton was determined to be: (1) oil yield = $$-80.894\rho + 203.996$$ were ρ equals the bulk density value in grams per cubic centimeter (g/cm³). The equation for relating sonic logs to oil yield in gallons per ton was determined to be: (2) oil yield = $$0.766\Delta\tau - 49.237$$ were $\Delta\tau$ equals travel time in microseconds per foot (µs/ft). Dyni and others (1991) argued that the regression was slightly improved for the sonic logs with a second-degree polynomial equation. However, this study found that a second-degree polynomial, even though the R^2 was slightly higher, calculated oil yields notably higher than nearby wells with Fischer assay analyses. The simpler linear equation shown above (2) was determined to be more robust. After the equations relating oil yield to geophysical log were created, oil and gas wells with these particular logs had to be found throughout the Uinta Basin. The goal was to try to find at least one well per township, while adding additional wells in areas of particular interest. One difficulty was finding wells with log data for the oil-shale-bearing portion (i.e., Mahogany zone) of the Green River Formation. Since many oil and gas wells in the basin have targets far below this formation, several companies simply did not log the upper part of the borehole. After an extensive search, 186 wells, 167 with adequate bulk density logs and 19 with adequate sonic logs, were chosen (see appendix). Since density logs display a better correlation with oil yield, preference was given
to those logs. Wells with sonic logs were used to fill in data gaps. Unfortunately, only image files of these logs exist, at least in the public domain, so all logs had to be manually digitized using NeuraLog software. Figure 3. Reduced-major-axes regression relating bulk density and sonic log readings to oil yield. With the creation of digitized geophysical logs in which data were recorded on a half-foot spacing, the above equations could be systematically applied to create calculated oilyield logs for all 186 wells. In cases of particularly high density or particularly low sonic values, the equations predicted negative yield values. These negative intervals were adjusted to equal zero gallons per ton. The next step was to calculate the thickness of continuous intervals of oil shale averaging 15, 25, 35, and 50 gallons per ton. These intervals were determined for all 186 oil and gas wells with calculated assay data, as well as 107 oil-shale-specific wells with assays derived from core, for a total of 293 wells. These continuous zones were calculated starting at the Mahogany bed, adding assay values above or below until the desired average oil yield was found (see appendix). In some cases, the depth interval measured by the log or Fischer assay was limited, and a total thickness for the 15 and/or 25 GPT zone could not be found. When this occurred, the thickness was estimated using a ratio of the thicknesses of the 25/15 GPT zones, or the 35/25 GPT zones, from a nearby well. These estimated values are indicated by italic font in the appendix. Using ArcGIS software, isopachs for the thickness of each richness zone were plotted using a spline fit with tension. In some cases, individual thickness values were edited to remove spurious "bulls-eyes" from the isopachs; these edited values are indicated in italic font in the appendix. The northern boundary of the isopachs is simply the extent of the available data, whereas the southern boundary is delineated by the outcrop of the Mahogany zone. The area mapped was divided into the smallest thickness intervals possible—0.1 feet for the 50 GPT zone, 0.25 feet for the 35 GPT zone, 0.5 feet for the 25 GPT zone, and 2.5 feet for the 15 GPT zone—and the sub-areas underlain by each thickness interval were | USGS# | Bul | k Density I | og | S | onic Log | | |-------|---------------------|----------------|----------------------|---------------------|----------------|-------------------| | | Individual | | RMA equation | Individual | | RMA equation | | | regression equation | \mathbb{R}^2 | relating all data | regression equation | \mathbb{R}^2 | relating all data | | U153 | y=-90.69x + 223.95 | 0.76 | | | | | | U061 | | | | y=0.76x - 48.33 | 0.69 | | | U065 | y=-67.24x + 177.41 | 0.73 | | y=0.73x - 45.50 | 0.69 | | | U059 | y=-66.83x + 173.24 | 0.71 | | | | | | U092 | y=-75.72x+193.14 | 0.73 | y=-80.894x + 203.996 | | | y=0.766x - 49.237 | | U085 | y=-70.72x+183.35 | 0.74 | | y=0.61x - 34.97 | 0.64 | | | U044 | y=-85.50x + 213.46 | 0.84 | | y=0.63x - 38.29 | 0.77 | | | U102 | y=-68.92x + 178.22 | 0.73 | | | | | **Table 1.** Equations used to calculate oil shale richness from density and sonic logs. | USGS# | Mahogany Bed | Twn | Rng | Sec | Mrd | UTM E | UTM N | |-------|--------------|-----|-----|-----|-----|--------|---------| | | Depth to | | | | | | | | | bed (ft) | | | | | | | | U153 | 100 | 12S | 24E | 25 | SL | 656186 | 4401431 | | U061 | 659 | 10S | 24E | 14 | SL | 655055 | 4424178 | | U065 | 696 | 10S | 25E | 19 | SL | 657974 | 4422591 | | U059 | 719 | 10S | 25E | 19 | SL | 659426 | 4421812 | | U092 | 1027 | 9S | 25E | 16 | SL | 661008 | 4432488 | | U085 | 1965 | 9S | 24E | 32 | SL | 649994 | 4427496 | | U044 | 2236 | 9S | 23E | 22 | SL | 644158 | 4431449 | | U102 | 2313 | 9S | 21E | 26 | SL | 627029 | 4429992 | | U045 | 2646 | 9S | 22E | 1 | SL | 637424 | 4436007 | 0.87 RMA = Reduced Major Axes, Twn = Township, Rng = Range, Sec = Section, Mrd = Meridian, SL = Salt Lake Base Line and Meridian v = -87.17x + 209.63 calculated using the ArcGIS program. To estimate the oilshale resource, rock volumes were calculated by multiplying the area of a given polygon by its average thickness. The thinner the thickness interval mapped, the more precise the estimated volume and the more precise the resource calculation because a more accurate thickness is applied to each area. Next, the average density (see figure 3) of the given richness was used to calculate the weight of oil shale in tons, which then could be converted to a resource estimate in barrels of in-place oil by multiplying the tons by the assayed or estimated oil yield (in GPT). All calculated resource numbers for each richness zone, separated into various thickness bins, can be found in table 2a. Maps displaying the isopach data, separated into corresponding thickness intervals, are displayed in plates 1, 2, 3, and 4. U045 #### **Overburden Thickness** Plates 1, 2, 3, and 4 also display overburden contours indicating the depth to the top of the individual richness zones. These contours were created by subtracting the footage below the surface to the top of the richness interval from the surface elevation of the well to arrive at the elevation of the oil-shale horizon of interest. A structure contour map was generated in ArcGIS displaying the surface of each richness interval in feet above sea level. This structure contour map was then subtracted from a digital elevation model of the Uinta Basin providing accurate overburden thickness contours. A few estimated data points were added in areas having little or no oil-shale data as a means to provide more geologically accurate overburden contours, particularly near the outcrop. Overburden thickness equals zero at the outcrop in the southern and eastern portions of the basin and gradually increases in thickness, up to 9000 feet, to the north. #### **Economic Constraints** After total in-place resource estimates were calculated, several constraints were imposed on the total endowment to offer a more realistic impression of the potentially economic oil-shale resource. We assumed that mining, underground and/or surface mining, would generally not occur where the resource is less than 5 feet thick for 25, 35, and 50 GPT rock or less than 15 feet thick for 15 GPT rock. Also, we assumed that mining would not occur where overburden is more than 3000 feet. In addition, since all land will likely not be available for oil-shale extraction, resource numbers were calculated by landownership. Finally, we assumed that conventional oil and gas and oil-shale deposits will not be simultaneously produced, so oil-shale resources for lands outside and within current conventional oil and gas fields were also calculated. These constrained resource estimates are available in tables 2, 3, and 4 and are described in more detail below. Constraints based on in-situ processing were not considered since a proven in-situ technique has not been developed. Shell's In-situ Conversion Process (ICP), currently being tested in western Colorado's Piceance Basin, is targeting oil shale from a zone between 1000 to 2000 feet thick that averages roughly 30 to 35 GPT (Shell Oil Company, 2008). Utah's 35 GPT zone reaches only 55 feet in thickness, dramatically thinner than oil-shale resources in Colorado. Other types of in-situ processes might be more adaptable to Utah's thinner deposits in the future, but currently, all in-situ demonstration projects are in the thick deposits of Colorado's Piceance Basin. #### RESULTS #### **Total In-Place Resource** A continuous section of oil shale averaging 50 GPT in the Uinta Basin of Utah contains approximately 31 billion barrels of in-place oil, including approximately 23 billion barrels in deposits between 5 and 20 feet thick (table 2a). The 50 GPT interval is contained entirely within the Mahogany zone and is centered on the Mahogany bed (R-7, see figure 2). The thickest deposits, 15 to 20 feet, of 50 GPT rock are located in T. 10 S., R. 22-24 E., SLBLM, as well as the northern sections of T. 11 S., R. 24-25 E. and the eastern sections of T. 9 S., R. 21 E. (plate 1). The top of the 50 GPT zone in these areas ranges in depth from 450 to 2500 feet. Potentially economic thicknesses, at least 5 to 10 feet, of 50 GPT rock are near the outcrop on the eastern side of the study area. In addition to the large resource in the eastern part of the basin, a long finger of rich oil shale ranging in thickness from 5 to 10 feet extends westward through the southern portion of Duchesne County. These deposits range from 2000 to 3000 feet below the surface. Oil-shale deposits averaging 50 GPT and located less than 3000 feet below the surface contain approximately 26 billion barrels of oil, including 20 billion barrels found in deposits between 5 and 20 feet thick (table 2b). A continuous section of oil shale averaging 35 GPT contains approximately 76 billion barrels of in-place oil, including 73 billion barrels in deposits ranging between 5 and 55 feet thick (table 2a). The 35 GPT interval is also contained entirely within the Mahogany zone, centered on the Mahogany bed. The thickest interval, 40 to 55 feet, is located in T. 9 S., R. 21-23 E., SLBLM, and T. 10 S., R. 21-24 E. (plate 2). The top of the 35 GPT zone in this area ranges in depth from 800 to 2500 feet. Again, reasonably thick deposits, 10 to 40 feet, are located near outcrop along the eastern extent of the study area. Similar to the 50 GPT zone, the 35 GPT zone exhibits a long finger extending westward through the southern part of Duchesne County. This zone reaches 38 feet thick and is located under depths ranging from outcrop to 2500 feet. Oil-shale deposits averaging 35 GPT and located less than 3000 feet below the surface contain approximately 61 billion barrels of oil, including 59 billion barrels found in deposits between 5 and 55 feet thick (table 2b). A continuous section of oil shale averaging 25 GPT contains
approximately 147 billion barrels of in-place oil, including 146 billion barrels in deposits 5 to 130 feet thick (table 2a). The 25 GPT interval is typically within the Mahogany zone; however, in some cases the 25 GPT zone includes part of the A- or B-grooves (figure 2). The thickest interval, 100 to 130 feet, of 25 GPT rock is located in T. 9 S., R. 21-24 E., SLBLM, T. 10 S., R. 22-24 E., and other small areas within T. 8 S., R. 20-23 E. (plate 3). The top of these deposits ranges in depth from 750 to roughly 3500 feet. Near the outcrop, on the eastern side of the basin, deposits averaging 25 GPT are 40 to 100 feet thick. In southern Duchesne County, the 25 GPT zone ranges up to 60 feet thick with Table 2a. The Uinta Basin's total Green River Formation oil-shale resource, grouped by grade and thickness. | Thickness (ft) | 0-5 | 5-10 | 10-15 | 15-20 | • | | | | | | |--|-------------------------------------|---|---|---|---|---|------------------|--|--|--| | Total volume (billion ft ³) | 112.8 | 198.6 | 90.8 | 29.1 | | | | | | | | Average density | | 1.90 g/cm3 | (0.0593 tons/fi | t ³) | | | | | | | | Billion tons | 6.7 | 11.8 | 5.4 | 1.7 | | | | | | | | Billion barrels | 8.0 | 14.1 | 6.4 | 2.1 | | | | | | | | Total resource (billion barrels) | | 3 | 30.5 | | | | | | | | | 35 GPT | | | | | | | | | | | | Thickness (ft) | 0-5 | 5-10 | 10-20 | 20-30 | 30-40 | 40-55 | | | | | | Total volume (billion ft ³) | 58.6 | 155.9 | 447.8 | 326.4 | 269.7 | 142.6 | | | | | | Average density | | | 2.09 g/cm ³ (| 0.0652 tons/ft | 3) | | | | | | | Billion tons | 3.8 | 10.2 | 29.2 | 21.3 | 17.6 | 9.3 | | | | | | Billion barrels | 3.2 | 8.5 | 24.3 | 17.7 | 14.7 | 7.7 | | | | | | TC + 1 (1999 1 1) | | | 7 | 6.1 | | 14.7 7.7 | | | | | | Total resource (billion barrels) | | | , | 0.1 | | | • | | | | | 25 GPT Thickness (ft) | 0-5 | 5-20 | 20-40 | 40-60 | 60-80 | 80-100 | 100-130 | | | | | 25 GPT | 0-5
37.6 | 5-20
366.6 | | | 60-80
454.6 | 80-100
569.7 | 100-130
448.0 | | | | | 25 GPT
Thickness (ft) | | | 20-40 | 40-60
765.0 | 454.6 | | | | | | | 25 GPT Thickness (ft) Total volume (billion ft³) | | | 20-40
944.1 | 40-60
765.0 | 454.6 | | | | | | | 25 GPT Thickness (ft) Total volume (billion ft³) Average density | 37.6 | 366.6 | 20-40
944.1
2.21 g | 40-60
765.0
/cm³ (0.0690 | 454.6
tons/ft ³) | 569.7 | 448.0 | | | | | 25 GPT Thickness (ft) Total volume (billion ft³) Average density Billion tons | 37.6
2.6 | 366.6
25.3 | 20-40
944.1
2.21 g
65.2 | 40-60
765.0
/cm³ (0.0690
52.8 | 454.6
tons/ft ³)
31.4 | 569.7
39.3 | 448.0
30.9 | | | | | 25 GPT Thickness (ft) Total volume (billion ft³) Average density Billion tons Billion barrels Total resource (billion barrels) | 37.6
2.6 | 366.6
25.3 | 20-40
944.1
2.21 g
65.2 | 40-60
765.0
/cm³ (0.0690
52.8
31.5 | 454.6
tons/ft ³)
31.4 | 569.7
39.3 | 448.0
30.9 | | | | | 25 GPT Thickness (ft) Total volume (billion ft³) Average density Billion tons Billion barrels Total resource (billion barrels) | 37.6
2.6 | 366.6
25.3 | 20-40
944.1
2.21 g
65.2 | 40-60
765.0
/cm³ (0.0690
52.8
31.5 | 454.6
tons/ft ³)
31.4 | 569.7
39.3 | 448.0
30.9 | | | | | 25 GPT Thickness (ft) Total volume (billion ft³) Average density Billion tons Billion barrels Total resource (billion barrels) 15 GPT Thickness (ft) | 37.6
2.6
1.5 | 366.6
25.3
15.1 | 20-40
944.1
2.21 g
65.2
38.8 | 40-60
765.0
/cm³ (0.0690
52.8
31.5
147.4 | 454.6
tons/ft³)
31.4
18.7 | 569.7
39.3
23.4 | 448.0
30.9 | | | | | 25 GPT Thickness (ft) Total volume (billion ft³) Average density Billion tons Billion barrels Total resource (billion barrels) 15 GPT Thickness (ft) Total volume (billion ft³) | 37.6
2.6
1.5 | 366.6
25.3
15.1 | 20-40
944.1
2.21 g
65.2
38.8 | 40-60
765.0
765.0
(cm³ (0.0690
52.8
31.5
147.4 | 454.6
tons/ft³)
31.4
18.7
300-400
2650.3 | 569.7
39.3
23.4 | 448.0
30.9 | | | | | 25 GPT Thickness (ft) Total volume (billion ft³) Average density Billion tons Billion barrels Total resource (billion barrels) 15 GPT Thickness (ft) Total volume (billion ft³) Average density | 37.6
2.6
1.5 | 366.6
25.3
15.1 | 20-40
944.1
2.21 g
65.2
38.8 | 40-60
765.0
765.0
52.8
31.5
147.4 | 454.6
tons/ft³)
31.4
18.7
300-400
2650.3 | 569.7
39.3
23.4 | 448.0
30.9 | | | | | 25 GPT Thickness (ft) Total volume (billion ft³) Average density Billion tons Billion barrels | 37.6
2.6
1.5
0-15
130.7 | 366.6
25.3
15.1
15-100
3178.8 | 20-40
944.1
2.21 g
65.2
38.8
100-200
2776.4
2.34 g/cm ³ (| 40-60
765.0
/cm³ (0.0690
52.8
31.5
147.4
200-300
1568.2
0.0730 tons/ft² | 454.6
tons/ft³)
31.4
18.7
300-400
2650.3 | 569.7
39.3
23.4
400-500
916.7 | 448.0
30.9 | | | | Note: Totals may not equal sum of components because of independent rounding GPT = gallons of shale oil per ton of rock (42 gallons/barrel) **Table 2b.** The Uinta Basin's total Green River Formation oil-shale resource with less than 3000 feet of overburden, grouped by grade and thickness. | 50 GPT | | | | | | | | |---|------|--------------------------|--------------------------|-------------------------|-----------|--------|---------| | Thickness (ft) | 0-5 | 5-10 | 10-15 | 15-20 | | | | | Total volume (billion ft ³) | 82.1 | 172.1 | 80.1 | 29.1 | | | | | Average density | | 1.90 g/cm ³ (| 0.0593 tons/ft | 3) | | | | | Billion tons | 4.9 | 10.2 | 4.8 | 1.7 | | | | | Billion barrels | 5.8 | 12.2 | 5.7 | 2.1 | | | | | Total resource (billion barrels) | | 25 | 5.7 | | • | | | | 35 GPT | | | | | | | | | Thickness (ft) | 0-5 | 5-10 | 10-20 | 20-30 | 30-40 | 40-55 | - | | Total volume (billion ft ³) | 32.1 | 75.0 | 366.4 | 280.9 | 228.4 | 141.5 | | | Average density | | | 2.09 g/cm ³ (| 0.0652 tons/ft | 3) | | | | Billion tons | 2.1 | 4.9 | 23.9 | 18.3 | 14.9 | 9.2 | | | Billion barrels | 1.7 | 4.1 | 19.9 | 15.3 | 12.4 | 7.7 | | | Total resource (billion barrels) | | | 61 | 1.1 | | | | | 25 GPT | | | | | | | | | Thickness (ft) | 0-5 | 5-20 | 20-40 | 40-60 | 60-80 | 80-100 | 100-130 | | Total volume (billion ft ³) | 28.7 | 192.0 | 659.5 | 601.4 | 363.0 | 480.5 | 414.0 | | Average density | | | 2.21 g/ | cm ³ (0.0690 | tons/ft³) | | | | Billion tons | 2.0 | 13.3 | 45.6 | 41.5 | 25.1 | 33.2 | 28.6 | | Billion barrels | 1.2 | 7.9 | 27.1 | 24.7 | 14.9 | 19.8 | 17.0 | | Difficial daries | | | | 112.6 | | | | Note: Totals may not equal sum of components because of independent rounding 0-15 105.0 7.7 2.7 15-100 1890.7 137.9 49 2 100-200 1986.1 144.8 517 2.34 g/cm3 200-300 1227.1 $(0.0730 \text{ tons/ft}^3)$ 89.5 32.0 228.3 300-400 2640.0 192.5 68.8 GPT = gallons of shale oil per ton of rock (42 gallons/barrel) deposits roughly 500 to 3000 feet deep. Deposits averaging 25 GPT that are located less than 3000 feet below the surface contain approximately 113 billion barrels of oil, including 111 billion barrels found in deposits between 5 and 130 feet thick (table 2b). Thickness (ft) Average density Billion tons Billion barrels Total volume (billion ft3) Total resource (billion barrels) Finally, a continuous section of oil shale averaging 15 GPT contains approximately 292 billion barrels of in-place oil, including 289 billion barrels available in deposits greater than 15 feet thick (table 2a). This resource estimate is 10% lower than Cashion's 1964 in-place oil-shale resource estimate of 321 billion barrels for deposits containing at least 15 GPT at a minimum thickness of 15 feet. The availability of more drill hole data allows the new estimate to be more reliable than Cashion's (1964) estimate by identifying the areas of thick, rich oil shale more precisely. The 15 GPT interval includes all or parts of the R-6, B-Groove, R-7 (Mahogany Zone), A-Groove, and R-8 oil-shale zones (see figure 2). The thickest intervals, 400 to 500 feet, are primarily located in T. 9 S., R. 21-25 E., SLBLM, and T. 10 S., R. 23-24 E. where depths to the top of the zone range between 600 and 2300 feet (plate 4). Deposits near the eastern outcrop range from 100 to 400 feet thick. Deposits averaging 15 GPT that are less than 3000 feet below the surface contain approximately 228 billion barrels of oil, including 226 billion barrels in deposits between 15 and 500 feet thick (table 2b). 400-500 916.7 66.9 23 9 #### **Resource by Landownership** Table 3 shows a breakdown of the Uinta Basin's oil-shale resource by landownership. Roughly 50% of oil shale is located on lands administered by the BLM. Tribal, private, state trust, and U.S. Forest Service lands hold the next-largest resource with about 20%, 16%, 9%, and 3% of total, respectively (average for all grades). The remaining 2% is locked up in protected lands such as state wildlife reserves, national wildlife refuges, state sovereign lands (mostly land under the Green River), and state parks. In addition, less than 1% of the Uinta Basin's oil-shale resource lies over the border in Colorado. Plate 5 shows 25 GPT isopach contours displayed over top of landownership. The thickest interval of 25 GPT rock, between 100 and 130 feet thick, is located primarily on BLM land and contains 13.5 billion barrels or 73% of the resource at this thickness and richness.
Several state blocks and large areas of private land are located near the eastern outcrop of Table 3. The Uinta Basin's total Green River Formation oil-shale resource grouped by grade, thickness, and landownership. | 50 GPT | (resource | numbers in | billion | barrels) | |--------|-----------|------------|---------|----------| | | | | | | | Thickness (feet) | 0-5 | 5-10 | 10-15 | 15-20 | Total | % of Total | |---|-----|------|-------|-------|-------|------------| | U.S. Bureau of Land Management | 2.7 | 7.1 | 4.1 | 1.6 | 15.4 | 50.5% | | Indian Reservation | 1.8 | 3.1 | 0.9 | 0.2 | 6.0 | 19.7% | | Private | 1.8 | 1.7 | 0.6 | 0.1 | 4.2 | 13.8% | | State Trust Lands | 0.5 | 1.2 | 0.8 | 0.2 | 2.7 | 8.9% | | U.S. Forest Service | 0.9 | 0.5 | 0.0 | 0.0 | 1.4 | 4.6% | | State Wildlife Reserve - Management area | 0.2 | 0.3 | 0.0 | 0.0 | 0.5 | 1.6% | | U.S. Fish & Wildlife - National Wildlife Refuge | * | * | * | 0.0 | 0.1 | 0.3% | | State Soveriegn Lands | * | * | * | 0.0 | 0.1 | 0.3% | | State Parks and Recreation | * | 0.0 | 0.0 | 0.0 | * | | | Colorado Portion | 0.1 | * | 0.0 | 0.0 | 0.1 | 0.3% | | Total resource | 8.0 | 14.0 | 6.4 | 2.1 | 30.5 | | 35 GPT (resource numbers in billion barrels) | Thickness (feet) | 0-5 | 5-10 | 10-20 | 20-30 | 30-40 | 40-55 | Total | % of Total | |---|-----|------|-------|-------|-------|-------|-------|------------| | U.S. Bureau of Land Management | 0.9 | 1.8 | 9.9 | 11.4 | 8.5 | 5.3 | 37.7 | 49.5% | | Indian Reservation | 0.7 | 2.0 | 5.7 | 2.3 | 3.0 | 0.9 | 14.7 | 19.3% | | Private | 1.1 | 3.4 | 3.5 | 1.7 | 1.8 | 0.1 | 11.6 | 15.2% | | State Trust Lands | 0.2 | 0.2 | 1.7 | 1.7 | 1.3 | 1.4 | 6.6 | 8.7% | | U.S. Forest Service | 0.2 | 0.7 | 2.4 | 0.0 | 0.0 | 0.0 | 3.3 | 4.3% | | State Wildlife Reserve - Management area | 0.1 | 0.2 | 0.8 | 0.2 | 0.0 | 0.0 | 1.3 | 1.7% | | U.S. Fish & Wildlife - National Wildlife Refuge | * | * | * | * | 0.1 | 0.0 | 0.2 | 0.3% | | State Soveriegn Lands | * | * | * | 0.1 | 0.1 | 0.0 | 0.2 | 0.3% | | State Parks and Recreation | * | * | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.1% | | Colorado Portion | 0.0 | * | 0.2 | 0.3 | 0.0 | 0.0 | 0.5 | 0.7% | | Total resource | 3.2 | 8.5 | 24.3 | 17.7 | 14.7 | 7.7 | 76.1 | | | Thickness (feet) | 0-5 | 5-20 | 20-40 | 40-60 | 60-80 | 80-100 | 100-130 | Total | % of Total | |---|-----|------|-------|-------|-------|--------|---------|-------|------------| | U.S. Bureau of Land Management | 0.5 | 3.8 | 13.5 | 19.0 | 10.6 | 10.6 | 13.5 | 71.6 | 48.6% | | Indian Reservation | 0.4 | 3.2 | 8.8 | 4.4 | 2.8 | 6.6 | 2.1 | 28.3 | 19.2% | | Private | 0.4 | 5.4 | 9.7 | 4.0 | 2.3 | 2.9 | 0.6 | 25.3 | 17.2% | | State Trust Lands | 0.2 | 0.5 | 2.0 | 3.0 | 1.9 | 3.1 | 2.0 | 12.6 | 8.5% | | U.S. Forest Service | 0.1 | 1.5 | 3.5 | 0.0 | 0.0 | 0.0 | 0.0 | 5.0 | 3.4% | | State Wildlife Reserve - Management area | * | 0.5 | 1.1 | 0.7 | 0.0 | 0.0 | 0.0 | 2.3 | 1.6% | | U.S. Fish & Wildlife - National Wildlife Refuge | * | * | 0.1 | 0.1 | * | 0.1 | 0.2 | 0.5 | 0.3% | | State Soveriegn Lands | * | * | * | 0.1 | 0.1 | 0.1 | * | 0.3 | 0.2% | | State Parks and Recreation | * | 0.2 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3 | 0.2% | | Colorado Portion | 0.0 | 0.0 | * | 0.2 | 1.0 | 0.0 | 0.0 | 1.3 | 0.9% | | Total resource | 1.5 | 15.1 | 38.8 | 31.5 | 18.7 | 23.4 | 18.4 | 147.4 | | 15 GPT (resource numbers in billion barrels) | Thickness (feet) | 0-15 | 15-100 | 100-200 | 200-300 | 300-400 | 400-500 | Total | % of Total | |---|------|--------|---------|---------|---------|---------|-------|------------| | U.S. Bureau of Land Management | 1.0 | 26.0 | 40.8 | 22.0 | 39.9 | 18.5 | 148.0 | 50.6% | | Indian Reservation | 1.2 | 17.8 | 11.3 | 9.3 | 12.0 | 1.0 | 52.6 | 18.0% | | Private | 0.6 | 25.9 | 12.0 | 3.5 | 6.9 | 0.6 | 49.5 | 16.9% | | State Trust Lands | 0.4 | 3.9 | 6.3 | 3.3 | 8.9 | 3.8 | 26.6 | 9.1% | | U.S. Forest Service | 0.2 | 6.2 | 0.0 | 0.0 | 0.0 | 0.0 | 6.4 | 2.2% | | State Wildlife Reserve - Management area | * | 2.3 | 1.3 | 0.0 | 0.0 | 0.0 | 3.7 | 1.3% | | U.S. Fish & Wildlife - National Wildlife Refuge | * | 0.2 | 0.2 | 0.5 | 0.0 | 0.0 | 0.9 | 0.3% | | State Soveriegn Lands | * | * | 0.3 | 0.2 | 0.0 | 0.0 | 0.5 | 0.2% | | State Parks and Recreation | 0.0 | 0.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5 | 0.2% | | Colorado Portion | 0.0 | 0.0 | 0.1 | 2.1 | 1.4 | 0.0 | 3.6 | 1.2% | | Total resource | 3.4 | 82.8 | 72.3 | 40.8 | 69.0 | 23.9 | 292.3 | | Note: Totals may not equal sum of components because of independent rounding GPT = gallons of shale oil per ton of rock (42 gallons/barrel) ^{*}Amounts less than 50 million barrels the Mahogany zone and contain a resource that averages between 40 and 100 feet thick at 25 GPT. ### Resource Conflict with Conventional Oil and Gas Fields A significant portion of the Uinta Basin's oil-shale resource, approximately 25% for each grade, is covered by conventional oil and gas fields (table 4a and 4b). Plate 6 shows all current oil and gas fields superimposed on the 25 GPT oil-shale isopach. In particular, the extensive Natural Buttes gas field covers a significant portion of land underlain by oil shale averaging 25 GPT, ranging to 130 feet thick, and under roughly 1500 to 4000 feet of cover. Furthermore, this field is expected to expand in size and cover more oil-shale-rich lands to the east. Of the 18.4 billion barrels contained in 25 GPT rock having thicknesses between 100 and 130 feet, 7.8 billion barrels, or 42%, are located under existing natural gas fields (table 4a). However, lands where the oil-shale deposits are under less than 1000 feet of cover currently do not contain significant oil and gas activity (except the Oil Springs gas field) as compared to lands with deeper oil-shale resources (plate 6). The majority of planned oil-shale operations will be located on lands having less than 1000 feet of cover. This does not mean that oil-shale deposits located within oil and gas fields will be permanently off limits. In fact, most of the conventional oil and gas reservoirs are located far below the Mahogany zone. It simply demonstrates that regulators will need to recognize that resource conflicts exist and plan their lease stipulations accordingly. # Resource on BLM Lands Proposed for Commercial Leasing The BLM recently published the Final Programmatic Environmental Impact Statement (PEIS), which finalizes the plan that will guide the use of lands containing oil-shale resources (U.S. Bureau of Land Management, 2008). This is the first step towards a commercial oil-shale leasing program. Within the PEIS, the BLM identified 630,971 acres of public land in Utah's Uintah and eastern Duchesne Counties as having commercial oil-shale development potential (plate 7). These lands are bounded on the north by the 3000-foot overburden contour and bounded on the south by the outcrop of the Mahogany zone. Lands excluded from future leasing include but are not limited to Wilderness Areas, Wilderness Study Areas, river corridors, and lands potentially eligible for Wild and Scenic River status. We determined that the oil-shale resource on BLM lands proposed for commercial leasing in Utah equals approximately 69 billion barrels at the 25 GPT richness level (table 5). Nearly the entire resource at 25 GPT is between 20 and 130 feet thick. This resource includes roughly 11 billion barrels contained in deposits on the Hill Creek Extension of the Uintah and Ouray Tribal Lands, of which the surface rights are owned by the Ute Indian Tribe. #### **Potential Economic Resource** To calculate a more realistic resource estimate for oil-shale deposits located in the Uinta Basin of Utah and Colorado, the UGS applied several constraints to the overall total in-place resource numbers. These constraints are subjective since commercial oil-shale technologies on which to base them do not exist. The constraints used were: - 1) deposits having a richness of at least 25 GPT, - 2) deposits that are at least 5 feet thick, - 3) deposits under less than 3000 feet of cover, - 4) deposits that are not in direct conflict with current conventional oil and gas operations, and - 5) deposits located only on BLM, state trust, private, and tribal lands. With the above-mentioned constraints, the Uinta Basin's potential economic oil-shale resource equals approximately 77 billion barrels (table 6). Plate 8 shows the area within the basin of these constrained resources. This is roughly 26% of the total unconstrained resource calculated at 15 GPT of 292 billion barrels and 52% of the total unconstrained resource calculated at 25 GPT of 147 billion barrels, and is a more realistic estimate of potential recoverable resource. However, this number should not be used as an estimate of recoverable reserves, which cannot be calculated until a proven commercial technology is developed. #### **ACKNOWLEDGMENTS** The U.S. Bureau of Land Management supplied data and provided partial funding for this project. The Utah School and Institutional Trust Lands Administration also provided partial funding. The U.S. Geological Survey, particularly John R. Dyni, provided Fischer assay data and geophysical logs for all oil-shale wells. In addition, several UGS employees helped with this study: Sonja Heuscher made significant contributions to the resource maps, Danielle Lehle helped with log identification, Tom Dempster and Sharon Wakefield scanned and digitized many geophysical logs, and David Tabet and Bryce Tripp provided technical and editorial advice. Table 4a. The amount of Uinta Basin oil-shale resource within existing conventional oil and gas fields. 50 GPT (resource numbers in billion barrels) Thickness (feet) 0-5 5-10 10-15 15-20 Total % of Total Located within a current oil or gas field 1.3 3.2 2.2 0.8 7.5 24.6% 4.2 Located outside a current oil or gas field 6.7 10.9 1.2 23.0 75.4% Total resource 8.0 14.0
6.4 2.1 30.5 35 GPT (resource numbers in billion barrels) 0-5 5-10 40-55 Thickness (feet) 10-20 20-30 30-40 Total % of Total Located within a current oil or gas field 0.8 2.2 5.0 3.3 4.4 4.3 19.8 26.0% Located outside a current oil or gas field 2.4 6.3 19.4 14.4 10.3 3.5 56.3 74.0%Total resource 3.2 8.5 24.3 17.7 14.7 7.7 76.1 25 GPT (resource numbers in billion barrels) Thickness (feet) 0-5 5-20 20-40 40-60 60-80 80-100 100-130 Total % of Total Located within a current oil or gas field 0.1 4.1 10.9 5.2 3.9 8.2 7.8 40.3 27.3% Located outside a current oil or gas field 1.4 11.0 27.9 26.2 14.8 15.2 10.6 107.1 72.7% 1.5 31.5 147.4 Total resource 15.1 38.8 18.7 23.4 18.4 15 GPT (resource numbers in billion barrels) Thickness (feet) 0-15 15-100 100-200 200-300 300-400 400-500 Total % of Total Located within a current oil or gas field 0.2 25.0 12.7 26.4 83.3 28.5% 11.9 6.9 209<u>.0</u> 3.2 57.8 59.6 28.9 17.0 71.5% Located outside a current oil or gas field 42.6 **Total resource** 3.4 82.8 72.3 40.8 69.0 23.9 292.3 Note: Totals may not equal sum of components because of independent rounding GPT = gallons of shale oil per ton of rock (42 gallons/barrel) Table 4b. The amount of Uinta Basin oil-shale resource within existing conventional oil and gas fields and located under less than 3000 feet of cover. | 50 GPT (resource numbers in billion barrels) | | | | | | | | | | |--|------|--------|---------|---------|---------|------------|---------|------------|------------| | Thickness (feet) | 0-5 | 5-10 | 10-15 | 15-20 | Total | % of Total | | | | | Located within a current oil or gas field | 0.7 | 2.7 | 2.2 | 0.8 | 6.4 | 24.9% | | | | | Located outside a current oil or gas field | 5.1 | 9.5 | 3.5 | 1.2 | 19.3 | 75.1% | | | | | Total resource | 5.8 | 12.2 | 5.7 | 2.1 | 25.7 | | | | | | 35 GPT (resource numbers in billion barrels) | | | | | | | | | _ | | Thickness (feet) | 0-5 | 5-10 | 10-20 | 20-30 | 30-40 | 40-55 | Total | % of Total | _ | | Located within a current oil or gas field | 0.1 | 0.5 | 3.9 | 2.8 | 3.9 | 4.3 | 15.5 | 25.4% | | | Located outside a current oil or gas field | 1.7 | 3.6 | 16.0 | 12.4 | 8.5 | 3.4 | 45.6 | 74.6% | _ | | Total resource | 1.7 | 4.1 | 19.9 | 15.3 | 12.4 | 7.7 | 61.1 | | _ | | 25 GPT (resource numbers in billion barrels) | | | | | | | | | | | Thickness (feet) | 0-5 | 5-20 | 20-40 | 40-60 | 60-80 | 80-100 | 100-130 | Total | % of Total | | Located within a current oil or gas field | * | 0.7 | 4.8 | 4.7 | 3.2 | 7.4 | 7.1 | 28.0 | 24.9% | | Located outside a current oil or gas field | 1.1 | 7.2 | 22.3 | 20.0 | 11.7 | 12.3 | 9.9 | 84.6 | 75.1% | | Total resource | 1.2 | 7.9 | 27.1 | 24.7 | 14.9 | 19.8 | 17.0 | 112.6 | | | 15 GPT (resource numbers in billion barrels) | | | | | | | | | _ | | Thickness (feet) | 0-15 | 15-100 | 100-200 | 200-300 | 300-400 | 400-500 | Total | % of Total | _ | | Located within a current oil or gas field | 0.1 | 7.2 | 9.9 | 9.3 | 26.2 | 6.9 | 59.7 | 26.1% | | | Located outside a current oil or gas field | 2.6 | 42.0 | 41.8 | 22.6 | 42.5 | 17.0 | 168.6 | 73.9% | _ | | Total resource | 2.7 | 49.2 | 51.7 | 32.0 | 68.8 | 23.9 | 228.3 | | | Note: Totals may not equal sum of components because of independent rounding GPT = gallons of shale oil per ton of rock (42 gallons/barrel) ^{*}Amounts less than 50 million barrels | Table 5. The amount of Utah's 25-GPT oil-shale resource | |--| | found on lands proposed by the BLM as having commercial | | oil-shale leasing potential. | | | | Resource within the Hill Creek | |-----------|-----------------|---------------------------------| | Thickness | Total resource | Extension sub-area ¹ | | feet | billion barrels | billion barrels | | 0-5 | * | 0.0 | | 5-20 | 0.1 | * | | 20-40 | 10.5 | 2.2 | | 40-60 | 19.4 | 1.9 | | 60-80 | 10.5 | 0.7 | | 80-100 | 14.9 | 4.5 | | 100-130 | 13.5 | 1.1 | | Total | 69.0 | 10.5 | ¹Included in tota Note: Totals may not equal sum of components because of independent rounding GPT = gallons of shale oil per ton of rock (42 gallons/barrel) **Table 6.** The Uinta Basin's potential economic oil-shale resource. Constraints: at least 25 GPT, at least 5 feet thick, under less than 3000 feet of cover, not in conflict with conventional oil and gas operations, located only on BLM, state trust, private, and tribal lands. | Thickness | Total resource | |-----------|-----------------| | feet | billion barrels | | 5-20 | 5.3 | | 20-40 | 18.2 | | 40-60 | 19.4 | | 60-80 | 11.6 | | 80-100 | 12.3 | | 100-130 | 9.9 | | Total | 76.7 | Note: Totals may not equal sum of components because of independent rounding GPT = gallons of shale oil per ton of rock (42 gallons/barrel) #### REFERENCES - American Society for Testing and Materials, 1980, Standard test method for oil from oil shale (resource evaluation by the USBM Fischer assay procedure): ASTM Designation D 3904-80, 1980 Annual Book of ASTM Standards, Part 25, p. 513-525. - Bardsley, S.R., and Algermissen, S.T., 1963, Evaluating oil shale by log analysis: Journal of Petroleum Technology, v. 15, p. 81-84. - Bartis, J.T., LaTourrette, T., Dixon, L., Peterson, D.J., and Cecchine, G., 2005, Oil Shale Development in the United States: Prospects and Policy Issues: RAND Corporation, 68 p. - Bunger, J.W., Crawford, P.M., and Johnson, H.R., 2004, Hubbert revisited-5: Is oil shale America's answer to peak-oil challenge?: Oil & Gas Journal, v. 102, Issue 30, p. 16-24. - Cashion, W.B., 1964, The distribution and quality of oil shale in the Green River Formation of the Uinta Basin, Utah-Colorado: U.S. Geological Survey Professional Paper 501-D, p. D86-D89. - —1974, Geologic map of the Southam Canyon quadrangle, Uintah County, Utah: U.S. Geological Survey Miscellaneous Field Studies Map MF-579, scale 1:24,000. - —1977, Geologic map of the Weaver Ridge quadrangle, Uintah County, Utah and Rio Blanco County, Colorado: U.S. Geological Survey Miscellaneous Field Studies Map 824, scale 1:24,000. - 1978, Geologic map of the Walsh Knolls quadrangle, Uintah County, Utah, and Rio Blanco County, Colorado: U.S. Geological Survey Miscellaneous Field Studies Map MF-1013, scale 1:24,000. - —1984, Geologic map of the Agency Draw NW quadrangle, Uintah County, Utah: U.S. Geological Survey Miscellaneous Field Studies Map MF-1717, scale 1:24,000. - —1994, Geologic map of the Nutters Hole quadrangle, Uintah and Carbon Counties, Utah: U.S. Geological Survey Miscellaneous Field Studies Map 2250, scale 1:24,000. - Cashion, W.B., and Donnell, J.R., 1972, Chart showing correlation of selected key units in the organic-rich sequence of the Green River Formation, Piceance Creek Basin, Colorado, and Uinta Basin, Utah: U.S. Geological Survey Oil and Gas Investigations, Chart OC 65. - Chidsey, T.C., Jr., Wakefield, S., Hill, B.G., and Herbertson, M., 2004, Oil and gas fields of Utah: Utah Geological Survey ^{*}Amounts less than 50 million barrels - Map 203 DM, scale 1:700,000. - Culbertson, W.C., and Pitman, J.K., 1973, Oil shale in United States mineral resources, *in* Probst, D.A. and Pratt, W.P., editors, United States Mineral Resources: U.S. Geological Survey Professional Paper 820, p. 497-503. - Culbertson, W.C., Smith, J.W., and Trudell, L.G., 1980, Oil shale resources and geology of the Green River Formation in the Green River Basin, Wyoming: U.S. Department of Energy, Laramie Energy Technology Center, LETC/RI-80/6. - Donnell, J.R., and Blair, R.W., Jr., 1970, Resource appraisal of three rich oil-shale zones in the Green River Formation, Piceance Creek Basin, Colorado: Colorado School of Mines Quarterly, v. 65, no. 4, p. 73-87. - Dyni, J.R., 2003, Geology and resources of some world oilshale deposits: Oil Shale, v. 20, no. 3, p. 193-252. - Dyni, J.R., Donnell, J.R., Grudy, W.D., Cashion, W.B., Orlowski, L.A., Williamson, C., 1991, Oil shale resources of the Mahogany Zone in eastern Uinta Basin, Uintah County, Utah: U.S. Geological Survey Open-File Report 91-285, 81 p. - Gualtieri, J.L., 1988, Geologic map of the Westwater 30' x 60' quadrangle, Grand and Uintah Counties, Utah, and Garfield and Mesa Counties, Colorado: U.S. Geological Survey Miscellaneous Investigations 1765, scale 1:100,000. - Keighin, C.W., 1977a, Preliminary geology map of the Burnt Timber Canyon quadrangle, Uintah County, Utah: U.S. Geological Survey Miscellaneous Field Studies Map MF-875, scale 1:24,000. - —1977b, Preliminary geologic map of the Cooper Canyon quadrangle, Uintah County, Utah: U.S. Geological Survey Miscellaneous Field Studies Map MF-874, scale 1:24,000. - —1977c, Preliminary geologic map of the Rainbow quadrangle, Uintah County, Utah: U.S. Geological Survey Miscellaneous Field Studies Map MF-893, scale 1:24,000. - Pantea, M.P., 1987, Preliminary geologic map of the Davis Canyon quadrangle, Uintah County, Utah, and Garfield and Rio Blanco Counties, Colorado: U.S. Geological Survey Miscellaneous Field Studies Map MF-1933, scale 1:24,000. - Pantea, M.P., and Scott, R.W., 1986, Preliminary geologic map of the Flat Rock Mesa quadrangle, Uintah County, Utah: U.S. Geological Survey Miscellaneous Field Studies Map MF-1866, scale 1:24,000. - Pipiringos, G.N., 1978, Preliminary geologic map of the Bates Knolls quadrangle, Uintah County, Utah: U.S. Geological Survey Miscellaneous Field Studies Map MF-1025, scale 1:24,000. - —1979, Preliminary geologic map of the Agency Draw NE quadrangle, Uintah County, Utah: U.S. Geological Survey Miscellaneous Field Studies Map MF-1078, scale 1:24,000. - Pitman, J.K., Pierce, F.W., and Grundy, W.D., 1989, Thickness, oil-yield, and kriged resource estimates for the Eocene Green River Formation, Piceance Creek Basin, Colorado: - U.S. Geological Survey Oil and Gas Investigations Chart, OC-132. - Scott, R.W. and Pantea, M.P., 1985, Preliminary geologic map of the Dragon quadrangle, Uintah County, Utah, and Rio Blanco County, Colorado: U.S. Geological Survey Miscellaneous Field Studies Map
MF-1774, scale 1:24,000. - —1986, Preliminary geologic map of the Wolf Point quadrangle, Uintah County, Utah: U.S. Geological Survey Miscellaneous Field Studies Map MF-1839. - Shell Oil Company, 2008, Shell Mahogany Research Project: Online, <www.shell.com/us/mahogany/>, accessed August 2008. - Smith, J.W., 1980, Oil shale resources of the United States: Mineral and Energy Resources, Colorado School of Mines, v. 23, no. 6, p. 1-20, scale 1:24,000. - Smith, J.W., Thomas, H.E., and Trudell, L.G., 1968, Geologic factors affecting density logs in oil shale: Society of Professional Well Log Analysts Logging Symposium, 9th Annual, New Orleans, Transactions, Texas Society of Professional Well Log Analysts, p. P1-P17. - Stanfield, K.E., and Frost, I.C., 1949, Method of assaying oil shale by a modified Fischer retort: U.S. Bureau of Mines Report of Investigations 4477, 13 p. - Tixier, M.P., and Curtis, M.R., 1967, Oil shale yield predicted from well logs: Proceedings, Seventh World Petroleum Congress, Mexico City, v. 3, p. 713-715. - Trudell, L.G., Roehler, H.W., and Smith, J.W., 1973, Geology of Eocene rocks and oil yields of Green River oil shales on part of Kinney Rim, Washakie Basin, Wyoming: U.S. Bureau of Mines, Report of Investigations 7775. - Trudell, L.G., Smith, J.W., Beard, T.N., and Mason, G.M., 1983, Primary oil-shale resources of the Green River Formation in the Eastern Uinta Basin, Utah: U.S. Department of Energy Report, DOE/LC/RI-82-4, 58 p. - U.S. Bureau of Land Management, 2008, Oil Shale and Tar Sands Final Programmatic Environmental Impact Statement: Online, http://ostseis.anl.gov/eis/guide/index.cfm, accessed September 2008. - U.S. Federal Energy Administration, 1974, Potential future role of oil shale: Prospects and constraints: Project Independence. - Vanden Berg, M.D., Dyni, J.R., and Tabet, D.E., 2006, Utah oil shale database: Utah Geological Survey Open-File Report 469, CD-ROM. - Weiss, M.P., Witkind, I.J., and Cashion, W.B., 1990, Geologic map of the Price 30' x 60' quadrangle, Carbon, Duchesne, Uintah, Utah, and Wasatch Counties, Utah: U.S. Geological Survey Miscellaneous Investigations I-1981, scale 1:100,000. - Witkind, I.J., 1988, Geologic map of the Huntington 30' x 60' quadrangle, Carbon, Emery, Grand and Uintah Counties, Utah: Utah Geological Survey Open-File Report 440DM, scale 1:100,000. # **Appendix** **APPENDIX.** Oil-shale resource data for coreholes used in this study. Depths and thicknesses are in feet | API | USGS# | 7 | Type of | Log | Twn | Rng | g Sec | Mrd | UTM E | UTM N | Elevation | Mahogany
Bed | 50 | GPT Zone | | 35 | GPT Zone | | 25 | GPT Zone | | 15 | GPT Zone | | |--------------------------|-------|--------|---------|------------------|----------|------------|-------|----------|------------------|--------------------|-----------------|-----------------|------------------|------------------|----------------|------------------|------------------|----------------|------------------|------------------|----------------|------------------|------------------|----------------| | | | Den | Son | Fischer
Assay | | | | | | | Ground
level | Depth
to bed | Тор | Bottom | Thick-
ness | | 4304730384 | | X | 5011 | Assay | 1S | 1E | 33 | UN | 594423 | 4467525 | 5314 | 8255 | ТОР | Dottom | 0.0 | 8255.0 | 8255.5 | 0.5 | 8253.0 | 8257.5 | 4.5 | 8236.5 | 8272.5 | 36.0 | | 4301330190 | | | X | | 1S | 1W | | UN | 581763 | 4467149 | 5427 | 8002 | | | 0.0 | 7999.5 | 8007.5 | 8.0 | 7992.0 | 8017.0 | 25.0 | 7954.5 | 8047.5 | 93.0 | | 4301330083 | | x | | | 1S | 2W | | UN | 578246 | 4468449 | 5571 | 8287 | | | 0.0 | 8286.0 | 8288.0 | 2.0 | 8281.5 | 8290.0 | 8.5 | 8277.5 | 8304.0 | 26.5 | | 4301330139 | | | X | | 1S | 3W | | UN | 567559 | 4467451 | 6129 | 8640 | 8640.0 | 8641.5 | 1.5 | 8633.5 | 8643.0 | 9.5 | 8629.5 | 8651.5 | 22.0 | 8613.0 | 8677.0 | 64.0 | | 4301330060 | | | X | | 1S | 4W | 25 | UN | 561246 | 4468847 | 6425 | 8939 | | | 0.0 | 8938.0 | 8940.0 | 2.0 | 8929.0 | 8950.5 | 21.5 | 8909.0 | 8960.0 | 51.0 | | 4304730169 | | | X | | 2S | 1E | | UN | 591414 | 4465415 | 5294 | 7452 | | | 0.0 | 7448.5 | 7457.0 | 8.5 | 7442.5 | 7474.0 | 31.5 | 7400.5 | 7506.0 | 105.5 | | 4304730774 | | X | | | 2S | 1E | | UN | 598151 | 4463089 | 5068 | 7071 | | | 0.0 | 7065.5 | 7076.0 | 10.5 | 7057.5 | 7093.0 | 35.5 | 7013.0 | 7116.5 | 103.5 | | 4304730198 | | X | | | 2S | 1E | | UN | 596564 | 4457605 | 4991 | 6424 | 6421.5 | 6426.0 | 4.5 | 6419.5 | 6433.5 | 14.0 | 6412.5 | 6471.5 | 59.0 | 6315.0 | 6506.0 | 191.0 | | 4301330226 | | | X | | 2S | 1W | | UN | 582936 | 4465589 | 5289 | 7756 | | | 0.0 | 7752.0 | 7759.5 | 7.5 | 7747.0 | 7773.0 | 26.0 | 7721.0 | 7811.0 | 90.0 | | 4304730220
4301330910 | | X | | | 2S
2S | 1W
1W | | UN
UN | 589966
583714 | 4460428
4459453 | 5021
5053 | 6880
6647 | | | 0.0 | 6876.5
6646.0 | 6882.0
6649.5 | 5.5
3.5 | 6869.5
6638.0 | 6897.0
6650.5 | 27.5
12.5 | 6830.0
6632.0 | 6925.5
6681.5 | 95.5
49.5 | | 4301330910 | | X
X | | | 2S
2S | 1W | | UN | 582159 | 4459519 | 5100 | 6647 | | | 0.0 | 6645.5 | 6649.5 | 4.0 | 6642.5 | 6654.5 | 12.3 | 6635.5 | 6691.5 | 56.0 | | 4301330783 | | X | | | 2S | 2E | | UN | 603202 | 4461428 | 5135 | 6833 | | | 0.0 | 6827.5 | 6837.0 | 9.5 | 6824.0 | 6853.0 | 29.0 | 6802.5 | 6881.5 | 79.0 | | 4301330061 | | x | | | 2S | 2W | | UN | 575488 | 4462196 | 5650 | 7307 | 7305.0 | 7308.0 | 3.0 | 7303.0 | 7310.5 | 7.5 | 7301.0 | 7323.5 | 22.5 | 7265.5 | 7358.5 | 93.0 | | 4301330117 | | | х | | 2S | 3W | | UN | 567824 | 4465830 | 6001 | 8183 | 8183.0 | 8184.0 | 1.0 | 8179.0 | 8185.0 | 6.0 | 8173.0 | 8188.5 | 15.5 | 8161.0 | 8198.0 | 37.0 | | 4301330122 | | x | | | 2S | 3W | 22 | UN | 567074 | 4460322 | 5854 | 7154 | | | 0.0 | | | 0.0 | 7157.5 | 7158.5 | 1.0 | 7151.0 | 7185.5 | 34.5 | | 4301311087 | | x | | | 3S | 1W | 7 | UN | 581113 | 4454396 | 5282 | 5825 | 5822.5 | 5827.0 | 4.5 | 5820.0 | 5830.5 | 10.5 | 5821.5 | 5844.0 | 22.5 | 5789.5 | 5851.0 | 61.5 | | 4304730254 | | X | | | 3S | 2E | 20 | UN | 602555 | 4450725 | 4920 | 5120 | 5116.0 | 5123.0 | 7.0 | 5110.0 | 5129.0 | 19.0 | 5110.0 | 5161.5 | 51.5 | 5034.0 | 5185.0 | 151.0 | | 4301330786 | | X | | | 3S | 2W | | UN | 578909 | 4455194 | 5334 | 6004 | 6002.5 | 6006.0 | 3.5 | 6001.5 | 6010.0 | 8.5 | 5997.5 | 6016.0 | 18.5 | 5976.5 | 6027.5 | 51.0 | | 4301330094 | | X | | | 3S | 3W | | UN | 570267 | 4452310 | 5208 | 5381 | 5381.0 | 5381.5 | 0.5 | 5378.0 | 5383.0 | 5.0 | 5378.0 | 5389.5 | 11.5 | 5372.5 | 5403.5 | 31.0 | | 4301330380 | | | X | | 3S | 6W | | UN | 533768 | 4453829 | 6264 | 5559 | | | 0.0 | 5556.0 | 5563.0 | 7.0 | 5551.0 | 5566.5 | 15.5 | 5538.5 | 5582.0 | 43.5 | | 4301330298 | | X | | | 3S | 6W | | UN | 541862 | 4450840 | 5845 | 4760 | 40.45.5 | 4051.5 | 0.0 | 4759.5 | 4762.5 | 3.0 | 4747.5 | 4774.5 | 27.0 | 4745.0 | 4834.5 | 89.5 | | 4304731936 | | X | | | 4S | 1E | | UN | 595764 | 4442476 | 5270 | 4049 | 4047.5 | 4051.5 | 4.0 | 4046.0 | 4058.0 | 12.0 | 4042.0 | 4071.0 | 29.0 | 4010.5 | 4083.5 | 73.0 | | 4304733541
4301330113 | | X | | | 4S
4S | 1E
1W | | UN
UN | 599059
581684 | 4440655
4446150 | 5068
5246 | 3711
4575 | 3710.0
4575.0 | 3717.5
4575.5 | 7.5
0.5 | 3706.5
4572.0 | 3725.5
4579.0 | 19.0
7.0 | 3704.0
4568.5 | 3743.5
4587.5 | 39.5
19.0 | 3634.5
4545.0 | 3740.0
4599.5 | 105.5
54.5 | | 4301330113 | | X
X | | | 4S | 1W | | UN | 582934 | 4441592 | 5187 | 3600 | 3598.0 | 3602.0 | 4.0 | 3595.5 | 3608.0 | 12.5 | 3594.0 | 3620.5 | 26.5 | 3571.5 | 3636.0 | 64.5 | | 4304733080 | | X | | | 4S | 1W | | UN | 588103 | 4440829 | 5079 | 3563 | 3562.5 | 3564.5 | 2.0 | 3561.5 | 3570.5 | 9.0 | 3557.5 | 3581.0 | 23.5 | 3536.5 | 3604.0 | 67.5 | | 4301333635 | | X | | | 4S | 2W | | UN | 577782 | 4440775 | 5354 | 3491 | 3491.0 | 3491.5 | 0.5 | 3487.0 | 3493.0 | 6.0 | 3484.5 | 3500.5 | 16.0 | 3463.5 | 3514.5 | 51.0 | | 4301331864 | | x | | | 4S | 2W | | UN | 580991 | 4441089 | 5264 | 3563 | 3561.0 | 3565.0 | 4.0 | 3556.5 | 3570.5 | 14.0 | 3555.5 | 3584.0 | 28.5 | 3531.5 | 3599.5 | 68.0 | | 4301330769 | | x | | | 4S | 3W | 25 | UN | 571332 | 4440191 | 5578 | 3316 | 3316.0 | 3316.5 | 0.5 | 3315.0 | 3318.0 | 3.0 | 3309.0 | 3322.5 | 13.5 | 3299.0 | 3327.5 | 28.5 | | 4301331935 | | X | | | 4S | 3W | 33 | UN | 566086 | 4437836 | 5822 | 2933 | 2932.0 | 2934.0 | 2.0 | 2930.0 | 2935.5 | 5.5 | 2927.0 | 2940.5 | 13.5 | 2927.0 | 2954.0 | 27.0 | | 4301330414 | | X | | | 4S | 4W | | UN | 559843 | 4444595 | 5643 | 4125 | | | 0.0 | 4124.0 | 4125.0 | 1.0 | 4122.5 | 4126.0 | 3.5 | 4122.0 | 4134.0 | 12.0 | | 4301330838 | | X | | | 4S | 4W | | UN | 552287 | 4443132 | 6082 | 3384 | 3382.5 | 3383.5 | 1.0 | 3381.5 | 3386.0 | 4.5 | 3381.0 | 3392.0 | 11.0 | 3374.0 | 3400.0 | 26.0 | | 4301320179 | | X | | | 4S | 5W | | UN | 546236 | 4444283 | 6081 | 3594 | 3593.5 | 3595.0 | 1.5 | 3591.0 | 3597.0 | 6.0 | 3590.5 | 3603.0 | 12.5 | 3569.5 | 3608.0 | 38.5 | | 4301330444 | | X | | | 4S | 6W | | UN | 538703 | 4441689 | 6771 | 2480 | 2479.5 | 2481.5 | 2.0 | 2477.0 | 2484.0 | 7.0 | 2473.5 | 2489.5 | 16.0 | 2462.0 | 2499.0 | 37.0 | | 4301330016 | | X | | | 4S | 7W | | UN | 532324 | 4439412 | 6468 | 1584 | 1582.5 | 1587.0 | 4.5
0.0 | 1581.0 | 1590.5 | 9.5 | 1561.0 | 1594.0 | 33.0 | 1543.5 | 1616.5 | 73.0 | | 4304730175
4304733710 | | ** | X | | 5S
5S | 19E
3E | | SL
UN | 601735
611612 | 4466835
4437308 | 5186
4730 | 6901
3096 | 3088.5 | 3099.0 | 10.5 | 6896.5
3087.0 | 6904.0
3120.0 | 7.5
33.0 | 6896.5
3059.0 | 6918.0
3128.5 | 21.5
69.5 | 6885.0
2962.5 | 6950.5
3146.5 | 65.5
184.0 | | 4304733710 | | X
X | | | 5S | 3W | | UN | 566893 | 4435633 | 6006 | 3012 | 3012.0 | 3014.0 | 2.0 | 3010.5 | 3017.0 | 6.5 | 3005.5 | 3023.0 | 17.5 | 2902.3 | 3038.0 | 40.5 | | 4301330823 | | X | | | 5S | 3W | | UN | 564551 | 4436479 | 6024 | 2932 | 2928.0 | 2936.5 | 8.5 | 2923.5 | 2944.0 | 20.5 | 2923.0 | 2961.5 | 38.5 |
2900.0 | 2970.5 | 70.5 | | 4301331710 | | X | | | 5S | 3W | | UN | 565710 | 4433207 | 6212 | 2940 | 2936.0 | 2942.0 | 6.0 | 2935.5 | 2949.5 | 14.0 | 2930.5 | 2955.5 | 25.0 | 2918.5 | 2969.5 | 51.0 | | 4301331575 | | X | | | 5S | 3W | | UN | 565777 | 4429638 | 6480 | 2816 | 2811.5 | 2820.5 | 9.0 | 2808.0 | 2826.0 | 18.0 | 2805.0 | 2834.0 | 29.0 | 2791.0 | 2848.5 | 57.5 | | 4301330756 | | x | | | 5S | 4W | | UN | 560070 | 4435592 | 6105 | 2792 | 2790.0 | 2795.0 | 5.0 | 2789.5 | 2801.5 | 12.0 | 2781.5 | 2805.5 | 24.0 | 2775.5 | 2825.5 | 50.0 | | 4301332586 | | x | | | 5S | 4W | 14 | UN | 559316 | 4433097 | 6227 | 2692 | 2689.0 | 2694.5 | 5.5 | 2686.5 | 2700.5 | 14.0 | 2680.5 | 2705.0 | 24.5 | 2674.0 | 2723.5 | 49.5 | | 4301331815 | | X | | | 5S | 4W | 36 | UN | 561741 | 4428396 | 6372 | 2416 | 2411.0 | 2417.5 | 6.5 | 2408.0 | 2427.5 | 19.5 | 2404.5 | 2436.0 | 31.5 | 2395.5 | 2458.5 | 63.0 | | 4301330541 | | X | | | 5S | 5W | | UN | 550436 | 4432804 | 6406 | 2411 | 2408.5 | 2414.5 | 6.0 | 2407.0 | 2423.0 | 16.0 | 2402.5 | 2425.5 | 23.0 | 2390.5 | 2446.0 | 55.5 | | 4301333379 | | X | | | 5S | 5W | | UN | 544532 | 4428587 | 7751 | 2706 | 2705.5 | 2711.5 | 6.0 | 2702.0 | 2712.0 | 10.0 | 2702.5 | 2719.0 | 16.5 | 2685.5 | 2720.5 | 35.0 | | 4301332737 | ***** | X | | | 5S | 6W | | UN | 539698 | 4432382 | 6496 | 1614 | 1610.5 | 1616.5 | 6.0 | 1610.0 | 1625.0 | 15.0 | 1604.5 | 1629.0 | 24.5 | 1586.5 | 1647.0 | 60.5 | | | U181 | | | X | 5S | 8W | | UN | 520121 | 4433058 | 6635 | 246 | 243.5 | 250.5 | 7.0 | 242.0 | 258.5 | 16.5 | 235.0 | 259.5 | 24.5 | 233.5 | 284.5 | 51.0 | | 4204720777 | U172 | | | X | 5S | 8W | | UN | 516652 | 4430457 | 7217 | 225 | 223.5 | 225.5 | 2.0 | 221.0 | 228.5 | 7.5 | 221.0 | 238.5 | 17.5 | 221.0 | 254.0 | 33.0 | | 4304730777
4304730155 | | X
X | | | 6S
6S | 19E
20E | | SL
SL | 605679
615304 | 4460783
4462172 | 5148
4966 | 6662
5727 | 6661.0 | 6662.5 | 1.5
0.0 | 6654.5 | 6667.5 | 13.0 | 6652.5
5724.5 | 6686.5
5727.5 | 34.0
3.0 | 6612.0
5720.0 | 6708.0
5737.5 | 96.0
17.5 | | 4304730133 | | ^ | x | | 6S | 20E | | SL | 621813 | 4458242 | 4961 | 5040 | | | 0.0 | | | 0.0 | 5039.0 | 5040.0 | 1.0 | 5034.5 | 5054.5 | 20.0 | | 4304731371 | | x | А | | 6S | 4W | | UN | 560001 | 4426942 | 6799 | 2254 | 2252.0 | 2255.0 | 3.0 | 2248.0 | 2263.0 | 15.0 | 2242.5 | 2271.5 | 29.0 | 2231.0 | 2293.5 | 62.5 | | 43013333361 | | X | | | 6S | 4W | | UN | 559325 | 4421669 | 6780 | 1755 | 1753.5 | 1756.5 | 3.0 | 1751.5 | 1761.5 | 10.0 | 1747.5 | 1771.0 | 23.5 | 2231.0 | 2275.5 | 39.5 | | | | _ ^ | | | 6S | 5W | | UN | 547147 | 4422129 | 7510 | 1798 | 1795.0 | 1806.0 | 11.0 | 1793.5 | 1816.5 | 23.0 | 1790.0 | 1823.0 | 33.0 | 1779.0 | 1834.5 | 55.5 | | API | USGS # | Т | ype of Log | Tv | vn | Rng | Sec | Mrd | UTM E | UTM N | Elevation | Mahogany
Bed | 50 |) GPT Zone | | 35 | GPT Zone | | 25 | GPT Zone | | 15 | GPT Zone | e | |--------------------------|---------|--------|------------|-----|--------------|------------|----------|----------|------------------|--------------------|--------------|-----------------|------------------|------------------|------------|------------------|------------------|--------------|------------------|------------------|--------------|------------------|------------------|----------------| | | 0000 11 | | Fisc | | | rung | Sec | mu | 012 | 011111 | Ground | Depth | | OI I Loine | Thick- | | Of 1 Lone | Thick- | | OI I Lone | Thick- | - 10 | OI I Zone | Thick- | | | | Den | Son As | say | | | | | | | level | to bed | Top | Bottom | ness | Тор | Bottom | ness | Top | Bottom | ness | Тор | Bottom | ness | | 4301330496 | | X | | (| 6S | 5W | 21 | UN | 547147 | 4422129 | | 1798 | 1795.0 | 1801.0 | 6.0 | 1793.5 | 1811.5 | 18.0 | 1790.0 | 1823.0 | 33.0 | 1779.0 | 1834.5 | 55.5 | | 4304731018 | | x | | 1 | | 20E | 15 | SL | 614974 | 4452081 | 4959 | 5152 | | | 0.0 | 5150.5 | 5152.5 | 2.0 | 5147.0 | 5155.5 | 8.5 | 5143.5 | 5171.5 | 28.0 | | 4304731381 | | X | | | | 20E | 35 | SL | 616012 | 4447534 | 4830 | 4404 | | | 0.0 | 4400.5 | 4409.0 | 8.5 | 4394.0 | 4421.0 | 27.0 | 4368.5 | 4439.5 | 71.0 | | 4304733575 | | X | | | | 22E | 25 | SL | 636669 | 4448686 | 5503 | 4149 | | | 0.0 | | | 0.0 | 4144.5 | 4156.0 | 11.5 | 4139.5 | 4173.5 | 34.0 | | 4304731683 | | | X | | | 23E | 24 | SL | 646687 | 4450866 | 5675 | 3607 | 2165.5 | 2160.5 | 0.0 | 21640 | 2171.0 | 0.0 | 3606.5 | 3611.5 | 5.0 | 3600.5 | 3618.5 | 18.0 | | 4301330770
4301331372 | | X | | | | 16E
16E | 26
28 | SL
SL | 577333
574589 | 4437612
4437016 | 5532
5618 | 3167
3106 | 3165.5
3106.0 | 3168.5
3107.5 | 3.0
1.5 | 3164.0
3105.5 | 3171.0
3111.0 | 7.0
5.5 | 3164.0
3096.5 | 3179.0
3112.0 | 15.0
15.5 | 3146.0
3094.0 | 3188.0
3136.0 | 42.0
42.0 | | 4301331372 | | X
X | | | | 16E | 32 | SL | 572548 | 4435907 | 5745 | 3082 | 3080.0 | 3083.0 | 3.0 | 3078.5 | 3088.0 | 9.5 | 3074.5 | 3092.5 | 18.0 | 3067.5 | 3109.0 | 41.5 | | 4301331112 | | X | | | | 16E | 36 | SL | 579457 | 4435643 | 5367 | 2931 | 2928.5 | 2934.0 | 5.5 | 2927.5 | 2941.5 | 14.0 | 2924.0 | 2951.5 | 27.5 | 2880.5 | 2952.0 | 71.5 | | 4301330690 | | X | | | | 17E | 20 | SL | 583320 | 4439272 | 5266 | 3376 | 3373.0 | 3379.0 | 6.0 | 3369.5 | 3386.5 | 17.0 | 3363.5 | 3400.5 | 37.0 | 3346.0 | 3421.5 | 75.5 | | 4301333013 | | x | | 8 | 3S | 17E | 32 | SL | 582180 | 4436019 | 5249 | 3015 | 3012.0 | 3017.5 | 5.5 | 3007.5 | 3018.0 | 10.5 | 3006.5 | 3031.5 | 25.0 | 3000.0 | 3050.5 | 50.5 | | 4304733015 | | x | | 8 | 3S | 17E | 36 | SL | 588975 | 4436927 | 5059 | 3193 | 3190.5 | 3195.5 | 5.0 | 3187.0 | 3203.5 | 16.5 | 3183.0 | 3214.5 | 31.5 | 3154.0 | 3233.0 | 79.0 | | 4304736188 | | x | | 8 | 3S | 18E | 19 | SL | 590975 | 4439383 | 4980 | 3354 | 3352.5 | 3355.0 | 2.5 | 3349.5 | 3359.5 | 10.0 | 3347.0 | 3374.0 | 27.0 | 3323.5 | 3385.5 | 62.0 | | 4304731116 | | X | | | | 18E | 32 | SL | 592605 | 4436146 | 4930 | 3066 | 3064.0 | 3068.0 | 4.0 | 3062.0 | 3075.5 | 13.5 | 3058.0 | 3085.0 | 27.0 | | | 66.5 | | 4304731345 | | X | | | | 18E | 36 | SL | 598192 | 4436204 | 4831 | 3112 | 3110.0 | 3114.5 | 4.5 | 3109.0 | 3120.5 | 11.5 | 3102.5 | 3133.5 | 31.0 | 3075.5 | 3152.0 | 76.5 | | 4304715804 | | | X | | | 20E | 15 | SL | 614534 | 4442239 | 4686 | 3576 | 3572.0 | 3582.0 | 10.0 | 3565.0 | 3600.0 | 35.0 | 3532.0 | 3641.0 | 109.0 | 3400.5 | 3654.0 | 253.5 | | 4304733421
4304733794 | | X | | | | 20E
21E | 36
1 | SL
SL | 617917
627733 | 4437124
4445434 | 4661
5167 | 2963
3434 | 2959.0 | 2966.5 | 7.5
0.0 | 2953.0
3430.5 | 2981.0
3434.0 | 28.0
3.5 | 2925.5
3425.5 | 3007.0
3435.0 | 81.5
9.5 | 2750.0
3417.0 | 3035.5
3453.5 | 285.5
36.5 | | 4304733794 | | X
X | | | | 21E | 12 | SL | 628213 | 4443383 | 5017 | 3695 | | | 0.0 | 3694.5 | 3695.5 | 1.0 | 3689.5 | 3701.5 | 12.0 | 3681.5 | 3740.0 | 58.5 | | 4304731609 | | X | | | | 21E | 16 | SL | 622983 | 4442058 | 4750 | 3413 | 3412.0 | 3415.5 | 3.5 | 3405.5 | 3430.0 | 24.5 | 3399.5 | 3469.5 | 70.0 | 3270.5 | 3492.0 | 221.5 | | 4304731065 | | X | | | | 21E | 19 | SL | 620216 | 4439938 | 4682 | 3314 | 3312.5 | 3318.0 | 5.5 | 3307.5 | 3324.5 | 17.0 | 3278.5 | 3357.5 | 79.0 | 3146.0 | 3389.0 | 243.0 | | 4304731604 | | x | | | | 21E | 21 | SL | 622232 | 4440822 | 4703 | 3316 | 3314.0 | 3321.5 | 7.5 | 3307.5 | 3336.5 | 29.0 | 3273.5 | 3380.5 | 107.0 | 3196.0 | 3445.0 | 249.0 | | 4304733903 | | x | | 8 | 3S | 21E | 22 | SL | 625124 | 4441280 | 4784 | 3326 | 3322.0 | 3328.0 | 6.0 | 3318.5 | 3347.0 | 28.5 | 3292.5 | 3379.0 | 86.5 | 3121.5 | 3404.0 | 282.5 | | 4304731253 | | x | | 8 | 3S | 21E | 24 | SL | 627525 | 4440529 | 4819 | 3228 | 3225.0 | 3232.5 | 7.5 | 3216.5 | 3250.5 | 34.0 | 3186.0 | 3298.5 | 112.5 | 2926.5 | 3301.0 | 374.5 | | 4304733746 | | X | | | | 21E | 32 | SL | 621913 | 4437545 | 4699 | 3054 | 3050.5 | 3058.5 | 8.0 | 3047.5 | 3075.5 | 28.0 | 3009.5 | 3094.5 | 85.0 | 2880.0 | 3130.0 | 250.0 | | 4304733252 | | X | | | | 21E | 36 | SL | 628094 | 4438025 | 4759 | 2914 | 2910.0 | 2920.0 | 10.0 | 2906.5 | 2944.5 | 38.0 | 2870.0 | 2992.0 | 122.0 | 2800.0 | 3200.0 | 400.0 | | 4304733287 | | X | | | | 21E | 36 | SL | 627253 | 4437256 | 4749 | 2914 | 2909.5 | 2919.0 | 9.5 | 2901.5 | 2935.5 | 34.0 | 2874.0 | 2965.0 | 91.0 | 2750.0 | 3019.0 | 269.0 | | 4304731810 | | X | | | | 22E | 7 | SL | 628565 | 4443416 | 5036 | 3705 | | | 0.0 | 3703.0 | 3706.0 | 3.0 | 3698.5 | 3708.5 | 10.0 | 3663.0 | 3777.0 | 114.0 | | 4304734710
4304731355 | | X
X | | | | 22E
22E | 15
20 | SL
SL | 634039
630418 | 4441795
4440611 | 5052
4793 | 3491
3163 | 3162.5 | 3166.0 | 0.0
3.5 | 3490.0
3152.0 | 3503.5
3174.5 | 13.5
22.5 | 3487.0
3129.0 | 3532.0
3204.0 | 45.0
75.0 | 3383.0
3056.5 | 3560.0
3270.5 | 177.0
214.0 | | 4304735123 | | X | | | | 22E
22E | 27 | SL | 634781 | 4439405 | 4818 | 2979 | 2975.5 | 2982.5 | 7.0 | 2971.0 | 3002.5 | 31.5 | 2935.5 | 3032.5 | 97.0 | 3030.3 | 3270.3 | 326.5 | | 4304733583 | | X | | | | 22E | 32 | SL | 630434 | 4436875 | 4715 | 2771 | 2767.0 | 2776.0 | 9.0 | 2762.0 | 2793.0 | 31.0 | 2728.5 | 2815.5 | 87.0 | 2560.5 | 2853.5 | 293.0 | | 4304734210 | | x | | | | 22E | 35 | SL | 635206 | 4436993 | 4880 | 2837 | 2833.0 | 2843.5 | 10.5 | 2825.0 | 2859.0 | 34.0 | 2792.5 | 2891.0 | 98.5 | 2586.0 | 2924.5 | 338.5 | | 4304734085 | | x | | 8 | 3S | 23E | 30 | SL | 639172 | 4439428 | 4899 | 2946 | 2941.5 | 2949.5 | 8.0 | 2932.0 | 2966.5 | 34.5 | 2908.0 | 3009.5 | 101.5 | 2661.0 | 3026.0 | 365.0 | | 4304733453 | | x | | 8 | 3S | 23E | 31 | SL | 639640 | 4436958 | 4869 | 2715 | 2709.0 | 2721.0 | 12.0 | 2703.0 | 2740.5 | 37.5 | 2662.5 | 2763.0 | 100.5 | | | 361.5 | | 4304736061 | | x | | 8 | 3S | 23E | 34 | SL | 644432 | 4438266 | 5076 | 2799 | 2794.5 | 2804.5 | 10.0 | 2786.5 | 2820.0 | 33.5 | 2754.0 | 2851.5 | 97.5 | 2627.5 | 2965.0 | 337.5 | | 4304732106 | | X | | | | 24E | 2 | SL | 654670 | 4445356 | 5518 | 2935 | | | 0.0 | | | 0.0 | 2931.0 | 2937.5 | 6.5 |
2918.0 | 2964.0 | 46.0 | | 4304732260 | | X | | | | 25E | 5 | SL | 659579 | 4446649 | 5637 | 2798 | | | 0.0 | 2797.5 | 2799.0 | 1.5 | 2794.5 | 2810.5 | 16.0 | 2786.0 | 2854.0 | 68.0 | | 4304730066 | | | X | | | 25E | 34 | SL | 662570 | 4438670 | 5567 | 1467 | 1463.5 | 1470.5 | 7.0 | 1460.0 | 1486.5 | 26.5 | 1431.5 | 1522.5 | 91.0 | 1370.5 | 1807.5 | 437.0 | | 4301330997
4301331479 | | X | | | | 15E | 2
14 | SL
SL | 567861
568546 | 4435024
4431488 | 5992
6217 | 3003
2928 | 2999.5
2924.0 | 3007.5
2931.5 | 8.0
7.5 | 2995.0
2920.0 | 3012.5
2938.0 | 17.5
18.0 | 2991.0
2915.5 | 3020.0
2944.0 | 29.0
28.5 | 2959.0 | 3031.5
2963.0 | 72.5
57.0 | | 4301331479 | | X
X | | - | | 15E
16E | 11 | SL | 578569 | 4431488 | 5581 | 2888 | 2888.0 | 2888.5 | 0.5 | 2884.5 | 2890.0 | 5.5 | 2881.0 | 2898.0 | 17.0 | 2906.0
2869.0 | 2903.0 | 44.5 | | 4301330446 | | X | | - | | 16E | 29 | SL | 573060 | 4428709 | 6212 | 2808 | 2000.0 | 2000.5 | 0.0 | 2803.5 | 2810.5 | 7.0 | 2797.5 | 2816.5 | 19.0 | 2790.0 | 2834.0 | 44.0 | | 4301331425 | | x | | - | | 17E | 2 | SL | 587009 | 4434058 | 5066 | 2785 | 2781.5 | 2788.5 | 7.0 | 2778.5 | 2797.0 | 18.5 | 2768.5 | 2804.0 | 35.5 | 2734.0 | 2839.0 | 105.0 | | 4301330926 | | x | | ç | S | 17E | 7 | SL | 581764 | 4433587 | 5279 | 2803 | 2801.0 | 2805.5 | 4.5 | 2797.5 | 2808.0 | 10.5 | 2796.0 | 2817.5 | 21.5 | 2795.5 | 2836.0 | 40.5 | | 4304731129 | | X | | و | S | 17E | 14 | SL | 587851 | 4431749 | 5157 | 2647 | 2646.5 | 2648.5 | 2.0 | 2644.5 | 2654.5 | 10.0 | 2641.5 | 2663.5 | 22.0 | 2632.0 | 2676.0 | 44.0 | | 4301330552 | | x | | 9 | S | 17E | 16 | SL | 584969 | 4431996 | 5243 | 2671 | 2668.5 | 2673.0 | 4.5 | 2668.0 | 2681.0 | 13.0 | 2664.5 | 2695.5 | 31.0 | 2654.0 | 2718.0 | 64.0 | | 4301332787 | | X | | - | | 17E | 23 | SL | 587015 | 4429669 | 5212 | 2440 | 2437.0 | 2442.5 | 5.5 | 2433.5 | 2449.5 | 16.0 | 2430.0 | 2461.5 | 31.5 | 2405.5 | 2475.0 | 69.5 | | 4301330601 | | X | | - | | 17E | 30 | SL | 581871 | 4428750 | 5520 | 2493 | 2490.0 | 2496.0 | 6.0 | 2489.5 | 2505.0 | 15.5 | 2484.0 | 2517.0 | 33.0 | 2474.0 | 2539.5 | 65.5 | | 4304735775 | | X | | | | 18E | 2 | SL | 597049 | 4435328 | 4857 | 3029 | 3027.0 | 3030.0 | 3.0 | 3023.0 | 3034.0 | 11.0 | 3020.5 | 3046.5 | 26.0 | 2570.0 | 2721.0 | 64.5 | | 4304720011 | | ., | X | | | 19E
19E | 9
13 | SL
SL | 603012
607644 | 4432650
4431670 | 4689
4649 | 2692
2522 | 2688.5
2518.5 | 2694.5
2525.0 | 6.0 | 2685.5
2518.0 | 2711.0
2539.0 | 25.5
21.0 | 2663.0
2490.5 | 2722.5
2541.5 | 59.5
51.0 | 2578.0 | 2731.0 | 153.0
126.5 | | 4304732457
4304732227 | | X | | - | | 19E
19E | 24 | SL | 608484 | 4430846 | 4691 | 2509 | 2506.5 | 2512.0 | 6.5
5.5 | 2502.5 | 2520.0 | 17.5 | 2490.3 | 2341.3 | 35.5 | | | 88.5 | | 4304732237 | | X | | | | 19E | 26 | SL | 606224 | 4428358 | 4795 | 2369 | 2365.0 | 2373.0 | 8.0 | 2361.5 | 2387.0 | 25.5 | 2339.0 | 2391.0 | 52.0 | 2273.0 | 2402.0 | 129.0 | | 4304732237 | | X | | | | 20E | 4 | SL | 612958 | 4435952 | 4649 | 2845 | 2843.0 | 2849.0 | 6.0 | 2842.0 | 2863.0 | 21.0 | 2833.5 | 2873.5 | 40.0 | 2784.5 | 2898.5 | 114.0 | | 4304730434 | | X | | | | 20E | 10 | SL | 614391 | 4433457 | 4747 | 2614 | 2610.5 | 2616.0 | 5.5 | 2605.5 | 2628.5 | 23.0 | 2579.0 | 2646.0 | 67.0 | 2354.0 | 2672.5 | 318.5 | | 4304716529 | | | x | | | 20E | 27 | SL | 615687 | 4429710 | 4824 | 2420 | 2414.0 | 2425.0 | 11.0 | 2411.0 | 2449.0 | 38.0 | 2385.0 | 2474.0 | 89.0 | 2173.5 | 2494.5 | 321.0 | | | U043 | | > | | | 20E | 36 | SL | 619748 | 4426886 | 4941 | 2303 | 2299.0 | 2305.5 | 6.5 | 2294.0 | 2312.0 | 18.0 | 2268.0 | 2335.5 | 67.5 | 1953.5 | 2356.5 | 403.0 | | 4304734875 | | X | | | | 21E | 8 | SL | 621820 | 4434470 | 4688 | 2641 | 2638.0 | 2646.0 | 8.0 | 2631.0 | 2660.5 | 29.5 | 2600.5 | 2684.5 | 84.0 | | | 358.5 | | 4304734747 | | X | | | | 21E | 10 | SL | 625111 | 4434922 | 4821 | 2819 | 2813.0 | 2825.0 | 12.0 | 2808.0 | 2845.5 | 37.5 | 2787.0 | 2877.5 | 90.5 | 2513.5 | 2900.0 | 386.5 | | 4304732084 | | X | | | | 21E | 13 | SL | 627413 | 4433215 | 4811 | 2588 | 2583.0 | 2602.0 | 19.0 | 2575.5 | 2629.0 | 53.5 | 2538.0 | 2649.0 | 111.0 | 2307.5 | 2715.0 | 407.5 | | 4304734640 | | X | | | | 21E | 17 | SL | 622172 | 4431988 | 4851 | 2533 | 2526.5 | 2538.5 | 12.0 | 2524.0 | 2567.5 | 43.5 | 2498.5 | 2588.5 | 90.0 | 2259.0 | 2601.5 | 342.5 | | 4304734584 | | X
X | | | | 21E
21E | 21
25 | SL | 623480 | 4431229 | 4875 | 2472 | 2465.5 | 2476.5 | 11.0 | 2462.5 | 2503.5 | 41.0 | 2435.0 | 2520.5 | 85.5 | 2213.5 | 2538.5 | 325.0 | | 4304731744 | | | | | <i>1</i> > ' | 7.LE | 7.5 | SL | 627893 | 4430012 | 4936 | 2330 | 2321.5 | 2336.5 | 15.0 | 2320.0 | 2367.5 | 47.5 | 2288.5 | 2387.5 | 99.0 | 2029.5 | 2399.0 | 369.5 | APPENDIX continued | API | USGS# | Typ | e of Log | | Twn | Rng | Sec | Mrd | UTM E | UTM N | Elevation | Mahogany
Bed | 50 | GPT Zone | , | 35 | GPT Zone | | 25 | GPT Zone | | 15 | GPT Zone | | |--------------------------|--------------|--------|----------|-----|------------|------------|----------|----------|------------------|--------------------|--------------|-----------------|------------------|------------------|--------------|------------------|------------------|--------------|------------------|------------------|----------------|------------------|------------------|-------------| | | | | Fisc | her | | | | | | | Ground | Depth | | | Thick- | | | Thick- | | | Thick- | | | Thick | | | U102 | Den S | | | 00 | 215 | 26 | SL | 627029 | 4429992 | level | to bed | Top | Bottom | ness | Top | Bottom | ness | Top | Bottom | ness | Тор | Bottom | nes
382. | | 4304734586 | 0102 | x | X | | 9S
9S | 21E
21E | 26
28 | SL | 627029 | 4429992 | 4911
4903 | 2313
2377 | 2310.5
2372.5 | 2325.5
2383.5 | 15.0
11.0 | 2303.0
2368.5 | 2349.0
2406.5 | 46.0
38.0 | 2274.0
2341.5 | 2376.5
2419.0 | 102.5
77.5 | 2148.5 | 2425.5 | 277 | | .50 .75 .500 | U108 | | x | | 9S | 21E | 36 | SL | 627506 | 4427181 | 5100 | 2210 | 2205.0 | 2217.5 | 12.5 | 2201.0 | 2243.5 | 42.5 | 2179.0 | 2267.0 | 88.0 | 1905.0 | 2268.5 | 363 | | | U045 | | X | | 9S | 22E | 1 | SL | 637424 | 4436007 | 4810 | 2646 | 2642.0 | 2652.5 | 10.5 | 2633.0 | 2665.0 | 32.0 | 2604.0 | 2700.0 | 96.0 | | | 334 | | 4304735012 | | x | | | 9S | 22E | 3 | SL | 634472 | 4436548 | 4798 | 2755 | 2750.5 | 2761.5 | 11.0 | 2746.5 | 2779.0 | 32.5 | 2709.5 | 2810.5 | 101.0 | 2491.0 | 2842.5 | 351 | | 4304733459 | | X | | | 9S | 22E | 6 | SL | 629337 | 4435703 | 4700 | 2687 | 2683.0 | 2693.0 | 10.0 | 2675.5 | 2710.0 | 34.5 | 2646.0 | 2735.5 | 89.5 | 2430.0 | 2769.5 | 339 | | 4304732194 | | X | | | 9S | 22E | 19 | SL | 630083 | 4431741 | 4859 | 2425 | 2420.5 | 2432.5 | 12.0 | 2412.5 | 2450.0 | 37.5 | 22160 | 2417.0 | 96.0 | 2050.5 | 2.120.5 | 360 | | 4304730229 | | X | | | 9S | 22E
22E | 22
32 | SL
SL | 634855 | 4431699 | 4861 | 2350
2078 | 2344.0 | 2356.5 | 12.5 | 2339.5 | 2379.0 | 39.5
47.5 | 2316.0 | 2417.0 | 101.0
121.5 | 2050.5 | 2429.5 | 379 | | 4304734795 | U106 | X | х | | 9S
9S | 22E | 36 | SL | 631370
638245 | 4428124
4428239 | 4958
4965 | 1966 | 2072.0
1964.0 | 2086.5
1977.0 | 14.5
13.0 | 2068.0
1956.0 | 2115.5
2003.5 | 47.5 | | | 121.5 | | | 456
456 | | 4304736617 | 0100 | x | Λ. | | 9S | 23E | 17 | SL | 641038 | 4432656 | 4904 | 2345 | 2340.0 | 2352.0 | 12.0 | 2334.5 | 2372.5 | 38.0 | 2302.0 | 2418.5 | 116.5 | 2022.0 | 2435.5 | 413 | | | U044 | | х | | 9S | 23E | 22 | SL | 644158 | 4431449 | 5067 | 2236 | 2231.0 | 2242.5 | 11.5 | 2224.0 | 2265.0 | 41.0 | 2192.5 | 2312.5 | 120.0 | | | 426 | | 4304735288 | | x | | | 9S | 23E | 31 | SL | 639845 | 4427554 | 5119 | 1996 | 1991.0 | 2003.5 | 12.5 | 1985.5 | 2026.5 | 41.0 | 1959.5 | 2061.5 | 102.0 | | | 499 | | 4304735224 | | x | | | 9S | 23E | 33 | SL | 642608 | 4428245 | 5270 | 2097 | 2092.5 | 2107.5 | 15.0 | 2085.5 | 2135.5 | 50.0 | 2053.5 | 2167.5 | 114.0 | | | 429 | | 4304730568 | | X | | | 9S | 24E | 17 | SL | 650223 | 4432794 | 5243 | 2240 | 2234.0 | 2245.0 | 11.0 | 2226.0 | 2263.0 | 37.0 | 2194.5 | 2294.5 | 100.0 | 1983.5 | 2322.0 | 338 | | 4304730124 | 7.100.4 | | X | | 9S | 24E | 18 | SL | 648985 | 4433585 | 5115 | 2318 | 2312.5 | 2323.0 | 10.5 | 2304.0 | 2343.0 | 39.0 | 2274.0 | 2386.0 | 112.0 | 2236.5 | 2658.0 | 421 | | | U084
U085 | | X | | 9S
9S | 24E
24E | 29
32 | SL
SL | 651248
649994 | 4430527
4427496 | 5432
5604 | 2037
1965 | 2034.5
1961.0 | 2046.5
1974.0 | 12.0
13.0 | 2025.0
1955.0 | 2063.5
1992.0 | 38.5
37.0 | 1992.0
1924.0 | 2098.0
2034.5 | 106.0
110.5 | | | 399
416 | | | U131 | | X | | 9S | 24E | 36 | SL | 657617 | 4428278 | 5471 | 901 | 898.0 | 905.5 | 7.5 | 889.5 | 918.5 | 29.0 | 869.0 | 963.5 | 94.5 | | | 355 | | | U082 | | X | | 9S | 25E | 2 | SL | 664245 | 4435783 | 5750 | 1092 | 1089.0 | 1095.5 | 6.5 | 1086.0 | 1108.5 | 22.5 | 1050.0 | 1130.5 | 80.5 | | | 353 | | | U081 | | х | | 9S | 25E | 16 | SL | 662171 | 4433946 | 5870 | 1171 | 1168.5 | 1176.5 | 8.0 | 1159.5 | 1182.5 | 23.0 | 1132.0 | 1220.0 | 88.0 | | | 386 | | | U092 | | X | | 9S | 25E | 16 | SL | 661008 | 4432488 | 5813 | 1027 | 1024.0 | 1031.5 | 7.5 | 1015.0 | 1038.0 | 23.0 | 993.5 | 1085.5 | 92.0 | 756.0 | 1160.0 | 404 | | | U030 | | X | | 9S | 25E | 23 | SL | 665059 | 4431820 | 5879 | 481 | 480.0 | 485.0 | 5.0 | 476.0 | 500.0 | 24.0 | 445.0 | 521.0 | 76.0 | | | 333 | | | U028 | | X | | 9S | 25E | 32 | SL | 659845 | 4428479 | 5507 | 516 | 510.0 | 519.5 | 9.5 | 504.5 | 536.5 | 32.0 | 472.0 | 560.0 | 88.0 | | | 386 | | | U109 | | X | | 9S | 25E | 33 | SL | 661750 | 4427687 | 5745 | 501 | 495.5 | 501.5 | 6.0 | 494.0 | 517.5 | 23.5 | 464.0 | 550.0 | 74.5 | | | 327 | | 4201220260 | U114 | | X | | 9S | 25E | 33 | SL | 662081 | 4428867 | 5871 | 504 | 500.5 | 508.0 | 7.5 | 492.5 | 526.0 | 33.5 | 464.0 | 558.0 | 94.0 | 1026.0 | 2006.5 | 413 | | 4301320269 | | X | | | 10S
10S | 14E
15E | 25
12 | SL
SL |
559867
569887 | 4419036
4423846 | 7369
6344 | 1957
2167 | 1954.5 | 1957.5 | 3.0
7.5 | 1951.5
2159.5 | 1961.0
2180.5 | 9.5
21.0 | 1949.0
2154.5 | 1972.5
2187.5 | 23.5
33.0 | 1936.0
2149.0 | 2006.5
2213.5 | 70 | | 4301331888 | U180 | X | х | | 10S | 15E | 16 | SL | 565851 | 4421009 | 7077 | 2335 | 2163.5
2335.0 | 2171.0
2337.0 | 2.0 | 2333.0 | 2340.5 | 7.5 | 2331.0 | 2346.0 | 15.0 | 2327.5 | 2365.0 | 64
37 | | 4301332640 | 0180 | x | | | 10S | 15E | 25 | SL | 569446 | 4417790 | 6706 | 1709 | 2333.0 | 2337.0 | 0.0 | 1706.0 | 1711.0 | 5.0 | 1704.5 | 1720.5 | 16.0 | 1701.5 | 1741.0 | 39 | | 4301310757 | | | x | | 10S | 16E | 11 | SL | 578275 | 4423537 | 6249 | 2423 | 2420.0 | 2431.0 | 11.0 | 2414.0 | 2452.0 | 38.0 | 2400.5 | 2463.5 | 63.0 | 2394.5 | 2516.0 | 121 | | 4301310756 | | | X | | 10S | 16E | 16 | SL | 575282 | 4421297 | 6463 | 2250 | 2250.5 | 2251.0 | 0.5 | 2243.5 | 2261.0 | 17.5 | 2239.5 | 2284.5 | 45.0 | 2210.5 | 2337.0 | 126 | | 4301332084 | | x | | | 10S | 16E | 23 | SL | 577562 | 4419607 | 6488 | 2152 | 2148.0 | 2154.5 | 6.5 | 2146.5 | 2156.5 | 10.0 | 2146.5 | 2167.5 | 21.0 | 2138.0 | 2186.5 | 48 | | 4301330722 | | x | | | 10S | 17E | 5 | SL | 582172 | 4424379 | 5866 | 2352 | 2345.5 | 2355.5 | 10.0 | 2344.5 | 2368.0 | 23.5 | 2341.5 | 2382.5 | 41.0 | 2322.0 | 2403.0 | 81 | | 4301332057 | | x | | | 10S | 17E | 17 | SL | 583398 | 4421115 | 5950 | 2033 | 2029.5 | 2034.5 | 5.0 | 2028.5 | 2042.5 | 14.0 | 2024.5 | 2056.0 | 31.5 | 2002.5 | 2064.0 | 61 | | 4304735932 | | X | | | 10S | 18E | 7 | SL | 591469 | 4424105 | 5318 | 2120 | 2116.0 | 2125.5 | 9.5 | 2113.0 | 2143.5 | 30.5 | 2088.5 | 2145.0 | 56.5 | 2067.5 | 2173.5 | 106 | | 4304735798 | | x | | | 10S | 18E | 9 | SL | 594652 | 4422868 | 5078 | 1823 | 1820.0 | 1828.0 | 8.0 | 1816.5 | 1834.5 | 18.0 | 1799.0 | 1834.0 | 35.0 | 1757.5 | 1864.0 | 106 | | 4304731505 | | | X | | 10S | 18E | 11 | SL | 597108 | 4423367 | 5079 | 1928 | 1925.0 | 1931.0 | 6.0 | 1921.5 | 1950.5 | 29.0 | 1897.0 | 1960.0 | 63.0 | | | 118. | | 4304731752 | | X | | | 10S | 19E | 2 | SL | 607303 | 4425931 | 4987 | 2234 | 2231.0 | 2237.5 | 6.5 | 2227.5 | 2247.5 | 20.0 | 2209.5 | 2254.5 | 45.0 | 2160.0 | 2279.0 | 119 | | 4304733107 | | X | | | 10S | 19E | 12 | SL | 608962 | 4423657 | 5095 | 2099 | 2095.5 | 2101.0 | 5.5 | 2093.0 | 2110.5 | 17.5 | 2074.5 | 2118.0 | 43.5 | 2035.0 | 2141.0 | 106 | | 4304730260 | | X | | | 10S | 19E | 16 | SL | 603469 | 4422194 | 5057 | 1812 | 1808.0 | 1815.0 | 7.0 | 1805.5 | 1823.5 | 18.0 | 1790.0 | 1830.5 | 40.5 | 1735.0 | 1853.5 | 118 | | 4304730970 | | X | | | 10S | 19E | 23 | SL | 607353 | 4421475 | 5210 | 1950 | 1947.0 | 1952.5 | 5.5 | 1942.5 | 1959.5 | 17.0 | 1928.0 | 1969.5 | 41.5 | 1569.0 | 1710.0 | 112. | | 4304731898
4304731777 | | X | | | 10S
10S | 19E
19E | 27
36 | SL
SL | 605763
607958 | 4418769
4418158 | 5263
5362 | 1668
1726 | 1664.5
1724.0 | 1673.0
1728.0 | 8.5
4.0 | 1660.0
1719.0 | 1686.5
1735.0 | 26.5
16.0 | 1639.0
1715.5 | 1691.5
1749.0 | 52.5
33.5 | 1568.0
1668.0 | 1710.0
1768.0 | 142
100 | | 4304731777 | | X
X | | | 10S | 20E | 6 | SL | 610916 | 4425369 | 4868 | 2082 | 2079.0 | 2083.5 | 4.5 | 2076.0 | 2090.0 | 14.0 | 2072.5 | 2104.0 | 31.5 | 2021.0 | 2124.5 | 103 | | 4304720308 | | x | | | 10S | 20E | 17 | SL | 611826 | 4422724 | 5093 | 2010 | 2009.5 | 2011.5 | 2.0 | 2007.5 | 2015.5 | 8.0 | 2004.0 | 2028.5 | 24.5 | 1980.5 | 2044.0 | 63 | | .501/20500 | U103 | | x | | 10S | 20E | 19 | SL | 610956 | 4421537 | 5195 | 1829 | 1829.0 | 1829.5 | 0.5 | 1829.0 | 1832.0 | 3.0 | 1827.0 | 1859.5 | 32.5 | 1,000 | 201 | 107. | | 4304730294 | | x | | | 10S | 21E | 8 | SL | 622075 | 4424037 | 5067 | 2019 | 2016.0 | 2022.5 | 6.5 | 2012.5 | 2032.0 | 19.5 | 1994.0 | 2041.5 | 47.5 | 1936.0 | 2066.5 | 130 | | 4304734797 | | x | | | 10S | 21E | 9 | SL | 623845 | 4424560 | 5076 | 2045 | 2040.0 | 2050.0 | 10.0 | 2036.5 | 2068.5 | 32.0 | 2013.0 | 2075.5 | 62.5 | 1903.5 | 2094.0 | 190 | | 4304730504 | | x | | | 10S | 21E | 18 | SL | 619499 | 4423304 | 5077 | 1980 | 1977.0 | 1982.0 | 5.0 | 1975.5 | 1991.0 | 15.5 | 1954.5 | 1998.5 | 44.0 | 1891.0 | 2023.5 | 132 | | 4304731084 | | x | | | 10S | 21E | 26 | SL | 626428 | 4420189 | 5356 | 1850 | 1848.0 | 1854.0 | 6.0 | 1842.0 | 1860.0 | 18.0 | 1820.0 | 1872.0 | 52.0 | 1757.5 | 1899.0 | 141 | | | U054 | | x | | 10S | 21E | 31 | SL | 619938 | 4417399 | 5345 | 1644 | 1642.0 | 1646.5 | 4.5 | 1641.5 | 1656.5 | 15.0 | 1621.5 | 1669.5 | 48.0 | | | 144 | | 4304730724 | | x | | | 10S | 22E | 3 | SL | 635056 | 4425645 | 5067 | 1864 | 1858.0 | 1877.0 | 19.0 | 1852.5 | 1901.5 | 49.0 | 1787.0 | 1899.5 | 112.5 | 1553.5 | 1927.0 | 373 | | 4304720268 | | x | | | 10S | 22E | 5 | SL | 631728 | 4426845 | 4908 | 1988 | 1986.0 | 1999.0 | 13.0 | 1976.5 | 2019.5 | 43.0 | 1946.0 | 2040.0 | 94.0 | 1694.0 | 2052.0 | 358 | | | U111 | | X | | 10S | 22E | | SL | 637584 | 4424888 | 5192 | 1857 | 1852.5 | 1868.5 | 16.0 | 1846.5 | 1892.5 | 46.0 | 1818.0 | 1921.5 | 103.5 | | | 337. | | 4304730536 | *** | X | | | 10S | 22E | | SL | 637451 | 4422858 | 5295 | 1785 | 1780.0 | 1796.0 | 16.0 | 1774.0 | 1817.0 | 43.0 | 1721.0 | 1814.0 | 93.0 | 1539.5 | 1842.5 | 303 | | | U104 | | X | | 10S | 22E | | SL | 633509 | 4423667 | 5243 | 1930 | 1928.0 | 1942.5 | 14.5 | 1920.0 | 1960.5 | 40.5 | 1887.5 | 1977.5 | 90.0 | | | 293 | | | U101 | | X | | 10S | 22E | | SL | 629032 | 4423509 | 5030 | 1817 | 1812.0 | 1823.0 | 11.0 | 1807.5 | 1844.5 | 37.0 | 1781.5 | 1863.5 | 82.0 | | | 267 | | 4204720020 | U107 | | X | | 10S | 22E | | SL | 638110 | 4422030 | 4893 | 1266 | 1262.0 | 1274.0 | 12.0 | 1257.0 | 1290.5 | 33.5 | 1228.0 | 1317.0 | 89.0 | 1004.0 | 1260.0 | 290. | | 4304730838 | | X | | | 10S | 22E | | SL | 634492 | 4420406 | 4970 | 1314 | 1310.5 | 1323.0 | 12.5 | 1304.5 | 1339.5 | 35.0 | 1286.0 | 1357.5 | 71.5 | 1094.0 | 1368.0 | 274. | | 4304734237 | 11105 | X | | | | 22E | | SL | 629617 | 4419861 | 5369 | 1766 | 1763.5 | 1771.0 | 7.5 | 1759.5 | 1781.0 | 21.5 | 1739.5 | 1794.0 | 54.5 | 1666.0 | 1817.0 | 151
205 | | | U105 | I | Х | I | 108 | 22E | 36 | SL | 637589 | 4418115 | 5394 | 1400 | 1397.0 | 1404.5 | 7.5 | 1393.0 | 1417.5 | 24.5 | 1372.0 | 1435.0 | 63.0 | | | | APPENDIX continued | API | USGS# | Typ | e of I | Log | Twn | Rng | g Sec | Mrd | UTM E | UTM N | Elevation | Mahogany
Bed | 50 | GPT Zone | | 35 | GPT Zone | | 25 | 25 GPT Zone | | 15 | GPT Zone | 3 | |------------|--------------|--------|--------|---------|------------|------------|-------|----------|------------------|--------------------|---------------|-----------------|-------------------|--------------------|------------|---------------|-----------------|--------------|---------------|-----------------|--------------|---------------|-----------------|----------| | | | | | Fischer | | | | | | | Ground | Depth | | | Thick- | | | Thick- | | | Thick- | | | Thic | | | U070 | Den S | son | Assay | 12S | 21E | 35 | SL | 625945 | 4398702 | level
5829 | to bed | Top
129.0 | Bottom
133.0 | ness | Top
122.5 | Bottom
134.5 | ness
12.0 | Top
119.5 | Bottom | ness
29.0 | Top
86.5 | Bottom
174.0 | ne
87 | | 4304733132 | 0070 | v | | Х | 12S | 21E | | SL | 630076 | 4406962 | 6234 | 1438 | 1435.0 | 1442.0 | 4.0
7.0 | 1430.5 | 1451.0 | 20.5 | 1428.5 | 148.5
1474.0 | 45.5 | 1379.5 | 1493.5 | 114 | | 4304733131 | | X
X | | | 12S | 22E | | SL | 634937 | 4403755 | 5826 | 714 | 709.5 | 717.5 | 8.0 | 705.5 | 728.5 | 23.0 | 704.0 | 750.0 | 46.0 | 649.0 | 769.0 | 120 | | 1304733131 | | X | | | 12S | 22E | | SL | 628635 | 4400487 | 6251 | 808 | 805.0 | 811.0 | 6.0 | 803.0 | 819.5 | 16.5 | 798.5 | 838.0 | 39.5 | 762.0 | 868.5 | 106 | | 4304734730 | | x | | | 12S | 23E | | SL | 645351 | 4405221 | 6004 | 700 | 695.5 | 706.5 | 11.0 | 691.0 | 723.0 | 32.0 | 668.0 | 731.5 | 63.5 | 579.5 | 746.0 | 166 | | 1304733489 | | x | | | 12S | 23E | | SL | 641989 | 4403238 | 5964 | 651 | 645.5 | 654.5 | 9.0 | 641.5 | 666.5 | 25.0 | 623.0 | 672.0 | 49.0 | 579.0 | 703.0 | 124 | | .501755109 | U087 | | | x | 12S | 23E | | SL | 646100 | 4398839 | 6362 | 465 | 461.0 | 469.5 | 8.5 | 458.0 | 484.5 | 26.5 | 432.5 | 495.5 | 63.0 | 303.0 | 500.0 | 19 | | | U144 | | | x | 12S | 24E | | SL | 656357 | 4406641 | 6340 | 306 | 301.5 | 308.5 | 7.0 | 298.0 | 320.5 | 22.5 | 278.5 | 332.0 | 53.5 | | | 15 | | | U055 | | | x | 12S | 24E | | SL | 653158 | 4407920 | 6137 | 465 | 462.0 | 468.0 | 6.0 | 462.0 | 479.5 | 17.5 | 442.0 | 491.5 | 49.5 | 320.5 | 498.0 | 17 | | 304735083 | | x | | | 12S | 24E | 7 | SL | 647764 | 4404973 | 6050 | 586 | 581.0 | 589.5 | 8.5 | 576.0 | 600.5 | 24.5 | 556.0 | 611.5 | 55.5 | 476.5 | 632.0 | 15 | | | U156 | | | x | 12S | 24E | | SL | 655201 | 4405283 | 6110 | 75 | 71.5 | 78.5 | 7.0 | 68.0 | 87.0 | 19.0 | 51.0 | 98.5 | 47.5 | 26.0 | 147.5 | 12 | | | U091 | | | x | 12S | 24E | 14 | SL | 654533 | 4403991 | 6165 | 50 | 45.0 | 54.5 | 9.5 | 45.5 | 71.5 | 26.0 | 39.5 | 88.0 | 48.5 | 0.0 | 153.5 | 15 | | | U145 | | | x | 12S | 24E | 15 | SL | 652302 | 4404186 | 6300 | 385 | 383.5 | 389.5 | 6.0 | 377.5 | 392.0 | 14.5 | 362.5 | 400.0 | 37.5 | | | 11 | | | U080 | | | x | 12S | 24E | 19 | SL | 648046 | 4402078 | 6261 | 504 | 499.0 | 510.5 | 11.5 | 495.0 | 529.5 | 34.5 | 470.0 | 542.5 | 72.5 | 318.0 | 547.5 | 22 | | | U134 | | | X | 12S | 24E | 22 | SL | 652365 | 4402141 | 6225 | 140 | 138.0 | 149.0 | 11.0 | 133.5 | 162.5 | 29.0 | 108.0 | 174.0 | 66.0 | | | 20 | | | U153 | | | X | 12S | 24E | 25 | SL | 656186 | 4401431 | 6660 | 100 | 97.5 | 103.5 | 6.0 | 93.0 | 110.5 | 17.5 | 76.0 | 122.5 | 46.5 | 25.0 | 170.5 | 14 | | | U141 | | | x | 12S | 24E | 34 | SL | 653267 | 4399513 | 6450 | 100 | 96.0 | 104.5 | 8.5 | 92.0 | 117.5 | 25.5 | 69.5 | 131.5 | 62.0 | | | 19 | | | U090 | | | x | 12S | 24E | 36 | SL | 656719 | 4399338 | 6900 | 73 | 69.5 | 78.5 | 9.0 | 65.0 | 89.5 | 24.5 | 44.0 | 102.0 | 58.0 | 0.0 | 183.5 | 18 | | | U135 | | | X | 12S | 25E | | SL | 658311 | 4406094 | 6540 | 303 | 300.0 |
306.0 | 6.0 | 296.5 | 315.0 | 18.5 | | | 51.0 | | | 10 | | | U143 | | | X | 12S | 25E | | SL | 658938 | 4403501 | 6700 | 192 | 192.0 | 196.5 | 4.5 | 187.5 | 204.0 | 16.5 | 169.5 | 215.0 | 45.5 | 141.5 | 284.5 | 14 | | | U152 | | | X | 12S | 25E | | SL | 658452 | 4404632 | 6600 | 212 | 209.0 | 215.5 | 6.5 | 205.0 | 220.5 | 15.5 | 193.0 | 233.5 | 40.5 | 184.0 | 287.5 | 10 | | | U140 | | | X | 12S | 25E | | SL | 657356 | 4403625 | 6340 | 91 | 87.0 | 94.5 | 7.5 | 83.0 | 106.5 | 23.5 | 63.0 | 117.5 | 54.5 | 15.0 | 173.5 | 1: | | | U017 | | | X | 13S | 18E | | SL | 594250 | 4396676 | 6090 | 129 | 127.5 | 131.0 | 3.5 | 124.0 | 134.5 | 10.5 | 117.0 | 142.5 | 25.5 | | | • | | | U018 | | | X | 13S | 19E | | SL | 599386 | 4394268 | 6275 | 115 | 113.0 | 116.5 | 3.5 | 111.0 | 119.0 | 8.0 | 105.5 | 125.0 | 19.5 | | | | | | U008 | | | X | 13S | 19E | | SL | 605853 | 4393568 | 6247 | 167 | 162.5 | 167.5 | 5.0 | 162.0 | 173.0 | 11.0 | 156.0 | 182.0 | 26.0 | | | (| | | U010 | | | X | 13S | 19E | | SL | 604747 | 4388476 | 6763 | 158 | 1640 | 160.5 | 0.0 | 155.5 | 1.00.0 | 0.0 | 157.0 | 162.0 | 5.0 | 148.0 | 172.5 | - 2 | | | U023 | | | X | 13S | 20E | | SL | 618235 | 4396672 | 5836 | 167 | 164.0 | 168.5 | 4.5 | 157.5 | 169.0 | 11.5 | 155.5 | 184.0 | 28.5 | 152.0 | 226.5 | | | | U021 | | | X | 13S | 20E | | SL | 610525 | 4396747 | 5964 | 167 | 164.5 | 169.0 | 4.5 | 162.0 | 172.5 | 10.5 | 155.5 | 180.5 | 25.0 | 148.0 | 214.0 | (| | | U159
U022 | | | X | 13S
13S | 20E | | SL
SL | 616915
615775 | 4395010
4394255 | 5908
6038 | 76
158 | 75.0
156.5 | 78.5 | 3.5 | 71.0
151.5 | 79.5 | 8.5
10.0 | 68.5
150.0 | 93.5
172.5 | 25.0
22.5 | 33.0
142.5 | 105.5
203.5 | | | | U160 | | | X | 13S | 20E | | SL | 615712 | 4394233 | 6388 | 78 | 78.0 | 161.0
79.5 | 4.5
1.5 | 74.5 | 161.5
81.5 | 7.0 | 70.5 | 88.5 | 18.0 | 64.0 | 106.0 | (| | | U161 | | | X
X | 13S | 20E | | SL | 618866 | 4388973 | 6457 | 70 | 68.0 | 79.5 | 2.5 | 66.0 | 72.5 | 6.5 | 62.0 | 78.5 | 16.5 | 52.0 | 90.5 | 3 | | | U079 | | | X | 13S | 22E | | SL | 633812 | 4395597 | 6427 | 466 | 466.0 | 469.0 | 3.0 | 460.5 | 471.5 | 11.0 | 454.5 | 481.5 | 27.0 | 422.5 | 525.0 | 10 | | | U071 | | | X | 13S | 22E | | SL | 629942 | 4394449 | 6183 | 101 | 100.0 | 104.0 | 4.0 | 94.0 | 105.5 | 11.5 | 91.0 | 119.5 | 28.5 | 60.0 | 154.5 | 1 | | | U074 | | | X | 13S | 22E | | SL | 629496 | 4389749 | 6628 | 148 | 148.0 | 151.5 | 3.5 | 142.0 | 152.5 | 10.5 | 141.0 | 165.0 | 24.0 | 102.5 | 180.0 | 7 | | | U072 | | | X | 13S | 22E | | SL | 635700 | 4389409 | 6700 | 120 | 119.0 | 124.0 | 5.0 | 115.0 | 132.0 | 17.0 | 113.0 | 146.5 | 33.5 | 43.0 | 146.0 | 10 | | | U073 | | | x | 13S | 22E | | SL | 635749 | 4388635 | 6727 | 53 | 51.5 | 56.5 | 5.0 | 47.5 | 59.5 | 12.0 | 46.0 | 76.5 | 30.5 | 15.0 | 102.5 | 8 | | | U076 | | | x | 13S | 23E | | SL | 644861 | 4390642 | 6419 | 33 | 32.0 | 34.5 | 2.5 | 26.5 | 38.0 | 11.5 | 8.0 | 50.0 | 42.0 | 0.0 | 120.5 | 12 | | | U027 | | | x | 13S | 24E | 2 | SL | 654287 | 4397281 | 6789 | 121 | 116.0 | 123.5 | 7.5 | 112.5 | 134.0 | 21.5 | 92.0 | 148.5 | 56.5 | 0.0 | 179.5 | 17 | | | U177 | | | x | 13S | 24E | 2 | SL | 654056 | 4398315 | 6611 | 49 | 44.0 | 50.5 | 6.5 | 40.0 | 60.0 | 20.0 | 17.0 | 70.5 | 53.5 | 0.0 | 170.0 | 17 | | | U077 | | | x | 13S | 24E | 6 | SL | 648138 | 4397625 | 6268 | 190 | 185.0 | 194.0 | 9.0 | 180.5 | 206.0 | 25.5 | 159.5 | 222.0 | 62.5 | 35.0 | 238.0 | 20 | | | U041 | | | X | 13S | 24E | 8 | SL | 649145 | 4395648 | 6322 | 68 | 64.0 | 69.5 | 5.5 | 64.0 | 81.0 | 17.0 | 57.5 | 103.0 | 45.5 | 9.0 | 153.5 | 14 | | | U042 | | | X | 13S | 24E | | SL | 651527 | 4396110 | 6497 | 99 | 98.0 | 104.5 | 6.5 | 98.0 | 113.0 | 15.0 | 75.5 | 120.5 | 45.0 | 0.0 | 148.5 | 14 | | | U078 | | | X | 13S | 24E | | SL | 652681 | 4395938 | 6677 | 159 | 154.5 | 163.5 | 9.0 | 150.0 | 175.5 | 25.5 | 126.0 | 187.0 | 61.0 | 0.0 | 204.5 | 20 | | | U094 | | | x | 14S | 21E | | SL | 619353 | 4384393 | 6760 | 81 | 81.0 | 81.5 | 0.5 | 78.5 | 83.5 | 5.0 | 76.5 | 87.5 | 11.0 | 71.0 | 92.5 | 3 | | | U095 | | | X | 14S | 21E | | SL | 626480 | 4380217 | 7002 | 63 | 63.0 | 64.0 | 1.0 | 60.0 | 64.5 | 4.5 | 59.0 | 68.0 | 9.0 | 54.0 | 74.5 | - 3 | | | U075 | | | X | 14S | 22E | | SL | 635617 | 4386675 | 6989 | 54 | 53.0 | 57.0 | 4.0 | 49.0 | 60.0 | 11.0 | 49.0 | 72.5 | 23.5 | 9.0 | 88.5 | | | | U100
U096 | | | X
X | 15S
15S | 21E
21E | | SL
SL | 626861
621043 | 4376431
4374385 | 7187
7282 | 77
107 | 106.0 | 107.5 | 0.0
1.5 | 77.0
104.0 | 77.5
108.5 | 0.5
4.5 | 76.0
103.0 | 77.5
112.0 | 1.5
9.0 | 70.0
98.0 | 82.5
115.5 | | | | U096
U098 | | | X
X | 15S | 21E | | SL | 621043 | 43/4385 | 7282
7542 | 54 | 54.0 | 107.5
54.5 | 0.5 | 104.0
54.0 | 56.0 | 2.0 | 53.0 | 57.0 | 4.0 | 50.0 | 58.0 | | | | U098
U099 | l | | X | 16S | | | SL | 633476 | 4361817 | 7728 | 40 | J 4 .0 | J -1 .J | 0.0 | 39.0 | 40.0 | 1.0 | 37.0 | 40.5 | 3.5 | 36.0 | 44.0 | | Note: Numbers in italics indicate estimates Den = Bulk density log, Son = Sonic log, Twn = Township, Rng = Range, Sec = Section, Mrd = Meridan, SL = Salt Lake Base Line and Meridian, UN = Uinta Special Meridian, GPT = gallons shale oil per ton of rock