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Collapsible (hydrocompactible) soils have considerable dry strength and stiffness in their dry
natural state, but can settle up to 10 percent of the susceptible deposit thickness when they
become wet for the first time following deposition (Costa and Baker, 1981; Rollins and Rogers,
1994) causing damage to property and structures (figure 1).  Collapsible soils are common
throughout the arid southwestern United States and are commonly geologically young materials,
chiefly debris-flow deposits in Holocene-age alluvial fans, and some wind-blown, lacustrine, and
colluvial deposits (Owens and Rollins, 1990; Mulvey, 1992; Santi, 2005).  David Black
(Rosenberg Associates, written communication, 2012) reports that honeycomb structure caused by
gypsum dissolution in both rock and soil can extend to as much as 10 feet below the ground
surface in gypsum-susceptible areas in southwestern Utah and may lead to collapse-prone
foundation conditions (see Gypsiferous Soil and Rock Map [plate 6]).

Collapsible soils typically have a high void ratio and corresponding low unit weight (Costa and
Baker, 1981) and relatively low moisture content (Owens and Rollins, 1990), all characteristics
that result from the initial rapid deposition and drying of the sediments.  Intergranular bonds form
between the larger grains (sand and gravel) of a collapsible soil; these bonds develop through
capillary tension or a binding agent such as silt, clay, or salt.  Later wetting of the soil results in a
loss of capillary tension or the softening, weakening, or dissolving of the bonding agent, allowing
the larger particles to slip past one another into a denser structure (Williams and Rollins, 1991).

Generally, collapsible alluvial-fan and colluvial soils are associated with drainage basins
dominated by soft, clay-rich sedimentary rocks such as shale, mudstone, claystone, and siltstone
(Bull, 1964; Owens and Rollins, 1990).  Bull (1964) found that the maximum collapse of alluvial-
fan soils in Fresno County, California, coincided with a clay content of approximately 12 percent.
Alluvial-fan deposits exhibiting dramatic collapse behavior in Nephi, Utah, typically contain 10 to
15 percent clay-size material (Rollins and Rogers, 1994).  At clay contents greater than about 12
to 15 percent, the expansive nature of the clay begins to dominate and the soil is subject to swell
rather than collapse (Rollins and Rogers, 1994).  Soil composition is the primary indicator of
collapse potential in alluvial-fan and colluvial soils.  Characteristically, collapsible soils consist
chiefly of silty sands, sandy silts, and clayey sands (Williams and Rollins, 1991), although Rollins
and others (1994) identified collapse-prone gravels containing as little as 5 to 20 percent fines at
several locations in the southwestern United States.

Naturally occurring deep percolation of water into collapsible deposits is uncommon after
deposition due to the arid conditions in which the deposits typically form, and the steep gradient
of many alluvial-fan and colluvial surfaces.  Therefore, soil collapse is usually triggered by human
activity such as irrigation, urbanization, and/or wastewater disposal.  Kaliser (1978) reported
serious damage (estimated $3 million) to public and private structures in Cedar City, Utah, from
collapsible soils.  Rollins and others (1994) documented more than $20 million in required
remedial measures to a cement plant near Leamington, Utah, and Smith and Deal (1988) reported
damage to a large flood-control structure near Monroe, Utah.  In 2001, collapsible soils damaged
the Zion National Park greenhouse soon after it was constructed (figure 2), as soils below and
around the building were wetted by excess irrigation water.  Park employees reported that a
wastewater treatment plant that had once been located nearby also had a history of damage from
ground subsidence.

Sources of information used to evaluate collapsible soil in the State Route 9 Corridor Geologic-
Hazard Study Area (SR-9 study area) include (1) 40 geotechnical reports on file with the National
Park Service (NPS), the Utah Department of Transportation (UDOT), and the towns of Springdale
and Virgin, (2) Natural Resources Conservation Service (NRCS) (formerly Soil Conservation
Service) Soil Survey of Washington County Area, Utah (Mortensen and others, 1977), (3) the four
Utah Geological Survey (UGS) 1:24,000-scale geologic quadrangle maps that cover the study
area (Virgin [Hayden and Sable, 2008], Springdale West [Willis and others, 2002], Springdale
East [Doelling and others, 2002], and Smithsonian Butte [Moore and Sable, 2001]), (4)
Engineering Geology of the St. George Area, Washington County, Utah (Christenson and Deen,
1983), (5) “Geologic Hazards of the St. George Area, Washington County, Utah” (Christenson,
1992), (6) Engineering Geologic Map Folio, Springdale, Washington County, Utah (Solomon,
1996), (7) Geologic Hazards and Adverse Construction Conditions, St. George–Hurricane
Metropolitan Area, Washington County, Utah (Lund and others, 2008), and (8) Geologic Hazards
of the Zion National Park Geologic-Hazard Study Area, Washington and Kane Counties, Utah
(Lund and others, 2010).

Review of geotechnical reports prepared for projects in and near the SR-9 study area showed that
collapsible soils are common in areas underlain by geologically young alluvial-fan and colluvial
deposits.  However, the geotechnical data are limited to a few newer buildings in Zion National
Park just outside the study area boundary, to shuttle bus stops in Zion Canyon, to areas of newer
development in the towns of Springdale and Virgin, and to a few bridges and borrow pits along
the State Route 9 right-of-way.  To estimate the collapse potential of soils where geotechnical data
were not available, it was necessary to extrapolate based on the geologic unit characteristics
shown on UGS geologic maps (see Sources of Information) and make comparisons with similar
units in the St. George area, where geotechnical data are more abundant (Lund and others, 2008).
The NRCS Soil Survey of Washington County Area, Utah (Mortensen and others, 1977) does not
contain information on soil-collapse potential.

Utah Geological Survey geologic mapping classifies the unconsolidated deposits in the study area
into 41 geologic units.  Swell/collapse test (SCT) data are available for only a few of those units.
Eight units have reported collapse values of ≥3 percent, the level at which collapse generally
becomes a significant engineering concern given a sufficient thickness of susceptible soil
(Jennings and Knight, 1975).  As discussed above, soil collapse is closely associated with soil
texture.  A variation of a few percent in clay content can be the difference between a deposit that
will collapse and one that will swell when wetted.  The unconsolidated geologic units on UGS
geologic maps are defined by geomorphology (landform), genesis, and to a lesser extent texture.
Therefore, some unconsolidated geologic units show considerable textural variation. For example,
geologic unit Qafc, which denotes mixed alluvial-fan and colluvial deposits, is reported,
depending on location, to have SCT values in excess of 3 percent collapse and 3 percent swell.
Therefore, while geology can be used as an indicator of collapse potential, it is not an infallible
guide, and site-specific soil testing is always required.

The geotechnical database compiled for this study contains 90 SCT soil/rock sample test results.
The results for 54 of the samples (60%) indicate collapse potential.  Of the 54 collapsible samples,
26 have SCT values >3 percent, and therefore are problematic from an engineering standpoint.

Table 1 shows the relation between ASTM Unified Soil Classification System (USCS)
soil types and collapse values >3 percent in the SR-9 study area and vicinity.  As
expected, most collapsible soils consist of silty or clayey sand and silts.  The silts (ML)
tested show a higher percentage of collapsible samples than do clayey sands (SC).  The
silts are likely loess deposits of eolian origin.  Clay-rich soils (CL and CH) and poorly
graded (well sorted) sands (SP) show the lowest potential for collapse, but nevertheless,
more than 8 percent of low-plasticity (CL) clays tested show significant collapse
potential.

We grouped unconsolidated geologic units that may be prone to collapse into three susceptibility
categories (table 2). The categories are based on available geotechnical data, and if the deposit
genesis or texture is permissive of collapse. Due to the lack of geotechnical data over much of the
study area, the classification system presented here employs a relative susceptibility ranking as
opposed to a hazard-severity ranking. The soils in all three categories could exhibit >3 percent
collapse, and therefore be regarded as having significant collapse potential. The collapsible-soil-
susceptibility categories are described in the Explanation section.

This map shows the location of known and suspected collapsible-soil conditions in the SR-9 study
area.  The map is intended for general planning and design purposes to indicate where collapsible-
soil conditions may exist and where special investigations are required. Site-specific
investigations can resolve uncertainties inherent in generalized mapping and help identify the
need for special design, site grading and soil placement, and/or mitigation techniques.  The
presence and severity of collapsible soil along with other geologic hazards should be addressed in
these investigations.  If collapsible soil is present at a site, appropriate design and construction
recommendations should be provided.

Although costly when not recognized and properly accommodated in project design and
construction, problems associated with collapsible soil rarely are life threatening.  As with most
geologic hazards, early recognition and avoidance are the most effective ways to mitigate
potential problems.  However, collapsible soil is widespread in the study area, and avoidance may
not always be a viable or cost-effective option.

In Utah, soil-test requirements are specified in chapter 18 (Soils and Foundations) of the 2009
International Building Code (IBC) (International Code Council, 2009a) and chapter 4
(Foundations) of the 2009 International Residential Code for One- and Two-Family Dwellings
(IRC) (International Code Council, 2009b), which are adopted statewide.  IBC Section 1803.3
contains requirements for soil investigations in areas where questionable soil (soil classification,
strength, or compressibility) is present.  IRC Section R401.4 states that the building official shall
determine whether to require a soil test to determine the soil’s characteristics in areas likely to
have expansive, compressible, shifting, or other unknown soil characteristics.  IBC table 1613.5.2
identifies collapse-prone soils as Site Class F.  Site Class F soils require a site-specific
investigation to determine the proper seismic design category and parameters for a proposed
facility.

Where the presence of collapsible soil is confirmed, possible mitigation techniques include soil
removal and replacement with noncohesive, compacted backfill; use of special foundation designs
such as drilled pier deep foundations, grade beam foundations, or stiffened slab-on-grade
construction; moisture barriers; and careful site landscape and drainage design to keep moisture
away from buildings and collapse-prone soils (Nelson and Miller, 1992; Pawlak, 1998; Keller and
Blodgett, 2006).

This map is based on limited geologic and geotechnical data; site-specific investigations are
required to produce more detailed geotechnical information.  The map also depends on the quality
of those data, which may vary throughout the study area. The mapped boundaries between
susceptibility categories are approximate and subject to change as new information becomes
available. The susceptibility may be different than shown at any particular site because of
variations in the physical properties of geologic deposits within a map unit, gradational and
approximate map-unit boundaries, and the small map scale. The map is not intended for use at
scales other than the published scale, and is designed for use in general planning and design to
indicate the need for site-specific investigations.

Unconsolidated geologic units with reported collapse values of ≥3 percent.  
 
Geologically young (Holocene) unconsolidated geologic units with no available geotech- 

nical data, but whose genesis or texture is permissive of collapse (chiefly geologically 
young alluvial, colluvial, and eolian deposits). 

 
Older unconsolidated geologic units (Pleistocene) with no available geotechnical data, 

but like category CSB have a genesis or texture permissive of collapse.  Because of 
their age, these deposits have had greater exposure to natural wetting and collapse 
may have occurred, and/or the deposits may be cemented by secondary calcium 
carbonate or other soluble minerals. 
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Figure 2. Site of the Zion National Park greenhouse (stockpiled behind truck near photo center) damaged
by collapsible soils.  Circa 2001 photo; courtesy of the National Park Service.
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Table 2. Geologic deposits known or likely to have a significant potential for
soil collapse.

1Refer to UGS 1:24,000-scale geologic maps (see Sources of Information section) for a description
  of map units.
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Figure 1. Ground subsidence caused by poor drainage in collapsible soils adversely affects Interstate
15 in southwestern Utah.  Photo date: March 7, 2010.
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Table 1. Relation of high collapse test values (>3%) to USCS soil types in the geotechnical
database.

USCS
Soil
Type
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(number)
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SM
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Total
Bedrock

ML
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3
5
1
4
5
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